mesa/src/mesa/drivers/dri/i965/brw_shader.cpp

1422 lines
40 KiB
C++
Raw Normal View History

/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "brw_context.h"
#include "brw_cfg.h"
#include "brw_eu.h"
#include "brw_fs.h"
#include "brw_nir.h"
#include "brw_vec4_tes.h"
#include "main/uniforms.h"
extern "C" void
brw_mark_surface_used(struct brw_stage_prog_data *prog_data,
unsigned surf_index)
{
assert(surf_index < BRW_MAX_SURFACES);
prog_data->binding_table.size_bytes =
MAX2(prog_data->binding_table.size_bytes, (surf_index + 1) * 4);
}
enum brw_reg_type
brw_type_for_base_type(const struct glsl_type *type)
{
switch (type->base_type) {
case GLSL_TYPE_FLOAT:
return BRW_REGISTER_TYPE_F;
case GLSL_TYPE_INT:
case GLSL_TYPE_BOOL:
case GLSL_TYPE_SUBROUTINE:
return BRW_REGISTER_TYPE_D;
case GLSL_TYPE_UINT:
return BRW_REGISTER_TYPE_UD;
case GLSL_TYPE_ARRAY:
return brw_type_for_base_type(type->fields.array);
case GLSL_TYPE_STRUCT:
case GLSL_TYPE_SAMPLER:
case GLSL_TYPE_ATOMIC_UINT:
/* These should be overridden with the type of the member when
* dereferenced into. BRW_REGISTER_TYPE_UD seems like a likely
* way to trip up if we don't.
*/
return BRW_REGISTER_TYPE_UD;
case GLSL_TYPE_IMAGE:
return BRW_REGISTER_TYPE_UD;
case GLSL_TYPE_DOUBLE:
return BRW_REGISTER_TYPE_DF;
case GLSL_TYPE_VOID:
case GLSL_TYPE_ERROR:
case GLSL_TYPE_INTERFACE:
case GLSL_TYPE_FUNCTION:
unreachable("not reached");
}
return BRW_REGISTER_TYPE_F;
}
enum brw_conditional_mod
brw_conditional_for_comparison(unsigned int op)
{
switch (op) {
case ir_binop_less:
return BRW_CONDITIONAL_L;
case ir_binop_greater:
return BRW_CONDITIONAL_G;
case ir_binop_lequal:
return BRW_CONDITIONAL_LE;
case ir_binop_gequal:
return BRW_CONDITIONAL_GE;
case ir_binop_equal:
case ir_binop_all_equal: /* same as equal for scalars */
return BRW_CONDITIONAL_Z;
case ir_binop_nequal:
case ir_binop_any_nequal: /* same as nequal for scalars */
return BRW_CONDITIONAL_NZ;
default:
unreachable("not reached: bad operation for comparison");
}
}
uint32_t
brw_math_function(enum opcode op)
{
switch (op) {
case SHADER_OPCODE_RCP:
return BRW_MATH_FUNCTION_INV;
case SHADER_OPCODE_RSQ:
return BRW_MATH_FUNCTION_RSQ;
case SHADER_OPCODE_SQRT:
return BRW_MATH_FUNCTION_SQRT;
case SHADER_OPCODE_EXP2:
return BRW_MATH_FUNCTION_EXP;
case SHADER_OPCODE_LOG2:
return BRW_MATH_FUNCTION_LOG;
case SHADER_OPCODE_POW:
return BRW_MATH_FUNCTION_POW;
case SHADER_OPCODE_SIN:
return BRW_MATH_FUNCTION_SIN;
case SHADER_OPCODE_COS:
return BRW_MATH_FUNCTION_COS;
case SHADER_OPCODE_INT_QUOTIENT:
return BRW_MATH_FUNCTION_INT_DIV_QUOTIENT;
case SHADER_OPCODE_INT_REMAINDER:
return BRW_MATH_FUNCTION_INT_DIV_REMAINDER;
default:
unreachable("not reached: unknown math function");
}
}
uint32_t
brw_texture_offset(int *offsets, unsigned num_components)
{
if (!offsets) return 0; /* nonconstant offset; caller will handle it. */
/* Combine all three offsets into a single unsigned dword:
*
* bits 11:8 - U Offset (X component)
* bits 7:4 - V Offset (Y component)
* bits 3:0 - R Offset (Z component)
*/
unsigned offset_bits = 0;
for (unsigned i = 0; i < num_components; i++) {
const unsigned shift = 4 * (2 - i);
offset_bits |= (offsets[i] << shift) & (0xF << shift);
}
return offset_bits;
}
const char *
brw_instruction_name(const struct gen_device_info *devinfo, enum opcode op)
{
switch (op) {
case BRW_OPCODE_ILLEGAL ... BRW_OPCODE_NOP:
/* The DO instruction doesn't exist on Gen6+, but we use it to mark the
* start of a loop in the IR.
