mesa/src/gallium/drivers/radeonsi/si_state.c

5707 lines
191 KiB
C
Raw Normal View History

/*
* Copyright 2012 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "si_build_pm4.h"
#include "sid.h"
#include "si_query.h"
#include "util/u_dual_blend.h"
#include "util/u_format.h"
#include "util/u_format_s3tc.h"
#include "util/u_memory.h"
#include "util/u_resource.h"
#include "util/u_upload_mgr.h"
#include "util/fast_idiv_by_const.h"
struct gfx10_format {
unsigned img_format:9;
/* Various formats are only supported with workarounds for vertex fetch,
* and some 32_32_32 formats are supported natively, but only for buffers
* (possibly with some image support, actually, but no filtering). */
bool buffers_only:1;
};
#include "gfx10_format_table.h"
static unsigned si_map_swizzle(unsigned swizzle)
{
switch (swizzle) {
case PIPE_SWIZZLE_Y:
return V_008F0C_SQ_SEL_Y;
case PIPE_SWIZZLE_Z:
return V_008F0C_SQ_SEL_Z;
case PIPE_SWIZZLE_W:
return V_008F0C_SQ_SEL_W;
case PIPE_SWIZZLE_0:
return V_008F0C_SQ_SEL_0;
case PIPE_SWIZZLE_1:
return V_008F0C_SQ_SEL_1;
default: /* PIPE_SWIZZLE_X */
return V_008F0C_SQ_SEL_X;
}
}
/* 12.4 fixed-point */
static unsigned si_pack_float_12p4(float x)
{
return x <= 0 ? 0 :
x >= 4096 ? 0xffff : x * 16;
}
/*
* Inferred framebuffer and blender state.
*
* CB_TARGET_MASK is emitted here to avoid a hang with dual source blending
* if there is not enough PS outputs.
*/
static void si_emit_cb_render_state(struct si_context *sctx)
{
struct radeon_cmdbuf *cs = sctx->gfx_cs;
struct si_state_blend *blend = sctx->queued.named.blend;
/* CB_COLORn_INFO.FORMAT=INVALID should disable unbound colorbuffers,
* but you never know. */
uint32_t cb_target_mask = sctx->framebuffer.colorbuf_enabled_4bit &
blend->cb_target_mask;
unsigned i;
/* Avoid a hang that happens when dual source blending is enabled
* but there is not enough color outputs. This is undefined behavior,
* so disable color writes completely.
*
* Reproducible with Unigine Heaven 4.0 and drirc missing.
*/
if (blend->dual_src_blend &&
sctx->ps_shader.cso &&
(sctx->ps_shader.cso->info.colors_written & 0x3) != 0x3)
cb_target_mask = 0;
/* GFX9: Flush DFSM when CB_TARGET_MASK changes.
* I think we don't have to do anything between IBs.
*/
if (sctx->screen->dpbb_allowed &&
sctx->last_cb_target_mask != cb_target_mask) {
sctx->last_cb_target_mask = cb_target_mask;
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_BREAK_BATCH) | EVENT_INDEX(0));
}
unsigned initial_cdw = cs->current.cdw;
radeon_opt_set_context_reg(sctx, R_028238_CB_TARGET_MASK,
SI_TRACKED_CB_TARGET_MASK, cb_target_mask);
if (sctx->chip_class >= GFX8) {
/* DCC MSAA workaround.
* Alternatively, we can set CB_COLORi_DCC_CONTROL.OVERWRITE_-
* COMBINER_DISABLE, but that would be more complicated.
*/
bool oc_disable = blend->dcc_msaa_corruption_4bit & cb_target_mask &&
sctx->framebuffer.nr_samples >= 2;
unsigned watermark = sctx->framebuffer.dcc_overwrite_combiner_watermark;
radeon_opt_set_context_reg(
sctx, R_028424_CB_DCC_CONTROL,
SI_TRACKED_CB_DCC_CONTROL,
S_028424_OVERWRITE_COMBINER_MRT_SHARING_DISABLE(sctx->chip_class <= GFX9) |
S_028424_OVERWRITE_COMBINER_WATERMARK(watermark) |
S_028424_OVERWRITE_COMBINER_DISABLE(oc_disable) |
S_028424_DISABLE_CONSTANT_ENCODE_REG(sctx->screen->info.has_dcc_constant_encode));
}
/* RB+ register settings. */
if (sctx->screen->info.rbplus_allowed) {
unsigned spi_shader_col_format =
sctx->ps_shader.cso ?
sctx->ps_shader.current->key.part.ps.epilog.spi_shader_col_format : 0;
unsigned sx_ps_downconvert = 0;
unsigned sx_blend_opt_epsilon = 0;
unsigned sx_blend_opt_control = 0;
for (i = 0; i < sctx->framebuffer.state.nr_cbufs; i++) {
struct si_surface *surf =
(struct si_surface*)sctx->framebuffer.state.cbufs[i];
unsigned format, swap, spi_format, colormask;
bool has_alpha, has_rgb;
if (!surf) {
/* If the color buffer is not set, the driver sets 32_R
* as the SPI color format, because the hw doesn't allow
* holes between color outputs, so also set this to
* enable RB+.
*/
sx_ps_downconvert |= V_028754_SX_RT_EXPORT_32_R << (i * 4);
continue;
}
format = G_028C70_FORMAT(surf->cb_color_info);
swap = G_028C70_COMP_SWAP(surf->cb_color_info);
spi_format = (spi_shader_col_format >> (i * 4)) & 0xf;
colormask = (cb_target_mask >> (i * 4)) & 0xf;
/* Set if RGB and A are present. */
has_alpha = !G_028C74_FORCE_DST_ALPHA_1(surf->cb_color_attrib);
if (format == V_028C70_COLOR_8 ||
format == V_028C70_COLOR_16 ||
format == V_028C70_COLOR_32)
has_rgb = !has_alpha;
else
has_rgb = true;
/* Check the colormask and export format. */
if (!(colormask & (PIPE_MASK_RGBA & ~PIPE_MASK_A)))
has_rgb = false;
if (!(colormask & PIPE_MASK_A))
has_alpha = false;
if (spi_format == V_028714_SPI_SHADER_ZERO) {
has_rgb = false;
has_alpha = false;
}
/* Disable value checking for disabled channels. */
if (!has_rgb)
sx_blend_opt_control |= S_02875C_MRT0_COLOR_OPT_DISABLE(1) << (i * 4);
if (!has_alpha)
sx_blend_opt_control |= S_02875C_MRT0_ALPHA_OPT_DISABLE(1) << (i * 4);
/* Enable down-conversion for 32bpp and smaller formats. */
switch (format) {
case V_028C70_COLOR_8:
case V_028C70_COLOR_8_8:
case V_028C70_COLOR_8_8_8_8:
/* For 1 and 2-channel formats, use the superset thereof. */
if (spi_format == V_028714_SPI_SHADER_FP16_ABGR ||
spi_format == V_028714_SPI_SHADER_UINT16_ABGR ||
spi_format == V_028714_SPI_SHADER_SINT16_ABGR) {
sx_ps_downconvert |= V_028754_SX_RT_EXPORT_8_8_8_8 << (i * 4);
sx_blend_opt_epsilon |= V_028758_8BIT_FORMAT << (i * 4);
}
break;
case V_028C70_COLOR_5_6_5:
if (spi_format == V_028714_SPI_SHADER_FP16_ABGR) {
sx_ps_downconvert |= V_028754_SX_RT_EXPORT_5_6_5 << (i * 4);
sx_blend_opt_epsilon |= V_028758_6BIT_FORMAT << (i * 4);
}
break;
case V_028C70_COLOR_1_5_5_5:
if (spi_format == V_028714_SPI_SHADER_FP16_ABGR) {
sx_ps_downconvert |= V_028754_SX_RT_EXPORT_1_5_5_5 << (i * 4);
sx_blend_opt_epsilon |= V_028758_5BIT_FORMAT << (i * 4);
}
break;
case V_028C70_COLOR_4_4_4_4:
if (spi_format == V_028714_SPI_SHADER_FP16_ABGR) {
sx_ps_downconvert |= V_028754_SX_RT_EXPORT_4_4_4_4 << (i * 4);
sx_blend_opt_epsilon |= V_028758_4BIT_FORMAT << (i * 4);
}
break;
case V_028C70_COLOR_32:
if (swap == V_028C70_SWAP_STD &&
spi_format == V_028714_SPI_SHADER_32_R)
sx_ps_downconvert |= V_028754_SX_RT_EXPORT_32_R << (i * 4);
else if (swap == V_028C70_SWAP_ALT_REV &&
spi_format == V_028714_SPI_SHADER_32_AR)
sx_ps_downconvert |= V_028754_SX_RT_EXPORT_32_A << (i * 4);
break;
case V_028C70_COLOR_16:
case V_028C70_COLOR_16_16:
/* For 1-channel formats, use the superset thereof. */
if (spi_format == V_028714_SPI_SHADER_UNORM16_ABGR ||
spi_format == V_028714_SPI_SHADER_SNORM16_ABGR ||
spi_format == V_028714_SPI_SHADER_UINT16_ABGR ||
spi_format == V_028714_SPI_SHADER_SINT16_ABGR) {
if (swap == V_028C70_SWAP_STD ||
swap == V_028C70_SWAP_STD_REV)
sx_ps_downconvert |= V_028754_SX_RT_EXPORT_16_16_GR << (i * 4);
else
sx_ps_downconvert |= V_028754_SX_RT_EXPORT_16_16_AR << (i * 4);
}
break;
case V_028C70_COLOR_10_11_11:
if (spi_format == V_028714_SPI_SHADER_FP16_ABGR)
sx_ps_downconvert |= V_028754_SX_RT_EXPORT_10_11_11 << (i * 4);
break;
case V_028C70_COLOR_2_10_10_10:
if (spi_format == V_028714_SPI_SHADER_FP16_ABGR) {
sx_ps_downconvert |= V_028754_SX_RT_EXPORT_2_10_10_10 << (i * 4);
sx_blend_opt_epsilon |= V_028758_10BIT_FORMAT << (i * 4);
}
break;
}
}
/* If there are no color outputs, the first color export is
* always enabled as 32_R, so also set this to enable RB+.
*/
if (!sx_ps_downconvert)
sx_ps_downconvert = V_028754_SX_RT_EXPORT_32_R;
/* SX_PS_DOWNCONVERT, SX_BLEND_OPT_EPSILON, SX_BLEND_OPT_CONTROL */
radeon_opt_set_context_reg3(sctx, R_028754_SX_PS_DOWNCONVERT,
SI_TRACKED_SX_PS_DOWNCONVERT,
sx_ps_downconvert, sx_blend_opt_epsilon,
sx_blend_opt_control);
}
if (initial_cdw != cs->current.cdw)
sctx->context_roll = true;
}
/*
* Blender functions
*/
static uint32_t si_translate_blend_function(int blend_func)
{
switch (blend_func) {
case PIPE_BLEND_ADD:
return V_028780_COMB_DST_PLUS_SRC;
case PIPE_BLEND_SUBTRACT:
return V_028780_COMB_SRC_MINUS_DST;
case PIPE_BLEND_REVERSE_SUBTRACT:
return V_028780_COMB_DST_MINUS_SRC;
case PIPE_BLEND_MIN:
return V_028780_COMB_MIN_DST_SRC;
case PIPE_BLEND_MAX:
return V_028780_COMB_MAX_DST_SRC;
default:
PRINT_ERR("Unknown blend function %d\n", blend_func);
assert(0);
break;
}
return 0;
}
static uint32_t si_translate_blend_factor(int blend_fact)
{
switch (blend_fact) {
case PIPE_BLENDFACTOR_ONE:
return V_028780_BLEND_ONE;
case PIPE_BLENDFACTOR_SRC_COLOR:
return V_028780_BLEND_SRC_COLOR;
case PIPE_BLENDFACTOR_SRC_ALPHA:
return V_028780_BLEND_SRC_ALPHA;
case PIPE_BLENDFACTOR_DST_ALPHA:
return V_028780_BLEND_DST_ALPHA;
case PIPE_BLENDFACTOR_DST_COLOR:
return V_028780_BLEND_DST_COLOR;
case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
return V_028780_BLEND_SRC_ALPHA_SATURATE;
case PIPE_BLENDFACTOR_CONST_COLOR:
return V_028780_BLEND_CONSTANT_COLOR;
case PIPE_BLENDFACTOR_CONST_ALPHA:
return V_028780_BLEND_CONSTANT_ALPHA;
case PIPE_BLENDFACTOR_ZERO:
return V_028780_BLEND_ZERO;
case PIPE_BLENDFACTOR_INV_SRC_COLOR:
return V_028780_BLEND_ONE_MINUS_SRC_COLOR;
case PIPE_BLENDFACTOR_INV_SRC_ALPHA:
return V_028780_BLEND_ONE_MINUS_SRC_ALPHA;
case PIPE_BLENDFACTOR_INV_DST_ALPHA:
return V_028780_BLEND_ONE_MINUS_DST_ALPHA;
case PIPE_BLENDFACTOR_INV_DST_COLOR:
return V_028780_BLEND_ONE_MINUS_DST_COLOR;
case PIPE_BLENDFACTOR_INV_CONST_COLOR:
return V_028780_BLEND_ONE_MINUS_CONSTANT_COLOR;
case PIPE_BLENDFACTOR_INV_CONST_ALPHA:
return V_028780_BLEND_ONE_MINUS_CONSTANT_ALPHA;
case PIPE_BLENDFACTOR_SRC1_COLOR:
return V_028780_BLEND_SRC1_COLOR;
case PIPE_BLENDFACTOR_SRC1_ALPHA:
return V_028780_BLEND_SRC1_ALPHA;
case PIPE_BLENDFACTOR_INV_SRC1_COLOR:
return V_028780_BLEND_INV_SRC1_COLOR;
case PIPE_BLENDFACTOR_INV_SRC1_ALPHA:
return V_028780_BLEND_INV_SRC1_ALPHA;
default:
PRINT_ERR("Bad blend factor %d not supported!\n", blend_fact);
assert(0);
break;
}
return 0;
}
static uint32_t si_translate_blend_opt_function(int blend_func)
{
switch (blend_func) {
case PIPE_BLEND_ADD:
return V_028760_OPT_COMB_ADD;
case PIPE_BLEND_SUBTRACT:
return V_028760_OPT_COMB_SUBTRACT;
case PIPE_BLEND_REVERSE_SUBTRACT:
return V_028760_OPT_COMB_REVSUBTRACT;
case PIPE_BLEND_MIN:
return V_028760_OPT_COMB_MIN;
case PIPE_BLEND_MAX:
return V_028760_OPT_COMB_MAX;
default:
return V_028760_OPT_COMB_BLEND_DISABLED;
}
}
static uint32_t si_translate_blend_opt_factor(int blend_fact, bool is_alpha)
{
switch (blend_fact) {
case PIPE_BLENDFACTOR_ZERO:
return V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_ALL;
case PIPE_BLENDFACTOR_ONE:
return V_028760_BLEND_OPT_PRESERVE_ALL_IGNORE_NONE;
case PIPE_BLENDFACTOR_SRC_COLOR:
return is_alpha ? V_028760_BLEND_OPT_PRESERVE_A1_IGNORE_A0
: V_028760_BLEND_OPT_PRESERVE_C1_IGNORE_C0;
case PIPE_BLENDFACTOR_INV_SRC_COLOR:
return is_alpha ? V_028760_BLEND_OPT_PRESERVE_A0_IGNORE_A1
: V_028760_BLEND_OPT_PRESERVE_C0_IGNORE_C1;
case PIPE_BLENDFACTOR_SRC_ALPHA:
return V_028760_BLEND_OPT_PRESERVE_A1_IGNORE_A0;
case PIPE_BLENDFACTOR_INV_SRC_ALPHA:
return V_028760_BLEND_OPT_PRESERVE_A0_IGNORE_A1;
case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
return is_alpha ? V_028760_BLEND_OPT_PRESERVE_ALL_IGNORE_NONE
: V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0;
default:
return V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE;
}
}
static void si_blend_check_commutativity(struct si_screen *sscreen,
struct si_state_blend *blend,
enum pipe_blend_func func,
enum pipe_blendfactor src,
enum pipe_blendfactor dst,
unsigned chanmask)
{
/* Src factor is allowed when it does not depend on Dst */
static const uint32_t src_allowed =
(1u << PIPE_BLENDFACTOR_ONE) |
(1u << PIPE_BLENDFACTOR_SRC_COLOR) |
(1u << PIPE_BLENDFACTOR_SRC_ALPHA) |
(1u << PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE) |
(1u << PIPE_BLENDFACTOR_CONST_COLOR) |
(1u << PIPE_BLENDFACTOR_CONST_ALPHA) |
(1u << PIPE_BLENDFACTOR_SRC1_COLOR) |
(1u << PIPE_BLENDFACTOR_SRC1_ALPHA) |
(1u << PIPE_BLENDFACTOR_ZERO) |
(1u << PIPE_BLENDFACTOR_INV_SRC_COLOR) |
(1u << PIPE_BLENDFACTOR_INV_SRC_ALPHA) |
(1u << PIPE_BLENDFACTOR_INV_CONST_COLOR) |
(1u << PIPE_BLENDFACTOR_INV_CONST_ALPHA) |
(1u << PIPE_BLENDFACTOR_INV_SRC1_COLOR) |
(1u << PIPE_BLENDFACTOR_INV_SRC1_ALPHA);
if (dst == PIPE_BLENDFACTOR_ONE &&
(src_allowed & (1u << src))) {
/* Addition is commutative, but floating point addition isn't
* associative: subtle changes can be introduced via different
* rounding.
*
* Out-of-order is also non-deterministic, which means that
* this breaks OpenGL invariance requirements. So only enable
* out-of-order additive blending if explicitly allowed by a
* setting.
*/
if (func == PIPE_BLEND_MAX || func == PIPE_BLEND_MIN ||
(func == PIPE_BLEND_ADD && sscreen->commutative_blend_add))
blend->commutative_4bit |= chanmask;
}
}
/**
* Get rid of DST in the blend factors by commuting the operands:
* func(src * DST, dst * 0) ---> func(src * 0, dst * SRC)
*/
static void si_blend_remove_dst(unsigned *func, unsigned *src_factor,
unsigned *dst_factor, unsigned expected_dst,
unsigned replacement_src)
{
if (*src_factor == expected_dst &&
*dst_factor == PIPE_BLENDFACTOR_ZERO) {
*src_factor = PIPE_BLENDFACTOR_ZERO;
*dst_factor = replacement_src;
/* Commuting the operands requires reversing subtractions. */
if (*func == PIPE_BLEND_SUBTRACT)
*func = PIPE_BLEND_REVERSE_SUBTRACT;
else if (*func == PIPE_BLEND_REVERSE_SUBTRACT)
*func = PIPE_BLEND_SUBTRACT;
}
}
static bool si_blend_factor_uses_dst(unsigned factor)
{
return factor == PIPE_BLENDFACTOR_DST_COLOR ||
factor == PIPE_BLENDFACTOR_DST_ALPHA ||
factor == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
factor == PIPE_BLENDFACTOR_INV_DST_ALPHA ||
factor == PIPE_BLENDFACTOR_INV_DST_COLOR;
}
static void *si_create_blend_state_mode(struct pipe_context *ctx,
const struct pipe_blend_state *state,
unsigned mode)
{
struct si_context *sctx = (struct si_context*)ctx;
struct si_state_blend *blend = CALLOC_STRUCT(si_state_blend);
struct si_pm4_state *pm4 = &blend->pm4;
uint32_t sx_mrt_blend_opt[8] = {0};
uint32_t color_control = 0;
bool logicop_enable = state->logicop_enable &&
state->logicop_func != PIPE_LOGICOP_COPY;
if (!blend)
return NULL;
blend->alpha_to_coverage = state->alpha_to_coverage;
blend->alpha_to_one = state->alpha_to_one;
blend->dual_src_blend = util_blend_state_is_dual(state, 0);
blend->logicop_enable = logicop_enable;
if (logicop_enable) {
color_control |= S_028808_ROP3(state->logicop_func | (state->logicop_func << 4));
} else {
color_control |= S_028808_ROP3(0xcc);
}
si_pm4_set_reg(pm4, R_028B70_DB_ALPHA_TO_MASK,
S_028B70_ALPHA_TO_MASK_ENABLE(state->alpha_to_coverage) |
S_028B70_ALPHA_TO_MASK_OFFSET0(3) |
S_028B70_ALPHA_TO_MASK_OFFSET1(1) |
S_028B70_ALPHA_TO_MASK_OFFSET2(0) |
S_028B70_ALPHA_TO_MASK_OFFSET3(2) |
S_028B70_OFFSET_ROUND(1));
if (state->alpha_to_coverage)
blend->need_src_alpha_4bit |= 0xf;
blend->cb_target_mask = 0;
blend->cb_target_enabled_4bit = 0;
for (int i = 0; i < 8; i++) {
/* state->rt entries > 0 only written if independent blending */
const int j = state->independent_blend_enable ? i : 0;
unsigned eqRGB = state->rt[j].rgb_func;
unsigned srcRGB = state->rt[j].rgb_src_factor;
unsigned dstRGB = state->rt[j].rgb_dst_factor;
unsigned eqA = state->rt[j].alpha_func;
unsigned srcA = state->rt[j].alpha_src_factor;
unsigned dstA = state->rt[j].alpha_dst_factor;
unsigned srcRGB_opt, dstRGB_opt, srcA_opt, dstA_opt;
unsigned blend_cntl = 0;
sx_mrt_blend_opt[i] =
S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) |
S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED);
/* Only set dual source blending for MRT0 to avoid a hang. */
if (i >= 1 && blend->dual_src_blend) {
/* Vulkan does this for dual source blending. */
if (i == 1)
blend_cntl |= S_028780_ENABLE(1);
si_pm4_set_reg(pm4, R_028780_CB_BLEND0_CONTROL + i * 4, blend_cntl);
continue;
}
/* Only addition and subtraction equations are supported with
* dual source blending.
*/
if (blend->dual_src_blend &&
(eqRGB == PIPE_BLEND_MIN || eqRGB == PIPE_BLEND_MAX ||
eqA == PIPE_BLEND_MIN || eqA == PIPE_BLEND_MAX)) {
assert(!"Unsupported equation for dual source blending");
si_pm4_set_reg(pm4, R_028780_CB_BLEND0_CONTROL + i * 4, blend_cntl);
continue;
}
/* cb_render_state will disable unused ones */
blend->cb_target_mask |= (unsigned)state->rt[j].colormask << (4 * i);
if (state->rt[j].colormask)
blend->cb_target_enabled_4bit |= 0xf << (4 * i);
if (!state->rt[j].colormask || !state->rt[j].blend_enable) {
si_pm4_set_reg(pm4, R_028780_CB_BLEND0_CONTROL + i * 4, blend_cntl);
continue;
}
si_blend_check_commutativity(sctx->screen, blend,
eqRGB, srcRGB, dstRGB, 0x7 << (4 * i));
si_blend_check_commutativity(sctx->screen, blend,
eqA, srcA, dstA, 0x8 << (4 * i));
/* Blending optimizations for RB+.
* These transformations don't change the behavior.
*
* First, get rid of DST in the blend factors:
* func(src * DST, dst * 0) ---> func(src * 0, dst * SRC)
*/
si_blend_remove_dst(&eqRGB, &srcRGB, &dstRGB,
PIPE_BLENDFACTOR_DST_COLOR,
PIPE_BLENDFACTOR_SRC_COLOR);
si_blend_remove_dst(&eqA, &srcA, &dstA,
PIPE_BLENDFACTOR_DST_COLOR,
PIPE_BLENDFACTOR_SRC_COLOR);
si_blend_remove_dst(&eqA, &srcA, &dstA,
PIPE_BLENDFACTOR_DST_ALPHA,
PIPE_BLENDFACTOR_SRC_ALPHA);
/* Look up the ideal settings from tables. */
srcRGB_opt = si_translate_blend_opt_factor(srcRGB, false);
dstRGB_opt = si_translate_blend_opt_factor(dstRGB, false);
srcA_opt = si_translate_blend_opt_factor(srcA, true);
dstA_opt = si_translate_blend_opt_factor(dstA, true);
/* Handle interdependencies. */
if (si_blend_factor_uses_dst(srcRGB))
dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE;
if (si_blend_factor_uses_dst(srcA))
dstA_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE;
if (srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE &&
(dstRGB == PIPE_BLENDFACTOR_ZERO ||
dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE))
dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0;
/* Set the final value. */
sx_mrt_blend_opt[i] =
S_028760_COLOR_SRC_OPT(srcRGB_opt) |
S_028760_COLOR_DST_OPT(dstRGB_opt) |
S_028760_COLOR_COMB_FCN(si_translate_blend_opt_function(eqRGB)) |
S_028760_ALPHA_SRC_OPT(srcA_opt) |
S_028760_ALPHA_DST_OPT(dstA_opt) |
S_028760_ALPHA_COMB_FCN(si_translate_blend_opt_function(eqA));
/* Set blend state. */
blend_cntl |= S_028780_ENABLE(1);
blend_cntl |= S_028780_COLOR_COMB_FCN(si_translate_blend_function(eqRGB));
blend_cntl |= S_028780_COLOR_SRCBLEND(si_translate_blend_factor(srcRGB));
blend_cntl |= S_028780_COLOR_DESTBLEND(si_translate_blend_factor(dstRGB));
if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) {
blend_cntl |= S_028780_SEPARATE_ALPHA_BLEND(1);
blend_cntl |= S_028780_ALPHA_COMB_FCN(si_translate_blend_function(eqA));
blend_cntl |= S_028780_ALPHA_SRCBLEND(si_translate_blend_factor(srcA));
blend_cntl |= S_028780_ALPHA_DESTBLEND(si_translate_blend_factor(dstA));
}
si_pm4_set_reg(pm4, R_028780_CB_BLEND0_CONTROL + i * 4, blend_cntl);
blend->blend_enable_4bit |= 0xfu << (i * 4);
if (sctx->family <= CHIP_NAVI14)
blend->dcc_msaa_corruption_4bit |= 0xfu << (i * 4);
/* This is only important for formats without alpha. */
if (srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
srcRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA)
blend->need_src_alpha_4bit |= 0xfu << (i * 4);
}
if (sctx->family <= CHIP_NAVI14 && logicop_enable)
blend->dcc_msaa_corruption_4bit |= blend->cb_target_enabled_4bit;
if (blend->cb_target_mask) {
color_control |= S_028808_MODE(mode);
} else {
color_control |= S_028808_MODE(V_028808_CB_DISABLE);
}
if (sctx->screen->info.rbplus_allowed) {
/* Disable RB+ blend optimizations for dual source blending.
* Vulkan does this.
*/
if (blend->dual_src_blend) {
for (int i = 0; i < 8; i++) {
sx_mrt_blend_opt[i] =
S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_NONE) |
S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_NONE);
}
}
for (int i = 0; i < 8; i++)
si_pm4_set_reg(pm4, R_028760_SX_MRT0_BLEND_OPT + i * 4,
sx_mrt_blend_opt[i]);
/* RB+ doesn't work with dual source blending, logic op, and RESOLVE. */
if (blend->dual_src_blend || logicop_enable ||
mode == V_028808_CB_RESOLVE)
color_control |= S_028808_DISABLE_DUAL_QUAD(1);
}
si_pm4_set_reg(pm4, R_028808_CB_COLOR_CONTROL, color_control);
return blend;
}
static void *si_create_blend_state(struct pipe_context *ctx,
const struct pipe_blend_state *state)
{
return si_create_blend_state_mode(ctx, state, V_028808_CB_NORMAL);
}
static void si_bind_blend_state(struct pipe_context *ctx, void *state)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_state_blend *old_blend = sctx->queued.named.blend;
struct si_state_blend *blend = (struct si_state_blend *)state;
if (!blend)
blend = (struct si_state_blend *)sctx->noop_blend;
si_pm4_bind_state(sctx, blend, blend);
if (old_blend->cb_target_mask != blend->cb_target_mask ||
old_blend->dual_src_blend != blend->dual_src_blend ||
(old_blend->blend_enable_4bit != blend->blend_enable_4bit &&
sctx->framebuffer.nr_samples >= 2 &&
sctx->screen->dcc_msaa_allowed))
si_mark_atom_dirty(sctx, &sctx->atoms.s.cb_render_state);
if (old_blend->cb_target_mask != blend->cb_target_mask ||
old_blend->alpha_to_coverage != blend->alpha_to_coverage ||
old_blend->alpha_to_one != blend->alpha_to_one ||
old_blend->dual_src_blend != blend->dual_src_blend ||
old_blend->blend_enable_4bit != blend->blend_enable_4bit ||
old_blend->need_src_alpha_4bit != blend->need_src_alpha_4bit)
sctx->do_update_shaders = true;
if (sctx->screen->dpbb_allowed &&
(old_blend->alpha_to_coverage != blend->alpha_to_coverage ||
old_blend->blend_enable_4bit != blend->blend_enable_4bit ||
old_blend->cb_target_enabled_4bit != blend->cb_target_enabled_4bit))
si_mark_atom_dirty(sctx, &sctx->atoms.s.dpbb_state);
if (sctx->screen->has_out_of_order_rast &&
((old_blend->blend_enable_4bit != blend->blend_enable_4bit ||
old_blend->cb_target_enabled_4bit != blend->cb_target_enabled_4bit ||
old_blend->commutative_4bit != blend->commutative_4bit ||
old_blend->logicop_enable != blend->logicop_enable)))
si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_config);
}
static void si_delete_blend_state(struct pipe_context *ctx, void *state)
{
struct si_context *sctx = (struct si_context *)ctx;
if (sctx->queued.named.blend == state)
si_bind_blend_state(ctx, sctx->noop_blend);
si_pm4_delete_state(sctx, blend, (struct si_state_blend *)state);
}
static void si_set_blend_color(struct pipe_context *ctx,
const struct pipe_blend_color *state)
{
struct si_context *sctx = (struct si_context *)ctx;
static const struct pipe_blend_color zeros;
sctx->blend_color.state = *state;
sctx->blend_color.any_nonzeros = memcmp(state, &zeros, sizeof(*state)) != 0;
si_mark_atom_dirty(sctx, &sctx->atoms.s.blend_color);
}
static void si_emit_blend_color(struct si_context *sctx)
{
struct radeon_cmdbuf *cs = sctx->gfx_cs;
radeon_set_context_reg_seq(cs, R_028414_CB_BLEND_RED, 4);
radeon_emit_array(cs, (uint32_t*)sctx->blend_color.state.color, 4);
}
/*
* Clipping
*/
static void si_set_clip_state(struct pipe_context *ctx,
const struct pipe_clip_state *state)
{
struct si_context *sctx = (struct si_context *)ctx;
struct pipe_constant_buffer cb;
static const struct pipe_clip_state zeros;
if (memcmp(&sctx->clip_state.state, state, sizeof(*state)) == 0)
return;
sctx->clip_state.state = *state;
sctx->clip_state.any_nonzeros = memcmp(state, &zeros, sizeof(*state)) != 0;
si_mark_atom_dirty(sctx, &sctx->atoms.s.clip_state);
cb.buffer = NULL;
cb.user_buffer = state->ucp;
cb.buffer_offset = 0;
cb.buffer_size = 4*4*8;
si_set_rw_buffer(sctx, SI_VS_CONST_CLIP_PLANES, &cb);
pipe_resource_reference(&cb.buffer, NULL);
}
static void si_emit_clip_state(struct si_context *sctx)
{
struct radeon_cmdbuf *cs = sctx->gfx_cs;
radeon_set_context_reg_seq(cs, R_0285BC_PA_CL_UCP_0_X, 6*4);
radeon_emit_array(cs, (uint32_t*)sctx->clip_state.state.ucp, 6*4);
}
static void si_emit_clip_regs(struct si_context *sctx)
{
struct si_shader *vs = si_get_vs_state(sctx);
struct si_shader_selector *vs_sel = vs->selector;
struct tgsi_shader_info *info = &vs_sel->info;
struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
unsigned window_space =
info->properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION];
unsigned clipdist_mask = vs_sel->clipdist_mask;
unsigned ucp_mask = clipdist_mask ? 0 : rs->clip_plane_enable & SIX_BITS;
unsigned culldist_mask = vs_sel->culldist_mask;
unsigned total_mask;
if (vs->key.opt.clip_disable) {
assert(!info->culldist_writemask);
clipdist_mask = 0;
culldist_mask = 0;
}
total_mask = clipdist_mask | culldist_mask;
/* Clip distances on points have no effect, so need to be implemented
* as cull distances. This applies for the clipvertex case as well.
*
* Setting this for primitives other than points should have no adverse
* effects.
*/
clipdist_mask &= rs->clip_plane_enable;
culldist_mask |= clipdist_mask;
unsigned initial_cdw = sctx->gfx_cs->current.cdw;
unsigned pa_cl_cntl = S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0F) != 0) |
S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xF0) != 0) |
clipdist_mask | (culldist_mask << 8);
if (sctx->chip_class >= GFX10) {
radeon_opt_set_context_reg_rmw(sctx, R_02881C_PA_CL_VS_OUT_CNTL,
SI_TRACKED_PA_CL_VS_OUT_CNTL__CL,
pa_cl_cntl,
~SI_TRACKED_PA_CL_VS_OUT_CNTL__VS_MASK);
} else {
radeon_opt_set_context_reg(sctx, R_02881C_PA_CL_VS_OUT_CNTL,
SI_TRACKED_PA_CL_VS_OUT_CNTL__CL,
vs_sel->pa_cl_vs_out_cntl | pa_cl_cntl);
}
radeon_opt_set_context_reg(sctx, R_028810_PA_CL_CLIP_CNTL,
SI_TRACKED_PA_CL_CLIP_CNTL,
rs->pa_cl_clip_cntl |
ucp_mask |
S_028810_CLIP_DISABLE(window_space));
if (initial_cdw != sctx->gfx_cs->current.cdw)
sctx->context_roll = true;
}
/*
* inferred state between framebuffer and rasterizer
*/
static void si_update_poly_offset_state(struct si_context *sctx)
{
struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
if (!rs->uses_poly_offset || !sctx->framebuffer.state.zsbuf) {
si_pm4_bind_state(sctx, poly_offset, NULL);
return;
}
/* Use the user format, not db_render_format, so that the polygon
* offset behaves as expected by applications.
