mesa/src/compiler/nir/nir_intrinsics.py

1539 lines
67 KiB
Python
Raw Permalink Normal View History

#
# Copyright (C) 2018 Red Hat
# Copyright (C) 2014 Intel Corporation
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice (including the next
# paragraph) shall be included in all copies or substantial portions of the
# Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
#
# This file defines all the available intrinsics in one place.
#
# The Intrinsic class corresponds one-to-one with nir_intrinsic_info
# structure.
src0 = ('src', 0)
src1 = ('src', 1)
src2 = ('src', 2)
src3 = ('src', 3)
src4 = ('src', 4)
class Index(object):
def __init__(self, c_data_type, name):
self.c_data_type = c_data_type
self.name = name
class Intrinsic(object):
"""Class that represents all the information about an intrinsic opcode.
NOTE: this must be kept in sync with nir_intrinsic_info.
"""
def __init__(self, name, src_components, dest_components,
indices, flags, sysval, bit_sizes):
"""Parameters:
- name: the intrinsic name
- src_components: list of the number of components per src, 0 means
vectorized instruction with number of components given in the
num_components field in nir_intrinsic_instr.
- dest_components: number of destination components, -1 means no
dest, 0 means number of components given in num_components field
in nir_intrinsic_instr.
- indices: list of constant indicies
- flags: list of semantic flags
- sysval: is this a system-value intrinsic
- bit_sizes: allowed dest bit_sizes or the source it must match
"""
assert isinstance(name, str)
assert isinstance(src_components, list)
if src_components:
assert isinstance(src_components[0], int)
assert isinstance(dest_components, int)
assert isinstance(indices, list)
if indices:
assert isinstance(indices[0], Index)
assert isinstance(flags, list)
if flags:
assert isinstance(flags[0], str)
assert isinstance(sysval, bool)
if isinstance(bit_sizes, list):
assert not bit_sizes or isinstance(bit_sizes[0], int)
else:
assert isinstance(bit_sizes, tuple)
assert bit_sizes[0] == 'src'
assert isinstance(bit_sizes[1], int)
self.name = name
self.num_srcs = len(src_components)
self.src_components = src_components
self.has_dest = (dest_components >= 0)
self.dest_components = dest_components
self.num_indices = len(indices)
self.indices = indices
self.flags = flags
self.sysval = sysval
self.bit_sizes = bit_sizes if isinstance(bit_sizes, list) else []
self.bit_size_src = bit_sizes[1] if isinstance(bit_sizes, tuple) else -1
#
# Possible flags:
#
CAN_ELIMINATE = "NIR_INTRINSIC_CAN_ELIMINATE"
CAN_REORDER = "NIR_INTRINSIC_CAN_REORDER"
INTR_INDICES = []
INTR_OPCODES = {}
def index(c_data_type, name):
idx = Index(c_data_type, name)
INTR_INDICES.append(idx)
globals()[name.upper()] = idx
# Defines a new NIR intrinsic. By default, the intrinsic will have no sources
# and no destination.
#
# You can set dest_comp=n to enable a destination for the intrinsic, in which
# case it will have that many components, or =0 for "as many components as the
# NIR destination value."
#
# Set src_comp=n to enable sources for the intruction. It can be an array of
# component counts, or (for convenience) a scalar component count if there's
# only one source. If a component count is 0, it will be as many components as
# the intrinsic has based on the dest_comp.
def intrinsic(name, src_comp=[], dest_comp=-1, indices=[],
flags=[], sysval=False, bit_sizes=[]):
assert name not in INTR_OPCODES
INTR_OPCODES[name] = Intrinsic(name, src_comp, dest_comp,
indices, flags, sysval, bit_sizes)
#
# Possible indices:
#
# Generally instructions that take a offset src argument, can encode
# a constant 'base' value which is added to the offset.
index("int", "base")
# For store instructions, a writemask for the store.
index("unsigned", "write_mask")
# The stream-id for GS emit_vertex/end_primitive intrinsics.
index("unsigned", "stream_id")
# The clip-plane id for load_user_clip_plane intrinsic.
index("unsigned", "ucp_id")
