mesa/src/mesa/drivers/dri/i965/brw_shader.cpp

1261 lines
34 KiB
C++
Raw Normal View History

/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "main/macros.h"
#include "brw_context.h"
#include "brw_vs.h"
#include "brw_gs.h"
#include "brw_fs.h"
#include "brw_cfg.h"
#include "brw_nir.h"
#include "glsl/ir_optimization.h"
#include "glsl/glsl_parser_extras.h"
#include "main/shaderapi.h"
struct brw_compiler *
brw_compiler_create(void *mem_ctx, const struct brw_device_info *devinfo)
{
struct brw_compiler *compiler = rzalloc(mem_ctx, struct brw_compiler);
compiler->devinfo = devinfo;
brw_fs_alloc_reg_sets(compiler);
brw_vec4_alloc_reg_set(compiler);
return compiler;
}
struct gl_shader *
brw_new_shader(struct gl_context *ctx, GLuint name, GLuint type)
{
struct brw_shader *shader;
shader = rzalloc(NULL, struct brw_shader);
if (shader) {
shader->base.Type = type;
shader->base.Stage = _mesa_shader_enum_to_shader_stage(type);
shader->base.Name = name;
_mesa_init_shader(ctx, &shader->base);
}
return &shader->base;
}
/**
* Performs a compile of the shader stages even when we don't know
* what non-orthogonal state will be set, in the hope that it reflects
* the eventual NOS used, and thus allows us to produce link failures.
*/
static bool
brw_shader_precompile(struct gl_context *ctx,
struct gl_shader_program *sh_prog)
{
struct gl_shader *vs = sh_prog->_LinkedShaders[MESA_SHADER_VERTEX];
struct gl_shader *gs = sh_prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
struct gl_shader *fs = sh_prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
struct gl_shader *cs = sh_prog->_LinkedShaders[MESA_SHADER_COMPUTE];
if (fs && !brw_fs_precompile(ctx, sh_prog, fs->Program))
return false;
if (gs && !brw_gs_precompile(ctx, sh_prog, gs->Program))
return false;
if (vs && !brw_vs_precompile(ctx, sh_prog, vs->Program))
return false;
if (cs && !brw_cs_precompile(ctx, sh_prog, cs->Program))
return false;
return true;
}
static inline bool
is_scalar_shader_stage(struct brw_context *brw, int stage)
{
switch (stage) {
case MESA_SHADER_FRAGMENT:
return true;
case MESA_SHADER_VERTEX:
return brw->scalar_vs;
default:
return false;
}
}
static void
brw_lower_packing_builtins(struct brw_context *brw,
gl_shader_stage shader_type,
exec_list *ir)
{
int ops = LOWER_PACK_SNORM_2x16
| LOWER_UNPACK_SNORM_2x16
| LOWER_PACK_UNORM_2x16
| LOWER_UNPACK_UNORM_2x16;
if (is_scalar_shader_stage(brw, shader_type)) {
ops |= LOWER_UNPACK_UNORM_4x8
| LOWER_UNPACK_SNORM_4x8
| LOWER_PACK_UNORM_4x8
| LOWER_PACK_SNORM_4x8;
}
if (brw->gen >= 7) {
/* Gen7 introduced the f32to16 and f16to32 instructions, which can be
* used to execute packHalf2x16 and unpackHalf2x16. For AOS code, no
* lowering is needed. For SOA code, the Half2x16 ops must be
* scalarized.
*/
if (is_scalar_shader_stage(brw, shader_type)) {
ops |= LOWER_PACK_HALF_2x16_TO_SPLIT
| LOWER_UNPACK_HALF_2x16_TO_SPLIT;
}
} else {
ops |= LOWER_PACK_HALF_2x16
| LOWER_UNPACK_HALF_2x16;
}
lower_packing_builtins(ir, ops);
}
static void
process_glsl_ir(struct brw_context *brw,
struct gl_shader_program *shader_prog,
struct gl_shader *shader)
{
struct gl_context *ctx = &brw->ctx;
const struct gl_shader_compiler_options *options =
&ctx->Const.ShaderCompilerOptions[shader->Stage];
/* Temporary memory context for any new IR. */
void *mem_ctx = ralloc_context(NULL);
ralloc_adopt(mem_ctx, shader->ir);
/* lower_packing_builtins() inserts arithmetic instructions, so it
* must precede lower_instructions().
*/
brw_lower_packing_builtins(brw, shader->Stage, shader->ir);
do_mat_op_to_vec(shader->ir);
const int bitfield_insert = brw->gen >= 7 ? BITFIELD_INSERT_TO_BFM_BFI : 0;
lower_instructions(shader->ir,
MOD_TO_FLOOR |
DIV_TO_MUL_RCP |
SUB_TO_ADD_NEG |
EXP_TO_EXP2 |
LOG_TO_LOG2 |
bitfield_insert |
LDEXP_TO_ARITH);
/* Pre-gen6 HW can only nest if-statements 16 deep. Beyond this,
* if-statements need to be flattened.