*/
switch (sctx->framebuffer.state.zsbuf->texture->format) {
case PIPE_FORMAT_Z16_UNORM:
si_pm4_bind_state(sctx, poly_offset, &rs->pm4_poly_offset[0]);
break;
default: /* 24-bit */
si_pm4_bind_state(sctx, poly_offset, &rs->pm4_poly_offset[1]);
break;
case PIPE_FORMAT_Z32_FLOAT:
case PIPE_FORMAT_Z32_FLOAT_S8X24_UINT:
si_pm4_bind_state(sctx, poly_offset, &rs->pm4_poly_offset[2]);
break;
}
}
/*
* Rasterizer
*/
static uint32_t si_translate_fill(uint32_t func)
{
switch(func) {
case PIPE_POLYGON_MODE_FILL:
return V_028814_X_DRAW_TRIANGLES;
case PIPE_POLYGON_MODE_LINE:
return V_028814_X_DRAW_LINES;
case PIPE_POLYGON_MODE_POINT:
return V_028814_X_DRAW_POINTS;
default:
assert(0);
return V_028814_X_DRAW_POINTS;
}
}
static void *si_create_rs_state(struct pipe_context *ctx,
const struct pipe_rasterizer_state *state)
{
struct si_screen *sscreen = ((struct si_context *)ctx)->screen;
struct si_state_rasterizer *rs = CALLOC_STRUCT(si_state_rasterizer);
struct si_pm4_state *pm4 = &rs->pm4;
unsigned tmp, i;
float psize_min, psize_max;
if (!rs) {
return NULL;
}
if (!state->front_ccw) {
rs->cull_front = !!(state->cull_face & PIPE_FACE_FRONT);
rs->cull_back = !!(state->cull_face & PIPE_FACE_BACK);
} else {
rs->cull_back = !!(state->cull_face & PIPE_FACE_FRONT);
rs->cull_front = !!(state->cull_face & PIPE_FACE_BACK);
}
rs->depth_clamp_any = !state->depth_clip_near || !state->depth_clip_far;
rs->provoking_vertex_first = state->flatshade_first;
rs->scissor_enable = state->scissor;
rs->clip_halfz = state->clip_halfz;
rs->two_side = state->light_twoside;
rs->multisample_enable = state->multisample;
rs->force_persample_interp = state->force_persample_interp;
rs->clip_plane_enable = state->clip_plane_enable;
rs->half_pixel_center = state->half_pixel_center;
rs->line_stipple_enable = state->line_stipple_enable;
rs->poly_stipple_enable = state->poly_stipple_enable;
rs->line_smooth = state->line_smooth;
rs->line_width = state->line_width;
rs->poly_smooth = state->poly_smooth;
rs->uses_poly_offset = state->offset_point || state->offset_line ||
state->offset_tri;
rs->clamp_fragment_color = state->clamp_fragment_color;
rs->clamp_vertex_color = state->clamp_vertex_color;
rs->flatshade = state->flatshade;
rs->flatshade_first = state->flatshade_first;
rs->sprite_coord_enable = state->sprite_coord_enable;
rs->rasterizer_discard = state->rasterizer_discard;
rs->pa_sc_line_stipple = state->line_stipple_enable ?
S_028A0C_LINE_PATTERN(state->line_stipple_pattern) |
S_028A0C_REPEAT_COUNT(state->line_stipple_factor) : 0;
rs->pa_cl_clip_cntl =
S_028810_DX_CLIP_SPACE_DEF(state->clip_halfz) |
S_028810_ZCLIP_NEAR_DISABLE(!state->depth_clip_near) |
S_028810_ZCLIP_FAR_DISABLE(!state->depth_clip_far) |
S_028810_DX_RASTERIZATION_KILL(state->rasterizer_discard) |
S_028810_DX_LINEAR_ATTR_CLIP_ENA(1);
si_pm4_set_reg(pm4, R_0286D4_SPI_INTERP_CONTROL_0,
S_0286D4_FLAT_SHADE_ENA(1) |
S_0286D4_PNT_SPRITE_ENA(state->point_quad_rasterization) |
S_0286D4_PNT_SPRITE_OVRD_X(V_0286D4_SPI_PNT_SPRITE_SEL_S) |
S_0286D4_PNT_SPRITE_OVRD_Y(V_0286D4_SPI_PNT_SPRITE_SEL_T) |
S_0286D4_PNT_SPRITE_OVRD_Z(V_0286D4_SPI_PNT_SPRITE_SEL_0) |
S_0286D4_PNT_SPRITE_OVRD_W(V_0286D4_SPI_PNT_SPRITE_SEL_1) |
S_0286D4_PNT_SPRITE_TOP_1(state->sprite_coord_mode != PIPE_SPRITE_COORD_UPPER_LEFT));
/* point size 12.4 fixed point */
tmp = (unsigned)(state->point_size * 8.0);
si_pm4_set_reg(pm4, R_028A00_PA_SU_POINT_SIZE, S_028A00_HEIGHT(tmp) | S_028A00_WIDTH(tmp));
if (state->point_size_per_vertex) {
psize_min = util_get_min_point_size(state);
psize_max = SI_MAX_POINT_SIZE;
} else {
/* Force the point size to be as if the vertex output was disabled. */
psize_min = state->point_size;
psize_max = state->point_size;
}
rs->max_point_size = psize_max;
/* Divide by two, because 0.5 = 1 pixel. */
si_pm4_set_reg(pm4, R_028A04_PA_SU_POINT_MINMAX,
S_028A04_MIN_SIZE(si_pack_float_12p4(psize_min/2)) |
S_028A04_MAX_SIZE(si_pack_float_12p4(psize_max/2)));
si_pm4_set_reg(pm4, R_028A08_PA_SU_LINE_CNTL,
S_028A08_WIDTH(si_pack_float_12p4(state->line_width/2)));
si_pm4_set_reg(pm4, R_028A48_PA_SC_MODE_CNTL_0,
S_028A48_LINE_STIPPLE_ENABLE(state->line_stipple_enable) |
S_028A48_MSAA_ENABLE(state->multisample ||
state->poly_smooth ||
state->line_smooth) |
S_028A48_VPORT_SCISSOR_ENABLE(1) |
S_028A48_ALTERNATE_RBS_PER_TILE(sscreen->info.chip_class >= GFX9));
si_pm4_set_reg(pm4, R_028B7C_PA_SU_POLY_OFFSET_CLAMP, fui(state->offset_clamp));
si_pm4_set_reg(pm4, R_028814_PA_SU_SC_MODE_CNTL,
S_028814_PROVOKING_VTX_LAST(!state->flatshade_first) |
S_028814_CULL_FRONT((state->cull_face & PIPE_FACE_FRONT) ? 1 : 0) |
S_028814_CULL_BACK((state->cull_face & PIPE_FACE_BACK) ? 1 : 0) |
S_028814_FACE(!state->front_ccw) |
S_028814_POLY_OFFSET_FRONT_ENABLE(util_get_offset(state, state->fill_front)) |
S_028814_POLY_OFFSET_BACK_ENABLE(util_get_offset(state, state->fill_back)) |
S_028814_POLY_OFFSET_PARA_ENABLE(state->offset_point || state->offset_line) |
S_028814_POLY_MODE(state->fill_front != PIPE_POLYGON_MODE_FILL ||
state->fill_back != PIPE_POLYGON_MODE_FILL) |
S_028814_POLYMODE_FRONT_PTYPE(si_translate_fill(state->fill_front)) |
S_028814_POLYMODE_BACK_PTYPE(si_translate_fill(state->fill_back)));
if (!rs->uses_poly_offset)
return rs;
rs->pm4_poly_offset = CALLOC(3, sizeof(struct si_pm4_state));
if (!rs->pm4_poly_offset) {
FREE(rs);
return NULL;
}
/* Precalculate polygon offset states for 16-bit, 24-bit, and 32-bit zbuffers. */
for (i = 0; i < 3; i++) {
struct si_pm4_state *pm4 = &rs->pm4_poly_offset[i];
float offset_units = state->offset_units;
float offset_scale = state->offset_scale * 16.0f;
uint32_t pa_su_poly_offset_db_fmt_cntl = 0;
if (!state->offset_units_unscaled) {
switch (i) {
case 0: /* 16-bit zbuffer */
offset_units *= 4.0f;
pa_su_poly_offset_db_fmt_cntl =
S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-16);
break;
case 1: /* 24-bit zbuffer */
offset_units *= 2.0f;
pa_su_poly_offset_db_fmt_cntl =
S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-24);
break;
case 2: /* 32-bit zbuffer */
offset_units *= 1.0f;
pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-23) |
S_028B78_POLY_OFFSET_DB_IS_FLOAT_FMT(1);
break;
}
}
si_pm4_set_reg(pm4, R_028B80_PA_SU_POLY_OFFSET_FRONT_SCALE,
fui(offset_scale));
si_pm4_set_reg(pm4, R_028B84_PA_SU_POLY_OFFSET_FRONT_OFFSET,
fui(offset_units));
si_pm4_set_reg(pm4, R_028B88_PA_SU_POLY_OFFSET_BACK_SCALE,
fui(offset_scale));
si_pm4_set_reg(pm4, R_028B8C_PA_SU_POLY_OFFSET_BACK_OFFSET,
fui(offset_units));
si_pm4_set_reg(pm4, R_028B78_PA_SU_POLY_OFFSET_DB_FMT_CNTL,
pa_su_poly_offset_db_fmt_cntl);
}
return rs;
}
static void si_bind_rs_state(struct pipe_context *ctx, void *state)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_state_rasterizer *old_rs =
(struct si_state_rasterizer*)sctx->queued.named.rasterizer;
struct si_state_rasterizer *rs = (struct si_state_rasterizer *)state;
if (!rs)
rs = (struct si_state_rasterizer *)sctx->discard_rasterizer_state;
if (old_rs->multisample_enable != rs->multisample_enable) {
si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state);
/* Update the small primitive filter workaround if necessary. */
if (sctx->screen->info.has_msaa_sample_loc_bug &&
sctx->framebuffer.nr_samples > 1)
si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_sample_locs);
}
sctx->current_vs_state &= C_VS_STATE_CLAMP_VERTEX_COLOR;
sctx->current_vs_state |= S_VS_STATE_CLAMP_VERTEX_COLOR(rs->clamp_vertex_color);
si_pm4_bind_state(sctx, rasterizer, rs);
si_update_poly_offset_state(sctx);
if (old_rs->scissor_enable != rs->scissor_enable)
si_mark_atom_dirty(sctx, &sctx->atoms.s.scissors);
if (old_rs->line_width != rs->line_width ||
old_rs->max_point_size != rs->max_point_size ||
old_rs->half_pixel_center != rs->half_pixel_center)
si_mark_atom_dirty(sctx, &sctx->atoms.s.guardband);
if (old_rs->clip_halfz != rs->clip_halfz)
si_mark_atom_dirty(sctx, &sctx->atoms.s.viewports);
if (old_rs->clip_plane_enable != rs->clip_plane_enable ||
old_rs->pa_cl_clip_cntl != rs->pa_cl_clip_cntl)
si_mark_atom_dirty(sctx, &sctx->atoms.s.clip_regs);
sctx->ia_multi_vgt_param_key.u.line_stipple_enabled =
rs->line_stipple_enable;
if (old_rs->clip_plane_enable != rs->clip_plane_enable ||
old_rs->rasterizer_discard != rs->rasterizer_discard ||
old_rs->sprite_coord_enable != rs->sprite_coord_enable ||
old_rs->flatshade != rs->flatshade ||
old_rs->two_side != rs->two_side ||
old_rs->multisample_enable != rs->multisample_enable ||
old_rs->poly_stipple_enable != rs->poly_stipple_enable ||
old_rs->poly_smooth != rs->poly_smooth ||
old_rs->line_smooth != rs->line_smooth ||
old_rs->clamp_fragment_color != rs->clamp_fragment_color ||
old_rs->force_persample_interp != rs->force_persample_interp)
sctx->do_update_shaders = true;
}
static void si_delete_rs_state(struct pipe_context *ctx, void *state)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_state_rasterizer *rs = (struct si_state_rasterizer *)state;
if (sctx->queued.named.rasterizer == state)
si_bind_rs_state(ctx, sctx->discard_rasterizer_state);
FREE(rs->pm4_poly_offset);
si_pm4_delete_state(sctx, rasterizer, rs);
}
/*
* infeered state between dsa and stencil ref
*/
static void si_emit_stencil_ref(struct si_context *sctx)
{
struct radeon_cmdbuf *cs = sctx->gfx_cs;
struct pipe_stencil_ref *ref = &sctx->stencil_ref.state;
struct si_dsa_stencil_ref_part *dsa = &sctx->stencil_ref.dsa_part;
radeon_set_context_reg_seq(cs, R_028430_DB_STENCILREFMASK, 2);
radeon_emit(cs, S_028430_STENCILTESTVAL(ref->ref_value[0]) |
S_028430_STENCILMASK(dsa->valuemask[0]) |
S_028430_STENCILWRITEMASK(dsa->writemask[0]) |
S_028430_STENCILOPVAL(1));
radeon_emit(cs, S_028434_STENCILTESTVAL_BF(ref->ref_value[1]) |
S_028434_STENCILMASK_BF(dsa->valuemask[1]) |
S_028434_STENCILWRITEMASK_BF(dsa->writemask[1]) |
S_028434_STENCILOPVAL_BF(1));
}
static void si_set_stencil_ref(struct pipe_context *ctx,
const struct pipe_stencil_ref *state)
{
struct si_context *sctx = (struct si_context *)ctx;
if (memcmp(&sctx->stencil_ref.state, state, sizeof(*state)) == 0)
return;
sctx->stencil_ref.state = *state;
si_mark_atom_dirty(sctx, &sctx->atoms.s.stencil_ref);
}
/*
* DSA
*/
static uint32_t si_translate_stencil_op(int s_op)
{
switch (s_op) {
case PIPE_STENCIL_OP_KEEP:
return V_02842C_STENCIL_KEEP;
case PIPE_STENCIL_OP_ZERO:
return V_02842C_STENCIL_ZERO;
case PIPE_STENCIL_OP_REPLACE:
return V_02842C_STENCIL_REPLACE_TEST;
case PIPE_STENCIL_OP_INCR:
return V_02842C_STENCIL_ADD_CLAMP;
case PIPE_STENCIL_OP_DECR:
return V_02842C_STENCIL_SUB_CLAMP;
case PIPE_STENCIL_OP_INCR_WRAP:
return V_02842C_STENCIL_ADD_WRAP;
case PIPE_STENCIL_OP_DECR_WRAP:
return V_02842C_STENCIL_SUB_WRAP;
case PIPE_STENCIL_OP_INVERT:
return V_02842C_STENCIL_INVERT;
default:
PRINT_ERR("Unknown stencil op %d", s_op);
assert(0);
break;
}
return 0;
}
static bool si_dsa_writes_stencil(const struct pipe_stencil_state *s)
{
return s->enabled && s->writemask &&
(s->fail_op != PIPE_STENCIL_OP_KEEP ||
s->zfail_op != PIPE_STENCIL_OP_KEEP ||
s->zpass_op != PIPE_STENCIL_OP_KEEP);
}
static bool si_order_invariant_stencil_op(enum pipe_stencil_op op)
{
/* REPLACE is normally order invariant, except when the stencil
* reference value is written by the fragment shader. Tracking this
* interaction does not seem worth the effort, so be conservative. */
return op != PIPE_STENCIL_OP_INCR &&
op != PIPE_STENCIL_OP_DECR &&
op != PIPE_STENCIL_OP_REPLACE;
}
/* Compute whether, assuming Z writes are disabled, this stencil state is order
* invariant in the sense that the set of passing fragments as well as the
* final stencil buffer result does not depend on the order of fragments. */
static bool si_order_invariant_stencil_state(const struct pipe_stencil_state *state)
{
return !state->enabled || !state->writemask ||
/* The following assumes that Z writes are disabled. */
(state->func == PIPE_FUNC_ALWAYS &&
si_order_invariant_stencil_op(state->zpass_op) &&
si_order_invariant_stencil_op(state->zfail_op)) ||
(state->func == PIPE_FUNC_NEVER &&
si_order_invariant_stencil_op(state->fail_op));
}
static void *si_create_dsa_state(struct pipe_context *ctx,
const struct pipe_depth_stencil_alpha_state *state)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_state_dsa *dsa = CALLOC_STRUCT(si_state_dsa);
struct si_pm4_state *pm4 = &dsa->pm4;
unsigned db_depth_control;
uint32_t db_stencil_control = 0;
if (!dsa) {
return NULL;
}
dsa->stencil_ref.valuemask[0] = state->stencil[0].valuemask;
dsa->stencil_ref.valuemask[1] = state->stencil[1].valuemask;
dsa->stencil_ref.writemask[0] = state->stencil[0].writemask;
dsa->stencil_ref.writemask[1] = state->stencil[1].writemask;
db_depth_control = S_028800_Z_ENABLE(state->depth.enabled) |
S_028800_Z_WRITE_ENABLE(state->depth.writemask) |
S_028800_ZFUNC(state->depth.func) |
S_028800_DEPTH_BOUNDS_ENABLE(state->depth.bounds_test);
/* stencil */
if (state->stencil[0].enabled) {
db_depth_control |= S_028800_STENCIL_ENABLE(1);
db_depth_control |= S_028800_STENCILFUNC(state->stencil[0].func);
db_stencil_control |= S_02842C_STENCILFAIL(si_translate_stencil_op(state->stencil[0].fail_op));
db_stencil_control |= S_02842C_STENCILZPASS(si_translate_stencil_op(state->stencil[0].zpass_op));
db_stencil_control |= S_02842C_STENCILZFAIL(si_translate_stencil_op(state->stencil[0].zfail_op));
if (state->stencil[1].enabled) {
db_depth_control |= S_028800_BACKFACE_ENABLE(1);
db_depth_control |= S_028800_STENCILFUNC_BF(state->stencil[1].func);
db_stencil_control |= S_02842C_STENCILFAIL_BF(si_translate_stencil_op(state->stencil[1].fail_op));
db_stencil_control |= S_02842C_STENCILZPASS_BF(si_translate_stencil_op(state->stencil[1].zpass_op));
db_stencil_control |= S_02842C_STENCILZFAIL_BF(si_translate_stencil_op(state->stencil[1].zfail_op));
}
}
/* alpha */
if (state->alpha.enabled) {
dsa->alpha_func = state->alpha.func;
si_pm4_set_reg(pm4, R_00B030_SPI_SHADER_USER_DATA_PS_0 +
SI_SGPR_ALPHA_REF * 4, fui(state->alpha.ref_value));
} else {
dsa->alpha_func = PIPE_FUNC_ALWAYS;
}
si_pm4_set_reg(pm4, R_028800_DB_DEPTH_CONTROL, db_depth_control);
if (state->stencil[0].enabled)
si_pm4_set_reg(pm4, R_02842C_DB_STENCIL_CONTROL, db_stencil_control);
if (state->depth.bounds_test) {
si_pm4_set_reg(pm4, R_028020_DB_DEPTH_BOUNDS_MIN, fui(state->depth.bounds_min));
si_pm4_set_reg(pm4, R_028024_DB_DEPTH_BOUNDS_MAX, fui(state->depth.bounds_max));
}
dsa->depth_enabled = state->depth.enabled;
dsa->depth_write_enabled = state->depth.enabled &&
state->depth.writemask;
dsa->stencil_enabled = state->stencil[0].enabled;
dsa->stencil_write_enabled = state->stencil[0].enabled &&
(si_dsa_writes_stencil(&state->stencil[0]) ||
si_dsa_writes_stencil(&state->stencil[1]));
dsa->db_can_write = dsa->depth_write_enabled ||
dsa->stencil_write_enabled;
bool zfunc_is_ordered =
state->depth.func == PIPE_FUNC_NEVER ||
state->depth.func == PIPE_FUNC_LESS ||
state->depth.func == PIPE_FUNC_LEQUAL ||
state->depth.func == PIPE_FUNC_GREATER ||
state->depth.func == PIPE_FUNC_GEQUAL;
bool nozwrite_and_order_invariant_stencil =
!dsa->db_can_write ||
(!dsa->depth_write_enabled &&
si_order_invariant_stencil_state(&state->stencil[0]) &&
si_order_invariant_stencil_state(&state->stencil[1]));
dsa->order_invariance[1].zs =
nozwrite_and_order_invariant_stencil ||
(!dsa->stencil_write_enabled && zfunc_is_ordered);
dsa->order_invariance[0].zs = !dsa->depth_write_enabled || zfunc_is_ordered;
dsa->order_invariance[1].pass_set =
nozwrite_and_order_invariant_stencil ||
(!dsa->stencil_write_enabled &&
(state->depth.func == PIPE_FUNC_ALWAYS ||
state->depth.func == PIPE_FUNC_NEVER));
dsa->order_invariance[0].pass_set =
!dsa->depth_write_enabled ||
(state->depth.func == PIPE_FUNC_ALWAYS ||
state->depth.func == PIPE_FUNC_NEVER);
dsa->order_invariance[1].pass_last =
sctx->screen->assume_no_z_fights &&
!dsa->stencil_write_enabled &&
dsa->depth_write_enabled && zfunc_is_ordered;
dsa->order_invariance[0].pass_last =
sctx->screen->assume_no_z_fights &&
dsa->depth_write_enabled && zfunc_is_ordered;
return dsa;
}
static void si_bind_dsa_state(struct pipe_context *ctx, void *state)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_state_dsa *old_dsa = sctx->queued.named.dsa;
struct si_state_dsa *dsa = state;
if (!dsa)
dsa = (struct si_state_dsa *)sctx->noop_dsa;
si_pm4_bind_state(sctx, dsa, dsa);
if (memcmp(&dsa->stencil_ref, &sctx->stencil_ref.dsa_part,
sizeof(struct si_dsa_stencil_ref_part)) != 0) {
sctx->stencil_ref.dsa_part = dsa->stencil_ref;
si_mark_atom_dirty(sctx, &sctx->atoms.s.stencil_ref);
}
if (old_dsa->alpha_func != dsa->alpha_func)
sctx->do_update_shaders = true;
if (sctx->screen->dpbb_allowed &&
((old_dsa->depth_enabled != dsa->depth_enabled ||
old_dsa->stencil_enabled != dsa->stencil_enabled ||
old_dsa->db_can_write != dsa->db_can_write)))
si_mark_atom_dirty(sctx, &sctx->atoms.s.dpbb_state);
if (sctx->screen->has_out_of_order_rast &&
(memcmp(old_dsa->order_invariance, dsa->order_invariance,
sizeof(old_dsa->order_invariance))))
si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_config);
}
static void si_delete_dsa_state(struct pipe_context *ctx, void *state)
{
struct si_context *sctx = (struct si_context *)ctx;
if (sctx->queued.named.dsa == state)
si_bind_dsa_state(ctx, sctx->noop_dsa);
si_pm4_delete_state(sctx, dsa, (struct si_state_dsa *)state);
}
static void *si_create_db_flush_dsa(struct si_context *sctx)
{
struct pipe_depth_stencil_alpha_state dsa = {};
return sctx->b.create_depth_stencil_alpha_state(&sctx->b, &dsa);
}
/* DB RENDER STATE */
static void si_set_active_query_state(struct pipe_context *ctx, bool enable)
{
struct si_context *sctx = (struct si_context*)ctx;
/* Pipeline stat & streamout queries. */
if (enable) {
sctx->flags &= ~SI_CONTEXT_STOP_PIPELINE_STATS;
sctx->flags |= SI_CONTEXT_START_PIPELINE_STATS;
} else {
sctx->flags &= ~SI_CONTEXT_START_PIPELINE_STATS;
sctx->flags |= SI_CONTEXT_STOP_PIPELINE_STATS;
}
/* Occlusion queries. */
if (sctx->occlusion_queries_disabled != !enable) {
sctx->occlusion_queries_disabled = !enable;
si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state);
}
}
void si_set_occlusion_query_state(struct si_context *sctx,
bool old_perfect_enable)
{
si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state);
bool perfect_enable = sctx->num_perfect_occlusion_queries != 0;
if (perfect_enable != old_perfect_enable)
si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_config);
}
void si_save_qbo_state(struct si_context *sctx, struct si_qbo_state *st)
{
st->saved_compute = sctx->cs_shader_state.program;
si_get_pipe_constant_buffer(sctx, PIPE_SHADER_COMPUTE, 0, &st->saved_const0);
si_get_shader_buffers(sctx, PIPE_SHADER_COMPUTE, 0, 3, st->saved_ssbo);
st->saved_ssbo_writable_mask = 0;
for (unsigned i = 0; i < 3; i++) {
if (sctx->const_and_shader_buffers[PIPE_SHADER_COMPUTE].writable_mask &
(1u << si_get_shaderbuf_slot(i)))
st->saved_ssbo_writable_mask |= 1 << i;
}
}
void si_restore_qbo_state(struct si_context *sctx, struct si_qbo_state *st)
{
sctx->b.bind_compute_state(&sctx->b, st->saved_compute);
sctx->b.set_constant_buffer(&sctx->b, PIPE_SHADER_COMPUTE, 0, &st->saved_const0);
pipe_resource_reference(&st->saved_const0.buffer, NULL);
sctx->b.set_shader_buffers(&sctx->b, PIPE_SHADER_COMPUTE, 0, 3, st->saved_ssbo,
st->saved_ssbo_writable_mask);
for (unsigned i = 0; i < 3; ++i)
pipe_resource_reference(&st->saved_ssbo[i].buffer, NULL);
}
static void si_emit_db_render_state(struct si_context *sctx)
{
struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
unsigned db_shader_control, db_render_control, db_count_control;
unsigned initial_cdw = sctx->gfx_cs->current.cdw;
/* DB_RENDER_CONTROL */
if (sctx->dbcb_depth_copy_enabled ||
sctx->dbcb_stencil_copy_enabled) {
db_render_control =
S_028000_DEPTH_COPY(sctx->dbcb_depth_copy_enabled) |
S_028000_STENCIL_COPY(sctx->dbcb_stencil_copy_enabled) |
S_028000_COPY_CENTROID(1) |
S_028000_COPY_SAMPLE(sctx->dbcb_copy_sample);
} else if (sctx->db_flush_depth_inplace || sctx->db_flush_stencil_inplace) {
db_render_control =
S_028000_DEPTH_COMPRESS_DISABLE(sctx->db_flush_depth_inplace) |
S_028000_STENCIL_COMPRESS_DISABLE(sctx->db_flush_stencil_inplace);
} else {
db_render_control =
S_028000_DEPTH_CLEAR_ENABLE(sctx->db_depth_clear) |
S_028000_STENCIL_CLEAR_ENABLE(sctx->db_stencil_clear);
}
/* DB_COUNT_CONTROL (occlusion queries) */
if (sctx->num_occlusion_queries > 0 &&
!sctx->occlusion_queries_disabled) {
bool perfect = sctx->num_perfect_occlusion_queries > 0;
bool gfx10_perfect = sctx->chip_class >= GFX10 && perfect;
if (sctx->chip_class >= GFX7) {
unsigned log_sample_rate = sctx->framebuffer.log_samples;
/* Stoney doesn't increment occlusion query counters
* if the sample rate is 16x. Use 8x sample rate instead.
*/
if (sctx->family == CHIP_STONEY)
log_sample_rate = MIN2(log_sample_rate, 3);
db_count_control =
S_028004_PERFECT_ZPASS_COUNTS(perfect) |
S_028004_DISABLE_CONSERVATIVE_ZPASS_COUNTS(gfx10_perfect) |
S_028004_SAMPLE_RATE(log_sample_rate) |
S_028004_ZPASS_ENABLE(1) |
S_028004_SLICE_EVEN_ENABLE(1) |
S_028004_SLICE_ODD_ENABLE(1);
} else {
db_count_control =
S_028004_PERFECT_ZPASS_COUNTS(perfect) |
S_028004_SAMPLE_RATE(sctx->framebuffer.log_samples);
}
} else {
/* Disable occlusion queries. */
if (sctx->chip_class >= GFX7) {
db_count_control = 0;
} else {
db_count_control = S_028004_ZPASS_INCREMENT_DISABLE(1);
}
}
radeon_opt_set_context_reg2(sctx, R_028000_DB_RENDER_CONTROL,
SI_TRACKED_DB_RENDER_CONTROL, db_render_control,
db_count_control);
/* DB_RENDER_OVERRIDE2 */
radeon_opt_set_context_reg(sctx, R_028010_DB_RENDER_OVERRIDE2,
SI_TRACKED_DB_RENDER_OVERRIDE2,
S_028010_DISABLE_ZMASK_EXPCLEAR_OPTIMIZATION(sctx->db_depth_disable_expclear) |
S_028010_DISABLE_SMEM_EXPCLEAR_OPTIMIZATION(sctx->db_stencil_disable_expclear) |
S_028010_DECOMPRESS_Z_ON_FLUSH(sctx->framebuffer.nr_samples >= 4));
db_shader_control = sctx->ps_db_shader_control;
/* Bug workaround for smoothing (overrasterization) on GFX6. */
if (sctx->chip_class == GFX6 && sctx->smoothing_enabled) {
db_shader_control &= C_02880C_Z_ORDER;
db_shader_control |= S_02880C_Z_ORDER(V_02880C_LATE_Z);
}
/* Disable the gl_SampleMask fragment shader output if MSAA is disabled. */
if (!rs->multisample_enable)
db_shader_control &= C_02880C_MASK_EXPORT_ENABLE;
if (sctx->screen->info.has_rbplus &&
!sctx->screen->info.rbplus_allowed)
db_shader_control |= S_02880C_DUAL_QUAD_DISABLE(1);
radeon_opt_set_context_reg(sctx, R_02880C_DB_SHADER_CONTROL,
SI_TRACKED_DB_SHADER_CONTROL, db_shader_control);
if (initial_cdw != sctx->gfx_cs->current.cdw)
sctx->context_roll = true;
}
/*
* format translation
*/
static uint32_t si_translate_colorformat(enum pipe_format format)
{
const struct util_format_description *desc = util_format_description(format);
if (!desc)
return V_028C70_COLOR_INVALID;
#define HAS_SIZE(x,y,z,w) \
(desc->channel[0].size == (x) && desc->channel[1].size == (y) && \
desc->channel[2].size == (z) && desc->channel[3].size == (w))
if (format == PIPE_FORMAT_R11G11B10_FLOAT) /* isn't plain */
return V_028C70_COLOR_10_11_11;
if (desc->layout != UTIL_FORMAT_LAYOUT_PLAIN)
return V_028C70_COLOR_INVALID;
/* hw cannot support mixed formats (except depth/stencil, since
* stencil is not written to). */
if (desc->is_mixed && desc->colorspace != UTIL_FORMAT_COLORSPACE_ZS)
return V_028C70_COLOR_INVALID;
switch (desc->nr_channels) {
case 1:
switch (desc->channel[0].size) {
case 8:
return V_028C70_COLOR_8;
case 16:
return V_028C70_COLOR_16;
case 32:
return V_028C70_COLOR_32;
}
break;
case 2:
if (desc->channel[0].size == desc->channel[1].size) {
switch (desc->channel[0].size) {
case 8:
return V_028C70_COLOR_8_8;
case 16:
return V_028C70_COLOR_16_16;
case 32:
return V_028C70_COLOR_32_32;
}
} else if (HAS_SIZE(8,24,0,0)) {
return V_028C70_COLOR_24_8;
} else if (HAS_SIZE(24,8,0,0)) {
return V_028C70_COLOR_8_24;
}
break;
case 3:
if (HAS_SIZE(5,6,5,0)) {
return V_028C70_COLOR_5_6_5;
} else if (HAS_SIZE(32,8,24,0)) {
return V_028C70_COLOR_X24_8_32_FLOAT;
}
break;
case 4:
if (desc->channel[0].size == desc->channel[1].size &&
desc->channel[0].size == desc->channel[2].size &&
desc->channel[0].size == desc->channel[3].size) {
switch (desc->channel[0].size) {
case 4:
return V_028C70_COLOR_4_4_4_4;
case 8:
return V_028C70_COLOR_8_8_8_8;
case 16:
return V_028C70_COLOR_16_16_16_16;
case 32:
return V_028C70_COLOR_32_32_32_32;
}
} else if (HAS_SIZE(5,5,5,1)) {
return V_028C70_COLOR_1_5_5_5;
} else if (HAS_SIZE(1,5,5,5)) {
return V_028C70_COLOR_5_5_5_1;
} else if (HAS_SIZE(10,10,10,2)) {
return V_028C70_COLOR_2_10_10_10;
}
break;
}
return V_028C70_COLOR_INVALID;
}
static uint32_t si_colorformat_endian_swap(uint32_t colorformat)
{
if (SI_BIG_ENDIAN) {
switch(colorformat) {
/* 8-bit buffers. */
case V_028C70_COLOR_8:
return V_028C70_ENDIAN_NONE;
/* 16-bit buffers. */
case V_028C70_COLOR_5_6_5:
case V_028C70_COLOR_1_5_5_5:
case V_028C70_COLOR_4_4_4_4:
case V_028C70_COLOR_16:
case V_028C70_COLOR_8_8:
return V_028C70_ENDIAN_8IN16;
/* 32-bit buffers. */
case V_028C70_COLOR_8_8_8_8:
case V_028C70_COLOR_2_10_10_10:
case V_028C70_COLOR_8_24:
case V_028C70_COLOR_24_8:
case V_028C70_COLOR_16_16:
return V_028C70_ENDIAN_8IN32;
/* 64-bit buffers. */
case V_028C70_COLOR_16_16_16_16:
return V_028C70_ENDIAN_8IN16;
case V_028C70_COLOR_32_32:
return V_028C70_ENDIAN_8IN32;
/* 128-bit buffers. */
case V_028C70_COLOR_32_32_32_32:
return V_028C70_ENDIAN_8IN32;
default:
return V_028C70_ENDIAN_NONE; /* Unsupported. */
}
} else {
return V_028C70_ENDIAN_NONE;
}
}
static uint32_t si_translate_dbformat(enum pipe_format format)
{
switch (format) {
case PIPE_FORMAT_Z16_UNORM:
return V_028040_Z_16;
case PIPE_FORMAT_S8_UINT_Z24_UNORM:
case PIPE_FORMAT_X8Z24_UNORM:
case PIPE_FORMAT_Z24X8_UNORM:
case PIPE_FORMAT_Z24_UNORM_S8_UINT:
return V_028040_Z_24; /* deprecated on AMD GCN */
case PIPE_FORMAT_Z32_FLOAT:
case PIPE_FORMAT_Z32_FLOAT_S8X24_UINT:
return V_028040_Z_32_FLOAT;
default:
return V_028040_Z_INVALID;
}
}
/*
* Texture translation
*/
static uint32_t si_translate_texformat(struct pipe_screen *screen,
enum pipe_format format,
const struct util_format_description *desc,
int first_non_void)
{
struct si_screen *sscreen = (struct si_screen*)screen;
bool uniform = true;
int i;
assert(sscreen->info.chip_class <= GFX9);
/* Colorspace (return non-RGB formats directly). */
switch (desc->colorspace) {
/* Depth stencil formats */
case UTIL_FORMAT_COLORSPACE_ZS:
switch (format) {
case PIPE_FORMAT_Z16_UNORM:
return V_008F14_IMG_DATA_FORMAT_16;
case PIPE_FORMAT_X24S8_UINT:
case PIPE_FORMAT_S8X24_UINT:
/*
* Implemented as an 8_8_8_8 data format to fix texture
* gathers in stencil sampling. This affects at least
* GL45-CTS.texture_cube_map_array.sampling on GFX8.