# The offset to the start of the NIR_INTRINSIC_RANGE. This is an alternative
# to NIR_INTRINSIC_BASE for describing the valid range in intrinsics that don't
# have the implicit addition of a base to the offset.
#
# If the [range_base, range] is [0, ~0], then we don't know the possible
# range of the access.
index("unsigned", "range_base")
# The amount of data, starting from BASE or RANGE_BASE, that this
# instruction may access. This is used to provide bounds if the offset is
# not constant.
index("unsigned", "range")
# The Vulkan descriptor set for vulkan_resource_index intrinsic.
index("unsigned", "desc_set")
# The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
index("unsigned", "binding")
# Component offset
index("unsigned", "component")
# Column index for matrix system values
index("unsigned", "column")
# Interpolation mode (only meaningful for FS inputs)
index("unsigned", "interp_mode")
# A binary nir_op to use when performing a reduction or scan operation
index("unsigned", "reduction_op")
# Cluster size for reduction operations
index("unsigned", "cluster_size")
# Parameter index for a load_param intrinsic
index("unsigned", "param_idx")
# Image dimensionality for image intrinsics
index("enum glsl_sampler_dim", "image_dim")
# Non-zero if we are accessing an array image
index("bool", "image_array")
# Image format for image intrinsics
index("enum pipe_format", "format")
# Access qualifiers for image and memory access intrinsics. ACCESS_RESTRICT is
# not set at the intrinsic if the NIR was created from SPIR-V.
index("enum gl_access_qualifier", "access")
# call index for split raytracing shaders
index("unsigned", "call_idx")
# The stack size increment/decrement for split raytracing shaders
index("unsigned", "stack_size")
# Alignment for offsets and addresses
#
# These two parameters, specify an alignment in terms of a multiplier and
# an offset. The multiplier is always a power of two. The offset or
# address parameter X of the intrinsic is guaranteed to satisfy the
# following:
#
# (X - align_offset) % align_mul == 0
#
# For constant offset values, align_mul will be NIR_ALIGN_MUL_MAX and the
# align_offset will be modulo that.
index("unsigned", "align_mul")
index("unsigned", "align_offset")
# The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic.
index("unsigned", "desc_type")
# The nir_alu_type of input data to a store or conversion
index("nir_alu_type", "src_type")
# The nir_alu_type of the data output from a load or conversion
index("nir_alu_type", "dest_type")
# The swizzle mask for quad_swizzle_amd & masked_swizzle_amd
index("unsigned", "swizzle_mask")
# Whether the load_buffer_amd/store_buffer_amd is swizzled
index("bool", "is_swizzled")
# The SLC ("system level coherent") bit of load_buffer_amd/store_buffer_amd
index("bool", "slc_amd")
# Offsets for load_shared2_amd/store_shared2_amd
index("uint8_t", "offset0")
index("uint8_t", "offset1")
# If true, both offsets have an additional stride of 64 dwords (ie. they are multiplied by 256 bytes
# in hardware, instead of 4).
index("bool", "st64")
# When set, range analysis will use it for nir_unsigned_upper_bound
index("unsigned", "arg_upper_bound_u32_amd")
# Separate source/dest access flags for copies
index("enum gl_access_qualifier", "dst_access")
index("enum gl_access_qualifier", "src_access")
# Driver location of attribute
index("unsigned", "driver_location")
nir: Add scoped_memory_barrier intrinsic Add a NIR instrinsic that represent a memory barrier in SPIR-V / Vulkan Memory Model, with extra attributes that describe the barrier: - Ordering: whether is an Acquire or Release; - "Cache control": availability ("ensure this gets written in the memory") and visibility ("ensure my cache is up to date when I'm reading"); - Variable modes: which memory types this barrier applies to; - Scope: how far this barrier applies. Note that unlike in SPIR-V, the "Storage Semantics" and the "Memory Semantics" are split into two different attributes so we can use variable modes for the former. NIR passes that took barriers in consideration were also changed - nir_opt_copy_prop_vars: clean up the values for the mode of an ACQUIRE barrier. Copy propagation effect is to "pull up a load" (by not performing it), which is what ACQUIRE restricts. - nir_opt_dead_write_vars and nir_opt_combine_writes: clean up the pending writes for the modes of an RELEASE barrier. Dead writes effect is to "push down a store", which is what RELEASE restricts. - nir_opt_access: treat the ACQUIRE and RELEASE as a full barrier for the modes. This is conservative, but since this is a GL-specific pass, doesn't make a difference for now. v2: Fix the scoped barrier handling in copy propagation. (Jason) Add scoped barrier handling to nir_opt_access and nir_opt_combine_writes. (Rhys) Reviewed-by: Jason Ekstrand <jason@jlekstrand.net> Reviewed-by: Bas Nieuwenhuizen <bas@basnieuwenhuizen.nl>