*/
if (brw->gen < 6)
lower_if_to_cond_assign(shader->ir, 16);
do_lower_texture_projection(shader->ir);
brw_lower_texture_gradients(brw, shader->ir);
do_vec_index_to_cond_assign(shader->ir);
lower_vector_insert(shader->ir, true);
if (options->NirOptions == NULL)
brw_do_cubemap_normalize(shader->ir);
lower_offset_arrays(shader->ir);
brw_do_lower_unnormalized_offset(shader->ir);
lower_noise(shader->ir);
lower_quadop_vector(shader->ir, false);
bool lowered_variable_indexing =
lower_variable_index_to_cond_assign(shader->ir,
options->EmitNoIndirectInput,
options->EmitNoIndirectOutput,
options->EmitNoIndirectTemp,
options->EmitNoIndirectUniform);
if (unlikely(brw->perf_debug && lowered_variable_indexing)) {
perf_debug("Unsupported form of variable indexing in FS; falling "
"back to very inefficient code generation\n");
}
lower_ubo_reference(shader, shader->ir);
bool progress;
do {
progress = false;
if (is_scalar_shader_stage(brw, shader->Stage)) {
brw_do_channel_expressions(shader->ir);
brw_do_vector_splitting(shader->ir);
}
progress = do_lower_jumps(shader->ir, true, true,
true, /* main return */
false, /* continue */
false /* loops */
) || progress;
progress = do_common_optimization(shader->ir, true, true,
options, ctx->Const.NativeIntegers) || progress;
} while (progress);
if (options->NirOptions != NULL)
lower_output_reads(shader->ir);
validate_ir_tree(shader->ir);
/* Now that we've finished altering the linked IR, reparent any live IR back
* to the permanent memory context, and free the temporary one (discarding any
* junk we optimized away).
*/
reparent_ir(shader->ir, shader->ir);
ralloc_free(mem_ctx);
if (ctx->_Shader->Flags & GLSL_DUMP) {
fprintf(stderr, "\n");
fprintf(stderr, "GLSL IR for linked %s program %d:\n",
_mesa_shader_stage_to_string(shader->Stage),
shader_prog->Name);
_mesa_print_ir(stderr, shader->ir, NULL);
fprintf(stderr, "\n");
}
}
GLboolean
brw_link_shader(struct gl_context *ctx, struct gl_shader_program *shProg)
{
struct brw_context *brw = brw_context(ctx);
unsigned int stage;
for (stage = 0; stage < ARRAY_SIZE(shProg->_LinkedShaders); stage++) {
struct gl_shader *shader = shProg->_LinkedShaders[stage];
const struct gl_shader_compiler_options *options =
&ctx->Const.ShaderCompilerOptions[stage];
if (!shader)
continue;
struct gl_program *prog =
ctx->Driver.NewProgram(ctx, _mesa_shader_stage_to_program(stage),
shader->Name);
if (!prog)
return false;
prog->Parameters = _mesa_new_parameter_list();
_mesa_copy_linked_program_data((gl_shader_stage) stage, shProg, prog);
process_glsl_ir(brw, shProg, shader);
/* Make a pass over the IR to add state references for any built-in
* uniforms that are used. This has to be done now (during linking).
* Code generation doesn't happen until the first time this shader is
* used for rendering. Waiting until then to generate the parameters is
* too late. At that point, the values for the built-in uniforms won't
* get sent to the shader.
*/
foreach_in_list(ir_instruction, node, shader->ir) {
ir_variable *var = node->as_variable();
if ((var == NULL) || (var->data.mode != ir_var_uniform)
|| (strncmp(var->name, "gl_", 3) != 0))
continue;
const ir_state_slot *const slots = var->get_state_slots();
assert(slots != NULL);
for (unsigned int i = 0; i < var->get_num_state_slots(); i++) {
_mesa_add_state_reference(prog->Parameters,
(gl_state_index *) slots[i].tokens);
}
}
do_set_program_inouts(shader->ir, prog, shader->Stage);
prog->SamplersUsed = shader->active_samplers;
prog->ShadowSamplers = shader->shadow_samplers;
_mesa_update_shader_textures_used(shProg, prog);
_mesa_reference_program(ctx, &shader->Program, prog);
brw_add_texrect_params(prog);
if (options->NirOptions)
prog->nir = brw_create_nir(brw, shProg, prog, (gl_shader_stage) stage);
_mesa_reference_program(ctx, &prog, NULL);
}
if ((ctx->_Shader->Flags & GLSL_DUMP) && shProg->Name != 0) {
for (unsigned i = 0; i < shProg->NumShaders; i++) {
const struct gl_shader *sh = shProg->Shaders[i];
if (!sh)
continue;
fprintf(stderr, "GLSL %s shader %d source for linked program %d:\n",
_mesa_shader_stage_to_string(sh->Stage),
i, shProg->Name);
fprintf(stderr, "%s", sh->Source);
fprintf(stderr, "\n");
}
}
if (brw->precompile && !brw_shader_precompile(ctx, shProg))
return false;
return true;
}
enum brw_reg_type
brw_type_for_base_type(const struct glsl_type *type)
{
switch (type->base_type) {
case GLSL_TYPE_FLOAT:
return BRW_REGISTER_TYPE_F;
case GLSL_TYPE_INT:
case GLSL_TYPE_BOOL:
return BRW_REGISTER_TYPE_D;
case GLSL_TYPE_UINT:
return BRW_REGISTER_TYPE_UD;
case GLSL_TYPE_ARRAY:
return brw_type_for_base_type(type->fields.array);
case GLSL_TYPE_STRUCT:
case GLSL_TYPE_SAMPLER:
case GLSL_TYPE_ATOMIC_UINT:
/* These should be overridden with the type of the member when
* dereferenced into. BRW_REGISTER_TYPE_UD seems like a likely
* way to trip up if we don't.