*/
if (sscreen->info.chip_class <= GFX8)
return V_008F14_IMG_DATA_FORMAT_8_8_8_8;
if (format == PIPE_FORMAT_X24S8_UINT)
return V_008F14_IMG_DATA_FORMAT_8_24;
else
return V_008F14_IMG_DATA_FORMAT_24_8;
case PIPE_FORMAT_Z24X8_UNORM:
case PIPE_FORMAT_Z24_UNORM_S8_UINT:
return V_008F14_IMG_DATA_FORMAT_8_24;
case PIPE_FORMAT_X8Z24_UNORM:
case PIPE_FORMAT_S8_UINT_Z24_UNORM:
return V_008F14_IMG_DATA_FORMAT_24_8;
case PIPE_FORMAT_S8_UINT:
return V_008F14_IMG_DATA_FORMAT_8;
case PIPE_FORMAT_Z32_FLOAT:
return V_008F14_IMG_DATA_FORMAT_32;
case PIPE_FORMAT_X32_S8X24_UINT:
case PIPE_FORMAT_Z32_FLOAT_S8X24_UINT:
return V_008F14_IMG_DATA_FORMAT_X24_8_32;
default:
goto out_unknown;
}
case UTIL_FORMAT_COLORSPACE_YUV:
goto out_unknown; /* TODO */
case UTIL_FORMAT_COLORSPACE_SRGB:
if (desc->nr_channels != 4 && desc->nr_channels != 1)
goto out_unknown;
break;
default:
break;
}
if (desc->layout == UTIL_FORMAT_LAYOUT_RGTC) {
if (!sscreen->info.has_format_bc1_through_bc7)
goto out_unknown;
switch (format) {
case PIPE_FORMAT_RGTC1_SNORM:
case PIPE_FORMAT_LATC1_SNORM:
case PIPE_FORMAT_RGTC1_UNORM:
case PIPE_FORMAT_LATC1_UNORM:
return V_008F14_IMG_DATA_FORMAT_BC4;
case PIPE_FORMAT_RGTC2_SNORM:
case PIPE_FORMAT_LATC2_SNORM:
case PIPE_FORMAT_RGTC2_UNORM:
case PIPE_FORMAT_LATC2_UNORM:
return V_008F14_IMG_DATA_FORMAT_BC5;
default:
goto out_unknown;
}
}
if (desc->layout == UTIL_FORMAT_LAYOUT_ETC &&
(sscreen->info.family == CHIP_STONEY ||
sscreen->info.family == CHIP_VEGA10 ||
sscreen->info.family == CHIP_RAVEN)) {
switch (format) {
case PIPE_FORMAT_ETC1_RGB8:
case PIPE_FORMAT_ETC2_RGB8:
case PIPE_FORMAT_ETC2_SRGB8:
return V_008F14_IMG_DATA_FORMAT_ETC2_RGB;
case PIPE_FORMAT_ETC2_RGB8A1:
case PIPE_FORMAT_ETC2_SRGB8A1:
return V_008F14_IMG_DATA_FORMAT_ETC2_RGBA1;
case PIPE_FORMAT_ETC2_RGBA8:
case PIPE_FORMAT_ETC2_SRGBA8:
return V_008F14_IMG_DATA_FORMAT_ETC2_RGBA;
case PIPE_FORMAT_ETC2_R11_UNORM:
case PIPE_FORMAT_ETC2_R11_SNORM:
return V_008F14_IMG_DATA_FORMAT_ETC2_R;
case PIPE_FORMAT_ETC2_RG11_UNORM:
case PIPE_FORMAT_ETC2_RG11_SNORM:
return V_008F14_IMG_DATA_FORMAT_ETC2_RG;
default:
goto out_unknown;
}
}
if (desc->layout == UTIL_FORMAT_LAYOUT_BPTC) {
if (!sscreen->info.has_format_bc1_through_bc7)
goto out_unknown;
switch (format) {
case PIPE_FORMAT_BPTC_RGBA_UNORM:
case PIPE_FORMAT_BPTC_SRGBA:
return V_008F14_IMG_DATA_FORMAT_BC7;
case PIPE_FORMAT_BPTC_RGB_FLOAT:
case PIPE_FORMAT_BPTC_RGB_UFLOAT:
return V_008F14_IMG_DATA_FORMAT_BC6;
default:
goto out_unknown;
}
}
if (desc->layout == UTIL_FORMAT_LAYOUT_SUBSAMPLED) {
switch (format) {
case PIPE_FORMAT_R8G8_B8G8_UNORM:
case PIPE_FORMAT_G8R8_B8R8_UNORM:
return V_008F14_IMG_DATA_FORMAT_GB_GR;
case PIPE_FORMAT_G8R8_G8B8_UNORM:
case PIPE_FORMAT_R8G8_R8B8_UNORM:
return V_008F14_IMG_DATA_FORMAT_BG_RG;
default:
goto out_unknown;
}
}
if (desc->layout == UTIL_FORMAT_LAYOUT_S3TC) {
if (!sscreen->info.has_format_bc1_through_bc7)
goto out_unknown;
switch (format) {
case PIPE_FORMAT_DXT1_RGB:
case PIPE_FORMAT_DXT1_RGBA:
case PIPE_FORMAT_DXT1_SRGB:
case PIPE_FORMAT_DXT1_SRGBA:
return V_008F14_IMG_DATA_FORMAT_BC1;
case PIPE_FORMAT_DXT3_RGBA:
case PIPE_FORMAT_DXT3_SRGBA:
return V_008F14_IMG_DATA_FORMAT_BC2;
case PIPE_FORMAT_DXT5_RGBA:
case PIPE_FORMAT_DXT5_SRGBA:
return V_008F14_IMG_DATA_FORMAT_BC3;
default:
goto out_unknown;
}
}
if (format == PIPE_FORMAT_R9G9B9E5_FLOAT) {
return V_008F14_IMG_DATA_FORMAT_5_9_9_9;
} else if (format == PIPE_FORMAT_R11G11B10_FLOAT) {
return V_008F14_IMG_DATA_FORMAT_10_11_11;
}
/* R8G8Bx_SNORM - TODO CxV8U8 */
/* hw cannot support mixed formats (except depth/stencil, since only
* depth is read).*/
if (desc->is_mixed && desc->colorspace != UTIL_FORMAT_COLORSPACE_ZS)
goto out_unknown;
/* See whether the components are of the same size. */
for (i = 1; i < desc->nr_channels; i++) {
uniform = uniform && desc->channel[0].size == desc->channel[i].size;
}
/* Non-uniform formats. */
if (!uniform) {
switch(desc->nr_channels) {
case 3:
if (desc->channel[0].size == 5 &&
desc->channel[1].size == 6 &&
desc->channel[2].size == 5) {
return V_008F14_IMG_DATA_FORMAT_5_6_5;
}
goto out_unknown;
case 4:
if (desc->channel[0].size == 5 &&
desc->channel[1].size == 5 &&
desc->channel[2].size == 5 &&
desc->channel[3].size == 1) {
return V_008F14_IMG_DATA_FORMAT_1_5_5_5;
}
if (desc->channel[0].size == 1 &&
desc->channel[1].size == 5 &&
desc->channel[2].size == 5 &&
desc->channel[3].size == 5) {
return V_008F14_IMG_DATA_FORMAT_5_5_5_1;
}
if (desc->channel[0].size == 10 &&
desc->channel[1].size == 10 &&
desc->channel[2].size == 10 &&
desc->channel[3].size == 2) {
return V_008F14_IMG_DATA_FORMAT_2_10_10_10;
}
goto out_unknown;
}
goto out_unknown;
}
if (first_non_void < 0 || first_non_void > 3)
goto out_unknown;
/* uniform formats */
switch (desc->channel[first_non_void].size) {
case 4:
switch (desc->nr_channels) {
#if 0 /* Not supported for render targets */
case 2:
return V_008F14_IMG_DATA_FORMAT_4_4;
#endif
case 4:
return V_008F14_IMG_DATA_FORMAT_4_4_4_4;
}
break;
case 8:
switch (desc->nr_channels) {
case 1:
return V_008F14_IMG_DATA_FORMAT_8;
case 2:
return V_008F14_IMG_DATA_FORMAT_8_8;
case 4:
return V_008F14_IMG_DATA_FORMAT_8_8_8_8;
}
break;
case 16:
switch (desc->nr_channels) {
case 1:
return V_008F14_IMG_DATA_FORMAT_16;
case 2:
return V_008F14_IMG_DATA_FORMAT_16_16;
case 4:
return V_008F14_IMG_DATA_FORMAT_16_16_16_16;
}
break;
case 32:
switch (desc->nr_channels) {
case 1:
return V_008F14_IMG_DATA_FORMAT_32;
case 2:
return V_008F14_IMG_DATA_FORMAT_32_32;
#if 0 /* Not supported for render targets */
case 3:
return V_008F14_IMG_DATA_FORMAT_32_32_32;
#endif
case 4:
return V_008F14_IMG_DATA_FORMAT_32_32_32_32;
}
}
out_unknown:
return ~0;
}
static unsigned si_tex_wrap(unsigned wrap)
{
switch (wrap) {
default:
case PIPE_TEX_WRAP_REPEAT:
return V_008F30_SQ_TEX_WRAP;
case PIPE_TEX_WRAP_CLAMP:
return V_008F30_SQ_TEX_CLAMP_HALF_BORDER;
case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
return V_008F30_SQ_TEX_CLAMP_LAST_TEXEL;
case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
return V_008F30_SQ_TEX_CLAMP_BORDER;
case PIPE_TEX_WRAP_MIRROR_REPEAT:
return V_008F30_SQ_TEX_MIRROR;
case PIPE_TEX_WRAP_MIRROR_CLAMP:
return V_008F30_SQ_TEX_MIRROR_ONCE_HALF_BORDER;
case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
return V_008F30_SQ_TEX_MIRROR_ONCE_LAST_TEXEL;
case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
return V_008F30_SQ_TEX_MIRROR_ONCE_BORDER;
}
}
static unsigned si_tex_mipfilter(unsigned filter)
{
switch (filter) {
case PIPE_TEX_MIPFILTER_NEAREST:
return V_008F38_SQ_TEX_Z_FILTER_POINT;
case PIPE_TEX_MIPFILTER_LINEAR:
return V_008F38_SQ_TEX_Z_FILTER_LINEAR;
default:
case PIPE_TEX_MIPFILTER_NONE:
return V_008F38_SQ_TEX_Z_FILTER_NONE;
}
}
static unsigned si_tex_compare(unsigned compare)
{
switch (compare) {
default:
case PIPE_FUNC_NEVER:
return V_008F30_SQ_TEX_DEPTH_COMPARE_NEVER;
case PIPE_FUNC_LESS:
return V_008F30_SQ_TEX_DEPTH_COMPARE_LESS;
case PIPE_FUNC_EQUAL:
return V_008F30_SQ_TEX_DEPTH_COMPARE_EQUAL;
case PIPE_FUNC_LEQUAL:
return V_008F30_SQ_TEX_DEPTH_COMPARE_LESSEQUAL;
case PIPE_FUNC_GREATER:
return V_008F30_SQ_TEX_DEPTH_COMPARE_GREATER;
case PIPE_FUNC_NOTEQUAL:
return V_008F30_SQ_TEX_DEPTH_COMPARE_NOTEQUAL;
case PIPE_FUNC_GEQUAL:
return V_008F30_SQ_TEX_DEPTH_COMPARE_GREATEREQUAL;
case PIPE_FUNC_ALWAYS:
return V_008F30_SQ_TEX_DEPTH_COMPARE_ALWAYS;
}
}
static unsigned si_tex_dim(struct si_screen *sscreen, struct si_texture *tex,
unsigned view_target, unsigned nr_samples)
{
unsigned res_target = tex->buffer.b.b.target;
if (view_target == PIPE_TEXTURE_CUBE ||
view_target == PIPE_TEXTURE_CUBE_ARRAY)
res_target = view_target;
/* If interpreting cubemaps as something else, set 2D_ARRAY. */
else if (res_target == PIPE_TEXTURE_CUBE ||
res_target == PIPE_TEXTURE_CUBE_ARRAY)
res_target = PIPE_TEXTURE_2D_ARRAY;
/* GFX9 allocates 1D textures as 2D. */
if ((res_target == PIPE_TEXTURE_1D ||
res_target == PIPE_TEXTURE_1D_ARRAY) &&
sscreen->info.chip_class == GFX9 &&
tex->surface.u.gfx9.resource_type == RADEON_RESOURCE_2D) {
if (res_target == PIPE_TEXTURE_1D)
res_target = PIPE_TEXTURE_2D;
else
res_target = PIPE_TEXTURE_2D_ARRAY;
}
switch (res_target) {
default:
case PIPE_TEXTURE_1D:
return V_008F1C_SQ_RSRC_IMG_1D;
case PIPE_TEXTURE_1D_ARRAY:
return V_008F1C_SQ_RSRC_IMG_1D_ARRAY;
case PIPE_TEXTURE_2D:
case PIPE_TEXTURE_RECT:
return nr_samples > 1 ? V_008F1C_SQ_RSRC_IMG_2D_MSAA :
V_008F1C_SQ_RSRC_IMG_2D;
case PIPE_TEXTURE_2D_ARRAY:
return nr_samples > 1 ? V_008F1C_SQ_RSRC_IMG_2D_MSAA_ARRAY :
V_008F1C_SQ_RSRC_IMG_2D_ARRAY;
case PIPE_TEXTURE_3D:
return V_008F1C_SQ_RSRC_IMG_3D;
case PIPE_TEXTURE_CUBE:
case PIPE_TEXTURE_CUBE_ARRAY:
return V_008F1C_SQ_RSRC_IMG_CUBE;
}
}
/*
* Format support testing
*/
static bool si_is_sampler_format_supported(struct pipe_screen *screen, enum pipe_format format)
{
struct si_screen *sscreen = (struct si_screen *)screen;
if (sscreen->info.chip_class >= GFX10) {
const struct gfx10_format *fmt = &gfx10_format_table[format];
if (!fmt->img_format || fmt->buffers_only)
return false;
return true;
}
const struct util_format_description *desc = util_format_description(format);
if (!desc)
return false;
return si_translate_texformat(screen, format, desc,
util_format_get_first_non_void_channel(format)) != ~0U;
}
static uint32_t si_translate_buffer_dataformat(struct pipe_screen *screen,
const struct util_format_description *desc,
int first_non_void)
{
int i;
assert(((struct si_screen *)screen)->info.chip_class <= GFX9);
if (desc->format == PIPE_FORMAT_R11G11B10_FLOAT)
return V_008F0C_BUF_DATA_FORMAT_10_11_11;
assert(first_non_void >= 0);
if (desc->nr_channels == 4 &&
desc->channel[0].size == 10 &&
desc->channel[1].size == 10 &&
desc->channel[2].size == 10 &&
desc->channel[3].size == 2)
return V_008F0C_BUF_DATA_FORMAT_2_10_10_10;
/* See whether the components are of the same size. */
for (i = 0; i < desc->nr_channels; i++) {
if (desc->channel[first_non_void].size != desc->channel[i].size)
return V_008F0C_BUF_DATA_FORMAT_INVALID;
}
switch (desc->channel[first_non_void].size) {
case 8:
switch (desc->nr_channels) {
case 1:
case 3: /* 3 loads */
return V_008F0C_BUF_DATA_FORMAT_8;
case 2:
return V_008F0C_BUF_DATA_FORMAT_8_8;
case 4:
return V_008F0C_BUF_DATA_FORMAT_8_8_8_8;
}
break;
case 16:
switch (desc->nr_channels) {
case 1:
case 3: /* 3 loads */
return V_008F0C_BUF_DATA_FORMAT_16;
case 2:
return V_008F0C_BUF_DATA_FORMAT_16_16;
case 4:
return V_008F0C_BUF_DATA_FORMAT_16_16_16_16;
}
break;
case 32:
switch (desc->nr_channels) {
case 1:
return V_008F0C_BUF_DATA_FORMAT_32;
case 2:
return V_008F0C_BUF_DATA_FORMAT_32_32;
case 3:
return V_008F0C_BUF_DATA_FORMAT_32_32_32;
case 4:
return V_008F0C_BUF_DATA_FORMAT_32_32_32_32;
}
break;
case 64:
/* Legacy double formats. */
switch (desc->nr_channels) {
case 1: /* 1 load */
return V_008F0C_BUF_DATA_FORMAT_32_32;
case 2: /* 1 load */
return V_008F0C_BUF_DATA_FORMAT_32_32_32_32;
case 3: /* 3 loads */
return V_008F0C_BUF_DATA_FORMAT_32_32;
case 4: /* 2 loads */
return V_008F0C_BUF_DATA_FORMAT_32_32_32_32;
}
break;
}
return V_008F0C_BUF_DATA_FORMAT_INVALID;
}
static uint32_t si_translate_buffer_numformat(struct pipe_screen *screen,
const struct util_format_description *desc,
int first_non_void)
{
assert(((struct si_screen *)screen)->info.chip_class <= GFX9);
if (desc->format == PIPE_FORMAT_R11G11B10_FLOAT)
return V_008F0C_BUF_NUM_FORMAT_FLOAT;
assert(first_non_void >= 0);
switch (desc->channel[first_non_void].type) {
case UTIL_FORMAT_TYPE_SIGNED:
case UTIL_FORMAT_TYPE_FIXED:
if (desc->channel[first_non_void].size >= 32 ||
desc->channel[first_non_void].pure_integer)
return V_008F0C_BUF_NUM_FORMAT_SINT;
else if (desc->channel[first_non_void].normalized)
return V_008F0C_BUF_NUM_FORMAT_SNORM;
else
return V_008F0C_BUF_NUM_FORMAT_SSCALED;
break;
case UTIL_FORMAT_TYPE_UNSIGNED:
if (desc->channel[first_non_void].size >= 32 ||
desc->channel[first_non_void].pure_integer)
return V_008F0C_BUF_NUM_FORMAT_UINT;
else if (desc->channel[first_non_void].normalized)
return V_008F0C_BUF_NUM_FORMAT_UNORM;
else
return V_008F0C_BUF_NUM_FORMAT_USCALED;
break;
case UTIL_FORMAT_TYPE_FLOAT:
default:
return V_008F0C_BUF_NUM_FORMAT_FLOAT;
}
}
static unsigned si_is_vertex_format_supported(struct pipe_screen *screen,
enum pipe_format format,
unsigned usage)
{
struct si_screen *sscreen = (struct si_screen *)screen;
const struct util_format_description *desc;
int first_non_void;
unsigned data_format;
assert((usage & ~(PIPE_BIND_SHADER_IMAGE |
PIPE_BIND_SAMPLER_VIEW |
PIPE_BIND_VERTEX_BUFFER)) == 0);
desc = util_format_description(format);
if (!desc)
return 0;
/* There are no native 8_8_8 or 16_16_16 data formats, and we currently
* select 8_8_8_8 and 16_16_16_16 instead. This works reasonably well
* for read-only access (with caveats surrounding bounds checks), but
* obviously fails for write access which we have to implement for
* shader images. Luckily, OpenGL doesn't expect this to be supported
* anyway, and so the only impact is on PBO uploads / downloads, which
* shouldn't be expected to be fast for GL_RGB anyway.
*/
if (desc->block.bits == 3 * 8 ||
desc->block.bits == 3 * 16) {
if (usage & (PIPE_BIND_SHADER_IMAGE | PIPE_BIND_SAMPLER_VIEW)) {
usage &= ~(PIPE_BIND_SHADER_IMAGE | PIPE_BIND_SAMPLER_VIEW);
if (!usage)
return 0;
}
}
if (sscreen->info.chip_class >= GFX10) {
const struct gfx10_format *fmt = &gfx10_format_table[format];
if (!fmt->img_format || fmt->img_format >= 128)
return 0;
return usage;
}
first_non_void = util_format_get_first_non_void_channel(format);
data_format = si_translate_buffer_dataformat(screen, desc, first_non_void);
if (data_format == V_008F0C_BUF_DATA_FORMAT_INVALID)
return 0;
return usage;
}
static bool si_is_colorbuffer_format_supported(enum pipe_format format)
{
return si_translate_colorformat(format) != V_028C70_COLOR_INVALID &&
si_translate_colorswap(format, false) != ~0U;
}
static bool si_is_zs_format_supported(enum pipe_format format)
{
return si_translate_dbformat(format) != V_028040_Z_INVALID;
}
static bool si_is_format_supported(struct pipe_screen *screen,
enum pipe_format format,
enum pipe_texture_target target,
unsigned sample_count,
unsigned storage_sample_count,
unsigned usage)
{
struct si_screen *sscreen = (struct si_screen *)screen;
unsigned retval = 0;
if (target >= PIPE_MAX_TEXTURE_TYPES) {
PRINT_ERR("radeonsi: unsupported texture type %d\n", target);
return false;
}
if (util_format_get_num_planes(format) >= 2) {
return util_format_planar_is_supported(screen, format, target,
sample_count,
storage_sample_count,
usage);
}
if (MAX2(1, sample_count) < MAX2(1, storage_sample_count))
return false;
if (sample_count > 1) {
if (!screen->get_param(screen, PIPE_CAP_TEXTURE_MULTISAMPLE))
return false;
if (usage & PIPE_BIND_SHADER_IMAGE)
return false;
/* Only power-of-two sample counts are supported. */
if (!util_is_power_of_two_or_zero(sample_count) ||
!util_is_power_of_two_or_zero(storage_sample_count))
return false;
/* MSAA support without framebuffer attachments. */
if (format == PIPE_FORMAT_NONE && sample_count <= 16)
return true;
if (!sscreen->info.has_eqaa_surface_allocator ||
util_format_is_depth_or_stencil(format)) {
/* Color without EQAA or depth/stencil. */
if (sample_count > 8 ||
sample_count != storage_sample_count)
return false;
} else {
/* Color with EQAA. */
if (sample_count > 16 ||
storage_sample_count > 8)
return false;
}
}
if (usage & (PIPE_BIND_SAMPLER_VIEW |
PIPE_BIND_SHADER_IMAGE)) {
if (target == PIPE_BUFFER) {
retval |= si_is_vertex_format_supported(
screen, format, usage & (PIPE_BIND_SAMPLER_VIEW |
PIPE_BIND_SHADER_IMAGE));
} else {
if (si_is_sampler_format_supported(screen, format))
retval |= usage & (PIPE_BIND_SAMPLER_VIEW |
PIPE_BIND_SHADER_IMAGE);
}
}
if ((usage & (PIPE_BIND_RENDER_TARGET |
PIPE_BIND_DISPLAY_TARGET |
PIPE_BIND_SCANOUT |
PIPE_BIND_SHARED |
PIPE_BIND_BLENDABLE)) &&
si_is_colorbuffer_format_supported(format)) {
retval |= usage &
(PIPE_BIND_RENDER_TARGET |
PIPE_BIND_DISPLAY_TARGET |
PIPE_BIND_SCANOUT |
PIPE_BIND_SHARED);
if (!util_format_is_pure_integer(format) &&
!util_format_is_depth_or_stencil(format))
retval |= usage & PIPE_BIND_BLENDABLE;
}
if ((usage & PIPE_BIND_DEPTH_STENCIL) &&
si_is_zs_format_supported(format)) {
retval |= PIPE_BIND_DEPTH_STENCIL;
}
if (usage & PIPE_BIND_VERTEX_BUFFER) {
retval |= si_is_vertex_format_supported(screen, format,
PIPE_BIND_VERTEX_BUFFER);
}
if ((usage & PIPE_BIND_LINEAR) &&
!util_format_is_compressed(format) &&
!(usage & PIPE_BIND_DEPTH_STENCIL))
retval |= PIPE_BIND_LINEAR;
return retval == usage;
}
/*
* framebuffer handling
*/
static void si_choose_spi_color_formats(struct si_surface *surf,
unsigned format, unsigned swap,
unsigned ntype, bool is_depth)
{
/* Alpha is needed for alpha-to-coverage.
* Blending may be with or without alpha.
*/
unsigned normal = 0; /* most optimal, may not support blending or export alpha */
unsigned alpha = 0; /* exports alpha, but may not support blending */
unsigned blend = 0; /* supports blending, but may not export alpha */
unsigned blend_alpha = 0; /* least optimal, supports blending and exports alpha */
/* Choose the SPI color formats. These are required values for RB+.
* Other chips have multiple choices, though they are not necessarily better.
*/
switch (format) {
case V_028C70_COLOR_5_6_5:
case V_028C70_COLOR_1_5_5_5:
case V_028C70_COLOR_5_5_5_1:
case V_028C70_COLOR_4_4_4_4:
case V_028C70_COLOR_10_11_11:
case V_028C70_COLOR_11_11_10:
case V_028C70_COLOR_8:
case V_028C70_COLOR_8_8:
case V_028C70_COLOR_8_8_8_8:
case V_028C70_COLOR_10_10_10_2:
case V_028C70_COLOR_2_10_10_10:
if (ntype == V_028C70_NUMBER_UINT)
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_UINT16_ABGR;
else if (ntype == V_028C70_NUMBER_SINT)
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_SINT16_ABGR;
else
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_FP16_ABGR;
break;
case V_028C70_COLOR_16:
case V_028C70_COLOR_16_16:
case V_028C70_COLOR_16_16_16_16:
if (ntype == V_028C70_NUMBER_UNORM ||
ntype == V_028C70_NUMBER_SNORM) {
/* UNORM16 and SNORM16 don't support blending */
if (ntype == V_028C70_NUMBER_UNORM)
normal = alpha = V_028714_SPI_SHADER_UNORM16_ABGR;
else
normal = alpha = V_028714_SPI_SHADER_SNORM16_ABGR;
/* Use 32 bits per channel for blending. */
if (format == V_028C70_COLOR_16) {
if (swap == V_028C70_SWAP_STD) { /* R */
blend = V_028714_SPI_SHADER_32_R;
blend_alpha = V_028714_SPI_SHADER_32_AR;
} else if (swap == V_028C70_SWAP_ALT_REV) /* A */
blend = blend_alpha = V_028714_SPI_SHADER_32_AR;
else
assert(0);
} else if (format == V_028C70_COLOR_16_16) {
if (swap == V_028C70_SWAP_STD) { /* RG */
blend = V_028714_SPI_SHADER_32_GR;
blend_alpha = V_028714_SPI_SHADER_32_ABGR;
} else if (swap == V_028C70_SWAP_ALT) /* RA */
blend = blend_alpha = V_028714_SPI_SHADER_32_AR;
else
assert(0);
} else /* 16_16_16_16 */
blend = blend_alpha = V_028714_SPI_SHADER_32_ABGR;
} else if (ntype == V_028C70_NUMBER_UINT)
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_UINT16_ABGR;
else if (ntype == V_028C70_NUMBER_SINT)
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_SINT16_ABGR;
else if (ntype == V_028C70_NUMBER_FLOAT)
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_FP16_ABGR;
else
assert(0);
break;
case V_028C70_COLOR_32:
if (swap == V_028C70_SWAP_STD) { /* R */
blend = normal = V_028714_SPI_SHADER_32_R;
alpha = blend_alpha = V_028714_SPI_SHADER_32_AR;
} else if (swap == V_028C70_SWAP_ALT_REV) /* A */
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_AR;
else
assert(0);
break;
case V_028C70_COLOR_32_32:
if (swap == V_028C70_SWAP_STD) { /* RG */
blend = normal = V_028714_SPI_SHADER_32_GR;
alpha = blend_alpha = V_028714_SPI_SHADER_32_ABGR;
} else if (swap == V_028C70_SWAP_ALT) /* RA */
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_AR;
else
assert(0);
break;
case V_028C70_COLOR_32_32_32_32:
case V_028C70_COLOR_8_24:
case V_028C70_COLOR_24_8:
case V_028C70_COLOR_X24_8_32_FLOAT:
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_ABGR;
break;
default:
assert(0);
return;
}
/* The DB->CB copy needs 32_ABGR. */
if (is_depth)
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_ABGR;
surf->spi_shader_col_format = normal;
surf->spi_shader_col_format_alpha = alpha;
surf->spi_shader_col_format_blend = blend;
surf->spi_shader_col_format_blend_alpha = blend_alpha;
}
static void si_initialize_color_surface(struct si_context *sctx,
struct si_surface *surf)
{
struct si_texture *tex = (struct si_texture*)surf->base.texture;
unsigned color_info, color_attrib;
unsigned format, swap, ntype, endian;
const struct util_format_description *desc;
int firstchan;
unsigned blend_clamp = 0, blend_bypass = 0;
desc = util_format_description(surf->base.format);
for (firstchan = 0; firstchan < 4; firstchan++) {
if (desc->channel[firstchan].type != UTIL_FORMAT_TYPE_VOID) {
break;
}
}
if (firstchan == 4 || desc->channel[firstchan].type == UTIL_FORMAT_TYPE_FLOAT) {
ntype = V_028C70_NUMBER_FLOAT;
} else {
ntype = V_028C70_NUMBER_UNORM;
if (desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB)
ntype = V_028C70_NUMBER_SRGB;
else if (desc->channel[firstchan].type == UTIL_FORMAT_TYPE_SIGNED) {
if (desc->channel[firstchan].pure_integer) {
ntype = V_028C70_NUMBER_SINT;
} else {
assert(desc->channel[firstchan].normalized);
ntype = V_028C70_NUMBER_SNORM;
}
} else if (desc->channel[firstchan].type == UTIL_FORMAT_TYPE_UNSIGNED) {
if (desc->channel[firstchan].pure_integer) {
ntype = V_028C70_NUMBER_UINT;
} else {
assert(desc->channel[firstchan].normalized);
ntype = V_028C70_NUMBER_UNORM;
}
}
}
format = si_translate_colorformat(surf->base.format);
if (format == V_028C70_COLOR_INVALID) {
PRINT_ERR("Invalid CB format: %d, disabling CB.\n", surf->base.format);
}
assert(format != V_028C70_COLOR_INVALID);
swap = si_translate_colorswap(surf->base.format, false);
endian = si_colorformat_endian_swap(format);
/* blend clamp should be set for all NORM/SRGB types */
if (ntype == V_028C70_NUMBER_UNORM ||
ntype == V_028C70_NUMBER_SNORM ||
ntype == V_028C70_NUMBER_SRGB)
blend_clamp = 1;
/* set blend bypass according to docs if SINT/UINT or
8/24 COLOR variants */
if (ntype == V_028C70_NUMBER_UINT || ntype == V_028C70_NUMBER_SINT ||
format == V_028C70_COLOR_8_24 || format == V_028C70_COLOR_24_8 ||
format == V_028C70_COLOR_X24_8_32_FLOAT) {
blend_clamp = 0;
blend_bypass = 1;
}
if (ntype == V_028C70_NUMBER_UINT || ntype == V_028C70_NUMBER_SINT) {
if (format == V_028C70_COLOR_8 ||
format == V_028C70_COLOR_8_8 ||
format == V_028C70_COLOR_8_8_8_8)
surf->color_is_int8 = true;
else if (format == V_028C70_COLOR_10_10_10_2 ||
format == V_028C70_COLOR_2_10_10_10)
surf->color_is_int10 = true;
}
color_info = S_028C70_FORMAT(format) |
S_028C70_COMP_SWAP(swap) |
S_028C70_BLEND_CLAMP(blend_clamp) |
S_028C70_BLEND_BYPASS(blend_bypass) |
S_028C70_SIMPLE_FLOAT(1) |
S_028C70_ROUND_MODE(ntype != V_028C70_NUMBER_UNORM &&
ntype != V_028C70_NUMBER_SNORM &&
ntype != V_028C70_NUMBER_SRGB &&
format != V_028C70_COLOR_8_24 &&
format != V_028C70_COLOR_24_8) |
S_028C70_NUMBER_TYPE(ntype) |
S_028C70_ENDIAN(endian);
/* Intensity is implemented as Red, so treat it that way. */
color_attrib = S_028C74_FORCE_DST_ALPHA_1(desc->swizzle[3] == PIPE_SWIZZLE_1 ||
util_format_is_intensity(surf->base.format));
if (tex->buffer.b.b.nr_samples > 1) {
unsigned log_samples = util_logbase2(tex->buffer.b.b.nr_samples);
unsigned log_fragments = util_logbase2(tex->buffer.b.b.nr_storage_samples);
color_attrib |= S_028C74_NUM_SAMPLES(log_samples) |
S_028C74_NUM_FRAGMENTS(log_fragments);
if (tex->surface.fmask_offset) {
color_info |= S_028C70_COMPRESSION(1);
unsigned fmask_bankh = util_logbase2(tex->surface.u.legacy.fmask.bankh);
if (sctx->chip_class == GFX6) {
/* due to a hw bug, FMASK_BANK_HEIGHT must be set on GFX6 too */
color_attrib |= S_028C74_FMASK_BANK_HEIGHT(fmask_bankh);
}
}
}
if (sctx->chip_class >= GFX10) {
unsigned min_compressed_block_size = V_028C78_MIN_BLOCK_SIZE_32B;
/* amdvlk: [min-compressed-block-size] should be set to 32 for dGPU and
64 for APU because all of our APUs to date use DIMMs which have
a request granularity size of 64B while all other chips have a
32B request size */
if (!sctx->screen->info.has_dedicated_vram)
min_compressed_block_size = V_028C78_MIN_BLOCK_SIZE_64B;
surf->cb_dcc_control =
S_028C78_MAX_UNCOMPRESSED_BLOCK_SIZE(V_028C78_MAX_BLOCK_SIZE_256B) |
S_028C78_MAX_COMPRESSED_BLOCK_SIZE(V_028C78_MAX_BLOCK_SIZE_128B) |
S_028C78_MIN_COMPRESSED_BLOCK_SIZE(min_compressed_block_size) |
S_028C78_INDEPENDENT_64B_BLOCKS(0) |
S_028C78_INDEPENDENT_128B_BLOCKS(1);
} else if (sctx->chip_class >= GFX8) {
unsigned max_uncompressed_block_size = V_028C78_MAX_BLOCK_SIZE_256B;
unsigned min_compressed_block_size = V_028C78_MIN_BLOCK_SIZE_32B;
/* amdvlk: [min-compressed-block-size] should be set to 32 for dGPU and
64 for APU because all of our APUs to date use DIMMs which have
a request granularity size of 64B while all other chips have a
32B request size */
if (!sctx->screen->info.has_dedicated_vram)
min_compressed_block_size = V_028C78_MIN_BLOCK_SIZE_64B;
if (tex->buffer.b.b.nr_storage_samples > 1) {
if (tex->surface.bpe == 1)
max_uncompressed_block_size = V_028C78_MAX_BLOCK_SIZE_64B;
else if (tex->surface.bpe == 2)
max_uncompressed_block_size = V_028C78_MAX_BLOCK_SIZE_128B;
}
surf->cb_dcc_control = S_028C78_MAX_UNCOMPRESSED_BLOCK_SIZE(max_uncompressed_block_size) |
S_028C78_MIN_COMPRESSED_BLOCK_SIZE(min_compressed_block_size) |
S_028C78_INDEPENDENT_64B_BLOCKS(1);
}
2015-04-16 19:44:54 +01:00
/* This must be set for fast clear to work without FMASK. */
if (!tex->surface.fmask_size && sctx->chip_class == GFX6) {
unsigned bankh = util_logbase2(tex->surface.u.legacy.bankh);
color_attrib |= S_028C74_FMASK_BANK_HEIGHT(bankh);
}
/* GFX10 field has the same base shift as the GFX6 field */
unsigned color_view = S_028C6C_SLICE_START(surf->base.u.tex.first_layer) |
S_028C6C_SLICE_MAX_GFX10(surf->base.u.tex.last_layer);
unsigned mip0_depth = util_max_layer(&tex->buffer.b.b, 0);
if (sctx->chip_class >= GFX10) {
color_view |= S_028C6C_MIP_LEVEL_GFX10(surf->base.u.tex.level);
surf->cb_color_attrib3 = S_028EE0_MIP0_DEPTH(mip0_depth) |
S_028EE0_RESOURCE_TYPE(tex->surface.u.gfx9.resource_type) |
S_028EE0_RESOURCE_LEVEL(1);
} else if (sctx->chip_class == GFX9) {
color_view |= S_028C6C_MIP_LEVEL_GFX9(surf->base.u.tex.level);
color_attrib |= S_028C74_MIP0_DEPTH(mip0_depth) |
S_028C74_RESOURCE_TYPE(tex->surface.u.gfx9.resource_type);
}
if (sctx->chip_class >= GFX9) {
surf->cb_color_attrib2 = S_028C68_MIP0_WIDTH(surf->width0 - 1) |
S_028C68_MIP0_HEIGHT(surf->height0 - 1) |
S_028C68_MAX_MIP(tex->buffer.b.b.last_level);
}
surf->cb_color_view = color_view;
surf->cb_color_info = color_info;
surf->cb_color_attrib = color_attrib;
/* Determine pixel shader export format */
si_choose_spi_color_formats(surf, format, swap, ntype, tex->is_depth);
surf->color_initialized = true;
}
static void si_init_depth_surface(struct si_context *sctx,
struct si_surface *surf)
{
struct si_texture *tex = (struct si_texture*)surf->base.texture;
unsigned level = surf->base.u.tex.level;
unsigned format, stencil_format;
uint32_t z_info, s_info;
format = si_translate_dbformat(tex->db_render_format);
stencil_format = tex->surface.has_stencil ?