2019-07-19 00:14:03 +01:00
# Ordering and visibility of a memory operation
index("nir_memory_semantics", "memory_semantics")
nir: Add scoped_memory_barrier intrinsic Add a NIR instrinsic that represent a memory barrier in SPIR-V / Vulkan Memory Model, with extra attributes that describe the barrier: - Ordering: whether is an Acquire or Release; - "Cache control": availability ("ensure this gets written in the memory") and visibility ("ensure my cache is up to date when I'm reading"); - Variable modes: which memory types this barrier applies to; - Scope: how far this barrier applies. Note that unlike in SPIR-V, the "Storage Semantics" and the "Memory Semantics" are split into two different attributes so we can use variable modes for the former. NIR passes that took barriers in consideration were also changed - nir_opt_copy_prop_vars: clean up the values for the mode of an ACQUIRE barrier. Copy propagation effect is to "pull up a load" (by not performing it), which is what ACQUIRE restricts. - nir_opt_dead_write_vars and nir_opt_combine_writes: clean up the pending writes for the modes of an RELEASE barrier. Dead writes effect is to "push down a store", which is what RELEASE restricts. - nir_opt_access: treat the ACQUIRE and RELEASE as a full barrier for the modes. This is conservative, but since this is a GL-specific pass, doesn't make a difference for now. v2: Fix the scoped barrier handling in copy propagation. (Jason) Add scoped barrier handling to nir_opt_access and nir_opt_combine_writes. (Rhys) Reviewed-by: Jason Ekstrand <jason@jlekstrand.net> Reviewed-by: Bas Nieuwenhuizen <bas@basnieuwenhuizen.nl>
2019-07-19 00:14:03 +01:00
# Modes affected by a memory operation
index("nir_variable_mode", "memory_modes")
nir: Add scoped_memory_barrier intrinsic Add a NIR instrinsic that represent a memory barrier in SPIR-V / Vulkan Memory Model, with extra attributes that describe the barrier: - Ordering: whether is an Acquire or Release; - "Cache control": availability ("ensure this gets written in the memory") and visibility ("ensure my cache is up to date when I'm reading"); - Variable modes: which memory types this barrier applies to; - Scope: how far this barrier applies. Note that unlike in SPIR-V, the "Storage Semantics" and the "Memory Semantics" are split into two different attributes so we can use variable modes for the former. NIR passes that took barriers in consideration were also changed - nir_opt_copy_prop_vars: clean up the values for the mode of an ACQUIRE barrier. Copy propagation effect is to "pull up a load" (by not performing it), which is what ACQUIRE restricts. - nir_opt_dead_write_vars and nir_opt_combine_writes: clean up the pending writes for the modes of an RELEASE barrier. Dead writes effect is to "push down a store", which is what RELEASE restricts. - nir_opt_access: treat the ACQUIRE and RELEASE as a full barrier for the modes. This is conservative, but since this is a GL-specific pass, doesn't make a difference for now. v2: Fix the scoped barrier handling in copy propagation. (Jason) Add scoped barrier handling to nir_opt_access and nir_opt_combine_writes. (Rhys) Reviewed-by: Jason Ekstrand <jason@jlekstrand.net> Reviewed-by: Bas Nieuwenhuizen <bas@basnieuwenhuizen.nl>
2019-07-19 00:14:03 +01:00
# Scope of a memory operation
index("nir_scope", "memory_scope")
# Scope of a control barrier
index("nir_scope", "execution_scope")
# Semantics of an IO instruction
index("struct nir_io_semantics", "io_semantics")
# Transform feedback info
index("struct nir_io_xfb", "io_xfb")
index("struct nir_io_xfb", "io_xfb2")
# Rounding mode for conversions
index("nir_rounding_mode", "rounding_mode")
# Whether or not to saturate in conversions
index("unsigned", "saturate")
# Whether or not trace_ray_intel is synchronous
index("bool", "synchronous")
intrinsic("nop", flags=[CAN_ELIMINATE])
intrinsic("convert_alu_types", dest_comp=0, src_comp=[0],
indices=[SRC_TYPE, DEST_TYPE, ROUNDING_MODE, SATURATE],
flags=[CAN_ELIMINATE, CAN_REORDER])
intrinsic("load_param", dest_comp=0, indices=[PARAM_IDX], flags=[CAN_ELIMINATE])
intrinsic("load_deref", dest_comp=0, src_comp=[-1],
indices=[ACCESS], flags=[CAN_ELIMINATE])
intrinsic("store_deref", src_comp=[-1, 0], indices=[WRITE_MASK, ACCESS])
intrinsic("copy_deref", src_comp=[-1, -1], indices=[DST_ACCESS, SRC_ACCESS])
intrinsic("memcpy_deref", src_comp=[-1, -1, 1], indices=[DST_ACCESS, SRC_ACCESS])