*/
if (devinfo->gen >= 6 && op == BRW_OPCODE_DO)
return "do";
assert(brw_opcode_desc(devinfo, op)->name);
return brw_opcode_desc(devinfo, op)->name;
case FS_OPCODE_FB_WRITE:
return "fb_write";
case FS_OPCODE_FB_WRITE_LOGICAL:
return "fb_write_logical";
case FS_OPCODE_REP_FB_WRITE:
return "rep_fb_write";
case FS_OPCODE_FB_READ:
return "fb_read";
case FS_OPCODE_FB_READ_LOGICAL:
return "fb_read_logical";
case SHADER_OPCODE_RCP:
return "rcp";
case SHADER_OPCODE_RSQ:
return "rsq";
case SHADER_OPCODE_SQRT:
return "sqrt";
case SHADER_OPCODE_EXP2:
return "exp2";
case SHADER_OPCODE_LOG2:
return "log2";
case SHADER_OPCODE_POW:
return "pow";
case SHADER_OPCODE_INT_QUOTIENT:
return "int_quot";
case SHADER_OPCODE_INT_REMAINDER:
return "int_rem";
case SHADER_OPCODE_SIN:
return "sin";
case SHADER_OPCODE_COS:
return "cos";
case SHADER_OPCODE_TEX:
return "tex";
case SHADER_OPCODE_TEX_LOGICAL:
return "tex_logical";
case SHADER_OPCODE_TXD:
return "txd";
case SHADER_OPCODE_TXD_LOGICAL:
return "txd_logical";
case SHADER_OPCODE_TXF:
return "txf";
case SHADER_OPCODE_TXF_LOGICAL:
return "txf_logical";
case SHADER_OPCODE_TXF_LZ:
return "txf_lz";
case SHADER_OPCODE_TXL:
return "txl";
case SHADER_OPCODE_TXL_LOGICAL:
return "txl_logical";
case SHADER_OPCODE_TXL_LZ:
return "txl_lz";
case SHADER_OPCODE_TXS:
return "txs";
case SHADER_OPCODE_TXS_LOGICAL:
return "txs_logical";
case FS_OPCODE_TXB:
return "txb";
case FS_OPCODE_TXB_LOGICAL:
return "txb_logical";
case SHADER_OPCODE_TXF_CMS:
return "txf_cms";
case SHADER_OPCODE_TXF_CMS_LOGICAL:
return "txf_cms_logical";
case SHADER_OPCODE_TXF_CMS_W:
return "txf_cms_w";
case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
return "txf_cms_w_logical";
case SHADER_OPCODE_TXF_UMS:
return "txf_ums";
case SHADER_OPCODE_TXF_UMS_LOGICAL:
return "txf_ums_logical";
case SHADER_OPCODE_TXF_MCS:
return "txf_mcs";
case SHADER_OPCODE_TXF_MCS_LOGICAL:
return "txf_mcs_logical";
case SHADER_OPCODE_LOD:
return "lod";
case SHADER_OPCODE_LOD_LOGICAL:
return "lod_logical";
case SHADER_OPCODE_TG4:
return "tg4";
case SHADER_OPCODE_TG4_LOGICAL:
return "tg4_logical";
case SHADER_OPCODE_TG4_OFFSET:
return "tg4_offset";
case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
return "tg4_offset_logical";
case SHADER_OPCODE_SAMPLEINFO:
return "sampleinfo";
case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
return "sampleinfo_logical";
case SHADER_OPCODE_SHADER_TIME_ADD:
return "shader_time_add";
case SHADER_OPCODE_UNTYPED_ATOMIC:
return "untyped_atomic";
case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
return "untyped_atomic_logical";
case SHADER_OPCODE_UNTYPED_SURFACE_READ:
return "untyped_surface_read";
case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
return "untyped_surface_read_logical";
case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
return "untyped_surface_write";
case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
return "untyped_surface_write_logical";
case SHADER_OPCODE_TYPED_ATOMIC:
return "typed_atomic";
case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
return "typed_atomic_logical";
case SHADER_OPCODE_TYPED_SURFACE_READ:
return "typed_surface_read";
case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
return "typed_surface_read_logical";
case SHADER_OPCODE_TYPED_SURFACE_WRITE:
return "typed_surface_write";
case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
return "typed_surface_write_logical";
case SHADER_OPCODE_MEMORY_FENCE:
return "memory_fence";
case SHADER_OPCODE_LOAD_PAYLOAD:
return "load_payload";
case FS_OPCODE_PACK:
return "pack";
case SHADER_OPCODE_GEN4_SCRATCH_READ:
return "gen4_scratch_read";
case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
return "gen4_scratch_write";
case SHADER_OPCODE_GEN7_SCRATCH_READ:
return "gen7_scratch_read";
case SHADER_OPCODE_URB_WRITE_SIMD8:
return "gen8_urb_write_simd8";
case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
return "gen8_urb_write_simd8_per_slot";
case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
return "gen8_urb_write_simd8_masked";
case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
return "gen8_urb_write_simd8_masked_per_slot";
case SHADER_OPCODE_URB_READ_SIMD8:
return "urb_read_simd8";
case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
return "urb_read_simd8_per_slot";
case SHADER_OPCODE_FIND_LIVE_CHANNEL:
return "find_live_channel";
case SHADER_OPCODE_BROADCAST:
return "broadcast";
case VEC4_OPCODE_MOV_BYTES:
return "mov_bytes";
case VEC4_OPCODE_PACK_BYTES:
return "pack_bytes";
case VEC4_OPCODE_UNPACK_UNIFORM:
return "unpack_uniform";
case FS_OPCODE_DDX_COARSE:
return "ddx_coarse";
case FS_OPCODE_DDX_FINE:
return "ddx_fine";
case FS_OPCODE_DDY_COARSE:
return "ddy_coarse";
case FS_OPCODE_DDY_FINE:
return "ddy_fine";
case FS_OPCODE_CINTERP:
return "cinterp";
case FS_OPCODE_LINTERP:
return "linterp";
case FS_OPCODE_PIXEL_X:
return "pixel_x";
case FS_OPCODE_PIXEL_Y:
return "pixel_y";
case FS_OPCODE_GET_BUFFER_SIZE:
return "fs_get_buffer_size";
case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
return "uniform_pull_const";
case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
return "uniform_pull_const_gen7";
case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
return "varying_pull_const_gen4";
case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
return "varying_pull_const_gen7";
case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
return "varying_pull_const_logical";
case FS_OPCODE_MOV_DISPATCH_TO_FLAGS:
return "mov_dispatch_to_flags";
case FS_OPCODE_DISCARD_JUMP:
return "discard_jump";
case FS_OPCODE_SET_SAMPLE_ID:
return "set_sample_id";
case FS_OPCODE_SET_SIMD4X2_OFFSET:
return "set_simd4x2_offset";
case FS_OPCODE_PACK_HALF_2x16_SPLIT:
return "pack_half_2x16_split";
case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
return "unpack_half_2x16_split_x";
case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
return "unpack_half_2x16_split_y";
case FS_OPCODE_PLACEHOLDER_HALT:
return "placeholder_halt";
case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
return "interp_sample";
case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
return "interp_shared_offset";
case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
return "interp_per_slot_offset";
case VS_OPCODE_URB_WRITE:
return "vs_urb_write";
case VS_OPCODE_PULL_CONSTANT_LOAD:
return "pull_constant_load";
case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
return "pull_constant_load_gen7";
i965/skl: Add the header for constant loads outside of the generator Commit 5a06ee738 added a step to the generator to set up the message header when generating the VS_OPCODE_PULL_CONSTANT_LOAD_GEN7 instruction. That pseudo opcode is implemented in terms of multiple actual opcodes, one of which writes to one of the source registers in order to set up the message header. This causes problems because the scheduler isn't aware that the source register is written to and it can end up reorganising the instructions incorrectly such that the write to the source register overwrites a needed value from a previous instruction. This problem was presenting itself as a rendering error in the weapon in Enemy Territory: Quake Wars. Since commit 588859e1 there is an additional problem that the double register allocated to include the message header would end up being split into two. This wasn't happening previously because the code to split registers was explicitly avoided for instructions that are sending from the GRF. This patch fixes both problems by splitting the code to set up the message header into a new pseudo opcode so that it will be done outside of the generator. This new opcode has the header register as a destination so the scheduler can recognise that the register is written to. This has the additional benefit that the scheduler can optimise the message header slightly better by moving the mov instructions further away from the send instructions. On Skylake it appears to fix the following three Piglit tests without causing any regressions: gs-float-array-variable-index gs-mat3x4-row-major gs-mat4x3-row-major I think we actually may need to do something similar for the fs backend and possibly for message headers from regular texture sampling but I'm not entirely sure. v2: Make sure the exec-size is retained as 8 for the mov instruction to initialise the header from g0. This was accidentally lost during a rebase on top of 07c571a39fa1. Split the patch into two so that the helper function is a separate change. Fix emitting the MOV instruction on Gen7. Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=89058 Reviewed-by: Ben Widawsky <ben@bwidawsk.net>
2015-03-24 15:52:20 +00:00
case VS_OPCODE_SET_SIMD4X2_HEADER_GEN9:
return "set_simd4x2_header_gen9";
case VS_OPCODE_GET_BUFFER_SIZE:
return "vs_get_buffer_size";
case VS_OPCODE_UNPACK_FLAGS_SIMD4X2:
return "unpack_flags_simd4x2";
case GS_OPCODE_URB_WRITE:
return "gs_urb_write";
case GS_OPCODE_URB_WRITE_ALLOCATE:
return "gs_urb_write_allocate";
case GS_OPCODE_THREAD_END:
return "gs_thread_end";
case GS_OPCODE_SET_WRITE_OFFSET:
return "set_write_offset";
case GS_OPCODE_SET_VERTEX_COUNT:
return "set_vertex_count";
case GS_OPCODE_SET_DWORD_2:
return "set_dword_2";
case GS_OPCODE_PREPARE_CHANNEL_MASKS:
return "prepare_channel_masks";
case GS_OPCODE_SET_CHANNEL_MASKS:
return "set_channel_masks";
case GS_OPCODE_GET_INSTANCE_ID:
return "get_instance_id";
case GS_OPCODE_FF_SYNC:
return "ff_sync";
case GS_OPCODE_SET_PRIMITIVE_ID:
return "set_primitive_id";
case GS_OPCODE_SVB_WRITE:
return "gs_svb_write";
case GS_OPCODE_SVB_SET_DST_INDEX:
return "gs_svb_set_dst_index";
case GS_OPCODE_FF_SYNC_SET_PRIMITIVES:
return "gs_ff_sync_set_primitives";
case CS_OPCODE_CS_TERMINATE:
return "cs_terminate";
case SHADER_OPCODE_BARRIER:
return "barrier";
case SHADER_OPCODE_MULH:
return "mulh";
case SHADER_OPCODE_MOV_INDIRECT:
return "mov_indirect";
case VEC4_OPCODE_URB_READ:
return "urb_read";
case TCS_OPCODE_GET_INSTANCE_ID:
return "tcs_get_instance_id";
case TCS_OPCODE_URB_WRITE:
return "tcs_urb_write";
case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
return "tcs_set_input_urb_offsets";
case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
return "tcs_set_output_urb_offsets";
case TCS_OPCODE_GET_PRIMITIVE_ID:
return "tcs_get_primitive_id";
case TCS_OPCODE_CREATE_BARRIER_HEADER:
return "tcs_create_barrier_header";
case TCS_OPCODE_SRC0_010_IS_ZERO:
return "tcs_src0<0,1,0>_is_zero";
case TCS_OPCODE_RELEASE_INPUT:
return "tcs_release_input";
case TCS_OPCODE_THREAD_END:
return "tcs_thread_end";
case TES_OPCODE_CREATE_INPUT_READ_HEADER:
return "tes_create_input_read_header";
case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
return "tes_add_indirect_urb_offset";
case TES_OPCODE_GET_PRIMITIVE_ID:
return "tes_get_primitive_id";
}
unreachable("not reached");
}
bool
brw_saturate_immediate(enum brw_reg_type type, struct brw_reg *reg)
{
union {
unsigned ud;
int d;
float f;
double df;
} imm, sat_imm = { 0 };
const unsigned size = type_sz(type);
/* We want to either do a 32-bit or 64-bit data copy, the type is otherwise
* irrelevant, so just check the size of the type and copy from/to an
* appropriately sized field.