*/
return BRW_REGISTER_TYPE_UD;
case GLSL_TYPE_IMAGE:
return BRW_REGISTER_TYPE_UD;
case GLSL_TYPE_VOID:
case GLSL_TYPE_ERROR:
case GLSL_TYPE_INTERFACE:
case GLSL_TYPE_DOUBLE:
unreachable("not reached");
}
return BRW_REGISTER_TYPE_F;
}
enum brw_conditional_mod
brw_conditional_for_comparison(unsigned int op)
{
switch (op) {
case ir_binop_less:
return BRW_CONDITIONAL_L;
case ir_binop_greater:
return BRW_CONDITIONAL_G;
case ir_binop_lequal:
return BRW_CONDITIONAL_LE;
case ir_binop_gequal:
return BRW_CONDITIONAL_GE;
case ir_binop_equal:
case ir_binop_all_equal: /* same as equal for scalars */
return BRW_CONDITIONAL_Z;
case ir_binop_nequal:
case ir_binop_any_nequal: /* same as nequal for scalars */
return BRW_CONDITIONAL_NZ;
default:
unreachable("not reached: bad operation for comparison");
}
}
uint32_t
brw_math_function(enum opcode op)
{
switch (op) {
case SHADER_OPCODE_RCP:
return BRW_MATH_FUNCTION_INV;
case SHADER_OPCODE_RSQ:
return BRW_MATH_FUNCTION_RSQ;
case SHADER_OPCODE_SQRT:
return BRW_MATH_FUNCTION_SQRT;
case SHADER_OPCODE_EXP2:
return BRW_MATH_FUNCTION_EXP;
case SHADER_OPCODE_LOG2:
return BRW_MATH_FUNCTION_LOG;
case SHADER_OPCODE_POW:
return BRW_MATH_FUNCTION_POW;
case SHADER_OPCODE_SIN:
return BRW_MATH_FUNCTION_SIN;
case SHADER_OPCODE_COS:
return BRW_MATH_FUNCTION_COS;
case SHADER_OPCODE_INT_QUOTIENT:
return BRW_MATH_FUNCTION_INT_DIV_QUOTIENT;
case SHADER_OPCODE_INT_REMAINDER:
return BRW_MATH_FUNCTION_INT_DIV_REMAINDER;
default:
unreachable("not reached: unknown math function");
}
}
uint32_t
brw_texture_offset(int *offsets, unsigned num_components)
{
if (!offsets) return 0; /* nonconstant offset; caller will handle it. */
/* Combine all three offsets into a single unsigned dword:
*
* bits 11:8 - U Offset (X component)
* bits 7:4 - V Offset (Y component)
* bits 3:0 - R Offset (Z component)
*/
unsigned offset_bits = 0;
for (unsigned i = 0; i < num_components; i++) {
const unsigned shift = 4 * (2 - i);
offset_bits |= (offsets[i] << shift) & (0xF << shift);
}
return offset_bits;
}
const char *
brw_instruction_name(enum opcode op)
{
switch (op) {
case BRW_OPCODE_MOV ... BRW_OPCODE_NOP:
assert(opcode_descs[op].name);
return opcode_descs[op].name;
case FS_OPCODE_FB_WRITE:
return "fb_write";
case FS_OPCODE_BLORP_FB_WRITE:
return "blorp_fb_write";
case FS_OPCODE_REP_FB_WRITE:
return "rep_fb_write";
case SHADER_OPCODE_RCP:
return "rcp";
case SHADER_OPCODE_RSQ:
return "rsq";
case SHADER_OPCODE_SQRT:
return "sqrt";
case SHADER_OPCODE_EXP2:
return "exp2";
case SHADER_OPCODE_LOG2:
return "log2";
case SHADER_OPCODE_POW:
return "pow";
case SHADER_OPCODE_INT_QUOTIENT:
return "int_quot";
case SHADER_OPCODE_INT_REMAINDER:
return "int_rem";
case SHADER_OPCODE_SIN:
return "sin";
case SHADER_OPCODE_COS:
return "cos";
case SHADER_OPCODE_TEX:
return "tex";
case SHADER_OPCODE_TXD:
return "txd";
case SHADER_OPCODE_TXF:
return "txf";
case SHADER_OPCODE_TXL:
return "txl";
case SHADER_OPCODE_TXS:
return "txs";
case FS_OPCODE_TXB:
return "txb";
case SHADER_OPCODE_TXF_CMS:
return "txf_cms";
case SHADER_OPCODE_TXF_UMS:
return "txf_ums";
case SHADER_OPCODE_TXF_MCS:
return "txf_mcs";
case SHADER_OPCODE_LOD:
return "lod";
case SHADER_OPCODE_TG4:
return "tg4";
case SHADER_OPCODE_TG4_OFFSET:
return "tg4_offset";
case SHADER_OPCODE_SHADER_TIME_ADD:
return "shader_time_add";
case SHADER_OPCODE_UNTYPED_ATOMIC:
return "untyped_atomic";
case SHADER_OPCODE_UNTYPED_SURFACE_READ:
return "untyped_surface_read";
case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
return "untyped_surface_write";
case SHADER_OPCODE_TYPED_ATOMIC:
return "typed_atomic";
case SHADER_OPCODE_TYPED_SURFACE_READ:
return "typed_surface_read";
case SHADER_OPCODE_TYPED_SURFACE_WRITE:
return "typed_surface_write";
case SHADER_OPCODE_MEMORY_FENCE:
return "memory_fence";
case SHADER_OPCODE_LOAD_PAYLOAD:
return "load_payload";
case SHADER_OPCODE_GEN4_SCRATCH_READ:
return "gen4_scratch_read";
case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