# Interpolation of input. The interp_deref_at* intrinsics are similar to the
# load_var intrinsic acting on a shader input except that they interpolate the
# input differently. The at_sample, at_offset and at_vertex intrinsics take an
# additional source that is an integer sample id, a vec2 position offset, or a
# vertex ID respectively.
intrinsic("interp_deref_at_centroid", dest_comp=0, src_comp=[1],
flags=[ CAN_ELIMINATE, CAN_REORDER])
intrinsic("interp_deref_at_sample", src_comp=[1, 1], dest_comp=0,
flags=[CAN_ELIMINATE, CAN_REORDER])
intrinsic("interp_deref_at_offset", src_comp=[1, 2], dest_comp=0,
flags=[CAN_ELIMINATE, CAN_REORDER])
intrinsic("interp_deref_at_vertex", src_comp=[1, 1], dest_comp=0,
flags=[CAN_ELIMINATE, CAN_REORDER])
# Gets the length of an unsized array at the end of a buffer
intrinsic("deref_buffer_array_length", src_comp=[-1], dest_comp=1,
indices=[ACCESS], flags=[CAN_ELIMINATE, CAN_REORDER])
# Ask the driver for the size of a given SSBO. It takes the buffer index
# as source.
intrinsic("get_ssbo_size", src_comp=[-1], dest_comp=1, bit_sizes=[32],
indices=[ACCESS], flags=[CAN_ELIMINATE, CAN_REORDER])
intrinsic("get_ubo_size", src_comp=[-1], dest_comp=1,
flags=[CAN_ELIMINATE, CAN_REORDER])
# Intrinsics which provide a run-time mode-check. Unlike the compile-time
# mode checks, a pointer can only have exactly one mode at runtime.
intrinsic("deref_mode_is", src_comp=[-1], dest_comp=1,
indices=[MEMORY_MODES], flags=[CAN_ELIMINATE, CAN_REORDER])
intrinsic("addr_mode_is", src_comp=[-1], dest_comp=1,
indices=[MEMORY_MODES], flags=[CAN_ELIMINATE, CAN_REORDER])
intrinsic("is_sparse_texels_resident", dest_comp=1, src_comp=[1], bit_sizes=[1],
flags=[CAN_ELIMINATE, CAN_REORDER])
# result code is resident only if both inputs are resident
intrinsic("sparse_residency_code_and", dest_comp=1, src_comp=[1, 1], bit_sizes=[32],
flags=[CAN_ELIMINATE, CAN_REORDER])
# a barrier is an intrinsic with no inputs/outputs but which can't be moved
# around/optimized in general
def barrier(name):
intrinsic(name)
barrier("discard")
# Demote fragment shader invocation to a helper invocation. Any stores to
# memory after this instruction are suppressed and the fragment does not write
# outputs to the framebuffer. Unlike discard, demote needs to ensure that
# derivatives will still work for invocations that were not demoted.
#
# As specified by SPV_EXT_demote_to_helper_invocation.
barrier("demote")
intrinsic("is_helper_invocation", dest_comp=1, flags=[CAN_ELIMINATE])
# SpvOpTerminateInvocation from SPIR-V. Essentially a discard "for real".
barrier("terminate")
# A workgroup-level control barrier. Any thread which hits this barrier will
# pause until all threads within the current workgroup have also hit the
# barrier. For compute shaders, the workgroup is defined as the local group.
# For tessellation control shaders, the workgroup is defined as the current
# patch. This intrinsic does not imply any sort of memory barrier.
barrier("control_barrier")
# Memory barrier with semantics analogous to the memoryBarrier() GLSL
# intrinsic.
barrier("memory_barrier")