*/
if (size < 8)
imm.ud = reg->ud;
else
imm.df = reg->df;
switch (type) {
case BRW_REGISTER_TYPE_UD:
case BRW_REGISTER_TYPE_D:
case BRW_REGISTER_TYPE_UW:
case BRW_REGISTER_TYPE_W:
case BRW_REGISTER_TYPE_UQ:
case BRW_REGISTER_TYPE_Q:
/* Nothing to do. */
return false;
case BRW_REGISTER_TYPE_F:
sat_imm.f = CLAMP(imm.f, 0.0f, 1.0f);
break;
case BRW_REGISTER_TYPE_DF:
sat_imm.df = CLAMP(imm.df, 0.0, 1.0);
break;
case BRW_REGISTER_TYPE_UB:
case BRW_REGISTER_TYPE_B:
unreachable("no UB/B immediates");
case BRW_REGISTER_TYPE_V:
case BRW_REGISTER_TYPE_UV:
case BRW_REGISTER_TYPE_VF:
unreachable("unimplemented: saturate vector immediate");
case BRW_REGISTER_TYPE_HF:
unreachable("unimplemented: saturate HF immediate");
}
if (size < 8) {
if (imm.ud != sat_imm.ud) {
reg->ud = sat_imm.ud;
return true;
}
} else {
if (imm.df != sat_imm.df) {
reg->df = sat_imm.df;
return true;
}
}
return false;
}
bool
brw_negate_immediate(enum brw_reg_type type, struct brw_reg *reg)
{
switch (type) {
case BRW_REGISTER_TYPE_D:
case BRW_REGISTER_TYPE_UD:
reg->d = -reg->d;
return true;
case BRW_REGISTER_TYPE_W:
case BRW_REGISTER_TYPE_UW:
reg->d = -(int16_t)reg->ud;
return true;
case BRW_REGISTER_TYPE_F:
reg->f = -reg->f;
return true;
case BRW_REGISTER_TYPE_VF:
reg->ud ^= 0x80808080;
return true;
case BRW_REGISTER_TYPE_DF:
reg->df = -reg->df;
return true;
case BRW_REGISTER_TYPE_UB:
case BRW_REGISTER_TYPE_B:
unreachable("no UB/B immediates");
case BRW_REGISTER_TYPE_UV:
case BRW_REGISTER_TYPE_V:
assert(!"unimplemented: negate UV/V immediate");
case BRW_REGISTER_TYPE_UQ:
case BRW_REGISTER_TYPE_Q:
assert(!"unimplemented: negate UQ/Q immediate");
case BRW_REGISTER_TYPE_HF:
assert(!"unimplemented: negate HF immediate");
}
return false;
}
bool
brw_abs_immediate(enum brw_reg_type type, struct brw_reg *reg)
{
switch (type) {
case BRW_REGISTER_TYPE_D:
reg->d = abs(reg->d);
return true;
case BRW_REGISTER_TYPE_W:
reg->d = abs((int16_t)reg->ud);
return true;
case BRW_REGISTER_TYPE_F:
reg->f = fabsf(reg->f);
return true;
case BRW_REGISTER_TYPE_DF:
reg->df = fabs(reg->df);
return true;
case BRW_REGISTER_TYPE_VF:
reg->ud &= ~0x80808080;
return true;
case BRW_REGISTER_TYPE_UB:
case BRW_REGISTER_TYPE_B:
unreachable("no UB/B immediates");
case BRW_REGISTER_TYPE_UQ:
case BRW_REGISTER_TYPE_UD:
case BRW_REGISTER_TYPE_UW:
case BRW_REGISTER_TYPE_UV:
/* Presumably the absolute value modifier on an unsigned source is a
* nop, but it would be nice to confirm.
*/
assert(!"unimplemented: abs unsigned immediate");
case BRW_REGISTER_TYPE_V:
assert(!"unimplemented: abs V immediate");
case BRW_REGISTER_TYPE_Q:
assert(!"unimplemented: abs Q immediate");
case BRW_REGISTER_TYPE_HF:
assert(!"unimplemented: abs HF immediate");
}
return false;
}
unsigned
tesslevel_outer_components(GLenum tes_primitive_mode)
{
switch (tes_primitive_mode) {
case GL_QUADS:
return 4;
case GL_TRIANGLES:
return 3;
case GL_ISOLINES:
return 2;
default:
unreachable("Bogus tessellation domain");
}
return 0;
}
unsigned
tesslevel_inner_components(GLenum tes_primitive_mode)
{
switch (tes_primitive_mode) {
case GL_QUADS:
return 2;
case GL_TRIANGLES:
return 1;
case GL_ISOLINES:
return 0;
default:
unreachable("Bogus tessellation domain");
}
return 0;
}
/**
* Given a normal .xyzw writemask, convert it to a writemask for a vector
* that's stored backwards, i.e. .wzyx.