V_028044_STENCIL_8 : V_028044_STENCIL_INVALID;
assert(format != V_028040_Z_INVALID);
if (format == V_028040_Z_INVALID)
PRINT_ERR("Invalid DB format: %d, disabling DB.\n", tex->buffer.b.b.format);
surf->db_depth_view = S_028008_SLICE_START(surf->base.u.tex.first_layer) |
S_028008_SLICE_MAX(surf->base.u.tex.last_layer);
surf->db_htile_data_base = 0;
surf->db_htile_surface = 0;
if (sctx->chip_class >= GFX10) {
surf->db_depth_view |= S_028008_SLICE_START_HI(surf->base.u.tex.first_layer >> 11) |
S_028008_SLICE_MAX_HI(surf->base.u.tex.last_layer >> 11);
}
if (sctx->chip_class >= GFX9) {
assert(tex->surface.u.gfx9.surf_offset == 0);
surf->db_depth_base = tex->buffer.gpu_address >> 8;
surf->db_stencil_base = (tex->buffer.gpu_address +
tex->surface.u.gfx9.stencil_offset) >> 8;
z_info = S_028038_FORMAT(format) |
S_028038_NUM_SAMPLES(util_logbase2(tex->buffer.b.b.nr_samples)) |
S_028038_SW_MODE(tex->surface.u.gfx9.surf.swizzle_mode) |
S_028038_MAXMIP(tex->buffer.b.b.last_level);
s_info = S_02803C_FORMAT(stencil_format) |
S_02803C_SW_MODE(tex->surface.u.gfx9.stencil.swizzle_mode);
if (sctx->chip_class == GFX9) {
surf->db_z_info2 = S_028068_EPITCH(tex->surface.u.gfx9.surf.epitch);
surf->db_stencil_info2 = S_02806C_EPITCH(tex->surface.u.gfx9.stencil.epitch);
}
surf->db_depth_view |= S_028008_MIPID(level);
surf->db_depth_size = S_02801C_X_MAX(tex->buffer.b.b.width0 - 1) |
S_02801C_Y_MAX(tex->buffer.b.b.height0 - 1);
if (si_htile_enabled(tex, level, PIPE_MASK_ZS)) {
z_info |= S_028038_TILE_SURFACE_ENABLE(1) |
S_028038_ALLOW_EXPCLEAR(1);
if (tex->tc_compatible_htile) {
unsigned max_zplanes = 4;
if (tex->db_render_format == PIPE_FORMAT_Z16_UNORM &&
tex->buffer.b.b.nr_samples > 1)
max_zplanes = 2;
z_info |= S_028038_DECOMPRESS_ON_N_ZPLANES(max_zplanes + 1);
if (sctx->chip_class >= GFX10) {
z_info |= S_028040_ITERATE_FLUSH(1);
s_info |= S_028044_ITERATE_FLUSH(!tex->htile_stencil_disabled);
} else {
z_info |= S_028038_ITERATE_FLUSH(1);
s_info |= S_02803C_ITERATE_FLUSH(1);
}
}
if (tex->surface.has_stencil && !tex->htile_stencil_disabled) {
/* Stencil buffer workaround ported from the GFX6-GFX8 code.
* See that for explanation.
*/
s_info |= S_02803C_ALLOW_EXPCLEAR(tex->buffer.b.b.nr_samples <= 1);
} else {
/* Use all HTILE for depth if there's no stencil. */
s_info |= S_02803C_TILE_STENCIL_DISABLE(1);
}
surf->db_htile_data_base = (tex->buffer.gpu_address +
tex->surface.htile_offset) >> 8;
surf->db_htile_surface = S_028ABC_FULL_CACHE(1) |
S_028ABC_PIPE_ALIGNED(tex->surface.u.gfx9.htile.pipe_aligned);
if (sctx->chip_class == GFX9) {
surf->db_htile_surface |=
S_028ABC_RB_ALIGNED(tex->surface.u.gfx9.htile.rb_aligned);
}
}
} else {
/* GFX6-GFX8 */
struct legacy_surf_level *levelinfo = &tex->surface.u.legacy.level[level];
assert(levelinfo->nblk_x % 8 == 0 && levelinfo->nblk_y % 8 == 0);
surf->db_depth_base = (tex->buffer.gpu_address +
tex->surface.u.legacy.level[level].offset) >> 8;
surf->db_stencil_base = (tex->buffer.gpu_address +
tex->surface.u.legacy.stencil_level[level].offset) >> 8;
z_info = S_028040_FORMAT(format) |
S_028040_NUM_SAMPLES(util_logbase2(tex->buffer.b.b.nr_samples));
s_info = S_028044_FORMAT(stencil_format);
surf->db_depth_info = S_02803C_ADDR5_SWIZZLE_MASK(!tex->tc_compatible_htile);
if (sctx->chip_class >= GFX7) {
struct radeon_info *info = &sctx->screen->info;
unsigned index = tex->surface.u.legacy.tiling_index[level];
unsigned stencil_index = tex->surface.u.legacy.stencil_tiling_index[level];
unsigned macro_index = tex->surface.u.legacy.macro_tile_index;
unsigned tile_mode = info->si_tile_mode_array[index];
unsigned stencil_tile_mode = info->si_tile_mode_array[stencil_index];
unsigned macro_mode = info->cik_macrotile_mode_array[macro_index];
surf->db_depth_info |=
S_02803C_ARRAY_MODE(G_009910_ARRAY_MODE(tile_mode)) |
S_02803C_PIPE_CONFIG(G_009910_PIPE_CONFIG(tile_mode)) |
S_02803C_BANK_WIDTH(G_009990_BANK_WIDTH(macro_mode)) |
S_02803C_BANK_HEIGHT(G_009990_BANK_HEIGHT(macro_mode)) |
S_02803C_MACRO_TILE_ASPECT(G_009990_MACRO_TILE_ASPECT(macro_mode)) |
S_02803C_NUM_BANKS(G_009990_NUM_BANKS(macro_mode));
z_info |= S_028040_TILE_SPLIT(G_009910_TILE_SPLIT(tile_mode));
s_info |= S_028044_TILE_SPLIT(G_009910_TILE_SPLIT(stencil_tile_mode));
} else {
unsigned tile_mode_index = si_tile_mode_index(tex, level, false);
z_info |= S_028040_TILE_MODE_INDEX(tile_mode_index);
tile_mode_index = si_tile_mode_index(tex, level, true);
s_info |= S_028044_TILE_MODE_INDEX(tile_mode_index);
}
surf->db_depth_size = S_028058_PITCH_TILE_MAX((levelinfo->nblk_x / 8) - 1) |
S_028058_HEIGHT_TILE_MAX((levelinfo->nblk_y / 8) - 1);
surf->db_depth_slice = S_02805C_SLICE_TILE_MAX((levelinfo->nblk_x *
levelinfo->nblk_y) / 64 - 1);
if (si_htile_enabled(tex, level, PIPE_MASK_ZS)) {
z_info |= S_028040_TILE_SURFACE_ENABLE(1) |
S_028040_ALLOW_EXPCLEAR(1);
if (tex->surface.has_stencil) {
/* Workaround: For a not yet understood reason, the
* combination of MSAA, fast stencil clear and stencil
* decompress messes with subsequent stencil buffer
* uses. Problem was reproduced on Verde, Bonaire,
* Tonga, and Carrizo.
*
* Disabling EXPCLEAR works around the problem.
*
* Check piglit's arb_texture_multisample-stencil-clear
* test if you want to try changing this.
*/
if (tex->buffer.b.b.nr_samples <= 1)
s_info |= S_028044_ALLOW_EXPCLEAR(1);
} else if (!tex->tc_compatible_htile) {
/* Use all of the htile_buffer for depth if there's no stencil.
* This must not be set when TC-compatible HTILE is enabled
* due to a hw bug.
*/
s_info |= S_028044_TILE_STENCIL_DISABLE(1);
}
surf->db_htile_data_base = (tex->buffer.gpu_address +
tex->surface.htile_offset) >> 8;
surf->db_htile_surface = S_028ABC_FULL_CACHE(1);
if (tex->tc_compatible_htile) {
surf->db_htile_surface |= S_028ABC_TC_COMPATIBLE(1);
/* 0 = full compression. N = only compress up to N-1 Z planes. */
if (tex->buffer.b.b.nr_samples <= 1)
z_info |= S_028040_DECOMPRESS_ON_N_ZPLANES(5);
else if (tex->buffer.b.b.nr_samples <= 4)
z_info |= S_028040_DECOMPRESS_ON_N_ZPLANES(3);
else
z_info |= S_028040_DECOMPRESS_ON_N_ZPLANES(2);
}
}
}
surf->db_z_info = z_info;
surf->db_stencil_info = s_info;
surf->depth_initialized = true;
}
void si_update_fb_dirtiness_after_rendering(struct si_context *sctx)
{
if (sctx->decompression_enabled)
return;
if (sctx->framebuffer.state.zsbuf) {
struct pipe_surface *surf = sctx->framebuffer.state.zsbuf;
struct si_texture *tex = (struct si_texture *)surf->texture;
tex->dirty_level_mask |= 1 << surf->u.tex.level;
if (tex->surface.has_stencil)
tex->stencil_dirty_level_mask |= 1 << surf->u.tex.level;
}
unsigned compressed_cb_mask = sctx->framebuffer.compressed_cb_mask;
while (compressed_cb_mask) {
unsigned i = u_bit_scan(&compressed_cb_mask);
struct pipe_surface *surf = sctx->framebuffer.state.cbufs[i];
struct si_texture *tex = (struct si_texture*)surf->texture;
if (tex->surface.fmask_offset)
tex->dirty_level_mask |= 1 << surf->u.tex.level;
if (tex->dcc_gather_statistics)
tex->separate_dcc_dirty = true;
}
}
static void si_dec_framebuffer_counters(const struct pipe_framebuffer_state *state)
{
for (int i = 0; i < state->nr_cbufs; ++i) {
struct si_surface *surf = NULL;
struct si_texture *tex;
if (!state->cbufs[i])
continue;
surf = (struct si_surface*)state->cbufs[i];
tex = (struct si_texture*)surf->base.texture;
p_atomic_dec(&tex->framebuffers_bound);
}
}
static void si_set_framebuffer_state(struct pipe_context *ctx,
const struct pipe_framebuffer_state *state)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_surface *surf = NULL;
struct si_texture *tex;
bool old_any_dst_linear = sctx->framebuffer.any_dst_linear;
unsigned old_nr_samples = sctx->framebuffer.nr_samples;
unsigned old_colorbuf_enabled_4bit = sctx->framebuffer.colorbuf_enabled_4bit;
bool old_has_zsbuf = !!sctx->framebuffer.state.zsbuf;
bool old_has_stencil =
old_has_zsbuf &&
((struct si_texture*)sctx->framebuffer.state.zsbuf->texture)->surface.has_stencil;
bool unbound = false;
int i;
/* Reject zero-sized framebuffers due to a hw bug on GFX6 that occurs
* when PA_SU_HARDWARE_SCREEN_OFFSET != 0 and any_scissor.BR_X/Y <= 0.
* We could implement the full workaround here, but it's a useless case.
*/
if ((!state->width || !state->height) && (state->nr_cbufs || state->zsbuf)) {
unreachable("the framebuffer shouldn't have zero area");
return;
}
si_update_fb_dirtiness_after_rendering(sctx);
for (i = 0; i < sctx->framebuffer.state.nr_cbufs; i++) {
if (!sctx->framebuffer.state.cbufs[i])
continue;
tex = (struct si_texture*)sctx->framebuffer.state.cbufs[i]->texture;
if (tex->dcc_gather_statistics)
vi_separate_dcc_stop_query(sctx, tex);
}
/* Disable DCC if the formats are incompatible. */
for (i = 0; i < state->nr_cbufs; i++) {
if (!state->cbufs[i])
continue;
surf = (struct si_surface*)state->cbufs[i];
tex = (struct si_texture*)surf->base.texture;
if (!surf->dcc_incompatible)
continue;
/* Since the DCC decompression calls back into set_framebuffer-
* _state, we need to unbind the framebuffer, so that
* vi_separate_dcc_stop_query isn't called twice with the same
* color buffer.
*/
if (!unbound) {
util_copy_framebuffer_state(&sctx->framebuffer.state, NULL);
unbound = true;
}
if (vi_dcc_enabled(tex, surf->base.u.tex.level))
if (!si_texture_disable_dcc(sctx, tex))
si_decompress_dcc(sctx, tex);
surf->dcc_incompatible = false;
}
/* Only flush TC when changing the framebuffer state, because
* the only client not using TC that can change textures is
* the framebuffer.
*
* Wait for compute shaders because of possible transitions:
* - FB write -> shader read
* - shader write -> FB read
*
* DB caches are flushed on demand (using si_decompress_textures).
*
* When MSAA is enabled, CB and TC caches are flushed on demand
* (after FMASK decompression). Shader write -> FB read transitions
* cannot happen for MSAA textures, because MSAA shader images are
* not supported.
*
* Only flush and wait for CB if there is actually a bound color buffer.
*/
if (sctx->framebuffer.uncompressed_cb_mask) {
si_make_CB_shader_coherent(sctx, sctx->framebuffer.nr_samples,
sctx->framebuffer.CB_has_shader_readable_metadata,
sctx->framebuffer.all_DCC_pipe_aligned);
}
sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH;
/* u_blitter doesn't invoke depth decompression when it does multiple
* blits in a row, but the only case when it matters for DB is when
* doing generate_mipmap. So here we flush DB manually between
* individual generate_mipmap blits.
* Note that lower mipmap levels aren't compressed.
*/
if (sctx->generate_mipmap_for_depth) {
si_make_DB_shader_coherent(sctx, 1, false,
sctx->framebuffer.DB_has_shader_readable_metadata);
} else if (sctx->chip_class == GFX9) {
/* It appears that DB metadata "leaks" in a sequence of:
* - depth clear
* - DCC decompress for shader image writes (with DB disabled)
* - render with DEPTH_BEFORE_SHADER=1
* Flushing DB metadata works around the problem.
*/
sctx->flags |= SI_CONTEXT_FLUSH_AND_INV_DB_META;
}
/* Take the maximum of the old and new count. If the new count is lower,
* dirtying is needed to disable the unbound colorbuffers.
*/
sctx->framebuffer.dirty_cbufs |=
(1 << MAX2(sctx->framebuffer.state.nr_cbufs, state->nr_cbufs)) - 1;
sctx->framebuffer.dirty_zsbuf |= sctx->framebuffer.state.zsbuf != state->zsbuf;
si_dec_framebuffer_counters(&sctx->framebuffer.state);
util_copy_framebuffer_state(&sctx->framebuffer.state, state);
sctx->framebuffer.colorbuf_enabled_4bit = 0;
sctx->framebuffer.spi_shader_col_format = 0;
sctx->framebuffer.spi_shader_col_format_alpha = 0;
sctx->framebuffer.spi_shader_col_format_blend = 0;
sctx->framebuffer.spi_shader_col_format_blend_alpha = 0;
sctx->framebuffer.color_is_int8 = 0;
sctx->framebuffer.color_is_int10 = 0;
sctx->framebuffer.compressed_cb_mask = 0;
sctx->framebuffer.uncompressed_cb_mask = 0;
sctx->framebuffer.nr_samples = util_framebuffer_get_num_samples(state);
sctx->framebuffer.nr_color_samples = sctx->framebuffer.nr_samples;
sctx->framebuffer.log_samples = util_logbase2(sctx->framebuffer.nr_samples);
sctx->framebuffer.any_dst_linear = false;
sctx->framebuffer.CB_has_shader_readable_metadata = false;
sctx->framebuffer.DB_has_shader_readable_metadata = false;
sctx->framebuffer.all_DCC_pipe_aligned = true;
sctx->framebuffer.min_bytes_per_pixel = 0;
for (i = 0; i < state->nr_cbufs; i++) {
if (!state->cbufs[i])
continue;
surf = (struct si_surface*)state->cbufs[i];
tex = (struct si_texture*)surf->base.texture;
if (!surf->color_initialized) {
si_initialize_color_surface(sctx, surf);
}
sctx->framebuffer.colorbuf_enabled_4bit |= 0xf << (i * 4);
sctx->framebuffer.spi_shader_col_format |=
surf->spi_shader_col_format << (i * 4);
sctx->framebuffer.spi_shader_col_format_alpha |=
surf->spi_shader_col_format_alpha << (i * 4);
sctx->framebuffer.spi_shader_col_format_blend |=
surf->spi_shader_col_format_blend << (i * 4);
sctx->framebuffer.spi_shader_col_format_blend_alpha |=
surf->spi_shader_col_format_blend_alpha << (i * 4);
if (surf->color_is_int8)
sctx->framebuffer.color_is_int8 |= 1 << i;
if (surf->color_is_int10)
sctx->framebuffer.color_is_int10 |= 1 << i;
if (tex->surface.fmask_offset)
sctx->framebuffer.compressed_cb_mask |= 1 << i;
else
sctx->framebuffer.uncompressed_cb_mask |= 1 << i;
/* Don't update nr_color_samples for non-AA buffers.
* (e.g. destination of MSAA resolve)
*/
if (tex->buffer.b.b.nr_samples >= 2 &&
tex->buffer.b.b.nr_storage_samples < tex->buffer.b.b.nr_samples) {
sctx->framebuffer.nr_color_samples =
MIN2(sctx->framebuffer.nr_color_samples,
tex->buffer.b.b.nr_storage_samples);
sctx->framebuffer.nr_color_samples =
MAX2(1, sctx->framebuffer.nr_color_samples);
}
if (tex->surface.is_linear)
sctx->framebuffer.any_dst_linear = true;
if (vi_dcc_enabled(tex, surf->base.u.tex.level)) {
sctx->framebuffer.CB_has_shader_readable_metadata = true;
if (sctx->chip_class >= GFX9 &&
!tex->surface.u.gfx9.dcc.pipe_aligned)
sctx->framebuffer.all_DCC_pipe_aligned = false;
}
si_context_add_resource_size(sctx, surf->base.texture);
p_atomic_inc(&tex->framebuffers_bound);
if (tex->dcc_gather_statistics) {
/* Dirty tracking must be enabled for DCC usage analysis. */
sctx->framebuffer.compressed_cb_mask |= 1 << i;
vi_separate_dcc_start_query(sctx, tex);
}
/* Update the minimum but don't keep 0. */
if (!sctx->framebuffer.min_bytes_per_pixel ||
tex->surface.bpe < sctx->framebuffer.min_bytes_per_pixel)
sctx->framebuffer.min_bytes_per_pixel = tex->surface.bpe;
}
/* For optimal DCC performance. */
if (sctx->chip_class >= GFX10)
sctx->framebuffer.dcc_overwrite_combiner_watermark = 6;
else
sctx->framebuffer.dcc_overwrite_combiner_watermark = 4;
struct si_texture *zstex = NULL;
if (state->zsbuf) {
surf = (struct si_surface*)state->zsbuf;
zstex = (struct si_texture*)surf->base.texture;
if (!surf->depth_initialized) {
si_init_depth_surface(sctx, surf);
}
if (vi_tc_compat_htile_enabled(zstex, surf->base.u.tex.level,
PIPE_MASK_ZS))
sctx->framebuffer.DB_has_shader_readable_metadata = true;
si_context_add_resource_size(sctx, surf->base.texture);
/* Update the minimum but don't keep 0. */
if (!sctx->framebuffer.min_bytes_per_pixel ||
zstex->surface.bpe < sctx->framebuffer.min_bytes_per_pixel)
sctx->framebuffer.min_bytes_per_pixel = zstex->surface.bpe;
}
si_update_ps_colorbuf0_slot(sctx);
si_update_poly_offset_state(sctx);
si_mark_atom_dirty(sctx, &sctx->atoms.s.cb_render_state);
si_mark_atom_dirty(sctx, &sctx->atoms.s.framebuffer);
if (sctx->screen->dpbb_allowed)
si_mark_atom_dirty(sctx, &sctx->atoms.s.dpbb_state);
if (sctx->framebuffer.any_dst_linear != old_any_dst_linear)
si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_config);
if (sctx->screen->has_out_of_order_rast &&
(sctx->framebuffer.colorbuf_enabled_4bit != old_colorbuf_enabled_4bit ||
!!sctx->framebuffer.state.zsbuf != old_has_zsbuf ||
(zstex && zstex->surface.has_stencil != old_has_stencil)))
si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_config);
if (sctx->framebuffer.nr_samples != old_nr_samples) {
struct pipe_constant_buffer constbuf = {0};
si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_config);
si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state);
constbuf.buffer = sctx->sample_pos_buffer;
/* Set sample locations as fragment shader constants. */
switch (sctx->framebuffer.nr_samples) {
case 1:
constbuf.buffer_offset = 0;
break;
case 2:
constbuf.buffer_offset = (ubyte*)sctx->sample_positions.x2 -
(ubyte*)sctx->sample_positions.x1;
break;
case 4:
constbuf.buffer_offset = (ubyte*)sctx->sample_positions.x4 -
(ubyte*)sctx->sample_positions.x1;
break;
case 8:
constbuf.buffer_offset = (ubyte*)sctx->sample_positions.x8 -
(ubyte*)sctx->sample_positions.x1;
break;
case 16:
constbuf.buffer_offset = (ubyte*)sctx->sample_positions.x16 -
(ubyte*)sctx->sample_positions.x1;
break;
default:
PRINT_ERR("Requested an invalid number of samples %i.\n",
sctx->framebuffer.nr_samples);
assert(0);
}
constbuf.buffer_size = sctx->framebuffer.nr_samples * 2 * 4;
si_set_rw_buffer(sctx, SI_PS_CONST_SAMPLE_POSITIONS, &constbuf);
si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_sample_locs);
}
sctx->do_update_shaders = true;
if (!sctx->decompression_enabled) {
/* Prevent textures decompression when the framebuffer state
* changes come from the decompression passes themselves.
*/
sctx->need_check_render_feedback = true;
}
}
static void si_emit_framebuffer_state(struct si_context *sctx)
{
struct radeon_cmdbuf *cs = sctx->gfx_cs;
struct pipe_framebuffer_state *state = &sctx->framebuffer.state;
unsigned i, nr_cbufs = state->nr_cbufs;
struct si_texture *tex = NULL;
struct si_surface *cb = NULL;
unsigned cb_color_info = 0;
/* Colorbuffers. */
for (i = 0; i < nr_cbufs; i++) {
uint64_t cb_color_base, cb_color_fmask, cb_color_cmask, cb_dcc_base;
unsigned cb_color_attrib;
if (!(sctx->framebuffer.dirty_cbufs & (1 << i)))
continue;
cb = (struct si_surface*)state->cbufs[i];
if (!cb) {
radeon_set_context_reg(cs, R_028C70_CB_COLOR0_INFO + i * 0x3C,
S_028C70_FORMAT(V_028C70_COLOR_INVALID));
continue;
}
tex = (struct si_texture *)cb->base.texture;
radeon_add_to_buffer_list(sctx, sctx->gfx_cs,
&tex->buffer, RADEON_USAGE_READWRITE,
tex->buffer.b.b.nr_samples > 1 ?