return "gen4_scratch_write";
case SHADER_OPCODE_GEN7_SCRATCH_READ:
return "gen7_scratch_read";
case SHADER_OPCODE_URB_WRITE_SIMD8:
return "gen8_urb_write_simd8";
case SHADER_OPCODE_BROADCAST:
return "broadcast";
case VEC4_OPCODE_MOV_BYTES:
return "mov_bytes";
case VEC4_OPCODE_PACK_BYTES:
return "pack_bytes";
case VEC4_OPCODE_UNPACK_UNIFORM:
return "unpack_uniform";
case FS_OPCODE_DDX_COARSE:
return "ddx_coarse";
case FS_OPCODE_DDX_FINE:
return "ddx_fine";
case FS_OPCODE_DDY_COARSE:
return "ddy_coarse";
case FS_OPCODE_DDY_FINE:
return "ddy_fine";
case FS_OPCODE_CINTERP:
return "cinterp";
case FS_OPCODE_LINTERP:
return "linterp";
case FS_OPCODE_PIXEL_X:
return "pixel_x";
case FS_OPCODE_PIXEL_Y:
return "pixel_y";
case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
return "uniform_pull_const";
case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
return "uniform_pull_const_gen7";
case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD:
return "varying_pull_const";
case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
return "varying_pull_const_gen7";
case FS_OPCODE_MOV_DISPATCH_TO_FLAGS:
return "mov_dispatch_to_flags";
case FS_OPCODE_DISCARD_JUMP:
return "discard_jump";
case FS_OPCODE_SET_OMASK:
return "set_omask";
case FS_OPCODE_SET_SAMPLE_ID:
return "set_sample_id";
case FS_OPCODE_SET_SIMD4X2_OFFSET:
return "set_simd4x2_offset";
case FS_OPCODE_PACK_HALF_2x16_SPLIT:
return "pack_half_2x16_split";
case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
return "unpack_half_2x16_split_x";
case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
return "unpack_half_2x16_split_y";
case FS_OPCODE_PLACEHOLDER_HALT:
return "placeholder_halt";
case FS_OPCODE_INTERPOLATE_AT_CENTROID:
return "interp_centroid";
case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
return "interp_sample";
case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
return "interp_shared_offset";
case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
return "interp_per_slot_offset";
case VS_OPCODE_URB_WRITE:
return "vs_urb_write";
case VS_OPCODE_PULL_CONSTANT_LOAD:
return "pull_constant_load";
case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
return "pull_constant_load_gen7";
i965/skl: Add the header for constant loads outside of the generator Commit 5a06ee738 added a step to the generator to set up the message header when generating the VS_OPCODE_PULL_CONSTANT_LOAD_GEN7 instruction. That pseudo opcode is implemented in terms of multiple actual opcodes, one of which writes to one of the source registers in order to set up the message header. This causes problems because the scheduler isn't aware that the source register is written to and it can end up reorganising the instructions incorrectly such that the write to the source register overwrites a needed value from a previous instruction. This problem was presenting itself as a rendering error in the weapon in Enemy Territory: Quake Wars. Since commit 588859e1 there is an additional problem that the double register allocated to include the message header would end up being split into two. This wasn't happening previously because the code to split registers was explicitly avoided for instructions that are sending from the GRF. This patch fixes both problems by splitting the code to set up the message header into a new pseudo opcode so that it will be done outside of the generator. This new opcode has the header register as a destination so the scheduler can recognise that the register is written to. This has the additional benefit that the scheduler can optimise the message header slightly better by moving the mov instructions further away from the send instructions. On Skylake it appears to fix the following three Piglit tests without causing any regressions: gs-float-array-variable-index gs-mat3x4-row-major gs-mat4x3-row-major I think we actually may need to do something similar for the fs backend and possibly for message headers from regular texture sampling but I'm not entirely sure. v2: Make sure the exec-size is retained as 8 for the mov instruction to initialise the header from g0. This was accidentally lost during a rebase on top of 07c571a39fa1. Split the patch into two so that the helper function is a separate change. Fix emitting the MOV instruction on Gen7. Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=89058 Reviewed-by: Ben Widawsky <ben@bwidawsk.net>