# Control/Memory barrier with explicit scope. Follows the semantics of SPIR-V
# OpMemoryBarrier and OpControlBarrier, used to implement Vulkan Memory Model.
# Storage that the barrier applies is represented using NIR variable modes.
# For an OpMemoryBarrier, set EXECUTION_SCOPE to NIR_SCOPE_NONE.
intrinsic("scoped_barrier",
indices=[EXECUTION_SCOPE, MEMORY_SCOPE, MEMORY_SEMANTICS, MEMORY_MODES])
nir: Add scoped_memory_barrier intrinsic Add a NIR instrinsic that represent a memory barrier in SPIR-V / Vulkan Memory Model, with extra attributes that describe the barrier: - Ordering: whether is an Acquire or Release; - "Cache control": availability ("ensure this gets written in the memory") and visibility ("ensure my cache is up to date when I'm reading"); - Variable modes: which memory types this barrier applies to; - Scope: how far this barrier applies. Note that unlike in SPIR-V, the "Storage Semantics" and the "Memory Semantics" are split into two different attributes so we can use variable modes for the former. NIR passes that took barriers in consideration were also changed - nir_opt_copy_prop_vars: clean up the values for the mode of an ACQUIRE barrier. Copy propagation effect is to "pull up a load" (by not performing it), which is what ACQUIRE restricts. - nir_opt_dead_write_vars and nir_opt_combine_writes: clean up the pending writes for the modes of an RELEASE barrier. Dead writes effect is to "push down a store", which is what RELEASE restricts. - nir_opt_access: treat the ACQUIRE and RELEASE as a full barrier for the modes. This is conservative, but since this is a GL-specific pass, doesn't make a difference for now. v2: Fix the scoped barrier handling in copy propagation. (Jason) Add scoped barrier handling to nir_opt_access and nir_opt_combine_writes. (Rhys) Reviewed-by: Jason Ekstrand <jason@jlekstrand.net> Reviewed-by: Bas Nieuwenhuizen <bas@basnieuwenhuizen.nl>
2019-07-19 00:14:03 +01:00
# Shader clock intrinsic with semantics analogous to the clock2x32ARB()
# GLSL intrinsic.
# The latter can be used as code motion barrier, which is currently not
# feasible with NIR.
intrinsic("shader_clock", dest_comp=2, bit_sizes=[32], flags=[CAN_ELIMINATE],
indices=[MEMORY_SCOPE])
# Shader ballot intrinsics with semantics analogous to the
#
# ballotARB()
# readInvocationARB()
# readFirstInvocationARB()
#
# GLSL functions from ARB_shader_ballot.
intrinsic("ballot", src_comp=[1], dest_comp=0, flags=[CAN_ELIMINATE])
intrinsic("read_invocation", src_comp=[0, 1], dest_comp=0, bit_sizes=src0, flags=[CAN_ELIMINATE])
intrinsic("read_first_invocation", src_comp=[0], dest_comp=0, bit_sizes=src0, flags=[CAN_ELIMINATE])
# Returns the value of the first source for the lane where the second source is
# true. The second source must be true for exactly one lane.
intrinsic("read_invocation_cond_ir3", src_comp=[0, 1], dest_comp=0, flags=[CAN_ELIMINATE])
# Additional SPIR-V ballot intrinsics
#
# These correspond to the SPIR-V opcodes
#
# OpGroupNonUniformElect
# OpSubgroupFirstInvocationKHR
intrinsic("elect", dest_comp=1, flags=[CAN_ELIMINATE])
intrinsic("first_invocation", dest_comp=1, bit_sizes=[32], flags=[CAN_ELIMINATE])
intrinsic("last_invocation", dest_comp=1, bit_sizes=[32], flags=[CAN_ELIMINATE])
# Memory barrier with semantics analogous to the compute shader
# groupMemoryBarrier(), memoryBarrierAtomicCounter(), memoryBarrierBuffer(),
# memoryBarrierImage() and memoryBarrierShared() GLSL intrinsics.
barrier("group_memory_barrier")
barrier("memory_barrier_atomic_counter")
barrier("memory_barrier_buffer")
barrier("memory_barrier_image")
barrier("memory_barrier_shared")
barrier("begin_invocation_interlock")
barrier("end_invocation_interlock")
# Memory barrier for synchronizing TCS patch outputs
barrier("memory_barrier_tcs_patch")
# A conditional discard/demote/terminate, with a single boolean source.
intrinsic("discard_if", src_comp=[1])
intrinsic("demote_if", src_comp=[1])
intrinsic("terminate_if", src_comp=[1])
# ARB_shader_group_vote intrinsics
intrinsic("vote_any", src_comp=[1], dest_comp=1, flags=[CAN_ELIMINATE])
intrinsic("vote_all", src_comp=[1], dest_comp=1, flags=[CAN_ELIMINATE])
intrinsic("vote_feq", src_comp=[0], dest_comp=1, flags=[CAN_ELIMINATE])
intrinsic("vote_ieq", src_comp=[0], dest_comp=1, flags=[CAN_ELIMINATE])