*/
unsigned
writemask_for_backwards_vector(unsigned mask)
{
unsigned new_mask = 0;
for (int i = 0; i < 4; i++)
new_mask |= ((mask >> i) & 1) << (3 - i);
return new_mask;
}
backend_shader::backend_shader(const struct brw_compiler *compiler,
void *log_data,
void *mem_ctx,
const nir_shader *shader,
struct brw_stage_prog_data *stage_prog_data)
: compiler(compiler),
log_data(log_data),
devinfo(compiler->devinfo),
nir(shader),
stage_prog_data(stage_prog_data),
mem_ctx(mem_ctx),
cfg(NULL),
stage(shader->stage)
{
debug_enabled = INTEL_DEBUG & intel_debug_flag_for_shader_stage(stage);
stage_name = _mesa_shader_stage_to_string(stage);
stage_abbrev = _mesa_shader_stage_to_abbrev(stage);
is_passthrough_shader =
nir->info.name && strcmp(nir->info.name, "passthrough") == 0;
}
bool
backend_reg::equals(const backend_reg &r) const
{
return brw_regs_equal(this, &r) && reg_offset == r.reg_offset;
}
bool
backend_reg::is_zero() const
{
if (file != IMM)
return false;
switch (type) {
case BRW_REGISTER_TYPE_F:
return f == 0;
case BRW_REGISTER_TYPE_DF:
return df == 0;
case BRW_REGISTER_TYPE_D:
case BRW_REGISTER_TYPE_UD:
return d == 0;
default:
return false;
}
}
bool
backend_reg::is_one() const
{
if (file != IMM)
return false;
switch (type) {
case BRW_REGISTER_TYPE_F:
return f == 1.0f;
case BRW_REGISTER_TYPE_DF:
return df == 1.0;
case BRW_REGISTER_TYPE_D:
case BRW_REGISTER_TYPE_UD:
return d == 1;
default:
return false;
}
}
bool
backend_reg::is_negative_one() const
{
if (file != IMM)
return false;
switch (type) {
case BRW_REGISTER_TYPE_F:
return f == -1.0;
case BRW_REGISTER_TYPE_DF:
return df == -1.0;
case BRW_REGISTER_TYPE_D:
return d == -1;
default:
return false;
}
}
bool
backend_reg::is_null() const
{
return file == ARF && nr == BRW_ARF_NULL;
}
bool
backend_reg::is_accumulator() const
{
return file == ARF && nr == BRW_ARF_ACCUMULATOR;
}
bool
backend_reg::in_range(const backend_reg &r, unsigned n) const
{
return (file == r.file &&
nr == r.nr &&
reg_offset >= r.reg_offset &&
reg_offset < r.reg_offset + n);
}
bool
backend_instruction::is_commutative() const
{
switch (opcode) {
case BRW_OPCODE_AND:
case BRW_OPCODE_OR:
case BRW_OPCODE_XOR:
case BRW_OPCODE_ADD:
case BRW_OPCODE_MUL:
case SHADER_OPCODE_MULH:
return true;
case BRW_OPCODE_SEL:
/* MIN and MAX are commutative. */
if (conditional_mod == BRW_CONDITIONAL_GE ||
conditional_mod == BRW_CONDITIONAL_L) {
return true;
}
/* fallthrough */
default:
return false;
}
}
bool
backend_instruction::is_3src(const struct gen_device_info *devinfo) const
{
return ::is_3src(devinfo, opcode);
}
bool
backend_instruction::is_tex() const
{
return (opcode == SHADER_OPCODE_TEX ||
opcode == FS_OPCODE_TXB ||
opcode == SHADER_OPCODE_TXD ||
opcode == SHADER_OPCODE_TXF ||
opcode == SHADER_OPCODE_TXF_LZ ||
opcode == SHADER_OPCODE_TXF_CMS ||
opcode == SHADER_OPCODE_TXF_CMS_W ||
opcode == SHADER_OPCODE_TXF_UMS ||
opcode == SHADER_OPCODE_TXF_MCS ||
opcode == SHADER_OPCODE_TXL ||
opcode == SHADER_OPCODE_TXL_LZ ||
opcode == SHADER_OPCODE_TXS ||
opcode == SHADER_OPCODE_LOD ||
opcode == SHADER_OPCODE_TG4 ||
opcode == SHADER_OPCODE_TG4_OFFSET ||
opcode == SHADER_OPCODE_SAMPLEINFO);
}
bool
backend_instruction::is_math() const
{
return (opcode == SHADER_OPCODE_RCP ||
opcode == SHADER_OPCODE_RSQ ||
opcode == SHADER_OPCODE_SQRT ||
opcode == SHADER_OPCODE_EXP2 ||
opcode == SHADER_OPCODE_LOG2 ||
opcode == SHADER_OPCODE_SIN ||
opcode == SHADER_OPCODE_COS ||
opcode == SHADER_OPCODE_INT_QUOTIENT ||
opcode == SHADER_OPCODE_INT_REMAINDER ||
opcode == SHADER_OPCODE_POW);
}
bool
backend_instruction::is_control_flow() const
{
switch (opcode) {
case BRW_OPCODE_DO:
case BRW_OPCODE_WHILE:
case BRW_OPCODE_IF:
case BRW_OPCODE_ELSE:
case BRW_OPCODE_ENDIF:
case BRW_OPCODE_BREAK:
case BRW_OPCODE_CONTINUE:
return true;
default:
return false;
}
}
bool
backend_instruction::can_do_source_mods() const
{
switch (opcode) {
case BRW_OPCODE_ADDC:
case BRW_OPCODE_BFE:
case BRW_OPCODE_BFI1:
case BRW_OPCODE_BFI2:
case BRW_OPCODE_BFREV:
case BRW_OPCODE_CBIT:
case BRW_OPCODE_FBH:
case BRW_OPCODE_FBL:
case BRW_OPCODE_SUBB:
return false;
default:
return true;
}
}
bool
backend_instruction::can_do_saturate() const
{
switch (opcode) {
case BRW_OPCODE_ADD:
case BRW_OPCODE_ASR:
case BRW_OPCODE_AVG:
case BRW_OPCODE_DP2:
case BRW_OPCODE_DP3:
case BRW_OPCODE_DP4:
case BRW_OPCODE_DPH:
case BRW_OPCODE_F16TO32:
case BRW_OPCODE_F32TO16:
case BRW_OPCODE_LINE:
case BRW_OPCODE_LRP:
case BRW_OPCODE_MAC:
case BRW_OPCODE_MAD:
case BRW_OPCODE_MATH:
case BRW_OPCODE_MOV:
case BRW_OPCODE_MUL:
case SHADER_OPCODE_MULH:
case BRW_OPCODE_PLN:
case BRW_OPCODE_RNDD:
case BRW_OPCODE_RNDE:
case BRW_OPCODE_RNDU:
case BRW_OPCODE_RNDZ:
case BRW_OPCODE_SEL:
case BRW_OPCODE_SHL:
case BRW_OPCODE_SHR:
case FS_OPCODE_LINTERP:
case SHADER_OPCODE_COS:
case SHADER_OPCODE_EXP2:
case SHADER_OPCODE_LOG2:
case SHADER_OPCODE_POW:
case SHADER_OPCODE_RCP:
case SHADER_OPCODE_RSQ:
case SHADER_OPCODE_SIN:
case SHADER_OPCODE_SQRT:
return true;
default:
return false;
}
}
bool
backend_instruction::can_do_cmod() const