RADEON_PRIO_COLOR_BUFFER_MSAA :
RADEON_PRIO_COLOR_BUFFER);
if (tex->cmask_buffer && tex->cmask_buffer != &tex->buffer) {
radeon_add_to_buffer_list(sctx, sctx->gfx_cs,
tex->cmask_buffer, RADEON_USAGE_READWRITE,
RADEON_PRIO_SEPARATE_META);
}
if (tex->dcc_separate_buffer)
radeon_add_to_buffer_list(sctx, sctx->gfx_cs,
tex->dcc_separate_buffer,
RADEON_USAGE_READWRITE,
RADEON_PRIO_SEPARATE_META);
/* Compute mutable surface parameters. */
cb_color_base = tex->buffer.gpu_address >> 8;
cb_color_fmask = 0;
cb_color_cmask = tex->cmask_base_address_reg;
cb_dcc_base = 0;
cb_color_info = cb->cb_color_info | tex->cb_color_info;
cb_color_attrib = cb->cb_color_attrib;
if (cb->base.u.tex.level > 0)
cb_color_info &= C_028C70_FAST_CLEAR;
if (tex->surface.fmask_offset) {
cb_color_fmask = (tex->buffer.gpu_address + tex->surface.fmask_offset) >> 8;
cb_color_fmask |= tex->surface.fmask_tile_swizzle;
}
/* Set up DCC. */
if (vi_dcc_enabled(tex, cb->base.u.tex.level)) {
bool is_msaa_resolve_dst = state->cbufs[0] &&
state->cbufs[0]->texture->nr_samples > 1 &&
state->cbufs[1] == &cb->base &&
state->cbufs[1]->texture->nr_samples <= 1;
if (!is_msaa_resolve_dst)
cb_color_info |= S_028C70_DCC_ENABLE(1);
cb_dcc_base = ((!tex->dcc_separate_buffer ? tex->buffer.gpu_address : 0) +
tex->surface.dcc_offset) >> 8;
unsigned dcc_tile_swizzle = tex->surface.tile_swizzle;
dcc_tile_swizzle &= (tex->surface.dcc_alignment - 1) >> 8;
cb_dcc_base |= dcc_tile_swizzle;
}
if (sctx->chip_class >= GFX10) {
unsigned cb_color_attrib3;
/* Set mutable surface parameters. */
cb_color_base += tex->surface.u.gfx9.surf_offset >> 8;
cb_color_base |= tex->surface.tile_swizzle;
if (!tex->surface.fmask_offset)
cb_color_fmask = cb_color_base;
if (cb->base.u.tex.level > 0)
cb_color_cmask = cb_color_base;
cb_color_attrib3 = cb->cb_color_attrib3 |
S_028EE0_COLOR_SW_MODE(tex->surface.u.gfx9.surf.swizzle_mode) |
S_028EE0_FMASK_SW_MODE(tex->surface.u.gfx9.fmask.swizzle_mode) |
S_028EE0_CMASK_PIPE_ALIGNED(tex->surface.u.gfx9.cmask.pipe_aligned) |
S_028EE0_DCC_PIPE_ALIGNED(tex->surface.u.gfx9.dcc.pipe_aligned);
radeon_set_context_reg_seq(cs, R_028C60_CB_COLOR0_BASE + i * 0x3C, 14);
radeon_emit(cs, cb_color_base); /* CB_COLOR0_BASE */
radeon_emit(cs, 0); /* hole */
radeon_emit(cs, 0); /* hole */
radeon_emit(cs, cb->cb_color_view); /* CB_COLOR0_VIEW */
radeon_emit(cs, cb_color_info); /* CB_COLOR0_INFO */
radeon_emit(cs, cb_color_attrib); /* CB_COLOR0_ATTRIB */
radeon_emit(cs, cb->cb_dcc_control); /* CB_COLOR0_DCC_CONTROL */
radeon_emit(cs, cb_color_cmask); /* CB_COLOR0_CMASK */
radeon_emit(cs, 0); /* hole */
radeon_emit(cs, cb_color_fmask); /* CB_COLOR0_FMASK */
radeon_emit(cs, 0); /* hole */
radeon_emit(cs, tex->color_clear_value[0]); /* CB_COLOR0_CLEAR_WORD0 */
radeon_emit(cs, tex->color_clear_value[1]); /* CB_COLOR0_CLEAR_WORD1 */
radeon_emit(cs, cb_dcc_base); /* CB_COLOR0_DCC_BASE */
radeon_set_context_reg(cs, R_028E40_CB_COLOR0_BASE_EXT + i * 4,
cb_color_base >> 32);
radeon_set_context_reg(cs, R_028E60_CB_COLOR0_CMASK_BASE_EXT + i * 4,
cb_color_cmask >> 32);
radeon_set_context_reg(cs, R_028E80_CB_COLOR0_FMASK_BASE_EXT + i * 4,
cb_color_fmask >> 32);
radeon_set_context_reg(cs, R_028EA0_CB_COLOR0_DCC_BASE_EXT + i * 4,
cb_dcc_base >> 32);
radeon_set_context_reg(cs, R_028EC0_CB_COLOR0_ATTRIB2 + i * 4,
cb->cb_color_attrib2);
radeon_set_context_reg(cs, R_028EE0_CB_COLOR0_ATTRIB3 + i * 4,
cb_color_attrib3);
} else if (sctx->chip_class == GFX9) {
struct gfx9_surf_meta_flags meta;
if (tex->surface.dcc_offset)
meta = tex->surface.u.gfx9.dcc;
else
meta = tex->surface.u.gfx9.cmask;
/* Set mutable surface parameters. */
cb_color_base += tex->surface.u.gfx9.surf_offset >> 8;
cb_color_base |= tex->surface.tile_swizzle;
if (!tex->surface.fmask_offset)
cb_color_fmask = cb_color_base;
if (cb->base.u.tex.level > 0)
cb_color_cmask = cb_color_base;
cb_color_attrib |= S_028C74_COLOR_SW_MODE(tex->surface.u.gfx9.surf.swizzle_mode) |
S_028C74_FMASK_SW_MODE(tex->surface.u.gfx9.fmask.swizzle_mode) |
S_028C74_RB_ALIGNED(meta.rb_aligned) |
S_028C74_PIPE_ALIGNED(meta.pipe_aligned);
radeon_set_context_reg_seq(cs, R_028C60_CB_COLOR0_BASE + i * 0x3C, 15);
radeon_emit(cs, cb_color_base); /* CB_COLOR0_BASE */
radeon_emit(cs, S_028C64_BASE_256B(cb_color_base >> 32)); /* CB_COLOR0_BASE_EXT */
radeon_emit(cs, cb->cb_color_attrib2); /* CB_COLOR0_ATTRIB2 */
radeon_emit(cs, cb->cb_color_view); /* CB_COLOR0_VIEW */
radeon_emit(cs, cb_color_info); /* CB_COLOR0_INFO */
radeon_emit(cs, cb_color_attrib); /* CB_COLOR0_ATTRIB */
radeon_emit(cs, cb->cb_dcc_control); /* CB_COLOR0_DCC_CONTROL */
radeon_emit(cs, cb_color_cmask); /* CB_COLOR0_CMASK */
radeon_emit(cs, S_028C80_BASE_256B(cb_color_cmask >> 32)); /* CB_COLOR0_CMASK_BASE_EXT */
radeon_emit(cs, cb_color_fmask); /* CB_COLOR0_FMASK */
radeon_emit(cs, S_028C88_BASE_256B(cb_color_fmask >> 32)); /* CB_COLOR0_FMASK_BASE_EXT */
radeon_emit(cs, tex->color_clear_value[0]); /* CB_COLOR0_CLEAR_WORD0 */
radeon_emit(cs, tex->color_clear_value[1]); /* CB_COLOR0_CLEAR_WORD1 */
radeon_emit(cs, cb_dcc_base); /* CB_COLOR0_DCC_BASE */
radeon_emit(cs, S_028C98_BASE_256B(cb_dcc_base >> 32)); /* CB_COLOR0_DCC_BASE_EXT */
radeon_set_context_reg(cs, R_0287A0_CB_MRT0_EPITCH + i * 4,
S_0287A0_EPITCH(tex->surface.u.gfx9.surf.epitch));
} else {
/* Compute mutable surface parameters (GFX6-GFX8). */
const struct legacy_surf_level *level_info =
&tex->surface.u.legacy.level[cb->base.u.tex.level];
unsigned pitch_tile_max, slice_tile_max, tile_mode_index;
unsigned cb_color_pitch, cb_color_slice, cb_color_fmask_slice;
cb_color_base += level_info->offset >> 8;
/* Only macrotiled modes can set tile swizzle. */
if (level_info->mode == RADEON_SURF_MODE_2D)
cb_color_base |= tex->surface.tile_swizzle;
if (!tex->surface.fmask_offset)
cb_color_fmask = cb_color_base;
if (cb->base.u.tex.level > 0)
cb_color_cmask = cb_color_base;
if (cb_dcc_base)
cb_dcc_base += level_info->dcc_offset >> 8;
pitch_tile_max = level_info->nblk_x / 8 - 1;
slice_tile_max = level_info->nblk_x *
level_info->nblk_y / 64 - 1;
tile_mode_index = si_tile_mode_index(tex, cb->base.u.tex.level, false);
cb_color_attrib |= S_028C74_TILE_MODE_INDEX(tile_mode_index);
cb_color_pitch = S_028C64_TILE_MAX(pitch_tile_max);
cb_color_slice = S_028C68_TILE_MAX(slice_tile_max);
if (tex->surface.fmask_offset) {
if (sctx->chip_class >= GFX7)
cb_color_pitch |= S_028C64_FMASK_TILE_MAX(tex->surface.u.legacy.fmask.pitch_in_pixels / 8 - 1);
cb_color_attrib |= S_028C74_FMASK_TILE_MODE_INDEX(tex->surface.u.legacy.fmask.tiling_index);
cb_color_fmask_slice = S_028C88_TILE_MAX(tex->surface.u.legacy.fmask.slice_tile_max);
} else {
/* This must be set for fast clear to work without FMASK. */
if (sctx->chip_class >= GFX7)
cb_color_pitch |= S_028C64_FMASK_TILE_MAX(pitch_tile_max);
cb_color_attrib |= S_028C74_FMASK_TILE_MODE_INDEX(tile_mode_index);
cb_color_fmask_slice = S_028C88_TILE_MAX(slice_tile_max);
}
radeon_set_context_reg_seq(cs, R_028C60_CB_COLOR0_BASE + i * 0x3C,
sctx->chip_class >= GFX8 ? 14 : 13);
radeon_emit(cs, cb_color_base); /* CB_COLOR0_BASE */
radeon_emit(cs, cb_color_pitch); /* CB_COLOR0_PITCH */
radeon_emit(cs, cb_color_slice); /* CB_COLOR0_SLICE */
radeon_emit(cs, cb->cb_color_view); /* CB_COLOR0_VIEW */
radeon_emit(cs, cb_color_info); /* CB_COLOR0_INFO */
radeon_emit(cs, cb_color_attrib); /* CB_COLOR0_ATTRIB */
radeon_emit(cs, cb->cb_dcc_control); /* CB_COLOR0_DCC_CONTROL */
radeon_emit(cs, cb_color_cmask); /* CB_COLOR0_CMASK */
radeon_emit(cs, tex->surface.u.legacy.cmask_slice_tile_max); /* CB_COLOR0_CMASK_SLICE */
radeon_emit(cs, cb_color_fmask); /* CB_COLOR0_FMASK */
radeon_emit(cs, cb_color_fmask_slice); /* CB_COLOR0_FMASK_SLICE */
radeon_emit(cs, tex->color_clear_value[0]); /* CB_COLOR0_CLEAR_WORD0 */
radeon_emit(cs, tex->color_clear_value[1]); /* CB_COLOR0_CLEAR_WORD1 */
if (sctx->chip_class >= GFX8) /* R_028C94_CB_COLOR0_DCC_BASE */
radeon_emit(cs, cb_dcc_base);
}
}
for (; i < 8 ; i++)
if (sctx->framebuffer.dirty_cbufs & (1 << i))
radeon_set_context_reg(cs, R_028C70_CB_COLOR0_INFO + i * 0x3C, 0);
/* ZS buffer. */
if (state->zsbuf && sctx->framebuffer.dirty_zsbuf) {
struct si_surface *zb = (struct si_surface*)state->zsbuf;
struct si_texture *tex = (struct si_texture*)zb->base.texture;
radeon_add_to_buffer_list(sctx, sctx->gfx_cs,
&tex->buffer, RADEON_USAGE_READWRITE,
zb->base.texture->nr_samples > 1 ?
RADEON_PRIO_DEPTH_BUFFER_MSAA :
RADEON_PRIO_DEPTH_BUFFER);
if (sctx->chip_class >= GFX10) {
radeon_set_context_reg(cs, R_028014_DB_HTILE_DATA_BASE, zb->db_htile_data_base);
radeon_set_context_reg(cs, R_02801C_DB_DEPTH_SIZE_XY, zb->db_depth_size);
radeon_set_context_reg_seq(cs, R_02803C_DB_DEPTH_INFO, 7);
radeon_emit(cs, S_02803C_RESOURCE_LEVEL(1)); /* DB_DEPTH_INFO */
radeon_emit(cs, zb->db_z_info | /* DB_Z_INFO */
S_028038_ZRANGE_PRECISION(tex->depth_clear_value != 0));
radeon_emit(cs, zb->db_stencil_info); /* DB_STENCIL_INFO */
radeon_emit(cs, zb->db_depth_base); /* DB_Z_READ_BASE */
radeon_emit(cs, zb->db_stencil_base); /* DB_STENCIL_READ_BASE */
radeon_emit(cs, zb->db_depth_base); /* DB_Z_WRITE_BASE */
radeon_emit(cs, zb->db_stencil_base); /* DB_STENCIL_WRITE_BASE */
radeon_set_context_reg_seq(cs, R_028068_DB_Z_READ_BASE_HI, 5);
radeon_emit(cs, zb->db_depth_base >> 32); /* DB_Z_READ_BASE_HI */
radeon_emit(cs, zb->db_stencil_base >> 32); /* DB_STENCIL_READ_BASE_HI */
radeon_emit(cs, zb->db_depth_base >> 32); /* DB_Z_WRITE_BASE_HI */
radeon_emit(cs, zb->db_stencil_base >> 32); /* DB_STENCIL_WRITE_BASE_HI */
radeon_emit(cs, zb->db_htile_data_base >> 32); /* DB_HTILE_DATA_BASE_HI */
} else if (sctx->chip_class == GFX9) {
radeon_set_context_reg_seq(cs, R_028014_DB_HTILE_DATA_BASE, 3);
radeon_emit(cs, zb->db_htile_data_base); /* DB_HTILE_DATA_BASE */
radeon_emit(cs, S_028018_BASE_HI(zb->db_htile_data_base >> 32)); /* DB_HTILE_DATA_BASE_HI */
radeon_emit(cs, zb->db_depth_size); /* DB_DEPTH_SIZE */
radeon_set_context_reg_seq(cs, R_028038_DB_Z_INFO, 10);
radeon_emit(cs, zb->db_z_info | /* DB_Z_INFO */
S_028038_ZRANGE_PRECISION(tex->depth_clear_value != 0));
radeon_emit(cs, zb->db_stencil_info); /* DB_STENCIL_INFO */
radeon_emit(cs, zb->db_depth_base); /* DB_Z_READ_BASE */
radeon_emit(cs, S_028044_BASE_HI(zb->db_depth_base >> 32)); /* DB_Z_READ_BASE_HI */
radeon_emit(cs, zb->db_stencil_base); /* DB_STENCIL_READ_BASE */
radeon_emit(cs, S_02804C_BASE_HI(zb->db_stencil_base >> 32)); /* DB_STENCIL_READ_BASE_HI */
radeon_emit(cs, zb->db_depth_base); /* DB_Z_WRITE_BASE */
radeon_emit(cs, S_028054_BASE_HI(zb->db_depth_base >> 32)); /* DB_Z_WRITE_BASE_HI */
radeon_emit(cs, zb->db_stencil_base); /* DB_STENCIL_WRITE_BASE */
radeon_emit(cs, S_02805C_BASE_HI(zb->db_stencil_base >> 32)); /* DB_STENCIL_WRITE_BASE_HI */
radeon_set_context_reg_seq(cs, R_028068_DB_Z_INFO2, 2);
radeon_emit(cs, zb->db_z_info2); /* DB_Z_INFO2 */
radeon_emit(cs, zb->db_stencil_info2); /* DB_STENCIL_INFO2 */
} else {
radeon_set_context_reg(cs, R_028014_DB_HTILE_DATA_BASE, zb->db_htile_data_base);
radeon_set_context_reg_seq(cs, R_02803C_DB_DEPTH_INFO, 9);
radeon_emit(cs, zb->db_depth_info); /* DB_DEPTH_INFO */
radeon_emit(cs, zb->db_z_info | /* DB_Z_INFO */
S_028040_ZRANGE_PRECISION(tex->depth_clear_value != 0));
radeon_emit(cs, zb->db_stencil_info); /* DB_STENCIL_INFO */
radeon_emit(cs, zb->db_depth_base); /* DB_Z_READ_BASE */
radeon_emit(cs, zb->db_stencil_base); /* DB_STENCIL_READ_BASE */
radeon_emit(cs, zb->db_depth_base); /* DB_Z_WRITE_BASE */
radeon_emit(cs, zb->db_stencil_base); /* DB_STENCIL_WRITE_BASE */
radeon_emit(cs, zb->db_depth_size); /* DB_DEPTH_SIZE */
radeon_emit(cs, zb->db_depth_slice); /* DB_DEPTH_SLICE */
}
radeon_set_context_reg_seq(cs, R_028028_DB_STENCIL_CLEAR, 2);
radeon_emit(cs, tex->stencil_clear_value); /* R_028028_DB_STENCIL_CLEAR */
radeon_emit(cs, fui(tex->depth_clear_value)); /* R_02802C_DB_DEPTH_CLEAR */
radeon_set_context_reg(cs, R_028008_DB_DEPTH_VIEW, zb->db_depth_view);
radeon_set_context_reg(cs, R_028ABC_DB_HTILE_SURFACE, zb->db_htile_surface);
} else if (sctx->framebuffer.dirty_zsbuf) {
if (sctx->chip_class == GFX9)
radeon_set_context_reg_seq(cs, R_028038_DB_Z_INFO, 2);
else
radeon_set_context_reg_seq(cs, R_028040_DB_Z_INFO, 2);
radeon_emit(cs, S_028040_FORMAT(V_028040_Z_INVALID)); /* DB_Z_INFO */
radeon_emit(cs, S_028044_FORMAT(V_028044_STENCIL_INVALID)); /* DB_STENCIL_INFO */
}
/* Framebuffer dimensions. */
/* PA_SC_WINDOW_SCISSOR_TL is set in si_init_config() */
radeon_set_context_reg(cs, R_028208_PA_SC_WINDOW_SCISSOR_BR,
S_028208_BR_X(state->width) | S_028208_BR_Y(state->height));
if (sctx->screen->dfsm_allowed) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_BREAK_BATCH) | EVENT_INDEX(0));
}
sctx->framebuffer.dirty_cbufs = 0;
sctx->framebuffer.dirty_zsbuf = false;
}
static void si_emit_msaa_sample_locs(struct si_context *sctx)
{
struct radeon_cmdbuf *cs = sctx->gfx_cs;
struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
unsigned nr_samples = sctx->framebuffer.nr_samples;
bool has_msaa_sample_loc_bug = sctx->screen->info.has_msaa_sample_loc_bug;
/* Smoothing (only possible with nr_samples == 1) uses the same
* sample locations as the MSAA it simulates.
*/
if (nr_samples <= 1 && sctx->smoothing_enabled)
nr_samples = SI_NUM_SMOOTH_AA_SAMPLES;
/* On Polaris, the small primitive filter uses the sample locations
* even when MSAA is off, so we need to make sure they're set to 0.
*
* GFX10 uses sample locations unconditionally, so they always need
* to be set up.
*/
if ((nr_samples >= 2 || has_msaa_sample_loc_bug ||
sctx->chip_class >= GFX10) &&
nr_samples != sctx->sample_locs_num_samples) {
sctx->sample_locs_num_samples = nr_samples;
si_emit_sample_locations(cs, nr_samples);
}
if (sctx->family >= CHIP_POLARIS10) {
unsigned small_prim_filter_cntl =
S_028830_SMALL_PRIM_FILTER_ENABLE(1) |
/* line bug */
S_028830_LINE_FILTER_DISABLE(sctx->family <= CHIP_POLARIS12);
/* The alternative of setting sample locations to 0 would
* require a DB flush to avoid Z errors, see
* https://bugs.freedesktop.org/show_bug.cgi?id=96908
*/
if (has_msaa_sample_loc_bug &&
sctx->framebuffer.nr_samples > 1 &&
!rs->multisample_enable)
small_prim_filter_cntl &= C_028830_SMALL_PRIM_FILTER_ENABLE;
radeon_opt_set_context_reg(sctx,
R_028830_PA_SU_SMALL_PRIM_FILTER_CNTL,
SI_TRACKED_PA_SU_SMALL_PRIM_FILTER_CNTL,
small_prim_filter_cntl);
}
/* The exclusion bits can be set to improve rasterization efficiency
* if no sample lies on the pixel boundary (-8 sample offset).
*/
bool exclusion = sctx->chip_class >= GFX7 &&
(!rs->multisample_enable || nr_samples != 16);
radeon_opt_set_context_reg(sctx, R_02882C_PA_SU_PRIM_FILTER_CNTL,
SI_TRACKED_PA_SU_PRIM_FILTER_CNTL,
S_02882C_XMAX_RIGHT_EXCLUSION(exclusion) |
S_02882C_YMAX_BOTTOM_EXCLUSION(exclusion));
}
static bool si_out_of_order_rasterization(struct si_context *sctx)
{
struct si_state_blend *blend = sctx->queued.named.blend;
struct si_state_dsa *dsa = sctx->queued.named.dsa;
if (!sctx->screen->has_out_of_order_rast)
return false;
unsigned colormask = sctx->framebuffer.colorbuf_enabled_4bit;
colormask &= blend->cb_target_enabled_4bit;
/* Conservative: No logic op. */
if (colormask && blend->logicop_enable)
return false;
struct si_dsa_order_invariance dsa_order_invariant = {
.zs = true, .pass_set = true, .pass_last = false
};
if (sctx->framebuffer.state.zsbuf) {
struct si_texture *zstex =
(struct si_texture*)sctx->framebuffer.state.zsbuf->texture;
bool has_stencil = zstex->surface.has_stencil;
dsa_order_invariant = dsa->order_invariance[has_stencil];
if (!dsa_order_invariant.zs)
return false;
/* The set of PS invocations is always order invariant,
* except when early Z/S tests are requested. */
if (sctx->ps_shader.cso &&
sctx->ps_shader.cso->info.writes_memory &&
sctx->ps_shader.cso->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL] &&
!dsa_order_invariant.pass_set)
return false;
if (sctx->num_perfect_occlusion_queries != 0 &&
!dsa_order_invariant.pass_set)
return false;
}
if (!colormask)
return true;
unsigned blendmask = colormask & blend->blend_enable_4bit;
if (blendmask) {
/* Only commutative blending. */
if (blendmask & ~blend->commutative_4bit)
return false;
if (!dsa_order_invariant.pass_set)
return false;
}
if (colormask & ~blendmask) {
if (!dsa_order_invariant.pass_last)
return false;
}
return true;
}
static void si_emit_msaa_config(struct si_context *sctx)
{
struct radeon_cmdbuf *cs = sctx->gfx_cs;
unsigned num_tile_pipes = sctx->screen->info.num_tile_pipes;
/* 33% faster rendering to linear color buffers */
bool dst_is_linear = sctx->framebuffer.any_dst_linear;
bool out_of_order_rast = si_out_of_order_rasterization(sctx);
unsigned sc_mode_cntl_1 =
S_028A4C_WALK_SIZE(dst_is_linear) |
S_028A4C_WALK_FENCE_ENABLE(!dst_is_linear) |
S_028A4C_WALK_FENCE_SIZE(num_tile_pipes == 2 ? 2 : 3) |
S_028A4C_OUT_OF_ORDER_PRIMITIVE_ENABLE(out_of_order_rast) |
S_028A4C_OUT_OF_ORDER_WATER_MARK(0x7) |
/* always 1: */
S_028A4C_WALK_ALIGN8_PRIM_FITS_ST(1) |
S_028A4C_SUPERTILE_WALK_ORDER_ENABLE(1) |
S_028A4C_TILE_WALK_ORDER_ENABLE(1) |
S_028A4C_MULTI_SHADER_ENGINE_PRIM_DISCARD_ENABLE(1) |
S_028A4C_FORCE_EOV_CNTDWN_ENABLE(1) |
S_028A4C_FORCE_EOV_REZ_ENABLE(1);
unsigned db_eqaa = S_028804_HIGH_QUALITY_INTERSECTIONS(1) |
S_028804_INCOHERENT_EQAA_READS(1) |
S_028804_INTERPOLATE_COMP_Z(1) |
S_028804_STATIC_ANCHOR_ASSOCIATIONS(1);
unsigned coverage_samples, color_samples, z_samples;
struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
/* S: Coverage samples (up to 16x):
* - Scan conversion samples (PA_SC_AA_CONFIG.MSAA_NUM_SAMPLES)
* - CB FMASK samples (CB_COLORi_ATTRIB.NUM_SAMPLES)
*
* Z: Z/S samples (up to 8x, must be <= coverage samples and >= color samples):
* - Value seen by DB (DB_Z_INFO.NUM_SAMPLES)
* - Value seen by CB, must be correct even if Z/S is unbound (DB_EQAA.MAX_ANCHOR_SAMPLES)
* # Missing samples are derived from Z planes if Z is compressed (up to 16x quality), or
* # from the closest defined sample if Z is uncompressed (same quality as the number of
* # Z samples).
*
* F: Color samples (up to 8x, must be <= coverage samples):
* - CB color samples (CB_COLORi_ATTRIB.NUM_FRAGMENTS)
* - PS iter samples (DB_EQAA.PS_ITER_SAMPLES)
*
* Can be anything between coverage and color samples:
* - SampleMaskIn samples (PA_SC_AA_CONFIG.MSAA_EXPOSED_SAMPLES)
* - SampleMaskOut samples (DB_EQAA.MASK_EXPORT_NUM_SAMPLES)
* - Alpha-to-coverage samples (DB_EQAA.ALPHA_TO_MASK_NUM_SAMPLES)
* - Occlusion query samples (DB_COUNT_CONTROL.SAMPLE_RATE)
* # All are currently set the same as coverage samples.
*
* If color samples < coverage samples, FMASK has a higher bpp to store an "unknown"
* flag for undefined color samples. A shader-based resolve must handle unknowns
* or mask them out with AND. Unknowns can also be guessed from neighbors via
* an edge-detect shader-based resolve, which is required to make "color samples = 1"
* useful. The CB resolve always drops unknowns.
*
* Sensible AA configurations:
* EQAA 16s 8z 8f - might look the same as 16x MSAA if Z is compressed
* EQAA 16s 8z 4f - might look the same as 16x MSAA if Z is compressed
* EQAA 16s 4z 4f - might look the same as 16x MSAA if Z is compressed
* EQAA 8s 8z 8f = 8x MSAA
* EQAA 8s 8z 4f - might look the same as 8x MSAA
* EQAA 8s 8z 2f - might look the same as 8x MSAA with low-density geometry
* EQAA 8s 4z 4f - might look the same as 8x MSAA if Z is compressed
* EQAA 8s 4z 2f - might look the same as 8x MSAA with low-density geometry if Z is compressed
* EQAA 4s 4z 4f = 4x MSAA
* EQAA 4s 4z 2f - might look the same as 4x MSAA with low-density geometry
* EQAA 2s 2z 2f = 2x MSAA
*/
if (sctx->framebuffer.nr_samples > 1 && rs->multisample_enable) {
coverage_samples = sctx->framebuffer.nr_samples;
color_samples = sctx->framebuffer.nr_color_samples;
if (sctx->framebuffer.state.zsbuf) {
z_samples = sctx->framebuffer.state.zsbuf->texture->nr_samples;
z_samples = MAX2(1, z_samples);
} else {
z_samples = coverage_samples;
}
} else if (sctx->smoothing_enabled) {
coverage_samples = color_samples = z_samples = SI_NUM_SMOOTH_AA_SAMPLES;
} else {
coverage_samples = color_samples = z_samples = 1;
}
/* Required by OpenGL line rasterization.
*
* TODO: We should also enable perpendicular endcaps for AA lines,
* but that requires implementing line stippling in the pixel
* shader. SC can only do line stippling with axis-aligned
* endcaps.
*/
unsigned sc_line_cntl = S_028BDC_DX10_DIAMOND_TEST_ENA(1);
unsigned sc_aa_config = 0;
if (coverage_samples > 1) {
/* distance from the pixel center, indexed by log2(nr_samples) */
static unsigned max_dist[] = {
0, /* unused */
4, /* 2x MSAA */
6, /* 4x MSAA */
7, /* 8x MSAA */
8, /* 16x MSAA */
};
unsigned log_samples = util_logbase2(coverage_samples);
unsigned log_z_samples = util_logbase2(z_samples);
unsigned ps_iter_samples = si_get_ps_iter_samples(sctx);
unsigned log_ps_iter_samples = util_logbase2(ps_iter_samples);
sc_line_cntl |= S_028BDC_EXPAND_LINE_WIDTH(1);
sc_aa_config = S_028BE0_MSAA_NUM_SAMPLES(log_samples) |
S_028BE0_MAX_SAMPLE_DIST(max_dist[log_samples]) |
S_028BE0_MSAA_EXPOSED_SAMPLES(log_samples);
if (sctx->framebuffer.nr_samples > 1) {
db_eqaa |= S_028804_MAX_ANCHOR_SAMPLES(log_z_samples) |
S_028804_PS_ITER_SAMPLES(log_ps_iter_samples) |
S_028804_MASK_EXPORT_NUM_SAMPLES(log_samples) |
S_028804_ALPHA_TO_MASK_NUM_SAMPLES(log_samples);
sc_mode_cntl_1 |= S_028A4C_PS_ITER_SAMPLE(ps_iter_samples > 1);
} else if (sctx->smoothing_enabled) {
db_eqaa |= S_028804_OVERRASTERIZATION_AMOUNT(log_samples);
}
}
unsigned initial_cdw = cs->current.cdw;
/* R_028BDC_PA_SC_LINE_CNTL, R_028BE0_PA_SC_AA_CONFIG */
radeon_opt_set_context_reg2(sctx, R_028BDC_PA_SC_LINE_CNTL,
SI_TRACKED_PA_SC_LINE_CNTL, sc_line_cntl,
sc_aa_config);
/* R_028804_DB_EQAA */
radeon_opt_set_context_reg(sctx, R_028804_DB_EQAA, SI_TRACKED_DB_EQAA,
db_eqaa);
/* R_028A4C_PA_SC_MODE_CNTL_1 */
radeon_opt_set_context_reg(sctx, R_028A4C_PA_SC_MODE_CNTL_1,
SI_TRACKED_PA_SC_MODE_CNTL_1, sc_mode_cntl_1);
if (initial_cdw != cs->current.cdw) {
sctx->context_roll = true;
/* GFX9: Flush DFSM when the AA mode changes. */
if (sctx->screen->dfsm_allowed) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_DFSM) | EVENT_INDEX(0));
}
}
}
void si_update_ps_iter_samples(struct si_context *sctx)
{
if (sctx->framebuffer.nr_samples > 1)
si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_config);
if (sctx->screen->dpbb_allowed)
si_mark_atom_dirty(sctx, &sctx->atoms.s.dpbb_state);
}
static void si_set_min_samples(struct pipe_context *ctx, unsigned min_samples)
{
struct si_context *sctx = (struct si_context *)ctx;
/* The hardware can only do sample shading with 2^n samples. */
min_samples = util_next_power_of_two(min_samples);
if (sctx->ps_iter_samples == min_samples)
return;
sctx->ps_iter_samples = min_samples;
sctx->do_update_shaders = true;
si_update_ps_iter_samples(sctx);
}
/*
* Samplers
*/
/**
* Build the sampler view descriptor for a buffer texture.
* @param state 256-bit descriptor; only the high 128 bits are filled in
*/
void
si_make_buffer_descriptor(struct si_screen *screen, struct si_resource *buf,
enum pipe_format format,
unsigned offset, unsigned size,
uint32_t *state)
{
const struct util_format_description *desc;
unsigned stride;
unsigned num_records;
desc = util_format_description(format);
stride = desc->block.bits / 8;
num_records = size / stride;
num_records = MIN2(num_records, (buf->b.b.width0 - offset) / stride);
/* The NUM_RECORDS field has a different meaning depending on the chip,
* instruction type, STRIDE, and SWIZZLE_ENABLE.
*
* GFX6-7,10:
* - If STRIDE == 0, it's in byte units.
* - If STRIDE != 0, it's in units of STRIDE, used with inst.IDXEN.
*
* GFX8:
* - For SMEM and STRIDE == 0, it's in byte units.
* - For SMEM and STRIDE != 0, it's in units of STRIDE.
* - For VMEM and STRIDE == 0 or SWIZZLE_ENABLE == 0, it's in byte units.
* - For VMEM and STRIDE != 0 and SWIZZLE_ENABLE == 1, it's in units of STRIDE.
* NOTE: There is incompatibility between VMEM and SMEM opcodes due to SWIZZLE_-
* ENABLE. The workaround is to set STRIDE = 0 if SWIZZLE_ENABLE == 0 when
* using SMEM. This can be done in the shader by clearing STRIDE with s_and.
* That way the same descriptor can be used by both SMEM and VMEM.
*
* GFX9:
* - For SMEM and STRIDE == 0, it's in byte units.
* - For SMEM and STRIDE != 0, it's in units of STRIDE.
* - For VMEM and inst.IDXEN == 0 or STRIDE == 0, it's in byte units.
* - For VMEM and inst.IDXEN == 1 and STRIDE != 0, it's in units of STRIDE.
*/
if (screen->info.chip_class == GFX8)
num_records *= stride;
state[4] = 0;
state[5] = S_008F04_STRIDE(stride);
state[6] = num_records;
state[7] = S_008F0C_DST_SEL_X(si_map_swizzle(desc->swizzle[0])) |
S_008F0C_DST_SEL_Y(si_map_swizzle(desc->swizzle[1])) |
S_008F0C_DST_SEL_Z(si_map_swizzle(desc->swizzle[2])) |
S_008F0C_DST_SEL_W(si_map_swizzle(desc->swizzle[3]));
if (screen->info.chip_class >= GFX10) {
const struct gfx10_format *fmt = &gfx10_format_table[format];
/* OOB_SELECT chooses the out-of-bounds check:
* - 0: (index >= NUM_RECORDS) || (offset >= STRIDE)
* - 1: index >= NUM_RECORDS
* - 2: NUM_RECORDS == 0
* - 3: if SWIZZLE_ENABLE == 0: offset >= NUM_RECORDS
* else: swizzle_address >= NUM_RECORDS
*/
state[7] |= S_008F0C_FORMAT(fmt->img_format) |
S_008F0C_OOB_SELECT(0) |
S_008F0C_RESOURCE_LEVEL(1);
} else {
int first_non_void;
unsigned num_format, data_format;
first_non_void = util_format_get_first_non_void_channel(format);
num_format = si_translate_buffer_numformat(&screen->b, desc, first_non_void);
data_format = si_translate_buffer_dataformat(&screen->b, desc, first_non_void);
state[7] |= S_008F0C_NUM_FORMAT(num_format) |
S_008F0C_DATA_FORMAT(data_format);
}
}
static unsigned gfx9_border_color_swizzle(const unsigned char swizzle[4])
{
unsigned bc_swizzle = V_008F20_BC_SWIZZLE_XYZW;
if (swizzle[3] == PIPE_SWIZZLE_X) {
/* For the pre-defined border color values (white, opaque
* black, transparent black), the only thing that matters is
* that the alpha channel winds up in the correct place
* (because the RGB channels are all the same) so either of
* these enumerations will work.
*/
if (swizzle[2] == PIPE_SWIZZLE_Y)
bc_swizzle = V_008F20_BC_SWIZZLE_WZYX;
else
bc_swizzle = V_008F20_BC_SWIZZLE_WXYZ;
} else if (swizzle[0] == PIPE_SWIZZLE_X) {
if (swizzle[1] == PIPE_SWIZZLE_Y)
bc_swizzle = V_008F20_BC_SWIZZLE_XYZW;
else
bc_swizzle = V_008F20_BC_SWIZZLE_XWYZ;
} else if (swizzle[1] == PIPE_SWIZZLE_X) {
bc_swizzle = V_008F20_BC_SWIZZLE_YXWZ;
} else if (swizzle[2] == PIPE_SWIZZLE_X) {
bc_swizzle = V_008F20_BC_SWIZZLE_ZYXW;
}
return bc_swizzle;
}
/**
* Build the sampler view descriptor for a texture.