# Ballot ALU operations from SPIR-V.
#
# These operations work like their ALU counterparts except that the operate
# on a uvec4 which is treated as a 128bit integer. Also, they are, in
# general, free to ignore any bits which are above the subgroup size.
intrinsic("ballot_bitfield_extract", src_comp=[4, 1], dest_comp=1, flags=[CAN_ELIMINATE])
intrinsic("ballot_bit_count_reduce", src_comp=[4], dest_comp=1, flags=[CAN_ELIMINATE])
intrinsic("ballot_bit_count_inclusive", src_comp=[4], dest_comp=1, flags=[CAN_ELIMINATE])
intrinsic("ballot_bit_count_exclusive", src_comp=[4], dest_comp=1, flags=[CAN_ELIMINATE])
intrinsic("ballot_find_lsb", src_comp=[4], dest_comp=1, flags=[CAN_ELIMINATE])
intrinsic("ballot_find_msb", src_comp=[4], dest_comp=1, flags=[CAN_ELIMINATE])
# Shuffle operations from SPIR-V.
intrinsic("shuffle", src_comp=[0, 1], dest_comp=0, bit_sizes=src0, flags=[CAN_ELIMINATE])
intrinsic("shuffle_xor", src_comp=[0, 1], dest_comp=0, bit_sizes=src0, flags=[CAN_ELIMINATE])
intrinsic("shuffle_up", src_comp=[0, 1], dest_comp=0, bit_sizes=src0, flags=[CAN_ELIMINATE])
intrinsic("shuffle_down", src_comp=[0, 1], dest_comp=0, bit_sizes=src0, flags=[CAN_ELIMINATE])
# Quad operations from SPIR-V.
intrinsic("quad_broadcast", src_comp=[0, 1], dest_comp=0, flags=[CAN_ELIMINATE])
intrinsic("quad_swap_horizontal", src_comp=[0], dest_comp=0, flags=[CAN_ELIMINATE])
intrinsic("quad_swap_vertical", src_comp=[0], dest_comp=0, flags=[CAN_ELIMINATE])
intrinsic("quad_swap_diagonal", src_comp=[0], dest_comp=0, flags=[CAN_ELIMINATE])
intrinsic("reduce", src_comp=[0], dest_comp=0, bit_sizes=src0,
indices=[REDUCTION_OP, CLUSTER_SIZE], flags=[CAN_ELIMINATE])
intrinsic("inclusive_scan", src_comp=[0], dest_comp=0, bit_sizes=src0,
indices=[REDUCTION_OP], flags=[CAN_ELIMINATE])
intrinsic("exclusive_scan", src_comp=[0], dest_comp=0, bit_sizes=src0,
indices=[REDUCTION_OP], flags=[CAN_ELIMINATE])
# AMD shader ballot operations
intrinsic("quad_swizzle_amd", src_comp=[0], dest_comp=0, bit_sizes=src0,
indices=[SWIZZLE_MASK], flags=[CAN_ELIMINATE])
intrinsic("masked_swizzle_amd", src_comp=[0], dest_comp=0, bit_sizes=src0,
indices=[SWIZZLE_MASK], flags=[CAN_ELIMINATE])
intrinsic("write_invocation_amd", src_comp=[0, 0, 1], dest_comp=0, bit_sizes=src0,
flags=[CAN_ELIMINATE])
# src = [ mask, addition ]
intrinsic("mbcnt_amd", src_comp=[1, 1], dest_comp=1, bit_sizes=[32], flags=[CAN_ELIMINATE])
# Compiled to v_perm_b32. src = [ in_bytes_hi, in_bytes_lo, selector ]
intrinsic("byte_permute_amd", src_comp=[1, 1, 1], dest_comp=1, bit_sizes=[32], flags=[CAN_ELIMINATE, CAN_REORDER])
# Compiled to v_permlane16_b32. src = [ value, lanesel_lo, lanesel_hi ]
intrinsic("lane_permute_16_amd", src_comp=[1, 1, 1], dest_comp=1, bit_sizes=[32], flags=[CAN_ELIMINATE])
# Basic Geometry Shader intrinsics.
#
# emit_vertex implements GLSL's EmitStreamVertex() built-in. It takes a single
# index, which is the stream ID to write to.
#
# end_primitive implements GLSL's EndPrimitive() built-in.
intrinsic("emit_vertex", indices=[STREAM_ID])
intrinsic("end_primitive", indices=[STREAM_ID])
# Geometry Shader intrinsics with a vertex count.
#
# Alternatively, drivers may implement these intrinsics, and use
# nir_lower_gs_intrinsics() to convert from the basic intrinsics.
#
# These contain two additional unsigned integer sources:
# 1. The total number of vertices emitted so far.
# 2. The number of vertices emitted for the current primitive
# so far if we're counting, otherwise undef.
intrinsic("emit_vertex_with_counter", src_comp=[1, 1], indices=[STREAM_ID])
intrinsic("end_primitive_with_counter", src_comp=[1, 1], indices=[STREAM_ID])
# Contains the final total vertex and primitive counts in the current GS thread.
intrinsic("set_vertex_and_primitive_count", src_comp=[1, 1], indices=[STREAM_ID])