{
switch (opcode) {
case BRW_OPCODE_ADD:
case BRW_OPCODE_ADDC:
case BRW_OPCODE_AND:
case BRW_OPCODE_ASR:
case BRW_OPCODE_AVG:
case BRW_OPCODE_CMP:
case BRW_OPCODE_CMPN:
case BRW_OPCODE_DP2:
case BRW_OPCODE_DP3:
case BRW_OPCODE_DP4:
case BRW_OPCODE_DPH:
case BRW_OPCODE_F16TO32:
case BRW_OPCODE_F32TO16:
case BRW_OPCODE_FRC:
case BRW_OPCODE_LINE:
case BRW_OPCODE_LRP:
case BRW_OPCODE_LZD:
case BRW_OPCODE_MAC:
case BRW_OPCODE_MACH:
case BRW_OPCODE_MAD:
case BRW_OPCODE_MOV:
case BRW_OPCODE_MUL:
case BRW_OPCODE_NOT:
case BRW_OPCODE_OR:
case BRW_OPCODE_PLN:
case BRW_OPCODE_RNDD:
case BRW_OPCODE_RNDE:
case BRW_OPCODE_RNDU:
case BRW_OPCODE_RNDZ:
case BRW_OPCODE_SAD2:
case BRW_OPCODE_SADA2:
case BRW_OPCODE_SHL:
case BRW_OPCODE_SHR:
case BRW_OPCODE_SUBB:
case BRW_OPCODE_XOR:
case FS_OPCODE_CINTERP:
case FS_OPCODE_LINTERP:
return true;
default:
return false;
}
}
bool
backend_instruction::reads_accumulator_implicitly() const
{
switch (opcode) {
case BRW_OPCODE_MAC:
case BRW_OPCODE_MACH:
case BRW_OPCODE_SADA2:
return true;
default:
return false;
}
}
bool
backend_instruction::writes_accumulator_implicitly(const struct gen_device_info *devinfo) const
{
return writes_accumulator ||
(devinfo->gen < 6 &&
((opcode >= BRW_OPCODE_ADD && opcode < BRW_OPCODE_NOP) ||
(opcode >= FS_OPCODE_DDX_COARSE && opcode <= FS_OPCODE_LINTERP &&
opcode != FS_OPCODE_CINTERP)));
}
bool
backend_instruction::has_side_effects() const
{
switch (opcode) {
case SHADER_OPCODE_UNTYPED_ATOMIC:
case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
case SHADER_OPCODE_TYPED_ATOMIC:
case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
case SHADER_OPCODE_TYPED_SURFACE_WRITE:
case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
case SHADER_OPCODE_MEMORY_FENCE:
case SHADER_OPCODE_URB_WRITE_SIMD8:
case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
case FS_OPCODE_FB_WRITE:
case FS_OPCODE_FB_WRITE_LOGICAL:
case SHADER_OPCODE_BARRIER:
case TCS_OPCODE_URB_WRITE:
case TCS_OPCODE_RELEASE_INPUT:
return true;
default:
return false;
}
}
bool
backend_instruction::is_volatile() const
{
switch (opcode) {
case SHADER_OPCODE_UNTYPED_SURFACE_READ:
case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
case SHADER_OPCODE_TYPED_SURFACE_READ:
case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
case SHADER_OPCODE_URB_READ_SIMD8:
case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
case VEC4_OPCODE_URB_READ:
return true;
default:
return false;
}
}
#ifndef NDEBUG
static bool
inst_is_in_block(const bblock_t *block, const backend_instruction *inst)
{
bool found = false;
foreach_inst_in_block (backend_instruction, i, block) {
if (inst == i) {
found = true;
}
}
return found;
}
#endif
static void
adjust_later_block_ips(bblock_t *start_block, int ip_adjustment)
{
for (bblock_t *block_iter = start_block->next();
block_iter;
block_iter = block_iter->next()) {
block_iter->start_ip += ip_adjustment;
block_iter->end_ip += ip_adjustment;
}
}
void
backend_instruction::insert_after(bblock_t *block, backend_instruction *inst)
{
assert(this != inst);
if (!this->is_head_sentinel())
assert(inst_is_in_block(block, this) || !"Instruction not in block");
block->end_ip++;
adjust_later_block_ips(block, 1);
exec_node::insert_after(inst);
}
void
backend_instruction::insert_before(bblock_t *block, backend_instruction *inst)
{
assert(this != inst);
if (!this->is_tail_sentinel())
assert(inst_is_in_block(block, this) || !"Instruction not in block");
block->end_ip++;
adjust_later_block_ips(block, 1);
exec_node::insert_before(inst);
}
void
backend_instruction::insert_before(bblock_t *block, exec_list *list)
{
assert(inst_is_in_block(block, this) || !"Instruction not in block");
unsigned num_inst = list->length();
block->end_ip += num_inst;
adjust_later_block_ips(block, num_inst);
exec_node::insert_before(list);
}
void
backend_instruction::remove(bblock_t *block)
{
assert(inst_is_in_block(block, this) || !"Instruction not in block");
adjust_later_block_ips(block, -1);
if (block->start_ip == block->end_ip) {
block->cfg->remove_block(block);
} else {
block->end_ip--;
}
exec_node::remove();
}
void
backend_shader::dump_instructions()
{
dump_instructions(NULL);
}
void
backend_shader::dump_instructions(const char *name)
{
FILE *file = stderr;
if (name && geteuid() != 0) {
file = fopen(name, "w");
if (!file)
file = stderr;
}
if (cfg) {
int ip = 0;
foreach_block_and_inst(block, backend_instruction, inst, cfg) {
if (!unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER))
fprintf(file, "%4d: ", ip++);
dump_instruction(inst, file);
}
} else {
int ip = 0;
foreach_in_list(backend_instruction, inst, &instructions) {
if (!unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER))
fprintf(file, "%4d: ", ip++);
dump_instruction(inst, file);
}
}
if (file != stderr) {
fclose(file);
}
}
void
backend_shader::calculate_cfg()
{
if (this->cfg)
return;
cfg = new(mem_ctx) cfg_t(&this->instructions);
}
/**
* Sets up the starting offsets for the groups of binding table entries
* commong to all pipeline stages.