2015-03-24 15:52:20 +00:00
case VS_OPCODE_SET_SIMD4X2_HEADER_GEN9:
return "set_simd4x2_header_gen9";
case VS_OPCODE_UNPACK_FLAGS_SIMD4X2:
return "unpack_flags_simd4x2";
case GS_OPCODE_URB_WRITE:
return "gs_urb_write";
case GS_OPCODE_URB_WRITE_ALLOCATE:
return "gs_urb_write_allocate";
case GS_OPCODE_THREAD_END:
return "gs_thread_end";
case GS_OPCODE_SET_WRITE_OFFSET:
return "set_write_offset";
case GS_OPCODE_SET_VERTEX_COUNT:
return "set_vertex_count";
case GS_OPCODE_SET_DWORD_2:
return "set_dword_2";
case GS_OPCODE_PREPARE_CHANNEL_MASKS:
return "prepare_channel_masks";
case GS_OPCODE_SET_CHANNEL_MASKS:
return "set_channel_masks";
case GS_OPCODE_GET_INSTANCE_ID:
return "get_instance_id";
case GS_OPCODE_FF_SYNC:
return "ff_sync";
case GS_OPCODE_SET_PRIMITIVE_ID:
return "set_primitive_id";
case GS_OPCODE_SVB_WRITE:
return "gs_svb_write";
case GS_OPCODE_SVB_SET_DST_INDEX:
return "gs_svb_set_dst_index";
case GS_OPCODE_FF_SYNC_SET_PRIMITIVES:
return "gs_ff_sync_set_primitives";
case CS_OPCODE_CS_TERMINATE:
return "cs_terminate";
}
unreachable("not reached");
}
bool
brw_saturate_immediate(enum brw_reg_type type, struct brw_reg *reg)
{
union {
unsigned ud;
int d;
float f;
} imm = { reg->dw1.ud }, sat_imm = { 0 };
switch (type) {
case BRW_REGISTER_TYPE_UD:
case BRW_REGISTER_TYPE_D:
case BRW_REGISTER_TYPE_UQ:
case BRW_REGISTER_TYPE_Q:
/* Nothing to do. */
return false;
case BRW_REGISTER_TYPE_UW:
sat_imm.ud = CLAMP(imm.ud, 0, USHRT_MAX);
break;
case BRW_REGISTER_TYPE_W:
sat_imm.d = CLAMP(imm.d, SHRT_MIN, SHRT_MAX);
break;
case BRW_REGISTER_TYPE_F:
sat_imm.f = CLAMP(imm.f, 0.0f, 1.0f);
break;
case BRW_REGISTER_TYPE_UB:
case BRW_REGISTER_TYPE_B:
unreachable("no UB/B immediates");
case BRW_REGISTER_TYPE_V:
case BRW_REGISTER_TYPE_UV:
case BRW_REGISTER_TYPE_VF:
unreachable("unimplemented: saturate vector immediate");
case BRW_REGISTER_TYPE_DF:
case BRW_REGISTER_TYPE_HF:
unreachable("unimplemented: saturate DF/HF immediate");
}
if (imm.ud != sat_imm.ud) {
reg->dw1.ud = sat_imm.ud;
return true;
}
return false;
}
bool
brw_negate_immediate(enum brw_reg_type type, struct brw_reg *reg)
{
switch (type) {
case BRW_REGISTER_TYPE_D:
case BRW_REGISTER_TYPE_UD:
reg->dw1.d = -reg->dw1.d;
return true;
case BRW_REGISTER_TYPE_W:
case BRW_REGISTER_TYPE_UW:
reg->dw1.d = -(int16_t)reg->dw1.ud;
return true;
case BRW_REGISTER_TYPE_F:
reg->dw1.f = -reg->dw1.f;
return true;
case BRW_REGISTER_TYPE_VF:
reg->dw1.ud ^= 0x80808080;
return true;
case BRW_REGISTER_TYPE_UB:
case BRW_REGISTER_TYPE_B:
unreachable("no UB/B immediates");
case BRW_REGISTER_TYPE_UV:
case BRW_REGISTER_TYPE_V:
assert(!"unimplemented: negate UV/V immediate");
case BRW_REGISTER_TYPE_UQ:
case BRW_REGISTER_TYPE_Q:
assert(!"unimplemented: negate UQ/Q immediate");
case BRW_REGISTER_TYPE_DF:
case BRW_REGISTER_TYPE_HF:
assert(!"unimplemented: negate DF/HF immediate");
}
return false;
}
bool
brw_abs_immediate(enum brw_reg_type type, struct brw_reg *reg)
{
switch (type) {
case BRW_REGISTER_TYPE_D:
reg->dw1.d = abs(reg->dw1.d);
return true;
case BRW_REGISTER_TYPE_W:
reg->dw1.d = abs((int16_t)reg->dw1.ud);
return true;
case BRW_REGISTER_TYPE_F:
reg->dw1.f = fabsf(reg->dw1.f);
return true;
case BRW_REGISTER_TYPE_VF:
reg->dw1.ud &= ~0x80808080;
return true;
case BRW_REGISTER_TYPE_UB:
case BRW_REGISTER_TYPE_B:
unreachable("no UB/B immediates");
case BRW_REGISTER_TYPE_UQ:
case BRW_REGISTER_TYPE_UD:
case BRW_REGISTER_TYPE_UW:
case BRW_REGISTER_TYPE_UV:
/* Presumably the absolute value modifier on an unsigned source is a
* nop, but it would be nice to confirm.