# Launches mesh shader workgroups from a task shader, with explicit task_payload.
# Rules:
# - This is a terminating instruction.
# - May only occur in workgroup-uniform control flow.
# - Dispatch sizes may be divergent (in which case the values
# from the first invocation are used).
# Meaning of indices:
# - BASE: address of the task_payload variable used.
# - RANGE: size of the task_payload variable used.
#
# src[] = {vec(x, y, z)}
intrinsic("launch_mesh_workgroups", src_comp=[3], indices=[BASE, RANGE])
# Trace a ray through an acceleration structure
#
# This instruction has a lot of parameters:
# 0. Acceleration Structure
# 1. Ray Flags
# 2. Cull Mask
# 3. SBT Offset
# 4. SBT Stride
# 5. Miss shader index
# 6. Ray Origin
# 7. Ray Tmin
# 8. Ray Direction
# 9. Ray Tmax
# 10. Payload
intrinsic("trace_ray", src_comp=[-1, 1, 1, 1, 1, 1, 3, 1, 3, 1, -1])
# src[] = { hit_t, hit_kind }
intrinsic("report_ray_intersection", src_comp=[1, 1], dest_comp=1)
intrinsic("ignore_ray_intersection")
intrinsic("accept_ray_intersection") # Not in SPIR-V; useful for lowering
intrinsic("terminate_ray")
# src[] = { sbt_index, payload }
intrinsic("execute_callable", src_comp=[1, -1])
# Initialize a ray query
#
# 0. Ray Query
# 1. Acceleration Structure
# 2. Ray Flags
# 3. Cull Mask
# 4. Ray Origin
# 5. Ray Tmin
# 6. Ray Direction
# 7. Ray Tmax
intrinsic("rq_initialize", src_comp=[-1, -1, 1, 1, 3, 1, 3, 1])
# src[] = { query }
intrinsic("rq_terminate", src_comp=[-1])
# src[] = { query }
intrinsic("rq_proceed", src_comp=[-1], dest_comp=1)
# src[] = { query, hit }
intrinsic("rq_generate_intersection", src_comp=[-1, 1])
# src[] = { query }
intrinsic("rq_confirm_intersection", src_comp=[-1])
# src[] = { query, committed } BASE=nir_ray_query_value
intrinsic("rq_load", src_comp=[-1, 1], dest_comp=0, indices=[BASE,COLUMN])
# Driver independent raytracing helpers
# rt_resume is a helper that that be the first instruction accesing the
# stack/scratch in a resume shader for a raytracing pipeline. It includes the
# resume index (for nir_lower_shader_calls_internal reasons) and the stack size
# of the variables spilled during the call. The stack size can be use to e.g.
# adjust a stack pointer.
intrinsic("rt_resume", indices=[CALL_IDX, STACK_SIZE])
# Lowered version of execute_callabe that includes the index of the resume
# shader, and the amount of scratch space needed for this call (.ie. how much
# to increase a stack pointer by).
# src[] = { sbt_index, payload }
intrinsic("rt_execute_callable", src_comp=[1, -1], indices=[CALL_IDX,STACK_SIZE])
# Lowered version of trace_ray in a similar vein to rt_execute_callable.
# src same as trace_ray
intrinsic("rt_trace_ray", src_comp=[-1, 1, 1, 1, 1, 1, 3, 1, 3, 1, -1],
indices=[CALL_IDX, STACK_SIZE])
# Atomic counters
#
# The *_deref variants take an atomic_uint nir_variable, while the other,
# lowered, variants take a buffer index and register offset. The buffer index
# is always constant, as there's no way to declare an array of atomic counter
# buffers.
#
# The register offset may be non-constant but must by dynamically uniform
# ("Atomic counters aggregated into arrays within a shader can only be indexed
# with dynamically uniform integral expressions, otherwise results are
# undefined.")
def atomic(name, flags=[]):
intrinsic(name + "_deref", src_comp=[-1], dest_comp=1, flags=flags)
intrinsic(name, src_comp=[1], dest_comp=1, indices=[BASE], flags=flags)
def atomic2(name):
intrinsic(name + "_deref", src_comp=[-1, 1], dest_comp=1)
intrinsic(name, src_comp=[1, 1], dest_comp=1, indices=[BASE])
def atomic3(name):
intrinsic(name + "_deref", src_comp=[-1, 1, 1], dest_comp=1)
intrinsic(name, src_comp=[1, 1, 1], dest_comp=1, indices=[BASE])
atomic("atomic_counter_inc")
atomic("atomic_counter_pre_dec")
atomic("atomic_counter_post_dec")
atomic("atomic_counter_read", flags=[CAN_ELIMINATE])
atomic2("atomic_counter_add")
atomic2("atomic_counter_min")
atomic2("atomic_counter_max")
atomic2("atomic_counter_and")
atomic2("atomic_counter_or")
atomic2("atomic_counter_xor")
atomic2("atomic_counter_exchange")
atomic3("atomic_counter_comp_swap")