*/
static void
gfx10_make_texture_descriptor(struct si_screen *screen,
struct si_texture *tex,
bool sampler,
enum pipe_texture_target target,
enum pipe_format pipe_format,
const unsigned char state_swizzle[4],
unsigned first_level, unsigned last_level,
unsigned first_layer, unsigned last_layer,
unsigned width, unsigned height, unsigned depth,
uint32_t *state,
uint32_t *fmask_state)
{
struct pipe_resource *res = &tex->buffer.b.b;
const struct util_format_description *desc;
unsigned img_format;
unsigned char swizzle[4];
unsigned type;
uint64_t va;
desc = util_format_description(pipe_format);
img_format = gfx10_format_table[pipe_format].img_format;
if (desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS) {
const unsigned char swizzle_xxxx[4] = {0, 0, 0, 0};
const unsigned char swizzle_yyyy[4] = {1, 1, 1, 1};
const unsigned char swizzle_wwww[4] = {3, 3, 3, 3};
bool is_stencil = false;
switch (pipe_format) {
case PIPE_FORMAT_S8_UINT_Z24_UNORM:
case PIPE_FORMAT_X32_S8X24_UINT:
case PIPE_FORMAT_X8Z24_UNORM:
util_format_compose_swizzles(swizzle_yyyy, state_swizzle, swizzle);
is_stencil = true;
break;
case PIPE_FORMAT_X24S8_UINT:
/*
* X24S8 is implemented as an 8_8_8_8 data format, to
* fix texture gathers. This affects at least
* GL45-CTS.texture_cube_map_array.sampling on GFX8.
*/
util_format_compose_swizzles(swizzle_wwww, state_swizzle, swizzle);
is_stencil = true;
break;
default:
util_format_compose_swizzles(swizzle_xxxx, state_swizzle, swizzle);
is_stencil = pipe_format == PIPE_FORMAT_S8_UINT;
}
if (tex->upgraded_depth && !is_stencil) {
assert(img_format == V_008F0C_IMG_FORMAT_32_FLOAT);
img_format = V_008F0C_IMG_FORMAT_32_FLOAT_CLAMP;
}
} else {
util_format_compose_swizzles(desc->swizzle, state_swizzle, swizzle);
}
if (!sampler &&
(res->target == PIPE_TEXTURE_CUBE ||
res->target == PIPE_TEXTURE_CUBE_ARRAY)) {
/* For the purpose of shader images, treat cube maps as 2D
* arrays.
*/
type = V_008F1C_SQ_RSRC_IMG_2D_ARRAY;
} else {
type = si_tex_dim(screen, tex, target, res->nr_samples);
}
if (type == V_008F1C_SQ_RSRC_IMG_1D_ARRAY) {
height = 1;
depth = res->array_size;
} else if (type == V_008F1C_SQ_RSRC_IMG_2D_ARRAY ||
type == V_008F1C_SQ_RSRC_IMG_2D_MSAA_ARRAY) {
if (sampler || res->target != PIPE_TEXTURE_3D)
depth = res->array_size;
} else if (type == V_008F1C_SQ_RSRC_IMG_CUBE)
depth = res->array_size / 6;
state[0] = 0;
state[1] = S_00A004_FORMAT(img_format) |
S_00A004_WIDTH_LO(width - 1);
state[2] = S_00A008_WIDTH_HI((width - 1) >> 2) |
S_00A008_HEIGHT(height - 1) |
S_00A008_RESOURCE_LEVEL(1);
state[3] = S_00A00C_DST_SEL_X(si_map_swizzle(swizzle[0])) |
S_00A00C_DST_SEL_Y(si_map_swizzle(swizzle[1])) |
S_00A00C_DST_SEL_Z(si_map_swizzle(swizzle[2])) |
S_00A00C_DST_SEL_W(si_map_swizzle(swizzle[3])) |
S_00A00C_BASE_LEVEL(res->nr_samples > 1 ?
0 : first_level) |
S_00A00C_LAST_LEVEL(res->nr_samples > 1 ?
util_logbase2(res->nr_samples) :
last_level) |
S_00A00C_BC_SWIZZLE(gfx9_border_color_swizzle(desc->swizzle)) |
S_00A00C_TYPE(type);
/* Depth is the the last accessible layer on gfx9+. The hw doesn't need
* to know the total number of layers.
*/
state[4] = S_00A010_DEPTH((type == V_008F1C_SQ_RSRC_IMG_3D && sampler)
? depth - 1 : last_layer) |
S_00A010_BASE_ARRAY(first_layer);
state[5] = S_00A014_ARRAY_PITCH(!!(type == V_008F1C_SQ_RSRC_IMG_3D && !sampler)) |
S_00A014_MAX_MIP(res->nr_samples > 1 ?
util_logbase2(res->nr_samples) :
tex->buffer.b.b.last_level) |
S_00A014_PERF_MOD(4);
state[6] = 0;
state[7] = 0;
if (tex->surface.dcc_offset) {
state[6] |= S_00A018_MAX_UNCOMPRESSED_BLOCK_SIZE(V_028C78_MAX_BLOCK_SIZE_256B) |
S_00A018_MAX_COMPRESSED_BLOCK_SIZE(V_028C78_MAX_BLOCK_SIZE_128B) |
S_00A018_ALPHA_IS_ON_MSB(vi_alpha_is_on_msb(screen, pipe_format));
}
/* Initialize the sampler view for FMASK. */
if (tex->surface.fmask_offset) {
uint32_t format;
va = tex->buffer.gpu_address + tex->surface.fmask_offset;
#define FMASK(s,f) (((unsigned)(MAX2(1, s)) * 16) + (MAX2(1, f)))
switch (FMASK(res->nr_samples, res->nr_storage_samples)) {
case FMASK(2,1):
format = V_008F0C_IMG_FORMAT_FMASK8_S2_F1;
break;
case FMASK(2,2):
format = V_008F0C_IMG_FORMAT_FMASK8_S2_F2;
break;
case FMASK(4,1):
format = V_008F0C_IMG_FORMAT_FMASK8_S4_F1;
break;
case FMASK(4,2):
format = V_008F0C_IMG_FORMAT_FMASK8_S4_F2;
break;
case FMASK(4,4):
format = V_008F0C_IMG_FORMAT_FMASK8_S4_F4;
break;
case FMASK(8,1):
format = V_008F0C_IMG_FORMAT_FMASK8_S8_F1;
break;
case FMASK(8,2):
format = V_008F0C_IMG_FORMAT_FMASK16_S8_F2;
break;
case FMASK(8,4):
format = V_008F0C_IMG_FORMAT_FMASK32_S8_F4;
break;
case FMASK(8,8):
format = V_008F0C_IMG_FORMAT_FMASK32_S8_F8;
break;
case FMASK(16,1):
format = V_008F0C_IMG_FORMAT_FMASK16_S16_F1;
break;
case FMASK(16,2):
format = V_008F0C_IMG_FORMAT_FMASK32_S16_F2;
break;
case FMASK(16,4):
format = V_008F0C_IMG_FORMAT_FMASK64_S16_F4;
break;
case FMASK(16,8):
format = V_008F0C_IMG_FORMAT_FMASK64_S16_F8;
break;
default:
unreachable("invalid nr_samples");
}
#undef FMASK
fmask_state[0] = (va >> 8) | tex->surface.fmask_tile_swizzle;
fmask_state[1] = S_00A004_BASE_ADDRESS_HI(va >> 40) |
S_00A004_FORMAT(format) |
S_00A004_WIDTH_LO(width - 1);
fmask_state[2] = S_00A008_WIDTH_HI((width - 1) >> 2) |
S_00A008_HEIGHT(height - 1) |
S_00A008_RESOURCE_LEVEL(1);
fmask_state[3] = S_00A00C_DST_SEL_X(V_008F1C_SQ_SEL_X) |
S_00A00C_DST_SEL_Y(V_008F1C_SQ_SEL_X) |
S_00A00C_DST_SEL_Z(V_008F1C_SQ_SEL_X) |
S_00A00C_DST_SEL_W(V_008F1C_SQ_SEL_X) |
S_00A00C_SW_MODE(tex->surface.u.gfx9.fmask.swizzle_mode) |
S_00A00C_TYPE(si_tex_dim(screen, tex, target, 0));
fmask_state[4] = S_00A010_DEPTH(last_layer) |
S_00A010_BASE_ARRAY(first_layer);
fmask_state[5] = 0;
fmask_state[6] = S_00A018_META_PIPE_ALIGNED(tex->surface.u.gfx9.cmask.pipe_aligned);
fmask_state[7] = 0;
}
}
/**
* Build the sampler view descriptor for a texture (SI-GFX9).
*/
static void
si_make_texture_descriptor(struct si_screen *screen,
struct si_texture *tex,
bool sampler,
enum pipe_texture_target target,
enum pipe_format pipe_format,
const unsigned char state_swizzle[4],
unsigned first_level, unsigned last_level,
unsigned first_layer, unsigned last_layer,
unsigned width, unsigned height, unsigned depth,
uint32_t *state,
uint32_t *fmask_state)
{
struct pipe_resource *res = &tex->buffer.b.b;
const struct util_format_description *desc;
unsigned char swizzle[4];
int first_non_void;
unsigned num_format, data_format, type, num_samples;
uint64_t va;
radeonsi: More assorted depth/stencil changes ported from r600g. [ Squashed port of the following r600g commits: - Michel Dänzer ] commit 428e37c2da420f7dc14a2ea265f2387270f9bee1 Author: Marek Olšák <maraeo@gmail.com> Date: Tue Oct 2 22:02:54 2012 +0200 r600g: add in-place DB decompression and texturing with DB tiling The decompression is done in-place and only the compressed tiles are decompressed. Note: R6xx-R7xx can do that only with Z16 and Z32F. The texture unit is programmed to use non-displayable tiling and depth ordering of samples, so that it can fetch the texture in the native DB format. The latest version of the libdrm surface allocator is required for stencil texturing to work. The old one didn't create the mipmap tree correctly. We need a separate mipmap tree for stencil, because the stencil mipmap offsets are not really depth offsets/4. There are still some known bugs, but this should save some memory and it also improves performance a little bit in Lightsmark (especially with low resolutions; tested with Radeon HD 5000). The DB->CB copy is still used for transfers. commit e2f623f1d6da9bc987582ff68d0471061ae44030 Author: Marek Olšák <maraeo@gmail.com> Date: Sat Jul 28 13:55:59 2012 +0200 r600g: don't decompress depth or stencil if there isn't any commit 43e226b6efb77db2247741cc2057d9625a2cfa05 Author: Marek Olšák <maraeo@gmail.com> Date: Wed Jul 18 00:32:50 2012 +0200 r600g: optimize uploading depth textures Make it only copy the portion of a depth texture being uploaded and not the whole 2D layer. There is also a little code cleanup. commit b242adbe5cfa165b252064a1ea36f802d8251ef1 Author: Marek Olšák <maraeo@gmail.com> Date: Wed Jul 18 00:17:46 2012 +0200 r600g: remove needless wrapper r600_texture_depth_flush commit 611dd529425281d73f1f0ad2000362d4a5525a25 Author: Marek Olšák <maraeo@gmail.com> Date: Wed Jul 18 00:05:14 2012 +0200 r600g: init_flushed_depth_texture should be able to report errors commit 80755ff56317446a8c89e611edc1fdf320d6779b Author: Marek Olšák <maraeo@gmail.com> Date: Sat Jul 14 17:06:27 2012 +0200 r600g: properly track which textures are depth This fixes the issue with have_depth_texture never being set to false. commit fe1fd675565231b49d3ac53d0b4bec39d8bc6781 Author: Marek Olšák <maraeo@gmail.com> Date: Sun Jul 8 03:10:37 2012 +0200 r600g: don't flush depth textures set as colorbuffers The only case a depth buffer can be set as a color buffer is when flushing. That wasn't always the case, but now this code isn't required anymore. commit 5a17d8318ec2c20bf86275044dc8f715105a88e7 Author: Marek Olšák <maraeo@gmail.com> Date: Sun Jul 8 02:14:18 2012 +0200 r600g: flush depth textures bound to vertex shaders This was missing/broken. There are also minor code cleanups. commit dee58f94af833906863b0ff2955b20f3ab407e63 Author: Marek Olšák <maraeo@gmail.com> Date: Sun Jul 8 01:54:24 2012 +0200 r600g: do fine-grained depth texture flushing - maintain a mask of which mipmap levels are dirty (instead of one big flag) - only flush what was requested at a given point and not the whole resource (most often only one level and one layer has to be flushed) Signed-off-by: Michel Dänzer <michel.daenzer@amd.com>
2013-01-17 18:36:41 +00:00
desc = util_format_description(pipe_format);
num_samples = desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS ?
MAX2(1, res->nr_samples) :
MAX2(1, res->nr_storage_samples);
if (desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS) {
const unsigned char swizzle_xxxx[4] = {0, 0, 0, 0};
const unsigned char swizzle_yyyy[4] = {1, 1, 1, 1};
const unsigned char swizzle_wwww[4] = {3, 3, 3, 3};
switch (pipe_format) {
case PIPE_FORMAT_S8_UINT_Z24_UNORM:
case PIPE_FORMAT_X32_S8X24_UINT:
case PIPE_FORMAT_X8Z24_UNORM:
util_format_compose_swizzles(swizzle_yyyy, state_swizzle, swizzle);
break;
case PIPE_FORMAT_X24S8_UINT:
/*
* X24S8 is implemented as an 8_8_8_8 data format, to
* fix texture gathers. This affects at least
* GL45-CTS.texture_cube_map_array.sampling on GFX8.
*/
if (screen->info.chip_class <= GFX8)
util_format_compose_swizzles(swizzle_wwww, state_swizzle, swizzle);
else
util_format_compose_swizzles(swizzle_yyyy, state_swizzle, swizzle);
break;
default:
util_format_compose_swizzles(swizzle_xxxx, state_swizzle, swizzle);
}
} else {
util_format_compose_swizzles(desc->swizzle, state_swizzle, swizzle);
}
first_non_void = util_format_get_first_non_void_channel(pipe_format);
switch (pipe_format) {
case PIPE_FORMAT_S8_UINT_Z24_UNORM:
num_format = V_008F14_IMG_NUM_FORMAT_UNORM;
break;
default:
if (first_non_void < 0) {
if (util_format_is_compressed(pipe_format)) {
switch (pipe_format) {
case PIPE_FORMAT_DXT1_SRGB:
case PIPE_FORMAT_DXT1_SRGBA:
case PIPE_FORMAT_DXT3_SRGBA:
case PIPE_FORMAT_DXT5_SRGBA:
case PIPE_FORMAT_BPTC_SRGBA:
case PIPE_FORMAT_ETC2_SRGB8:
case PIPE_FORMAT_ETC2_SRGB8A1:
case PIPE_FORMAT_ETC2_SRGBA8:
num_format = V_008F14_IMG_NUM_FORMAT_SRGB;
break;
case PIPE_FORMAT_RGTC1_SNORM:
case PIPE_FORMAT_LATC1_SNORM:
case PIPE_FORMAT_RGTC2_SNORM:
case PIPE_FORMAT_LATC2_SNORM:
case PIPE_FORMAT_ETC2_R11_SNORM:
case PIPE_FORMAT_ETC2_RG11_SNORM:
/* implies float, so use SNORM/UNORM to determine
whether data is signed or not */
case PIPE_FORMAT_BPTC_RGB_FLOAT:
num_format = V_008F14_IMG_NUM_FORMAT_SNORM;
break;
default:
num_format = V_008F14_IMG_NUM_FORMAT_UNORM;
break;
}
} else if (desc->layout == UTIL_FORMAT_LAYOUT_SUBSAMPLED) {
num_format = V_008F14_IMG_NUM_FORMAT_UNORM;
} else {
num_format = V_008F14_IMG_NUM_FORMAT_FLOAT;
}
} else if (desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
num_format = V_008F14_IMG_NUM_FORMAT_SRGB;
} else {
num_format = V_008F14_IMG_NUM_FORMAT_UNORM;
switch (desc->channel[first_non_void].type) {
case UTIL_FORMAT_TYPE_FLOAT:
num_format = V_008F14_IMG_NUM_FORMAT_FLOAT;
break;
case UTIL_FORMAT_TYPE_SIGNED:
if (desc->channel[first_non_void].normalized)
num_format = V_008F14_IMG_NUM_FORMAT_SNORM;
else if (desc->channel[first_non_void].pure_integer)
num_format = V_008F14_IMG_NUM_FORMAT_SINT;
else
num_format = V_008F14_IMG_NUM_FORMAT_SSCALED;
break;
case UTIL_FORMAT_TYPE_UNSIGNED:
if (desc->channel[first_non_void].normalized)
num_format = V_008F14_IMG_NUM_FORMAT_UNORM;
else if (desc->channel[first_non_void].pure_integer)
num_format = V_008F14_IMG_NUM_FORMAT_UINT;
else
num_format = V_008F14_IMG_NUM_FORMAT_USCALED;
}
}
}
data_format = si_translate_texformat(&screen->b, pipe_format, desc, first_non_void);
if (data_format == ~0) {
data_format = 0;
}
/* S8 with Z32 HTILE needs a special format. */
if (screen->info.chip_class == GFX9 &&
pipe_format == PIPE_FORMAT_S8_UINT &&
tex->tc_compatible_htile)
data_format = V_008F14_IMG_DATA_FORMAT_S8_32;
if (!sampler &&
(res->target == PIPE_TEXTURE_CUBE ||
res->target == PIPE_TEXTURE_CUBE_ARRAY ||
(screen->info.chip_class <= GFX8 &&
res->target == PIPE_TEXTURE_3D))) {
/* For the purpose of shader images, treat cube maps and 3D
* textures as 2D arrays. For 3D textures, the address
* calculations for mipmaps are different, so we rely on the
* caller to effectively disable mipmaps.
*/
type = V_008F1C_SQ_RSRC_IMG_2D_ARRAY;
assert(res->target != PIPE_TEXTURE_3D || (first_level == 0 && last_level == 0));
} else {
type = si_tex_dim(screen, tex, target, num_samples);
}
if (type == V_008F1C_SQ_RSRC_IMG_1D_ARRAY) {
height = 1;
depth = res->array_size;
} else if (type == V_008F1C_SQ_RSRC_IMG_2D_ARRAY ||
type == V_008F1C_SQ_RSRC_IMG_2D_MSAA_ARRAY) {
if (sampler || res->target != PIPE_TEXTURE_3D)
depth = res->array_size;
} else if (type == V_008F1C_SQ_RSRC_IMG_CUBE)
depth = res->array_size / 6;
state[0] = 0;
state[1] = (S_008F14_DATA_FORMAT(data_format) |
S_008F14_NUM_FORMAT(num_format));
state[2] = (S_008F18_WIDTH(width - 1) |
S_008F18_HEIGHT(height - 1) |
S_008F18_PERF_MOD(4));
state[3] = (S_008F1C_DST_SEL_X(si_map_swizzle(swizzle[0])) |
S_008F1C_DST_SEL_Y(si_map_swizzle(swizzle[1])) |
S_008F1C_DST_SEL_Z(si_map_swizzle(swizzle[2])) |
S_008F1C_DST_SEL_W(si_map_swizzle(swizzle[3])) |
S_008F1C_BASE_LEVEL(num_samples > 1 ? 0 : first_level) |
S_008F1C_LAST_LEVEL(num_samples > 1 ?
util_logbase2(num_samples) :
last_level) |
S_008F1C_TYPE(type));
state[4] = 0;
state[5] = S_008F24_BASE_ARRAY(first_layer);
state[6] = 0;
state[7] = 0;
if (screen->info.chip_class == GFX9) {
unsigned bc_swizzle = gfx9_border_color_swizzle(desc->swizzle);
/* Depth is the the last accessible layer on Gfx9.
* The hw doesn't need to know the total number of layers.
*/
if (type == V_008F1C_SQ_RSRC_IMG_3D)
state[4] |= S_008F20_DEPTH(depth - 1);
else
state[4] |= S_008F20_DEPTH(last_layer);
state[4] |= S_008F20_BC_SWIZZLE(bc_swizzle);
state[5] |= S_008F24_MAX_MIP(num_samples > 1 ?
util_logbase2(num_samples) :
tex->buffer.b.b.last_level);
} else {
state[3] |= S_008F1C_POW2_PAD(res->last_level > 0);
state[4] |= S_008F20_DEPTH(depth - 1);
state[5] |= S_008F24_LAST_ARRAY(last_layer);
}
if (tex->surface.dcc_offset) {
state[6] = S_008F28_ALPHA_IS_ON_MSB(vi_alpha_is_on_msb(screen, pipe_format));
} else {
/* The last dword is unused by hw. The shader uses it to clear
* bits in the first dword of sampler state.
*/
if (screen->info.chip_class <= GFX7 && res->nr_samples <= 1) {
if (first_level == last_level)
state[7] = C_008F30_MAX_ANISO_RATIO;
else
state[7] = 0xffffffff;
}
}
/* Initialize the sampler view for FMASK. */
if (tex->surface.fmask_offset) {
uint32_t data_format, num_format;
va = tex->buffer.gpu_address + tex->surface.fmask_offset;
#define FMASK(s,f) (((unsigned)(MAX2(1, s)) * 16) + (MAX2(1, f)))
if (screen->info.chip_class == GFX9) {
data_format = V_008F14_IMG_DATA_FORMAT_FMASK;
switch (FMASK(res->nr_samples, res->nr_storage_samples)) {
case FMASK(2,1):
num_format = V_008F14_IMG_FMASK_8_2_1;
break;
case FMASK(2,2):
num_format = V_008F14_IMG_FMASK_8_2_2;
break;
case FMASK(4,1):
num_format = V_008F14_IMG_FMASK_8_4_1;
break;
case FMASK(4,2):
num_format = V_008F14_IMG_FMASK_8_4_2;
break;
case FMASK(4,4):
num_format = V_008F14_IMG_FMASK_8_4_4;
break;
case FMASK(8,1):
num_format = V_008F14_IMG_FMASK_8_8_1;
break;
case FMASK(8,2):
num_format = V_008F14_IMG_FMASK_16_8_2;
break;
case FMASK(8,4):
num_format = V_008F14_IMG_FMASK_32_8_4;
break;
case FMASK(8,8):
num_format = V_008F14_IMG_FMASK_32_8_8;
break;
case FMASK(16,1):
num_format = V_008F14_IMG_FMASK_16_16_1;
break;
case FMASK(16,2):
num_format = V_008F14_IMG_FMASK_32_16_2;
break;
case FMASK(16,4):
num_format = V_008F14_IMG_FMASK_64_16_4;
break;
case FMASK(16,8):
num_format = V_008F14_IMG_FMASK_64_16_8;
break;
default:
unreachable("invalid nr_samples");
}
} else {
switch (FMASK(res->nr_samples, res->nr_storage_samples)) {
case FMASK(2,1):
data_format = V_008F14_IMG_DATA_FORMAT_FMASK8_S2_F1;
break;
case FMASK(2,2):
data_format = V_008F14_IMG_DATA_FORMAT_FMASK8_S2_F2;
break;
case FMASK(4,1):
data_format = V_008F14_IMG_DATA_FORMAT_FMASK8_S4_F1;
break;
case FMASK(4,2):
data_format = V_008F14_IMG_DATA_FORMAT_FMASK8_S4_F2;
break;
case FMASK(4,4):
data_format = V_008F14_IMG_DATA_FORMAT_FMASK8_S4_F4;
break;
case FMASK(8,1):
data_format = V_008F14_IMG_DATA_FORMAT_FMASK8_S8_F1;
break;
case FMASK(8,2):
data_format = V_008F14_IMG_DATA_FORMAT_FMASK16_S8_F2;
break;
case FMASK(8,4):
data_format = V_008F14_IMG_DATA_FORMAT_FMASK32_S8_F4;
break;
case FMASK(8,8):
data_format = V_008F14_IMG_DATA_FORMAT_FMASK32_S8_F8;
break;
case FMASK(16,1):
data_format = V_008F14_IMG_DATA_FORMAT_FMASK16_S16_F1;
break;
case FMASK(16,2):
data_format = V_008F14_IMG_DATA_FORMAT_FMASK32_S16_F2;
break;
case FMASK(16,4):
data_format = V_008F14_IMG_DATA_FORMAT_FMASK64_S16_F4;
break;
case FMASK(16,8):
data_format = V_008F14_IMG_DATA_FORMAT_FMASK64_S16_F8;
break;
default:
unreachable("invalid nr_samples");
}
num_format = V_008F14_IMG_NUM_FORMAT_UINT;
}
#undef FMASK
fmask_state[0] = (va >> 8) | tex->surface.fmask_tile_swizzle;
fmask_state[1] = S_008F14_BASE_ADDRESS_HI(va >> 40) |
S_008F14_DATA_FORMAT(data_format) |
S_008F14_NUM_FORMAT(num_format);
fmask_state[2] = S_008F18_WIDTH(width - 1) |
S_008F18_HEIGHT(height - 1);
fmask_state[3] = S_008F1C_DST_SEL_X(V_008F1C_SQ_SEL_X) |
S_008F1C_DST_SEL_Y(V_008F1C_SQ_SEL_X) |
S_008F1C_DST_SEL_Z(V_008F1C_SQ_SEL_X) |
S_008F1C_DST_SEL_W(V_008F1C_SQ_SEL_X) |
S_008F1C_TYPE(si_tex_dim(screen, tex, target, 0));
fmask_state[4] = 0;
fmask_state[5] = S_008F24_BASE_ARRAY(first_layer);
fmask_state[6] = 0;
fmask_state[7] = 0;
if (screen->info.chip_class == GFX9) {
fmask_state[3] |= S_008F1C_SW_MODE(tex->surface.u.gfx9.fmask.swizzle_mode);
fmask_state[4] |= S_008F20_DEPTH(last_layer) |
S_008F20_PITCH(tex->surface.u.gfx9.fmask.epitch);
fmask_state[5] |= S_008F24_META_PIPE_ALIGNED(tex->surface.u.gfx9.cmask.pipe_aligned) |
S_008F24_META_RB_ALIGNED(tex->surface.u.gfx9.cmask.rb_aligned);
} else {
fmask_state[3] |= S_008F1C_TILING_INDEX(tex->surface.u.legacy.fmask.tiling_index);
fmask_state[4] |= S_008F20_DEPTH(depth - 1) |
S_008F20_PITCH(tex->surface.u.legacy.fmask.pitch_in_pixels - 1);
fmask_state[5] |= S_008F24_LAST_ARRAY(last_layer);
}
}
}
/**
* Create a sampler view.
*
* @param ctx context
* @param texture texture
* @param state sampler view template
* @param width0 width0 override (for compressed textures as int)
* @param height0 height0 override (for compressed textures as int)
* @param force_level set the base address to the level (for compressed textures)
*/
struct pipe_sampler_view *
si_create_sampler_view_custom(struct pipe_context *ctx,
struct pipe_resource *texture,
const struct pipe_sampler_view *state,
unsigned width0, unsigned height0,
unsigned force_level)
{
struct si_context *sctx = (struct si_context*)ctx;
struct si_sampler_view *view = CALLOC_STRUCT(si_sampler_view);
struct si_texture *tex = (struct si_texture*)texture;
unsigned base_level, first_level, last_level;
unsigned char state_swizzle[4];
unsigned height, depth, width;
unsigned last_layer = state->u.tex.last_layer;
enum pipe_format pipe_format;
const struct legacy_surf_level *surflevel;
if (!view)
return NULL;
/* initialize base object */
view->base = *state;
view->base.texture = NULL;
view->base.reference.count = 1;
view->base.context = ctx;
assert(texture);
pipe_resource_reference(&view->base.texture, texture);
if (state->format == PIPE_FORMAT_X24S8_UINT ||
state->format == PIPE_FORMAT_S8X24_UINT ||
state->format == PIPE_FORMAT_X32_S8X24_UINT ||
state->format == PIPE_FORMAT_S8_UINT)
view->is_stencil_sampler = true;
/* Buffer resource. */
if (texture->target == PIPE_BUFFER) {
si_make_buffer_descriptor(sctx->screen,
si_resource(texture),
state->format,
state->u.buf.offset,
state->u.buf.size,
view->state);
return &view->base;
}
state_swizzle[0] = state->swizzle_r;
state_swizzle[1] = state->swizzle_g;
state_swizzle[2] = state->swizzle_b;
state_swizzle[3] = state->swizzle_a;
base_level = 0;
first_level = state->u.tex.first_level;
last_level = state->u.tex.last_level;
width = width0;
height = height0;
depth = texture->depth0;
if (sctx->chip_class <= GFX8 && force_level) {
assert(force_level == first_level &&
force_level == last_level);
base_level = force_level;
first_level = 0;
last_level = 0;
width = u_minify(width, force_level);
height = u_minify(height, force_level);
depth = u_minify(depth, force_level);
}
/* This is not needed if state trackers set last_layer correctly. */
if (state->target == PIPE_TEXTURE_1D ||
state->target == PIPE_TEXTURE_2D ||
state->target == PIPE_TEXTURE_RECT ||
state->target == PIPE_TEXTURE_CUBE)
last_layer = state->u.tex.first_layer;
/* Texturing with separate depth and stencil. */
pipe_format = state->format;
/* Depth/stencil texturing sometimes needs separate texture. */
if (tex->is_depth && !si_can_sample_zs(tex, view->is_stencil_sampler)) {
if (!tex->flushed_depth_texture &&
!si_init_flushed_depth_texture(ctx, texture)) {
pipe_resource_reference(&view->base.texture, NULL);
FREE(view);
return NULL;
}
assert(tex->flushed_depth_texture);
/* Override format for the case where the flushed texture
* contains only Z or only S.
*/
if (tex->flushed_depth_texture->buffer.b.b.format != tex->buffer.b.b.format)
pipe_format = tex->flushed_depth_texture->buffer.b.b.format;
tex = tex->flushed_depth_texture;
}
surflevel = tex->surface.u.legacy.level;
if (tex->db_compatible) {
if (!view->is_stencil_sampler)
pipe_format = tex->db_render_format;
switch (pipe_format) {
case PIPE_FORMAT_Z32_FLOAT_S8X24_UINT:
pipe_format = PIPE_FORMAT_Z32_FLOAT;
break;
case PIPE_FORMAT_X8Z24_UNORM:
case PIPE_FORMAT_S8_UINT_Z24_UNORM:
/* Z24 is always stored like this for DB
* compatibility.