*/
assert(!"unimplemented: abs unsigned immediate");
case BRW_REGISTER_TYPE_V:
assert(!"unimplemented: abs V immediate");
case BRW_REGISTER_TYPE_Q:
assert(!"unimplemented: abs Q immediate");
case BRW_REGISTER_TYPE_DF:
case BRW_REGISTER_TYPE_HF:
assert(!"unimplemented: abs DF/HF immediate");
}
return false;
}
backend_visitor::backend_visitor(struct brw_context *brw,
struct gl_shader_program *shader_prog,
struct gl_program *prog,
struct brw_stage_prog_data *stage_prog_data,
gl_shader_stage stage)
: brw(brw),
devinfo(brw->intelScreen->devinfo),
ctx(&brw->ctx),
shader(shader_prog ?
(struct brw_shader *)shader_prog->_LinkedShaders[stage] : NULL),
shader_prog(shader_prog),
prog(prog),
stage_prog_data(stage_prog_data),
cfg(NULL),
stage(stage)
{
debug_enabled = INTEL_DEBUG & intel_debug_flag_for_shader_stage(stage);
stage_name = _mesa_shader_stage_to_string(stage);
stage_abbrev = _mesa_shader_stage_to_abbrev(stage);
}
bool
backend_reg::is_zero() const
{
if (file != IMM)
return false;
return fixed_hw_reg.dw1.d == 0;
}
bool
backend_reg::is_one() const
{
if (file != IMM)
return false;
return type == BRW_REGISTER_TYPE_F
? fixed_hw_reg.dw1.f == 1.0
: fixed_hw_reg.dw1.d == 1;
}
bool
backend_reg::is_negative_one() const
{
if (file != IMM)
return false;
switch (type) {
case BRW_REGISTER_TYPE_F:
return fixed_hw_reg.dw1.f == -1.0;
case BRW_REGISTER_TYPE_D:
return fixed_hw_reg.dw1.d == -1;
default:
return false;
}
}
bool
backend_reg::is_null() const
{
return file == HW_REG &&
fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE &&
fixed_hw_reg.nr == BRW_ARF_NULL;
}
bool
backend_reg::is_accumulator() const
{
return file == HW_REG &&
fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE &&
fixed_hw_reg.nr == BRW_ARF_ACCUMULATOR;
}
bool
backend_reg::in_range(const backend_reg &r, unsigned n) const
{
return (file == r.file &&
reg == r.reg &&
reg_offset >= r.reg_offset &&
reg_offset < r.reg_offset + n);
}
bool
backend_instruction::is_commutative() const
{
switch (opcode) {
case BRW_OPCODE_AND:
case BRW_OPCODE_OR:
case BRW_OPCODE_XOR:
case BRW_OPCODE_ADD:
case BRW_OPCODE_MUL:
return true;
case BRW_OPCODE_SEL:
/* MIN and MAX are commutative. */
if (conditional_mod == BRW_CONDITIONAL_GE ||
conditional_mod == BRW_CONDITIONAL_L) {
return true;
}
/* fallthrough */
default:
return false;
}
}
bool
backend_instruction::is_3src() const
{
return opcode < ARRAY_SIZE(opcode_descs) && opcode_descs[opcode].nsrc == 3;
}
bool
backend_instruction::is_tex() const
{
return (opcode == SHADER_OPCODE_TEX ||
opcode == FS_OPCODE_TXB ||
opcode == SHADER_OPCODE_TXD ||
opcode == SHADER_OPCODE_TXF ||
opcode == SHADER_OPCODE_TXF_CMS ||
opcode == SHADER_OPCODE_TXF_UMS ||
opcode == SHADER_OPCODE_TXF_MCS ||
opcode == SHADER_OPCODE_TXL ||
opcode == SHADER_OPCODE_TXS ||
opcode == SHADER_OPCODE_LOD ||
opcode == SHADER_OPCODE_TG4 ||
opcode == SHADER_OPCODE_TG4_OFFSET);
}
bool
backend_instruction::is_math() const
{
return (opcode == SHADER_OPCODE_RCP ||
opcode == SHADER_OPCODE_RSQ ||
opcode == SHADER_OPCODE_SQRT ||
opcode == SHADER_OPCODE_EXP2 ||
opcode == SHADER_OPCODE_LOG2 ||
opcode == SHADER_OPCODE_SIN ||
opcode == SHADER_OPCODE_COS ||
opcode == SHADER_OPCODE_INT_QUOTIENT ||
opcode == SHADER_OPCODE_INT_REMAINDER ||
opcode == SHADER_OPCODE_POW);
}
bool
backend_instruction::is_control_flow() const
{
switch (opcode) {
case BRW_OPCODE_DO:
case BRW_OPCODE_WHILE:
case BRW_OPCODE_IF:
case BRW_OPCODE_ELSE:
case BRW_OPCODE_ENDIF:
case BRW_OPCODE_BREAK:
case BRW_OPCODE_CONTINUE:
return true;
default:
return false;
}
}
bool
backend_instruction::can_do_source_mods() const
{
switch (opcode) {
case BRW_OPCODE_ADDC:
case BRW_OPCODE_BFE:
case BRW_OPCODE_BFI1:
case BRW_OPCODE_BFI2:
case BRW_OPCODE_BFREV:
case BRW_OPCODE_CBIT:
case BRW_OPCODE_FBH:
case BRW_OPCODE_FBL:
case BRW_OPCODE_SUBB:
return false;
default:
return true;
}
}
bool
backend_instruction::can_do_saturate() const
{
switch (opcode) {
case BRW_OPCODE_ADD:
case BRW_OPCODE_ASR:
case BRW_OPCODE_AVG:
case BRW_OPCODE_DP2:
case BRW_OPCODE_DP3:
case BRW_OPCODE_DP4:
case BRW_OPCODE_DPH:
case BRW_OPCODE_F16TO32:
case BRW_OPCODE_F32TO16:
case BRW_OPCODE_LINE:
case BRW_OPCODE_LRP:
case BRW_OPCODE_MAC:
case BRW_OPCODE_MACH:
case BRW_OPCODE_MAD:
case BRW_OPCODE_MATH:
case BRW_OPCODE_MOV:
case BRW_OPCODE_MUL:
case BRW_OPCODE_PLN:
case BRW_OPCODE_RNDD:
case BRW_OPCODE_RNDE:
case BRW_OPCODE_RNDU:
case BRW_OPCODE_RNDZ:
case BRW_OPCODE_SEL:
case BRW_OPCODE_SHL:
case BRW_OPCODE_SHR:
case FS_OPCODE_LINTERP:
case SHADER_OPCODE_COS:
case SHADER_OPCODE_EXP2:
case SHADER_OPCODE_LOG2:
case SHADER_OPCODE_POW:
case SHADER_OPCODE_RCP:
case SHADER_OPCODE_RSQ:
case SHADER_OPCODE_SIN:
case SHADER_OPCODE_SQRT:
return true;
default:
return false;
}
}
bool
backend_instruction::can_do_cmod() const
{
switch (opcode) {
case BRW_OPCODE_ADD:
case BRW_OPCODE_ADDC:
case BRW_OPCODE_AND:
case BRW_OPCODE_ASR:
case BRW_OPCODE_AVG:
case BRW_OPCODE_CMP:
case BRW_OPCODE_CMPN:
case BRW_OPCODE_DP2:
case BRW_OPCODE_DP3:
case BRW_OPCODE_DP4:
case BRW_OPCODE_DPH:
case BRW_OPCODE_F16TO32:
case BRW_OPCODE_F32TO16:
case BRW_OPCODE_FRC:
case BRW_OPCODE_LINE:
case BRW_OPCODE_LRP:
case BRW_OPCODE_LZD:
case BRW_OPCODE_MAC:
case BRW_OPCODE_MACH:
case BRW_OPCODE_MAD:
case BRW_OPCODE_MOV:
case BRW_OPCODE_MUL:
case BRW_OPCODE_NOT:
case BRW_OPCODE_OR:
case BRW_OPCODE_PLN:
case BRW_OPCODE_RNDD:
case BRW_OPCODE_RNDE:
case BRW_OPCODE_RNDU:
case BRW_OPCODE_RNDZ:
case BRW_OPCODE_SAD2:
case BRW_OPCODE_SADA2:
case BRW_OPCODE_SHL:
case BRW_OPCODE_SHR:
case BRW_OPCODE_SUBB:
case BRW_OPCODE_XOR:
case FS_OPCODE_CINTERP:
case FS_OPCODE_LINTERP:
return true;
default:
return false;
}
}
bool
backend_instruction::reads_accumulator_implicitly() const
{
switch (opcode) {
case BRW_OPCODE_MAC:
case BRW_OPCODE_MACH:
case BRW_OPCODE_SADA2:
return true;
default:
return false;
}
}
bool
backend_instruction::writes_accumulator_implicitly(const struct brw_device_info *devinfo) const
{
return writes_accumulator ||
(devinfo->gen < 6 &&
((opcode >= BRW_OPCODE_ADD && opcode < BRW_OPCODE_NOP) ||
(opcode >= FS_OPCODE_DDX_COARSE && opcode <= FS_OPCODE_LINTERP &&
opcode != FS_OPCODE_CINTERP)));
}
bool
backend_instruction::has_side_effects() const
{
switch (opcode) {
case SHADER_OPCODE_UNTYPED_ATOMIC:
case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
case SHADER_OPCODE_TYPED_ATOMIC:
case SHADER_OPCODE_TYPED_SURFACE_WRITE:
case SHADER_OPCODE_MEMORY_FENCE:
case SHADER_OPCODE_URB_WRITE_SIMD8:
case FS_OPCODE_FB_WRITE:
return true;
default:
return false;
}
}
#ifndef NDEBUG
static bool
inst_is_in_block(const bblock_t *block, const backend_instruction *inst)
{
bool found = false;
foreach_inst_in_block (backend_instruction, i, block) {
if (inst == i) {
found = true;
}
}
return found;
}
#endif
static void
adjust_later_block_ips(bblock_t *start_block, int ip_adjustment)
{
for (bblock_t *block_iter = start_block->next();
!block_iter->link.is_tail_sentinel();
block_iter = block_iter->next()) {
block_iter->start_ip += ip_adjustment;
block_iter->end_ip += ip_adjustment;
}
}
void
backend_instruction::insert_after(bblock_t *block, backend_instruction *inst)
{
if (!this->is_head_sentinel())
assert(inst_is_in_block(block, this) || !"Instruction not in block");
block->end_ip++;
adjust_later_block_ips(block, 1);
exec_node::insert_after(inst);
}
void
backend_instruction::insert_before(bblock_t *block, backend_instruction *inst)
{
if (!this->is_tail_sentinel())