*
* Unused groups are initialized to 0xd0d0d0d0 to make it obvious that they're
* unused but also make sure that addition of small offsets to them will
* trigger some of our asserts that surface indices are < BRW_MAX_SURFACES.
*/
uint32_t
brw_assign_common_binding_table_offsets(gl_shader_stage stage,
const struct gen_device_info *devinfo,
const struct gl_shader_program *shader_prog,
const struct gl_program *prog,
struct brw_stage_prog_data *stage_prog_data,
uint32_t next_binding_table_offset)
{
const struct gl_linked_shader *shader = NULL;
int num_textures = util_last_bit(prog->SamplersUsed);
if (shader_prog)
shader = shader_prog->_LinkedShaders[stage];
stage_prog_data->binding_table.texture_start = next_binding_table_offset;
next_binding_table_offset += num_textures;
if (shader) {
assert(shader->NumUniformBlocks <= BRW_MAX_UBO);
stage_prog_data->binding_table.ubo_start = next_binding_table_offset;
next_binding_table_offset += shader->NumUniformBlocks;
assert(shader->NumShaderStorageBlocks <= BRW_MAX_SSBO);
stage_prog_data->binding_table.ssbo_start = next_binding_table_offset;
next_binding_table_offset += shader->NumShaderStorageBlocks;
} else {
stage_prog_data->binding_table.ubo_start = 0xd0d0d0d0;
stage_prog_data->binding_table.ssbo_start = 0xd0d0d0d0;
}
if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
stage_prog_data->binding_table.shader_time_start = next_binding_table_offset;
next_binding_table_offset++;
} else {
stage_prog_data->binding_table.shader_time_start = 0xd0d0d0d0;
}
if (prog->UsesGather) {
if (devinfo->gen >= 8) {
stage_prog_data->binding_table.gather_texture_start =
stage_prog_data->binding_table.texture_start;
} else {
stage_prog_data->binding_table.gather_texture_start = next_binding_table_offset;
next_binding_table_offset += num_textures;
}
} else {
stage_prog_data->binding_table.gather_texture_start = 0xd0d0d0d0;
}
if (shader && shader->NumAtomicBuffers) {
stage_prog_data->binding_table.abo_start = next_binding_table_offset;
next_binding_table_offset += shader->NumAtomicBuffers;
} else {
stage_prog_data->binding_table.abo_start = 0xd0d0d0d0;
}
if (shader && shader->NumImages) {
stage_prog_data->binding_table.image_start = next_binding_table_offset;
next_binding_table_offset += shader->NumImages;
} else {
stage_prog_data->binding_table.image_start = 0xd0d0d0d0;
}
/* This may or may not be used depending on how the compile goes. */
stage_prog_data->binding_table.pull_constants_start = next_binding_table_offset;
next_binding_table_offset++;
/* Plane 0 is just the regular texture section */
stage_prog_data->binding_table.plane_start[0] = stage_prog_data->binding_table.texture_start;
stage_prog_data->binding_table.plane_start[1] = next_binding_table_offset;
next_binding_table_offset += num_textures;
stage_prog_data->binding_table.plane_start[2] = next_binding_table_offset;
next_binding_table_offset += num_textures;
/* prog_data->base.binding_table.size will be set by brw_mark_surface_used. */
assert(next_binding_table_offset <= BRW_MAX_SURFACES);
return next_binding_table_offset;
}
static void
setup_vec4_uniform_value(const gl_constant_value **params,
const gl_constant_value *values,
unsigned n)
{
static const gl_constant_value zero = { 0 };
for (unsigned i = 0; i < n; ++i)
params[i] = &values[i];
for (unsigned i = n; i < 4; ++i)
params[i] = &zero;
}
void
brw_setup_image_uniform_values(gl_shader_stage stage,
struct brw_stage_prog_data *stage_prog_data,
unsigned param_start_index,
const gl_uniform_storage *storage)
{
const gl_constant_value **param =
&stage_prog_data->param[param_start_index];
for (unsigned i = 0; i < MAX2(storage->array_elements, 1); i++) {
const unsigned image_idx = storage->opaque[stage].index + i;
const brw_image_param *image_param =
&stage_prog_data->image_param[image_idx];
/* Upload the brw_image_param structure. The order is expected to match
* the BRW_IMAGE_PARAM_*_OFFSET defines.
*/
setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_SURFACE_IDX_OFFSET,
(const gl_constant_value *)&image_param->surface_idx, 1);
setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_OFFSET_OFFSET,
(const gl_constant_value *)image_param->offset, 2);
setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_SIZE_OFFSET,
(const gl_constant_value *)image_param->size, 3);
setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_STRIDE_OFFSET,
(const gl_constant_value *)image_param->stride, 4);
setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_TILING_OFFSET,
(const gl_constant_value *)image_param->tiling, 3);
setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_SWIZZLING_OFFSET,
(const gl_constant_value *)image_param->swizzling, 2);
param += BRW_IMAGE_PARAM_SIZE;
brw_mark_surface_used(
stage_prog_data,
stage_prog_data->binding_table.image_start + image_idx);
}
}
/**
* Decide which set of clip planes should be used when clipping via
* gl_Position or gl_ClipVertex.
*/
gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx)
{
if (ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX]) {
/* There is currently a GLSL vertex shader, so clip according to GLSL
* rules, which means compare gl_ClipVertex (or gl_Position, if
* gl_ClipVertex wasn't assigned) against the eye-coordinate clip planes
* that were stored in EyeUserPlane at the time the clip planes were
* specified.