*/
pipe_format = PIPE_FORMAT_Z24X8_UNORM;
break;
case PIPE_FORMAT_X24S8_UINT:
case PIPE_FORMAT_S8X24_UINT:
case PIPE_FORMAT_X32_S8X24_UINT:
pipe_format = PIPE_FORMAT_S8_UINT;
surflevel = tex->surface.u.legacy.stencil_level;
break;
default:;
}
}
view->dcc_incompatible =
vi_dcc_formats_are_incompatible(texture,
state->u.tex.first_level,
state->format);
sctx->screen->make_texture_descriptor(sctx->screen, tex, true,
state->target, pipe_format, state_swizzle,
first_level, last_level,
state->u.tex.first_layer, last_layer,
width, height, depth,
view->state, view->fmask_state);
const struct util_format_description *desc = util_format_description(pipe_format);
view->is_integer = false;
for (unsigned i = 0; i < desc->nr_channels; ++i) {
if (desc->channel[i].type == UTIL_FORMAT_TYPE_VOID)
continue;
/* Whether the number format is {U,S}{SCALED,INT} */
view->is_integer =
(desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED ||
desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) &&
(desc->channel[i].pure_integer || !desc->channel[i].normalized);
break;
}
view->base_level_info = &surflevel[base_level];
view->base_level = base_level;
view->block_width = util_format_get_blockwidth(pipe_format);
return &view->base;
}
static struct pipe_sampler_view *
si_create_sampler_view(struct pipe_context *ctx,
struct pipe_resource *texture,
const struct pipe_sampler_view *state)
{
return si_create_sampler_view_custom(ctx, texture, state,
texture ? texture->width0 : 0,
texture ? texture->height0 : 0, 0);
}
static void si_sampler_view_destroy(struct pipe_context *ctx,
struct pipe_sampler_view *state)
{
struct si_sampler_view *view = (struct si_sampler_view *)state;
pipe_resource_reference(&state->texture, NULL);
FREE(view);
}
static bool wrap_mode_uses_border_color(unsigned wrap, bool linear_filter)
{
return wrap == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
wrap == PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER ||
(linear_filter &&
(wrap == PIPE_TEX_WRAP_CLAMP ||
wrap == PIPE_TEX_WRAP_MIRROR_CLAMP));
}
static uint32_t si_translate_border_color(struct si_context *sctx,
const struct pipe_sampler_state *state,
const union pipe_color_union *color,
bool is_integer)
{
bool linear_filter = state->min_img_filter != PIPE_TEX_FILTER_NEAREST ||
state->mag_img_filter != PIPE_TEX_FILTER_NEAREST;
if (!wrap_mode_uses_border_color(state->wrap_s, linear_filter) &&
!wrap_mode_uses_border_color(state->wrap_t, linear_filter) &&
!wrap_mode_uses_border_color(state->wrap_r, linear_filter))
return S_008F3C_BORDER_COLOR_TYPE(V_008F3C_SQ_TEX_BORDER_COLOR_TRANS_BLACK);
#define simple_border_types(elt) \
do { \
if (color->elt[0] == 0 && color->elt[1] == 0 && \
color->elt[2] == 0 && color->elt[3] == 0) \
return S_008F3C_BORDER_COLOR_TYPE(V_008F3C_SQ_TEX_BORDER_COLOR_TRANS_BLACK); \
if (color->elt[0] == 0 && color->elt[1] == 0 && \
color->elt[2] == 0 && color->elt[3] == 1) \
return S_008F3C_BORDER_COLOR_TYPE(V_008F3C_SQ_TEX_BORDER_COLOR_OPAQUE_BLACK); \
if (color->elt[0] == 1 && color->elt[1] == 1 && \
color->elt[2] == 1 && color->elt[3] == 1) \
return S_008F3C_BORDER_COLOR_TYPE(V_008F3C_SQ_TEX_BORDER_COLOR_OPAQUE_WHITE); \
} while (false)
if (is_integer)
simple_border_types(ui);
else
simple_border_types(f);
#undef simple_border_types
int i;
/* Check if the border has been uploaded already. */
for (i = 0; i < sctx->border_color_count; i++)
if (memcmp(&sctx->border_color_table[i], color,
sizeof(*color)) == 0)
break;
if (i >= SI_MAX_BORDER_COLORS) {
/* Getting 4096 unique border colors is very unlikely. */
fprintf(stderr, "radeonsi: The border color table is full. "
"Any new border colors will be just black. "
"Please file a bug.\n");
return S_008F3C_BORDER_COLOR_TYPE(V_008F3C_SQ_TEX_BORDER_COLOR_TRANS_BLACK);
}
if (i == sctx->border_color_count) {
/* Upload a new border color. */
memcpy(&sctx->border_color_table[i], color,
sizeof(*color));
util_memcpy_cpu_to_le32(&sctx->border_color_map[i],
color, sizeof(*color));
sctx->border_color_count++;
}
return S_008F3C_BORDER_COLOR_PTR(i) |
S_008F3C_BORDER_COLOR_TYPE(V_008F3C_SQ_TEX_BORDER_COLOR_REGISTER);
}
static inline int S_FIXED(float value, unsigned frac_bits)
{
return value * (1 << frac_bits);
}
static inline unsigned si_tex_filter(unsigned filter, unsigned max_aniso)
{
if (filter == PIPE_TEX_FILTER_LINEAR)
return max_aniso > 1 ? V_008F38_SQ_TEX_XY_FILTER_ANISO_BILINEAR
: V_008F38_SQ_TEX_XY_FILTER_BILINEAR;
else
return max_aniso > 1 ? V_008F38_SQ_TEX_XY_FILTER_ANISO_POINT
: V_008F38_SQ_TEX_XY_FILTER_POINT;
}
static inline unsigned si_tex_aniso_filter(unsigned filter)
{
if (filter < 2)
return 0;
if (filter < 4)
return 1;
if (filter < 8)
return 2;
if (filter < 16)
return 3;
return 4;
}
static void *si_create_sampler_state(struct pipe_context *ctx,
const struct pipe_sampler_state *state)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_screen *sscreen = sctx->screen;
struct si_sampler_state *rstate = CALLOC_STRUCT(si_sampler_state);
unsigned max_aniso = sscreen->force_aniso >= 0 ? sscreen->force_aniso
: state->max_anisotropy;
unsigned max_aniso_ratio = si_tex_aniso_filter(max_aniso);
union pipe_color_union clamped_border_color;
if (!rstate) {
return NULL;
}
#ifndef NDEBUG
rstate->magic = SI_SAMPLER_STATE_MAGIC;
#endif
rstate->val[0] = (S_008F30_CLAMP_X(si_tex_wrap(state->wrap_s)) |
S_008F30_CLAMP_Y(si_tex_wrap(state->wrap_t)) |
S_008F30_CLAMP_Z(si_tex_wrap(state->wrap_r)) |
S_008F30_MAX_ANISO_RATIO(max_aniso_ratio) |
S_008F30_DEPTH_COMPARE_FUNC(si_tex_compare(state->compare_func)) |
S_008F30_FORCE_UNNORMALIZED(!state->normalized_coords) |
S_008F30_ANISO_THRESHOLD(max_aniso_ratio >> 1) |
S_008F30_ANISO_BIAS(max_aniso_ratio) |
S_008F30_DISABLE_CUBE_WRAP(!state->seamless_cube_map) |
S_008F30_COMPAT_MODE(sctx->chip_class == GFX8 || sctx->chip_class == GFX9));
rstate->val[1] = (S_008F34_MIN_LOD(S_FIXED(CLAMP(state->min_lod, 0, 15), 8)) |
S_008F34_MAX_LOD(S_FIXED(CLAMP(state->max_lod, 0, 15), 8)) |
S_008F34_PERF_MIP(max_aniso_ratio ? max_aniso_ratio + 6 : 0));
rstate->val[2] = (S_008F38_LOD_BIAS(S_FIXED(CLAMP(state->lod_bias, -16, 16), 8)) |
S_008F38_XY_MAG_FILTER(si_tex_filter(state->mag_img_filter, max_aniso)) |
S_008F38_XY_MIN_FILTER(si_tex_filter(state->min_img_filter, max_aniso)) |
S_008F38_MIP_FILTER(si_tex_mipfilter(state->min_mip_filter)) |
S_008F38_MIP_POINT_PRECLAMP(0));
rstate->val[3] = si_translate_border_color(sctx, state, &state->border_color, false);
if (sscreen->info.chip_class >= GFX10) {
rstate->val[2] |= S_008F38_ANISO_OVERRIDE_GFX10(1);
} else {
rstate->val[2] |= S_008F38_DISABLE_LSB_CEIL(sctx->chip_class <= GFX8) |
S_008F38_FILTER_PREC_FIX(1) |
S_008F38_ANISO_OVERRIDE_GFX6(sctx->chip_class >= GFX8);
}
/* Create sampler resource for integer textures. */
memcpy(rstate->integer_val, rstate->val, sizeof(rstate->val));
rstate->integer_val[3] = si_translate_border_color(sctx, state, &state->border_color, true);
/* Create sampler resource for upgraded depth textures. */
memcpy(rstate->upgraded_depth_val, rstate->val, sizeof(rstate->val));
for (unsigned i = 0; i < 4; ++i) {
/* Use channel 0 on purpose, so that we can use OPAQUE_WHITE
* when the border color is 1.0. */
clamped_border_color.f[i] = CLAMP(state->border_color.f[0], 0, 1);
}
if (memcmp(&state->border_color, &clamped_border_color, sizeof(clamped_border_color)) == 0) {
if (sscreen->info.chip_class <= GFX9)
rstate->upgraded_depth_val[3] |= S_008F3C_UPGRADED_DEPTH(1);
} else {
rstate->upgraded_depth_val[3] =
si_translate_border_color(sctx, state, &clamped_border_color, false);
}
return rstate;
}
static void si_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
{
struct si_context *sctx = (struct si_context *)ctx;
if (sctx->sample_mask == (uint16_t)sample_mask)
return;
sctx->sample_mask = sample_mask;
si_mark_atom_dirty(sctx, &sctx->atoms.s.sample_mask);
}
static void si_emit_sample_mask(struct si_context *sctx)
{
struct radeon_cmdbuf *cs = sctx->gfx_cs;
unsigned mask = sctx->sample_mask;
/* Needed for line and polygon smoothing as well as for the Polaris
* small primitive filter. We expect the state tracker to take care of
* this for us.
*/
assert(mask == 0xffff || sctx->framebuffer.nr_samples > 1 ||
(mask & 1 && sctx->blitter->running));
radeon_set_context_reg_seq(cs, R_028C38_PA_SC_AA_MASK_X0Y0_X1Y0, 2);
radeon_emit(cs, mask | (mask << 16));
radeon_emit(cs, mask | (mask << 16));
}
static void si_delete_sampler_state(struct pipe_context *ctx, void *state)
{
#ifndef NDEBUG
struct si_sampler_state *s = state;
assert(s->magic == SI_SAMPLER_STATE_MAGIC);
s->magic = 0;
#endif
free(state);
}
/*
* Vertex elements & buffers
*/
struct si_fast_udiv_info32
si_compute_fast_udiv_info32(uint32_t D, unsigned num_bits)
{
struct util_fast_udiv_info info =
util_compute_fast_udiv_info(D, num_bits, 32);
struct si_fast_udiv_info32 result = {
info.multiplier,
info.pre_shift,
info.post_shift,
info.increment,
};
return result;
}
static void *si_create_vertex_elements(struct pipe_context *ctx,
unsigned count,
const struct pipe_vertex_element *elements)
{
struct si_screen *sscreen = (struct si_screen*)ctx->screen;
struct si_vertex_elements *v = CALLOC_STRUCT(si_vertex_elements);
bool used[SI_NUM_VERTEX_BUFFERS] = {};
struct si_fast_udiv_info32 divisor_factors[SI_MAX_ATTRIBS] = {};
STATIC_ASSERT(sizeof(struct si_fast_udiv_info32) == 16);
STATIC_ASSERT(sizeof(divisor_factors[0].multiplier) == 4);
STATIC_ASSERT(sizeof(divisor_factors[0].pre_shift) == 4);
STATIC_ASSERT(sizeof(divisor_factors[0].post_shift) == 4);
STATIC_ASSERT(sizeof(divisor_factors[0].increment) == 4);
int i;
assert(count <= SI_MAX_ATTRIBS);
if (!v)
return NULL;
v->count = count;
v->desc_list_byte_size = align(count * 16, SI_CPDMA_ALIGNMENT);
for (i = 0; i < count; ++i) {
const struct util_format_description *desc;
const struct util_format_channel_description *channel;
int first_non_void;
unsigned vbo_index = elements[i].vertex_buffer_index;
if (vbo_index >= SI_NUM_VERTEX_BUFFERS) {
FREE(v);
return NULL;
}
unsigned instance_divisor = elements[i].instance_divisor;
if (instance_divisor) {
v->uses_instance_divisors = true;
radeonsi: move instance divisors into a constant buffer Shader key size: 107 -> 47 Divisors of 0 and 1 are encoded in the shader key. Greater instance divisors are loaded from a constant buffer. The shader code doing the division is huge. Is it something we need to worry about? Does any app use instance divisors >= 2? VS prolog disassembly: s_load_dwordx4 s[12:15], s[0:1], 0x80 ; C00A0300 00000080 s_nop 0 ; BF800000 s_waitcnt lgkmcnt(0) ; BF8C007F s_buffer_load_dword s14, s[12:15], 0x4 ; C0220386 00000004 s_waitcnt lgkmcnt(0) ; BF8C007F v_cvt_f32_u32_e32 v4, s14 ; 7E080C0E v_rcp_iflag_f32_e32 v4, v4 ; 7E084704 v_mul_f32_e32 v4, 0x4f800000, v4 ; 0A0808FF 4F800000 v_cvt_u32_f32_e32 v4, v4 ; 7E080F04 v_mul_hi_u32 v5, v4, s14 ; D2860005 00001D04 v_mul_lo_i32 v6, v4, s14 ; D2850006 00001D04 v_cmp_eq_u32_e64 s[12:13], 0, v5 ; D0CA000C 00020A80 v_sub_i32_e32 v5, vcc, 0, v6 ; 340A0C80 v_cndmask_b32_e64 v5, v6, v5, s[12:13] ; D1000005 00320B06 v_mul_hi_u32 v5, v5, v4 ; D2860005 00020905 v_add_i32_e32 v6, vcc, v5, v4 ; 320C0905 v_subrev_i32_e32 v4, vcc, v5, v4 ; 36080905 v_cndmask_b32_e64 v4, v4, v6, s[12:13] ; D1000004 00320D04 v_mul_hi_u32 v5, v4, v1 ; D2860005 00020304 v_add_i32_e32 v4, vcc, s8, v0 ; 32080008 v_mul_lo_i32 v6, v5, s14 ; D2850006 00001D05 v_add_i32_e32 v7, vcc, 1, v5 ; 320E0A81 v_cmp_ge_u32_e64 s[12:13], v1, v6 ; D0CE000C 00020D01 v_sub_i32_e32 v6, vcc, v1, v6 ; 340C0D01 v_cmp_le_u32_e32 vcc, s14, v6 ; 7D960C0E v_cndmask_b32_e64 v8, 0, -1, s[12:13] ; D1000008 00318280 v_cndmask_b32_e64 v6, 0, -1, vcc ; D1000006 01A98280 v_and_b32_e32 v6, v8, v6 ; 260C0D08 v_cmp_eq_u32_e32 vcc, 0, v6 ; 7D940C80 v_cndmask_b32_e32 v6, v7, v5, vcc ; 000C0B07 v_add_i32_e32 v5, vcc, -1, v5 ; 320A0AC1 v_cmp_eq_u32_e32 vcc, 0, v8 ; 7D941080 v_cndmask_b32_e32 v5, v6, v5, vcc ; 000A0B06 v_add_i32_e32 v5, vcc, s9, v5 ; 320A0A09 v2: set prefer_mono for fetched instance divisors Reviewed-by: Nicolai Hähnle <nicolai.haehnle@amd.com>
2017-06-09 17:46:07 +01:00
if (instance_divisor == 1) {
radeonsi: move instance divisors into a constant buffer Shader key size: 107 -> 47 Divisors of 0 and 1 are encoded in the shader key. Greater instance divisors are loaded from a constant buffer. The shader code doing the division is huge. Is it something we need to worry about? Does any app use instance divisors >= 2? VS prolog disassembly: s_load_dwordx4 s[12:15], s[0:1], 0x80 ; C00A0300 00000080 s_nop 0 ; BF800000 s_waitcnt lgkmcnt(0) ; BF8C007F s_buffer_load_dword s14, s[12:15], 0x4 ; C0220386 00000004 s_waitcnt lgkmcnt(0) ; BF8C007F v_cvt_f32_u32_e32 v4, s14 ; 7E080C0E v_rcp_iflag_f32_e32 v4, v4 ; 7E084704 v_mul_f32_e32 v4, 0x4f800000, v4 ; 0A0808FF 4F800000 v_cvt_u32_f32_e32 v4, v4 ; 7E080F04 v_mul_hi_u32 v5, v4, s14 ; D2860005 00001D04 v_mul_lo_i32 v6, v4, s14 ; D2850006 00001D04 v_cmp_eq_u32_e64 s[12:13], 0, v5 ; D0CA000C 00020A80 v_sub_i32_e32 v5, vcc, 0, v6 ; 340A0C80 v_cndmask_b32_e64 v5, v6, v5, s[12:13] ; D1000005 00320B06 v_mul_hi_u32 v5, v5, v4 ; D2860005 00020905 v_add_i32_e32 v6, vcc, v5, v4 ; 320C0905 v_subrev_i32_e32 v4, vcc, v5, v4 ; 36080905 v_cndmask_b32_e64 v4, v4, v6, s[12:13] ; D1000004 00320D04 v_mul_hi_u32 v5, v4, v1 ; D2860005 00020304 v_add_i32_e32 v4, vcc, s8, v0 ; 32080008 v_mul_lo_i32 v6, v5, s14 ; D2850006 00001D05 v_add_i32_e32 v7, vcc, 1, v5 ; 320E0A81 v_cmp_ge_u32_e64 s[12:13], v1, v6 ; D0CE000C 00020D01 v_sub_i32_e32 v6, vcc, v1, v6 ; 340C0D01 v_cmp_le_u32_e32 vcc, s14, v6 ; 7D960C0E v_cndmask_b32_e64 v8, 0, -1, s[12:13] ; D1000008 00318280 v_cndmask_b32_e64 v6, 0, -1, vcc ; D1000006 01A98280 v_and_b32_e32 v6, v8, v6 ; 260C0D08 v_cmp_eq_u32_e32 vcc, 0, v6 ; 7D940C80 v_cndmask_b32_e32 v6, v7, v5, vcc ; 000C0B07 v_add_i32_e32 v5, vcc, -1, v5 ; 320A0AC1 v_cmp_eq_u32_e32 vcc, 0, v8 ; 7D941080 v_cndmask_b32_e32 v5, v6, v5, vcc ; 000A0B06 v_add_i32_e32 v5, vcc, s9, v5 ; 320A0A09 v2: set prefer_mono for fetched instance divisors Reviewed-by: Nicolai Hähnle <nicolai.haehnle@amd.com>
2017-06-09 17:46:07 +01:00
v->instance_divisor_is_one |= 1u << i;
} else {
radeonsi: move instance divisors into a constant buffer Shader key size: 107 -> 47 Divisors of 0 and 1 are encoded in the shader key. Greater instance divisors are loaded from a constant buffer. The shader code doing the division is huge. Is it something we need to worry about? Does any app use instance divisors >= 2? VS prolog disassembly: s_load_dwordx4 s[12:15], s[0:1], 0x80 ; C00A0300 00000080 s_nop 0 ; BF800000 s_waitcnt lgkmcnt(0) ; BF8C007F s_buffer_load_dword s14, s[12:15], 0x4 ; C0220386 00000004 s_waitcnt lgkmcnt(0) ; BF8C007F v_cvt_f32_u32_e32 v4, s14 ; 7E080C0E v_rcp_iflag_f32_e32 v4, v4 ; 7E084704 v_mul_f32_e32 v4, 0x4f800000, v4 ; 0A0808FF 4F800000 v_cvt_u32_f32_e32 v4, v4 ; 7E080F04 v_mul_hi_u32 v5, v4, s14 ; D2860005 00001D04 v_mul_lo_i32 v6, v4, s14 ; D2850006 00001D04 v_cmp_eq_u32_e64 s[12:13], 0, v5 ; D0CA000C 00020A80 v_sub_i32_e32 v5, vcc, 0, v6 ; 340A0C80 v_cndmask_b32_e64 v5, v6, v5, s[12:13] ; D1000005 00320B06 v_mul_hi_u32 v5, v5, v4 ; D2860005 00020905 v_add_i32_e32 v6, vcc, v5, v4 ; 320C0905 v_subrev_i32_e32 v4, vcc, v5, v4 ; 36080905 v_cndmask_b32_e64 v4, v4, v6, s[12:13] ; D1000004 00320D04 v_mul_hi_u32 v5, v4, v1 ; D2860005 00020304 v_add_i32_e32 v4, vcc, s8, v0 ; 32080008 v_mul_lo_i32 v6, v5, s14 ; D2850006 00001D05 v_add_i32_e32 v7, vcc, 1, v5 ; 320E0A81 v_cmp_ge_u32_e64 s[12:13], v1, v6 ; D0CE000C 00020D01 v_sub_i32_e32 v6, vcc, v1, v6 ; 340C0D01 v_cmp_le_u32_e32 vcc, s14, v6 ; 7D960C0E v_cndmask_b32_e64 v8, 0, -1, s[12:13] ; D1000008 00318280 v_cndmask_b32_e64 v6, 0, -1, vcc ; D1000006 01A98280 v_and_b32_e32 v6, v8, v6 ; 260C0D08 v_cmp_eq_u32_e32 vcc, 0, v6 ; 7D940C80 v_cndmask_b32_e32 v6, v7, v5, vcc ; 000C0B07 v_add_i32_e32 v5, vcc, -1, v5 ; 320A0AC1 v_cmp_eq_u32_e32 vcc, 0, v8 ; 7D941080 v_cndmask_b32_e32 v5, v6, v5, vcc ; 000A0B06 v_add_i32_e32 v5, vcc, s9, v5 ; 320A0A09 v2: set prefer_mono for fetched instance divisors Reviewed-by: Nicolai Hähnle <nicolai.haehnle@amd.com>
2017-06-09 17:46:07 +01:00
v->instance_divisor_is_fetched |= 1u << i;
divisor_factors[i] =
si_compute_fast_udiv_info32(instance_divisor, 32);
}
}
if (!used[vbo_index]) {
v->first_vb_use_mask |= 1 << i;
used[vbo_index] = true;
}
desc = util_format_description(elements[i].src_format);
first_non_void = util_format_get_first_non_void_channel(elements[i].src_format);
channel = first_non_void >= 0 ? &desc->channel[first_non_void] : NULL;
v->format_size[i] = desc->block.bits / 8;
v->src_offset[i] = elements[i].src_offset;
v->vertex_buffer_index[i] = vbo_index;
bool always_fix = false;
union si_vs_fix_fetch fix_fetch;
unsigned log_hw_load_size; /* the load element size as seen by the hardware */
fix_fetch.bits = 0;
log_hw_load_size = MIN2(2, util_logbase2(desc->block.bits) - 3);
if (channel) {
switch (channel->type) {
case UTIL_FORMAT_TYPE_FLOAT: fix_fetch.u.format = AC_FETCH_FORMAT_FLOAT; break;
case UTIL_FORMAT_TYPE_FIXED: fix_fetch.u.format = AC_FETCH_FORMAT_FIXED; break;
case UTIL_FORMAT_TYPE_SIGNED: {
if (channel->pure_integer)
fix_fetch.u.format = AC_FETCH_FORMAT_SINT;
else if (channel->normalized)
fix_fetch.u.format = AC_FETCH_FORMAT_SNORM;
else
fix_fetch.u.format = AC_FETCH_FORMAT_SSCALED;
break;
}
case UTIL_FORMAT_TYPE_UNSIGNED: {
if (channel->pure_integer)
fix_fetch.u.format = AC_FETCH_FORMAT_UINT;
else if (channel->normalized)
fix_fetch.u.format = AC_FETCH_FORMAT_UNORM;
else
fix_fetch.u.format = AC_FETCH_FORMAT_USCALED;
break;
}
default: unreachable("bad format type");
}
} else {
switch (elements[i].src_format) {
case PIPE_FORMAT_R11G11B10_FLOAT: fix_fetch.u.format = AC_FETCH_FORMAT_FLOAT; break;
default: unreachable("bad other format");
}
}
if (desc->channel[0].size == 10) {
fix_fetch.u.log_size = 3; /* special encoding for 2_10_10_10 */
log_hw_load_size = 2;
/* The hardware always treats the 2-bit alpha channel as
* unsigned, so a shader workaround is needed. The affected
* chips are GFX8 and older except Stoney (GFX8.1).
*/
always_fix = sscreen->info.chip_class <= GFX8 &&
sscreen->info.family != CHIP_STONEY &&
channel->type == UTIL_FORMAT_TYPE_SIGNED;
} else if (elements[i].src_format == PIPE_FORMAT_R11G11B10_FLOAT) {
fix_fetch.u.log_size = 3; /* special encoding */
fix_fetch.u.format = AC_FETCH_FORMAT_FIXED;
log_hw_load_size = 2;
} else {
fix_fetch.u.log_size = util_logbase2(channel->size) - 3;
fix_fetch.u.num_channels_m1 = desc->nr_channels - 1;
/* Always fix up:
* - doubles (multiple loads + truncate to float)
* - 32-bit requiring a conversion
*/
always_fix =
(fix_fetch.u.log_size == 3) ||
(fix_fetch.u.log_size == 2 &&
fix_fetch.u.format != AC_FETCH_FORMAT_FLOAT &&
fix_fetch.u.format != AC_FETCH_FORMAT_UINT &&
fix_fetch.u.format != AC_FETCH_FORMAT_SINT);
/* Also fixup 8_8_8 and 16_16_16. */
if (desc->nr_channels == 3 && fix_fetch.u.log_size <= 1) {
always_fix = true;
log_hw_load_size = fix_fetch.u.log_size;
}
}
if (desc->swizzle[0] != PIPE_SWIZZLE_X) {
assert(desc->swizzle[0] == PIPE_SWIZZLE_Z &&
(desc->swizzle[2] == PIPE_SWIZZLE_X || desc->swizzle[2] == PIPE_SWIZZLE_0));
fix_fetch.u.reverse = 1;
}
/* Force the workaround for unaligned access here already if the
* offset relative to the vertex buffer base is unaligned.
*
* There is a theoretical case in which this is too conservative:
* if the vertex buffer's offset is also unaligned in just the
* right way, we end up with an aligned address after all.
* However, this case should be extremely rare in practice (it
* won't happen in well-behaved applications), and taking it
* into account would complicate the fast path (where everything
* is nicely aligned).
*/
bool check_alignment =
log_hw_load_size >= 1 &&
(sscreen->info.chip_class == GFX6 || sscreen->info.chip_class == GFX10);
bool opencode = sscreen->options.vs_fetch_always_opencode;
if (check_alignment &&
(elements[i].src_offset & ((1 << log_hw_load_size) - 1)) != 0)
opencode = true;
if (always_fix || check_alignment || opencode)
v->fix_fetch[i] = fix_fetch.bits;
if (opencode)
v->fix_fetch_opencode |= 1 << i;
if (opencode || always_fix)
v->fix_fetch_always |= 1 << i;
if (check_alignment && !opencode) {
assert(log_hw_load_size == 1 || log_hw_load_size == 2);
v->fix_fetch_unaligned |= 1 << i;
v->hw_load_is_dword |= (log_hw_load_size - 1) << i;
v->vb_alignment_check_mask |= 1 << vbo_index;
}
v->rsrc_word3[i] = S_008F0C_DST_SEL_X(si_map_swizzle(desc->swizzle[0])) |
S_008F0C_DST_SEL_Y(si_map_swizzle(desc->swizzle[1])) |
S_008F0C_DST_SEL_Z(si_map_swizzle(desc->swizzle[2])) |
S_008F0C_DST_SEL_W(si_map_swizzle(desc->swizzle[3]));
if (sscreen->info.chip_class >= GFX10) {
const struct gfx10_format *fmt =
&gfx10_format_table[elements[i].src_format];
assert(fmt->img_format != 0 && fmt->img_format < 128);
v->rsrc_word3[i] |= S_008F0C_FORMAT(fmt->img_format) |
S_008F0C_RESOURCE_LEVEL(1);
} else {
unsigned data_format, num_format;
data_format = si_translate_buffer_dataformat(ctx->screen, desc, first_non_void);
num_format = si_translate_buffer_numformat(ctx->screen, desc, first_non_void);
v->rsrc_word3[i] |= S_008F0C_NUM_FORMAT(num_format) |
S_008F0C_DATA_FORMAT(data_format);
}
}
if (v->instance_divisor_is_fetched) {
unsigned num_divisors = util_last_bit(v->instance_divisor_is_fetched);
v->instance_divisor_factor_buffer =
(struct si_resource*)
pipe_buffer_create(&sscreen->b, 0, PIPE_USAGE_DEFAULT,
num_divisors * sizeof(divisor_factors[0]));
if (!v->instance_divisor_factor_buffer) {
FREE(v);
return NULL;
}
void *map = sscreen->ws->buffer_map(v->instance_divisor_factor_buffer->buf,
NULL, PIPE_TRANSFER_WRITE);
memcpy(map , divisor_factors, num_divisors * sizeof(divisor_factors[0]));
}
return v;
}
static void si_bind_vertex_elements(struct pipe_context *ctx, void *state)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_vertex_elements *old = sctx->vertex_elements;
struct si_vertex_elements *v = (struct si_vertex_elements*)state;
sctx->vertex_elements = v;
sctx->vertex_buffers_dirty = true;
if (v &&
(!old ||
old->count != v->count ||
old->uses_instance_divisors != v->uses_instance_divisors ||
/* we don't check which divisors changed */
v->uses_instance_divisors ||
(old->vb_alignment_check_mask ^ v->vb_alignment_check_mask) & sctx->vertex_buffer_unaligned ||
((v->vb_alignment_check_mask & sctx->vertex_buffer_unaligned) &&
memcmp(old->vertex_buffer_index, v->vertex_buffer_index,
sizeof(v->vertex_buffer_index[0]) * v->count)) ||
/* fix_fetch_{always,opencode,unaligned} and hw_load_is_dword are
* functions of fix_fetch and the src_offset alignment.
* If they change and fix_fetch doesn't, it must be due to different
* src_offset alignment, which is reflected in fix_fetch_opencode. */
old->fix_fetch_opencode != v->fix_fetch_opencode ||
memcmp(old->fix_fetch, v->fix_fetch, sizeof(v->fix_fetch[0]) * v->count)))
sctx->do_update_shaders = true;
radeonsi: move instance divisors into a constant buffer Shader key size: 107 -> 47 Divisors of 0 and 1 are encoded in the shader key. Greater instance divisors are loaded from a constant buffer. The shader code doing the division is huge. Is it something we need to worry about? Does any app use instance divisors >= 2? VS prolog disassembly: s_load_dwordx4 s[12:15], s[0:1], 0x80 ; C00A0300 00000080 s_nop 0 ; BF800000 s_waitcnt lgkmcnt(0) ; BF8C007F s_buffer_load_dword s14, s[12:15], 0x4 ; C0220386 00000004 s_waitcnt lgkmcnt(0) ; BF8C007F v_cvt_f32_u32_e32 v4, s14 ; 7E080C0E v_rcp_iflag_f32_e32 v4, v4 ; 7E084704 v_mul_f32_e32 v4, 0x4f800000, v4 ; 0A0808FF 4F800000 v_cvt_u32_f32_e32 v4, v4 ; 7E080F04 v_mul_hi_u32 v5, v4, s14 ; D2860005 00001D04 v_mul_lo_i32 v6, v4, s14 ; D2850006 00001D04 v_cmp_eq_u32_e64 s[12:13], 0, v5 ; D0CA000C 00020A80 v_sub_i32_e32 v5, vcc, 0, v6 ; 340A0C80 v_cndmask_b32_e64 v5, v6, v5, s[12:13] ; D1000005 00320B06 v_mul_hi_u32 v5, v5, v4 ; D2860005 00020905 v_add_i32_e32 v6, vcc, v5, v4 ; 320C0905 v_subrev_i32_e32 v4, vcc, v5, v4 ; 36080905 v_cndmask_b32_e64 v4, v4, v6, s[12:13] ; D1000004 00320D04 v_mul_hi_u32 v5, v4, v1 ; D2860005 00020304 v_add_i32_e32 v4, vcc, s8, v0 ; 32080008 v_mul_lo_i32 v6, v5, s14 ; D2850006 00001D05 v_add_i32_e32 v7, vcc, 1, v5 ; 320E0A81 v_cmp_ge_u32_e64 s[12:13], v1, v6 ; D0CE000C 00020D01 v_sub_i32_e32 v6, vcc, v1, v6 ; 340C0D01 v_cmp_le_u32_e32 vcc, s14, v6 ; 7D960C0E v_cndmask_b32_e64 v8, 0, -1, s[12:13] ; D1000008 00318280 v_cndmask_b32_e64 v6, 0, -1, vcc ; D1000006 01A98280 v_and_b32_e32 v6, v8, v6 ; 260C0D08 v_cmp_eq_u32_e32 vcc, 0, v6 ; 7D940C80 v_cndmask_b32_e32 v6, v7, v5, vcc ; 000C0B07 v_add_i32_e32 v5, vcc, -1, v5 ; 320A0AC1 v_cmp_eq_u32_e32 vcc, 0, v8 ; 7D941080 v_cndmask_b32_e32 v5, v6, v5, vcc ; 000A0B06 v_add_i32_e32 v5, vcc, s9, v5 ; 320A0A09 v2: set prefer_mono for fetched instance divisors Reviewed-by: Nicolai Hähnle <nicolai.haehnle@amd.com>
2017-06-09 17:46:07 +01:00
if (v && v->instance_divisor_is_fetched) {
struct pipe_constant_buffer cb;
cb.buffer = &v->instance_divisor_factor_buffer->b.b;
cb.user_buffer = NULL;
radeonsi: move instance divisors into a constant buffer Shader key size: 107 -> 47 Divisors of 0 and 1 are encoded in the shader key. Greater instance divisors are loaded from a constant buffer. The shader code doing the division is huge. Is it something we need to worry about? Does any app use instance divisors >= 2? VS prolog disassembly: s_load_dwordx4 s[12:15], s[0:1], 0x80 ; C00A0300 00000080 s_nop 0 ; BF800000 s_waitcnt lgkmcnt(0) ; BF8C007F s_buffer_load_dword s14, s[12:15], 0x4 ; C0220386 00000004 s_waitcnt lgkmcnt(0) ; BF8C007F v_cvt_f32_u32_e32 v4, s14 ; 7E080C0E v_rcp_iflag_f32_e32 v4, v4 ; 7E084704 v_mul_f32_e32 v4, 0x4f800000, v4 ; 0A0808FF 4F800000 v_cvt_u32_f32_e32 v4, v4 ; 7E080F04 v_mul_hi_u32 v5, v4, s14 ; D2860005 00001D04 v_mul_lo_i32 v6, v4, s14 ; D2850006 00001D04 v_cmp_eq_u32_e64 s[12:13], 0, v5 ; D0CA000C 00020A80 v_sub_i32_e32 v5, vcc, 0, v6 ; 340A0C80 v_cndmask_b32_e64 v5, v6, v5, s[12:13] ; D1000005 00320B06 v_mul_hi_u32 v5, v5, v4 ; D2860005 00020905 v_add_i32_e32 v6, vcc, v5, v4 ; 320C0905 v_subrev_i32_e32 v4, vcc, v5, v4 ; 36080905 v_cndmask_b32_e64 v4, v4, v6, s[12:13] ; D1000004 00320D04 v_mul_hi_u32 v5, v4, v1 ; D2860005 00020304 v_add_i32_e32 v4, vcc, s8, v0 ; 32080008 v_mul_lo_i32 v6, v5, s14 ; D2850006 00001D05 v_add_i32_e32 v7, vcc, 1, v5 ; 320E0A81 v_cmp_ge_u32_e64 s[12:13], v1, v6 ; D0CE000C 00020D01 v_sub_i32_e32 v6, vcc, v1, v6 ; 340C0D01 v_cmp_le_u32_e32 vcc, s14, v6 ; 7D960C0E v_cndmask_b32_e64 v8, 0, -1, s[12:13] ; D1000008 00318280 v_cndmask_b32_e64 v6, 0, -1, vcc ; D1000006 01A98280 v_and_b32_e32 v6, v8, v6 ; 260C0D08 v_cmp_eq_u32_e32 vcc, 0, v6 ; 7D940C80 v_cndmask_b32_e32 v6, v7, v5, vcc ; 000C0B07 v_add_i32_e32 v5, vcc, -1, v5 ; 320A0AC1 v_cmp_eq_u32_e32 vcc, 0, v8 ; 7D941080 v_cndmask_b32_e32 v5, v6, v5, vcc ; 000A0B06 v_add_i32_e32 v5, vcc, s9, v5 ; 320A0A09 v2: set prefer_mono for fetched instance divisors Reviewed-by: Nicolai Hähnle <nicolai.haehnle@amd.com>
2017-06-09 17:46:07 +01:00
cb.buffer_offset = 0;
cb.buffer_size = 0xffffffff;
radeonsi: move instance divisors into a constant buffer Shader key size: 107 -> 47 Divisors of 0 and 1 are encoded in the shader key. Greater instance divisors are loaded from a constant buffer. The shader code doing the division is huge. Is it something we need to worry about? Does any app use instance divisors >= 2? VS prolog disassembly: s_load_dwordx4 s[12:15], s[0:1], 0x80 ; C00A0300 00000080 s_nop 0 ; BF800000 s_waitcnt lgkmcnt(0) ; BF8C007F s_buffer_load_dword s14, s[12:15], 0x4 ; C0220386 00000004 s_waitcnt lgkmcnt(0) ; BF8C007F v_cvt_f32_u32_e32 v4, s14 ; 7E080C0E v_rcp_iflag_f32_e32 v4, v4 ; 7E084704 v_mul_f32_e32 v4, 0x4f800000, v4 ; 0A0808FF 4F800000 v_cvt_u32_f32_e32 v4, v4 ; 7E080F04 v_mul_hi_u32 v5, v4, s14 ; D2860005 00001D04 v_mul_lo_i32 v6, v4, s14 ; D2850006 00001D04 v_cmp_eq_u32_e64 s[12:13], 0, v5 ; D0CA000C 00020A80 v_sub_i32_e32 v5, vcc, 0, v6 ; 340A0C80 v_cndmask_b32_e64 v5, v6, v5, s[12:13] ; D1000005 00320B06 v_mul_hi_u32 v5, v5, v4 ; D2860005 00020905 v_add_i32_e32 v6, vcc, v5, v4 ; 320C0905 v_subrev_i32_e32 v4, vcc, v5, v4 ; 36080905 v_cndmask_b32_e64 v4, v4, v6, s[12:13] ; D1000004 00320D04 v_mul_hi_u32 v5, v4, v1 ; D2860005 00020304 v_add_i32_e32 v4, vcc, s8, v0 ; 32080008 v_mul_lo_i32 v6, v5, s14 ; D2850006 00001D05 v_add_i32_e32 v7, vcc, 1, v5 ; 320E0A81 v_cmp_ge_u32_e64 s[12:13], v1, v6 ; D0CE000C 00020D01 v_sub_i32_e32 v6, vcc, v1, v6 ; 340C0D01 v_cmp_le_u32_e32 vcc, s14, v6 ; 7D960C0E v_cndmask_b32_e64 v8, 0, -1, s[12:13] ; D1000008 00318280 v_cndmask_b32_e64 v6, 0, -1, vcc ; D1000006 01A98280 v_and_b32_e32 v6, v8, v6 ; 260C0D08 v_cmp_eq_u32_e32 vcc, 0, v6 ; 7D940C80 v_cndmask_b32_e32 v6, v7, v5, vcc ; 000C0B07 v_add_i32_e32 v5, vcc, -1, v5 ; 320A0AC1 v_cmp_eq_u32_e32 vcc, 0, v8 ; 7D941080 v_cndmask_b32_e32 v5, v6, v5, vcc ; 000A0B06 v_add_i32_e32 v5, vcc, s9, v5 ; 320A0A09 v2: set prefer_mono for fetched instance divisors Reviewed-by: Nicolai Hähnle <nicolai.haehnle@amd.com>
2017-06-09 17:46:07 +01:00
si_set_rw_buffer(sctx, SI_VS_CONST_INSTANCE_DIVISORS, &cb);
}
}
static void si_delete_vertex_element(struct pipe_context *ctx, void *state)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_vertex_elements *v = (struct si_vertex_elements*)state;
if (sctx->vertex_elements == state)
sctx->vertex_elements = NULL;
si_resource_reference(&v->instance_divisor_factor_buffer, NULL);
FREE(state);
}
static void si_set_vertex_buffers(struct pipe_context *ctx,
unsigned start_slot, unsigned count,
const struct pipe_vertex_buffer *buffers)
{
struct si_context *sctx = (struct si_context *)ctx;
struct pipe_vertex_buffer *dst = sctx->vertex_buffer + start_slot;
uint32_t orig_unaligned = sctx->vertex_buffer_unaligned;
uint32_t unaligned = orig_unaligned;
int i;
assert(start_slot + count <= ARRAY_SIZE(sctx->vertex_buffer));
if (buffers) {
for (i = 0; i < count; i++) {
const struct pipe_vertex_buffer *src = buffers + i;
struct pipe_vertex_buffer *dsti = dst + i;
struct pipe_resource *buf = src->buffer.resource;
pipe_resource_reference(&dsti->buffer.resource, buf);
dsti->buffer_offset = src->buffer_offset;
dsti->stride = src->stride;
if (dsti->buffer_offset & 3 || dsti->stride & 3)
unaligned |= 1 << (start_slot + i);
else
unaligned &= ~(1 << (start_slot + i));
si_context_add_resource_size(sctx, buf);
if (buf)
si_resource(buf)->bind_history |= PIPE_BIND_VERTEX_BUFFER;
}
} else {
for (i = 0; i < count; i++) {
pipe_resource_reference(&dst[i].buffer.resource, NULL);
}
unaligned &= ~u_bit_consecutive(start_slot, count);
}
sctx->vertex_buffers_dirty = true;
sctx->vertex_buffer_unaligned = unaligned;
/* Check whether alignment may have changed in a way that requires
* shader changes. This check is conservative: a vertex buffer can only
* trigger a shader change if the misalignment amount changes (e.g.