assert(inst_is_in_block(block, this) || !"Instruction not in block");
block->end_ip++;
adjust_later_block_ips(block, 1);
exec_node::insert_before(inst);
}
void
backend_instruction::insert_before(bblock_t *block, exec_list *list)
{
assert(inst_is_in_block(block, this) || !"Instruction not in block");
unsigned num_inst = list->length();
block->end_ip += num_inst;
adjust_later_block_ips(block, num_inst);
exec_node::insert_before(list);
}
void
backend_instruction::remove(bblock_t *block)
{
assert(inst_is_in_block(block, this) || !"Instruction not in block");
adjust_later_block_ips(block, -1);
if (block->start_ip == block->end_ip) {
block->cfg->remove_block(block);
} else {
block->end_ip--;
}
exec_node::remove();
}
void
backend_visitor::dump_instructions()
{
dump_instructions(NULL);
}
void
backend_visitor::dump_instructions(const char *name)
{
FILE *file = stderr;
if (name && geteuid() != 0) {
file = fopen(name, "w");
if (!file)
file = stderr;
}
if (cfg) {
int ip = 0;
foreach_block_and_inst(block, backend_instruction, inst, cfg) {
fprintf(file, "%4d: ", ip++);
dump_instruction(inst, file);
}
} else {
int ip = 0;
foreach_in_list(backend_instruction, inst, &instructions) {
fprintf(file, "%4d: ", ip++);
dump_instruction(inst, file);
}
}
if (file != stderr) {
fclose(file);
}
}
void
backend_visitor::calculate_cfg()
{
if (this->cfg)
return;
cfg = new(mem_ctx) cfg_t(&this->instructions);
}
void
backend_visitor::invalidate_cfg()
{
ralloc_free(this->cfg);
this->cfg = NULL;
}
/**
* Sets up the starting offsets for the groups of binding table entries
* commong to all pipeline stages.
*
* Unused groups are initialized to 0xd0d0d0d0 to make it obvious that they're
* unused but also make sure that addition of small offsets to them will
* trigger some of our asserts that surface indices are < BRW_MAX_SURFACES.
*/
void
backend_visitor::assign_common_binding_table_offsets(uint32_t next_binding_table_offset)
{
int num_textures = _mesa_fls(prog->SamplersUsed);
stage_prog_data->binding_table.texture_start = next_binding_table_offset;
next_binding_table_offset += num_textures;
if (shader) {
stage_prog_data->binding_table.ubo_start = next_binding_table_offset;
next_binding_table_offset += shader->base.NumUniformBlocks;
} else {
stage_prog_data->binding_table.ubo_start = 0xd0d0d0d0;
}
if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
stage_prog_data->binding_table.shader_time_start = next_binding_table_offset;
next_binding_table_offset++;
} else {
stage_prog_data->binding_table.shader_time_start = 0xd0d0d0d0;
}
if (prog->UsesGather) {
if (devinfo->gen >= 8) {
stage_prog_data->binding_table.gather_texture_start =
stage_prog_data->binding_table.texture_start;
} else {
stage_prog_data->binding_table.gather_texture_start = next_binding_table_offset;
next_binding_table_offset += num_textures;
}
} else {
stage_prog_data->binding_table.gather_texture_start = 0xd0d0d0d0;
}
if (shader_prog && shader_prog->NumAtomicBuffers) {
stage_prog_data->binding_table.abo_start = next_binding_table_offset;
next_binding_table_offset += shader_prog->NumAtomicBuffers;
} else {
stage_prog_data->binding_table.abo_start = 0xd0d0d0d0;
}
if (shader && shader->base.NumImages) {
stage_prog_data->binding_table.image_start = next_binding_table_offset;
next_binding_table_offset += shader->base.NumImages;
} else {
stage_prog_data->binding_table.image_start = 0xd0d0d0d0;
}
/* This may or may not be used depending on how the compile goes. */
stage_prog_data->binding_table.pull_constants_start = next_binding_table_offset;
next_binding_table_offset++;
assert(next_binding_table_offset <= BRW_MAX_SURFACES);
/* prog_data->base.binding_table.size will be set by brw_mark_surface_used. */
}