*/
return ctx->Transform.EyeUserPlane;
} else {
/* Either we are using fixed function or an ARB vertex program. In
* either case the clip planes are going to be compared against
* gl_Position (which is in clip coordinates) so we have to clip using
* _ClipUserPlane, which was transformed into clip coordinates by Mesa
* core.
*/
return ctx->Transform._ClipUserPlane;
}
}
extern "C" const unsigned *
brw_compile_tes(const struct brw_compiler *compiler,
void *log_data,
void *mem_ctx,
const struct brw_tes_prog_key *key,
struct brw_tes_prog_data *prog_data,
const nir_shader *src_shader,
struct gl_shader_program *shader_prog,
int shader_time_index,
unsigned *final_assembly_size,
char **error_str)
{
const struct gen_device_info *devinfo = compiler->devinfo;
struct gl_linked_shader *shader =
shader_prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
const bool is_scalar = compiler->scalar_stage[MESA_SHADER_TESS_EVAL];
nir_shader *nir = nir_shader_clone(mem_ctx, src_shader);
i965: Handle mix-and-match TCS/TES with separate shader objects. GL_ARB_separate_shader_objects allows the application to mix-and-match TCS and TES programs separately. This means that the interface between the two stages isn't known until the final SSO pipeline is in place. This isn't a great match for our hardware: the TCS and TES have to agree on the Patch URB entry layout. Since we store data as per-patch slots followed by per-vertex slots, changing the number of per-patch slots can significantly alter the layout. This can easily happen with SSO. To handle this, we store the [Patch]OutputsWritten and [Patch]InputsRead bitfields in the TCS/TES program keys, introducing program recompiles. brw_upload_programs() decides the layout for both TCS and TES, and passes it to brw_upload_tcs/tes(), which store it in the key. When creating the NIR for a shader specialization, we override nir->info.inputs_read (and friends) to the program key's values. Since everything uses those, no further compiler changes are needed. This also replaces the hack in brw_create_nir(). To avoid recompiles, brw_precompile_tes() looks to see if there's a TCS in the linked shader. If so, it accounts for the TCS outputs, just as brw_upload_programs() would. This eliminates all recompiles in the non-SSO case. In the SSO case, there should only be recompiles when using a TCS and TES that have different input/output interfaces. Fixes Piglit's mix-and-match-tcs-tes test. v2: Pull the brw_upload_programs code into a brw_upload_tess_programs() helper function (requested by Jordan Justen). Signed-off-by: Kenneth Graunke <kenneth@whitecape.org> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2015-12-08 04:18:42 +00:00
nir->info.inputs_read = key->inputs_read;
nir->info.patch_inputs_read = key->patch_inputs_read;
struct brw_vue_map input_vue_map;
brw_compute_tess_vue_map(&input_vue_map,
nir->info.inputs_read & ~VARYING_BIT_PRIMITIVE_ID,
nir->info.patch_inputs_read);
nir = brw_nir_apply_sampler_key(nir, devinfo, &key->tex, is_scalar);
brw_nir_lower_tes_inputs(nir, &input_vue_map);
brw_nir_lower_vue_outputs(nir, is_scalar);
nir = brw_postprocess_nir(nir, compiler->devinfo, is_scalar);
brw_compute_vue_map(devinfo, &prog_data->base.vue_map,
nir->info.outputs_written,
nir->info.separate_shader);
unsigned output_size_bytes = prog_data->base.vue_map.num_slots * 4 * 4;
assert(output_size_bytes >= 1);
if (output_size_bytes > GEN7_MAX_DS_URB_ENTRY_SIZE_BYTES) {
if (error_str)
*error_str = ralloc_strdup(mem_ctx, "DS outputs exceed maximum size");
return NULL;
}
/* URB entry sizes are stored as a multiple of 64 bytes. */
prog_data->base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
bool need_patch_header = nir->info.system_values_read &
(BITFIELD64_BIT(SYSTEM_VALUE_TESS_LEVEL_OUTER) |
BITFIELD64_BIT(SYSTEM_VALUE_TESS_LEVEL_INNER));
/* The TES will pull most inputs using URB read messages.
*
* However, we push the patch header for TessLevel factors when required,
* as it's a tiny amount of extra data.
*/
prog_data->base.urb_read_length = need_patch_header ? 1 : 0;
if (unlikely(INTEL_DEBUG & DEBUG_TES)) {
fprintf(stderr, "TES Input ");
brw_print_vue_map(stderr, &input_vue_map);
fprintf(stderr, "TES Output ");
brw_print_vue_map(stderr, &prog_data->base.vue_map);
}
if (is_scalar) {
fs_visitor v(compiler, log_data, mem_ctx, (void *) key,
&prog_data->base.base, shader->Program, nir, 8,
shader_time_index, &input_vue_map);
if (!v.run_tes()) {
if (error_str)
*error_str = ralloc_strdup(mem_ctx, v.fail_msg);
return NULL;
}
prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs;
prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8;
fs_generator g(compiler, log_data, mem_ctx, (void *) key,
&prog_data->base.base, v.promoted_constants, false,
MESA_SHADER_TESS_EVAL);
if (unlikely(INTEL_DEBUG & DEBUG_TES)) {
g.enable_debug(ralloc_asprintf(mem_ctx,
"%s tessellation evaluation shader %s",
nir->info.label ? nir->info.label
: "unnamed",
nir->info.name));
}
g.generate_code(v.cfg, 8);
return g.get_assembly(final_assembly_size);
} else {
brw::vec4_tes_visitor v(compiler, log_data, key, prog_data,
nir, mem_ctx, shader_time_index);
if (!v.run()) {
if (error_str)
*error_str = ralloc_strdup(mem_ctx, v.fail_msg);
return NULL;
}
if (unlikely(INTEL_DEBUG & DEBUG_TES))
v.dump_instructions();
return brw_vec4_generate_assembly(compiler, log_data, mem_ctx, nir,
&prog_data->base, v.cfg,
final_assembly_size);
}
}