* from byte-aligned to short-aligned), but we only keep track of
* whether buffers are at least dword-aligned, since that should always
* be the case in well-behaved applications anyway.
*/
if (sctx->vertex_elements &&
(sctx->vertex_elements->vb_alignment_check_mask &
(unaligned | orig_unaligned) & u_bit_consecutive(start_slot, count)))
sctx->do_update_shaders = true;
}
/*
* Misc
*/
static void si_set_tess_state(struct pipe_context *ctx,
const float default_outer_level[4],
const float default_inner_level[2])
{
struct si_context *sctx = (struct si_context *)ctx;
struct pipe_constant_buffer cb;
float array[8];
memcpy(array, default_outer_level, sizeof(float) * 4);
memcpy(array+4, default_inner_level, sizeof(float) * 2);
cb.buffer = NULL;
cb.user_buffer = NULL;
cb.buffer_size = sizeof(array);
si_upload_const_buffer(sctx, (struct si_resource**)&cb.buffer,
(void*)array, sizeof(array),
&cb.buffer_offset);
si_set_rw_buffer(sctx, SI_HS_CONST_DEFAULT_TESS_LEVELS, &cb);
pipe_resource_reference(&cb.buffer, NULL);
}
static void si_texture_barrier(struct pipe_context *ctx, unsigned flags)
{
struct si_context *sctx = (struct si_context *)ctx;
si_update_fb_dirtiness_after_rendering(sctx);
/* Multisample surfaces are flushed in si_decompress_textures. */
if (sctx->framebuffer.uncompressed_cb_mask) {
si_make_CB_shader_coherent(sctx, sctx->framebuffer.nr_samples,
sctx->framebuffer.CB_has_shader_readable_metadata,
sctx->framebuffer.all_DCC_pipe_aligned);
}
}
/* This only ensures coherency for shader image/buffer stores. */
static void si_memory_barrier(struct pipe_context *ctx, unsigned flags)
{
struct si_context *sctx = (struct si_context *)ctx;
gallium: Add PIPE_BARRIER_UPDATE_BUFFER and UPDATE_TEXTURE bits. The glMemoryBarrier() function makes shader memory stores ordered with respect to things specified by the given bits. Until now, st/mesa has ignored GL_TEXTURE_UPDATE_BARRIER_BIT and GL_BUFFER_UPDATE_BARRIER_BIT, saying that drivers should implicitly perform the needed flushing. This seems like a pretty big assumption to make. Instead, this commit opts to translate them to new PIPE_BARRIER bits, and adjusts existing drivers to continue ignoring them (preserving the current behavior). The i965 driver performs actions on these memory barriers. Shader memory stores go through a "data cache" which is separate from the render cache and other read caches (like the texture cache). All memory barriers need to flush the data cache (to ensure shader memory stores are visible), and possibly invalidate read caches (to ensure stale data is no longer visible). The driver implicitly flushes for most caches, but not for data cache, since ARB_shader_image_load_store introduced MemoryBarrier() precisely to order these explicitly. I would like to follow i965's approach in iris, flushing the data cache on any MemoryBarrier() call, so I need st/mesa to actually call the pipe->memory_barrier() callback. Fixes KHR-GL45.shader_image_load_store.advanced-sync-textureUpdate and Piglit's spec/arb_shader_image_load_store/host-mem-barrier on the iris driver. Roland said this looks reasonable to him. Reviewed-by: Eric Anholt <eric@anholt.net>
2019-03-06 04:43:11 +00:00
if (!(flags & ~PIPE_BARRIER_UPDATE))
return;
/* Subsequent commands must wait for all shader invocations to
* complete. */
sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH |
SI_CONTEXT_CS_PARTIAL_FLUSH;
if (flags & PIPE_BARRIER_CONSTANT_BUFFER)
sctx->flags |= SI_CONTEXT_INV_SCACHE |
SI_CONTEXT_INV_VCACHE;
if (flags & (PIPE_BARRIER_VERTEX_BUFFER |
PIPE_BARRIER_SHADER_BUFFER |
PIPE_BARRIER_TEXTURE |
PIPE_BARRIER_IMAGE |
PIPE_BARRIER_STREAMOUT_BUFFER |
PIPE_BARRIER_GLOBAL_BUFFER)) {
/* As far as I can tell, L1 contents are written back to L2
* automatically at end of shader, but the contents of other
* L1 caches might still be stale. */
sctx->flags |= SI_CONTEXT_INV_VCACHE;
}
if (flags & PIPE_BARRIER_INDEX_BUFFER) {
/* Indices are read through TC L2 since GFX8.
* L1 isn't used.
*/
if (sctx->screen->info.chip_class <= GFX7)
sctx->flags |= SI_CONTEXT_WB_L2;
}
/* MSAA color, any depth and any stencil are flushed in
* si_decompress_textures when needed.
*/
if (flags & PIPE_BARRIER_FRAMEBUFFER &&
sctx->framebuffer.uncompressed_cb_mask) {
sctx->flags |= SI_CONTEXT_FLUSH_AND_INV_CB;
if (sctx->chip_class <= GFX8)
sctx->flags |= SI_CONTEXT_WB_L2;
}
/* Indirect buffers use TC L2 on GFX9, but not older hw. */
if (sctx->screen->info.chip_class <= GFX8 &&
flags & PIPE_BARRIER_INDIRECT_BUFFER)
sctx->flags |= SI_CONTEXT_WB_L2;
}
static void *si_create_blend_custom(struct si_context *sctx, unsigned mode)
{
struct pipe_blend_state blend;
memset(&blend, 0, sizeof(blend));
blend.independent_blend_enable = true;
blend.rt[0].colormask = 0xf;
return si_create_blend_state_mode(&sctx->b, &blend, mode);
}
static void si_init_config(struct si_context *sctx);
void si_init_state_compute_functions(struct si_context *sctx)
{
sctx->b.create_sampler_state = si_create_sampler_state;
sctx->b.delete_sampler_state = si_delete_sampler_state;
sctx->b.create_sampler_view = si_create_sampler_view;
sctx->b.sampler_view_destroy = si_sampler_view_destroy;
sctx->b.memory_barrier = si_memory_barrier;
}
void si_init_state_functions(struct si_context *sctx)
{
sctx->atoms.s.framebuffer.emit = si_emit_framebuffer_state;
sctx->atoms.s.msaa_sample_locs.emit = si_emit_msaa_sample_locs;
sctx->atoms.s.db_render_state.emit = si_emit_db_render_state;
sctx->atoms.s.dpbb_state.emit = si_emit_dpbb_state;
sctx->atoms.s.msaa_config.emit = si_emit_msaa_config;
sctx->atoms.s.sample_mask.emit = si_emit_sample_mask;
sctx->atoms.s.cb_render_state.emit = si_emit_cb_render_state;
sctx->atoms.s.blend_color.emit = si_emit_blend_color;
sctx->atoms.s.clip_regs.emit = si_emit_clip_regs;
sctx->atoms.s.clip_state.emit = si_emit_clip_state;
sctx->atoms.s.stencil_ref.emit = si_emit_stencil_ref;
sctx->b.create_blend_state = si_create_blend_state;
sctx->b.bind_blend_state = si_bind_blend_state;
sctx->b.delete_blend_state = si_delete_blend_state;
sctx->b.set_blend_color = si_set_blend_color;
sctx->b.create_rasterizer_state = si_create_rs_state;
sctx->b.bind_rasterizer_state = si_bind_rs_state;
sctx->b.delete_rasterizer_state = si_delete_rs_state;
sctx->b.create_depth_stencil_alpha_state = si_create_dsa_state;
sctx->b.bind_depth_stencil_alpha_state = si_bind_dsa_state;
sctx->b.delete_depth_stencil_alpha_state = si_delete_dsa_state;
sctx->custom_dsa_flush = si_create_db_flush_dsa(sctx);
sctx->custom_blend_resolve = si_create_blend_custom(sctx, V_028808_CB_RESOLVE);
sctx->custom_blend_fmask_decompress = si_create_blend_custom(sctx, V_028808_CB_FMASK_DECOMPRESS);
sctx->custom_blend_eliminate_fastclear = si_create_blend_custom(sctx, V_028808_CB_ELIMINATE_FAST_CLEAR);
sctx->custom_blend_dcc_decompress = si_create_blend_custom(sctx, V_028808_CB_DCC_DECOMPRESS);
sctx->b.set_clip_state = si_set_clip_state;
sctx->b.set_stencil_ref = si_set_stencil_ref;
sctx->b.set_framebuffer_state = si_set_framebuffer_state;
sctx->b.set_sample_mask = si_set_sample_mask;
sctx->b.create_vertex_elements_state = si_create_vertex_elements;
sctx->b.bind_vertex_elements_state = si_bind_vertex_elements;
sctx->b.delete_vertex_elements_state = si_delete_vertex_element;
sctx->b.set_vertex_buffers = si_set_vertex_buffers;
sctx->b.texture_barrier = si_texture_barrier;
sctx->b.set_min_samples = si_set_min_samples;
sctx->b.set_tess_state = si_set_tess_state;
sctx->b.set_active_query_state = si_set_active_query_state;
si_init_config(sctx);
}
void si_init_screen_state_functions(struct si_screen *sscreen)
{
sscreen->b.is_format_supported = si_is_format_supported;
if (sscreen->info.chip_class >= GFX10) {
sscreen->make_texture_descriptor = gfx10_make_texture_descriptor;
} else {
sscreen->make_texture_descriptor = si_make_texture_descriptor;
}
}
static void si_set_grbm_gfx_index(struct si_context *sctx,
struct si_pm4_state *pm4, unsigned value)
{
unsigned reg = sctx->chip_class >= GFX7 ? R_030800_GRBM_GFX_INDEX :
R_00802C_GRBM_GFX_INDEX;
si_pm4_set_reg(pm4, reg, value);
}
static void si_set_grbm_gfx_index_se(struct si_context *sctx,
struct si_pm4_state *pm4, unsigned se)
{
assert(se == ~0 || se < sctx->screen->info.max_se);
si_set_grbm_gfx_index(sctx, pm4,
(se == ~0 ? S_030800_SE_BROADCAST_WRITES(1) :
S_030800_SE_INDEX(se)) |
S_030800_SH_BROADCAST_WRITES(1) |
S_030800_INSTANCE_BROADCAST_WRITES(1));
}
static void
si_write_harvested_raster_configs(struct si_context *sctx,
struct si_pm4_state *pm4,
unsigned raster_config,
unsigned raster_config_1)
{
unsigned num_se = MAX2(sctx->screen->info.max_se, 1);
unsigned raster_config_se[4];
unsigned se;
ac_get_harvested_configs(&sctx->screen->info,
raster_config,
&raster_config_1,
raster_config_se);
for (se = 0; se < num_se; se++) {
si_set_grbm_gfx_index_se(sctx, pm4, se);
si_pm4_set_reg(pm4, R_028350_PA_SC_RASTER_CONFIG, raster_config_se[se]);
}
si_set_grbm_gfx_index(sctx, pm4, ~0);
if (sctx->chip_class >= GFX7) {
si_pm4_set_reg(pm4, R_028354_PA_SC_RASTER_CONFIG_1, raster_config_1);
}
}
static void si_set_raster_config(struct si_context *sctx, struct si_pm4_state *pm4)
{
struct si_screen *sscreen = sctx->screen;
unsigned num_rb = MIN2(sscreen->info.num_render_backends, 16);
unsigned rb_mask = sscreen->info.enabled_rb_mask;
unsigned raster_config = sscreen->pa_sc_raster_config;
unsigned raster_config_1 = sscreen->pa_sc_raster_config_1;
if (!rb_mask || util_bitcount(rb_mask) >= num_rb) {
/* Always use the default config when all backends are enabled
* (or when we failed to determine the enabled backends).
*/
si_pm4_set_reg(pm4, R_028350_PA_SC_RASTER_CONFIG,
raster_config);
if (sctx->chip_class >= GFX7)
si_pm4_set_reg(pm4, R_028354_PA_SC_RASTER_CONFIG_1,
raster_config_1);
} else {
si_write_harvested_raster_configs(sctx, pm4, raster_config, raster_config_1);
}
}
static void si_init_config(struct si_context *sctx)
{
struct si_screen *sscreen = sctx->screen;
uint64_t border_color_va = sctx->border_color_buffer->gpu_address;
bool has_clear_state = sscreen->info.has_clear_state;
struct si_pm4_state *pm4 = CALLOC_STRUCT(si_pm4_state);
if (!pm4)
return;
si_pm4_cmd_begin(pm4, PKT3_CONTEXT_CONTROL);
si_pm4_cmd_add(pm4, CONTEXT_CONTROL_LOAD_ENABLE(1));
si_pm4_cmd_add(pm4, CONTEXT_CONTROL_SHADOW_ENABLE(1));
si_pm4_cmd_end(pm4, false);
if (has_clear_state) {
si_pm4_cmd_begin(pm4, PKT3_CLEAR_STATE);
si_pm4_cmd_add(pm4, 0);
si_pm4_cmd_end(pm4, false);
}
if (sctx->chip_class <= GFX8)
si_set_raster_config(sctx, pm4);
si_pm4_set_reg(pm4, R_028A18_VGT_HOS_MAX_TESS_LEVEL, fui(64));
if (!has_clear_state)
si_pm4_set_reg(pm4, R_028A1C_VGT_HOS_MIN_TESS_LEVEL, fui(0));
/* FIXME calculate these values somehow ??? */
if (sctx->chip_class <= GFX8) {
si_pm4_set_reg(pm4, R_028A54_VGT_GS_PER_ES, SI_GS_PER_ES);
si_pm4_set_reg(pm4, R_028A58_VGT_ES_PER_GS, 0x40);
}
if (!has_clear_state) {
si_pm4_set_reg(pm4, R_028A5C_VGT_GS_PER_VS, 0x2);
si_pm4_set_reg(pm4, R_028A8C_VGT_PRIMITIVEID_RESET, 0x0);
si_pm4_set_reg(pm4, R_028B98_VGT_STRMOUT_BUFFER_CONFIG, 0x0);
}
if (sscreen->info.chip_class <= GFX9)
si_pm4_set_reg(pm4, R_028AA0_VGT_INSTANCE_STEP_RATE_0, 1);
if (!has_clear_state)
si_pm4_set_reg(pm4, R_028AB8_VGT_VTX_CNT_EN, 0x0);
if (sctx->chip_class < GFX7)
si_pm4_set_reg(pm4, R_008A14_PA_CL_ENHANCE, S_008A14_NUM_CLIP_SEQ(3) |
S_008A14_CLIP_VTX_REORDER_ENA(1));
/* CLEAR_STATE doesn't clear these correctly on certain generations.
* I don't know why. Deduced by trial and error.
*/
if (sctx->chip_class <= GFX7 || !has_clear_state) {
si_pm4_set_reg(pm4, R_028B28_VGT_STRMOUT_DRAW_OPAQUE_OFFSET, 0);
si_pm4_set_reg(pm4, R_028204_PA_SC_WINDOW_SCISSOR_TL, S_028204_WINDOW_OFFSET_DISABLE(1));
si_pm4_set_reg(pm4, R_028240_PA_SC_GENERIC_SCISSOR_TL, S_028240_WINDOW_OFFSET_DISABLE(1));
si_pm4_set_reg(pm4, R_028244_PA_SC_GENERIC_SCISSOR_BR,
S_028244_BR_X(16384) | S_028244_BR_Y(16384));
si_pm4_set_reg(pm4, R_028030_PA_SC_SCREEN_SCISSOR_TL, 0);
si_pm4_set_reg(pm4, R_028034_PA_SC_SCREEN_SCISSOR_BR,
S_028034_BR_X(16384) | S_028034_BR_Y(16384));
}
if (!has_clear_state) {
si_pm4_set_reg(pm4, R_028230_PA_SC_EDGERULE,
S_028230_ER_TRI(0xA) |
S_028230_ER_POINT(0xA) |
S_028230_ER_RECT(0xA) |
/* Required by DX10_DIAMOND_TEST_ENA: */
S_028230_ER_LINE_LR(0x1A) |
S_028230_ER_LINE_RL(0x26) |
S_028230_ER_LINE_TB(0xA) |
S_028230_ER_LINE_BT(0xA));
si_pm4_set_reg(pm4, R_028820_PA_CL_NANINF_CNTL, 0);
si_pm4_set_reg(pm4, R_028AC0_DB_SRESULTS_COMPARE_STATE0, 0x0);
si_pm4_set_reg(pm4, R_028AC4_DB_SRESULTS_COMPARE_STATE1, 0x0);
si_pm4_set_reg(pm4, R_028AC8_DB_PRELOAD_CONTROL, 0x0);
si_pm4_set_reg(pm4, R_02800C_DB_RENDER_OVERRIDE, 0);
}
if (sctx->chip_class >= GFX10) {
si_pm4_set_reg(pm4, R_028A98_VGT_DRAW_PAYLOAD_CNTL, 0);
si_pm4_set_reg(pm4, R_030964_GE_MAX_VTX_INDX, ~0);
si_pm4_set_reg(pm4, R_030924_GE_MIN_VTX_INDX, 0);
si_pm4_set_reg(pm4, R_030928_GE_INDX_OFFSET, 0);
si_pm4_set_reg(pm4, R_03097C_GE_STEREO_CNTL, 0);
si_pm4_set_reg(pm4, R_030988_GE_USER_VGPR_EN, 0);
} else if (sctx->chip_class == GFX9) {
si_pm4_set_reg(pm4, R_030920_VGT_MAX_VTX_INDX, ~0);
si_pm4_set_reg(pm4, R_030924_VGT_MIN_VTX_INDX, 0);
si_pm4_set_reg(pm4, R_030928_VGT_INDX_OFFSET, 0);
} else {
/* These registers, when written, also overwrite the CLEAR_STATE
* context, so we can't rely on CLEAR_STATE setting them.
* It would be an issue if there was another UMD changing them.
*/
si_pm4_set_reg(pm4, R_028400_VGT_MAX_VTX_INDX, ~0);
si_pm4_set_reg(pm4, R_028404_VGT_MIN_VTX_INDX, 0);
si_pm4_set_reg(pm4, R_028408_VGT_INDX_OFFSET, 0);
}
if (sctx->chip_class >= GFX7) {
if (sctx->chip_class >= GFX10) {
/* Logical CUs 16 - 31 */
si_pm4_set_reg(pm4, R_00B404_SPI_SHADER_PGM_RSRC4_HS,
S_00B404_CU_EN(0xffff));
si_pm4_set_reg(pm4, R_00B104_SPI_SHADER_PGM_RSRC4_VS,
S_00B104_CU_EN(0xffff));
si_pm4_set_reg(pm4, R_00B004_SPI_SHADER_PGM_RSRC4_PS,
S_00B004_CU_EN(0xffff));
}
if (sctx->chip_class >= GFX9) {
si_pm4_set_reg(pm4, R_00B41C_SPI_SHADER_PGM_RSRC3_HS,
S_00B41C_CU_EN(0xffff) | S_00B41C_WAVE_LIMIT(0x3F));
} else {
si_pm4_set_reg(pm4, R_00B51C_SPI_SHADER_PGM_RSRC3_LS,
S_00B51C_CU_EN(0xffff) | S_00B51C_WAVE_LIMIT(0x3F));
si_pm4_set_reg(pm4, R_00B41C_SPI_SHADER_PGM_RSRC3_HS,
S_00B41C_WAVE_LIMIT(0x3F));
si_pm4_set_reg(pm4, R_00B31C_SPI_SHADER_PGM_RSRC3_ES,
S_00B31C_CU_EN(0xffff) | S_00B31C_WAVE_LIMIT(0x3F));
/* If this is 0, Bonaire can hang even if GS isn't being used.
* Other chips are unaffected. These are suboptimal values,
* but we don't use on-chip GS.
*/
si_pm4_set_reg(pm4, R_028A44_VGT_GS_ONCHIP_CNTL,
S_028A44_ES_VERTS_PER_SUBGRP(64) |
S_028A44_GS_PRIMS_PER_SUBGRP(4));
}
/* Compute LATE_ALLOC_VS.LIMIT. */
unsigned num_cu_per_sh = sscreen->info.num_good_cu_per_sh;
unsigned late_alloc_limit; /* The limit is per SH. */
if (sctx->family == CHIP_KABINI) {
late_alloc_limit = 0; /* Potential hang on Kabini. */
} else if (num_cu_per_sh <= 4) {
/* Too few available compute units per SH. Disallowing
* VS to run on one CU could hurt us more than late VS
* allocation would help.
*
* 2 is the highest safe number that allows us to keep
* all CUs enabled.
*/
late_alloc_limit = 2;
} else {
/* This is a good initial value, allowing 1 late_alloc
* wave per SIMD on num_cu - 2.
*/
late_alloc_limit = (num_cu_per_sh - 2) * 4;
}
unsigned late_alloc_limit_gs = late_alloc_limit;
unsigned cu_mask_vs = 0xffff;
unsigned cu_mask_gs = 0xffff;
if (late_alloc_limit > 2) {
if (sctx->chip_class >= GFX10) {
/* CU2 & CU3 disabled because of the dual CU design */
cu_mask_vs = 0xfff3;
cu_mask_gs = 0xfff3; /* NGG only */
} else {
cu_mask_vs = 0xfffe; /* 1 CU disabled */
}
}
/* Don't use late alloc for NGG on Navi14 due to a hw bug.
* If NGG is never used, enable all CUs.
*/
if (!sscreen->use_ngg || sctx->family == CHIP_NAVI14) {
late_alloc_limit_gs = 0;
cu_mask_gs = 0xffff;
}
/* VS can't execute on one CU if the limit is > 2. */
si_pm4_set_reg(pm4, R_00B118_SPI_SHADER_PGM_RSRC3_VS,
S_00B118_CU_EN(cu_mask_vs) |
S_00B118_WAVE_LIMIT(0x3F));
si_pm4_set_reg(pm4, R_00B11C_SPI_SHADER_LATE_ALLOC_VS,
S_00B11C_LIMIT(late_alloc_limit));
si_pm4_set_reg(pm4, R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
S_00B21C_CU_EN(cu_mask_gs) | S_00B21C_WAVE_LIMIT(0x3F));
if (sctx->chip_class >= GFX10) {
si_pm4_set_reg(pm4, R_00B204_SPI_SHADER_PGM_RSRC4_GS,
S_00B204_CU_EN(0xffff) |
S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(late_alloc_limit_gs));
}
si_pm4_set_reg(pm4, R_00B01C_SPI_SHADER_PGM_RSRC3_PS,
S_00B01C_CU_EN(0xffff) | S_00B01C_WAVE_LIMIT(0x3F));
}
if (sctx->chip_class >= GFX10) {
/* Break up a pixel wave if it contains deallocs for more than
* half the parameter cache.
*
* To avoid a deadlock where pixel waves aren't launched
* because they're waiting for more pixels while the frontend
* is stuck waiting for PC space, the maximum allowed value is
* the size of the PC minus the largest possible allocation for
* a single primitive shader subgroup.
*/
si_pm4_set_reg(pm4, R_028C50_PA_SC_NGG_MODE_CNTL,
S_028C50_MAX_DEALLOCS_IN_WAVE(512));
si_pm4_set_reg(pm4, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL, 14);
if (!has_clear_state) {
si_pm4_set_reg(pm4, R_02835C_PA_SC_TILE_STEERING_OVERRIDE,
sscreen->info.pa_sc_tile_steering_override);
}
si_pm4_set_reg(pm4, R_02807C_DB_RMI_L2_CACHE_CONTROL,
S_02807C_Z_WR_POLICY(V_02807C_CACHE_STREAM_WR) |
S_02807C_S_WR_POLICY(V_02807C_CACHE_STREAM_WR) |
S_02807C_HTILE_WR_POLICY(V_02807C_CACHE_STREAM_WR) |
S_02807C_ZPCPSD_WR_POLICY(V_02807C_CACHE_STREAM_WR) |
S_02807C_Z_RD_POLICY(V_02807C_CACHE_NOA_RD) |
S_02807C_S_RD_POLICY(V_02807C_CACHE_NOA_RD) |
S_02807C_HTILE_RD_POLICY(V_02807C_CACHE_NOA_RD));
si_pm4_set_reg(pm4, R_028410_CB_RMI_GL2_CACHE_CONTROL,
S_028410_CMASK_WR_POLICY(V_028410_CACHE_STREAM_WR) |
S_028410_FMASK_WR_POLICY(V_028410_CACHE_STREAM_WR) |
S_028410_DCC_WR_POLICY(V_028410_CACHE_STREAM_WR) |
S_028410_COLOR_WR_POLICY(V_028410_CACHE_STREAM_WR) |
S_028410_CMASK_RD_POLICY(V_028410_CACHE_NOA_RD) |
S_028410_FMASK_RD_POLICY(V_028410_CACHE_NOA_RD) |
S_028410_DCC_RD_POLICY(V_028410_CACHE_NOA_RD) |
S_028410_COLOR_RD_POLICY(V_028410_CACHE_NOA_RD));
si_pm4_set_reg(pm4, R_028428_CB_COVERAGE_OUT_CONTROL, 0);
si_pm4_set_reg(pm4, R_00B0C0_SPI_SHADER_REQ_CTRL_PS,
S_00B0C0_SOFT_GROUPING_EN(1) |
S_00B0C0_NUMBER_OF_REQUESTS_PER_CU(4 - 1));
si_pm4_set_reg(pm4, R_00B1C0_SPI_SHADER_REQ_CTRL_VS, 0);
if (sctx->family == CHIP_NAVI10 ||
sctx->family == CHIP_NAVI12 ||
sctx->family == CHIP_NAVI14) {
/* SQ_NON_EVENT must be emitted before GE_PC_ALLOC is written. */
si_pm4_cmd_begin(pm4, PKT3_EVENT_WRITE);
si_pm4_cmd_add(pm4, EVENT_TYPE(V_028A90_SQ_NON_EVENT) | EVENT_INDEX(0));
si_pm4_cmd_end(pm4, false);
}
/* TODO: For culling, replace 128 with 256. */
si_pm4_set_reg(pm4, R_030980_GE_PC_ALLOC,
S_030980_OVERSUB_EN(1) |
S_030980_NUM_PC_LINES(128 * sscreen->info.max_se - 1));
}
if (sctx->chip_class >= GFX8) {
unsigned vgt_tess_distribution;
vgt_tess_distribution =
S_028B50_ACCUM_ISOLINE(32) |
S_028B50_ACCUM_TRI(11) |
S_028B50_ACCUM_QUAD(11) |
S_028B50_DONUT_SPLIT(16);
/* Testing with Unigine Heaven extreme tesselation yielded best results
* with TRAP_SPLIT = 3.
*/
if (sctx->family == CHIP_FIJI ||
sctx->family >= CHIP_POLARIS10)
vgt_tess_distribution |= S_028B50_TRAP_SPLIT(3);
si_pm4_set_reg(pm4, R_028B50_VGT_TESS_DISTRIBUTION, vgt_tess_distribution);
} else if (!has_clear_state) {
si_pm4_set_reg(pm4, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL, 14);
si_pm4_set_reg(pm4, R_028C5C_VGT_OUT_DEALLOC_CNTL, 16);
2015-04-16 19:44:54 +01:00
}
si_pm4_set_reg(pm4, R_028080_TA_BC_BASE_ADDR, border_color_va >> 8);
if (sctx->chip_class >= GFX7) {
si_pm4_set_reg(pm4, R_028084_TA_BC_BASE_ADDR_HI,
S_028084_ADDRESS(border_color_va >> 40));
}
si_pm4_add_bo(pm4, sctx->border_color_buffer, RADEON_USAGE_READ,
RADEON_PRIO_BORDER_COLORS);
if (sctx->chip_class >= GFX9) {
si_pm4_set_reg(pm4, R_028C48_PA_SC_BINNER_CNTL_1,
S_028C48_MAX_ALLOC_COUNT(sscreen->info.pbb_max_alloc_count - 1) |
S_028C48_MAX_PRIM_PER_BATCH(1023));
si_pm4_set_reg(pm4, R_028C4C_PA_SC_CONSERVATIVE_RASTERIZATION_CNTL,
S_028C4C_NULL_SQUAD_AA_MASK_ENABLE(1));
si_pm4_set_reg(pm4, R_030968_VGT_INSTANCE_BASE_ID, 0);
}
si_pm4_upload_indirect_buffer(sctx, pm4);
sctx->init_config = pm4;
}