# Image load, store and atomic intrinsics.
#
# All image intrinsics come in three versions. One which take an image target
# passed as a deref chain as the first source, one which takes an index as the
# first source, and one which takes a bindless handle as the first source.
# In the first version, the image variable contains the memory and layout
# qualifiers that influence the semantics of the intrinsic. In the second and
# third, the image format and access qualifiers are provided as constant
# indices. Up through GLSL ES 3.10, the image index source may only be a
# constant array access. GLSL ES 3.20 and GLSL 4.00 allow dynamically uniform
# indexing.
#
# All image intrinsics take a four-coordinate vector and a sample index as
# 2nd and 3rd sources, determining the location within the image that will be
# accessed by the intrinsic. Components not applicable to the image target
# in use are undefined. Image store takes an additional four-component
# argument with the value to be written, and image atomic operations take
# either one or two additional scalar arguments with the same meaning as in
# the ARB_shader_image_load_store specification.
def image(name, src_comp=[], extra_indices=[], **kwargs):
intrinsic("image_deref_" + name, src_comp=[-1] + src_comp,
indices=[IMAGE_DIM, IMAGE_ARRAY, FORMAT, ACCESS] + extra_indices, **kwargs)
intrinsic("image_" + name, src_comp=[1] + src_comp,
indices=[IMAGE_DIM, IMAGE_ARRAY, FORMAT, ACCESS] + extra_indices, **kwargs)
intrinsic("bindless_image_" + name, src_comp=[-1] + src_comp,
indices=[IMAGE_DIM, IMAGE_ARRAY, FORMAT, ACCESS] + extra_indices, **kwargs)
image("load", src_comp=[4, 1, 1], extra_indices=[DEST_TYPE], dest_comp=0, flags=[CAN_ELIMINATE])
image("sparse_load", src_comp=[4, 1, 1], extra_indices=[DEST_TYPE], dest_comp=0, flags=[CAN_ELIMINATE])
image("store", src_comp=[4, 1, 0, 1], extra_indices=[SRC_TYPE])
image("atomic_add", src_comp=[4, 1, 1], dest_comp=1)
image("atomic_imin", src_comp=[4, 1, 1], dest_comp=1)
image("atomic_umin", src_comp=[4, 1, 1], dest_comp=1)
image("atomic_imax", src_comp=[4, 1, 1], dest_comp=1)
image("atomic_umax", src_comp=[4, 1, 1], dest_comp=1)
image("atomic_and", src_comp=[4, 1, 1], dest_comp=1)
image("atomic_or", src_comp=[4, 1, 1], dest_comp=1)
image("atomic_xor", src_comp=[4, 1, 1], dest_comp=1)
image("atomic_exchange", src_comp=[4, 1, 1], dest_comp=1)
image("atomic_comp_swap", src_comp=[4, 1, 1, 1], dest_comp=1)
image("atomic_fadd", src_comp=[4, 1, 1], dest_comp=1)
image("atomic_fmin", src_comp=[4, 1, 1], dest_comp=1)
image("atomic_fmax", src_comp=[4, 1, 1], dest_comp=1)
image("size", dest_comp=0, src_comp=[1], flags=[CAN_ELIMINATE, CAN_REORDER])
image("samples", dest_comp=1, flags=[CAN_ELIMINATE, CAN_REORDER])
image("atomic_inc_wrap", src_comp=[4, 1, 1], dest_comp=1)
image("atomic_dec_wrap", src_comp=[4, 1, 1], dest_comp=1)
# CL-specific format queries
image("format", dest_comp=1, flags=[CAN_ELIMINATE, CAN_REORDER])
image("order", dest_comp=1, flags=[CAN_ELIMINATE, CAN_REORDER])
# Vulkan descriptor set intrinsics
#
# The Vulkan API uses a different binding model from GL. In the Vulkan
# API, all external resources are represented by a tuple:
#
# (descriptor set, binding, array index)
#
# where the array index is the only thing allowed to be indirect. The
# vulkan_surface_index intrinsic takes the descriptor set and binding as
# its first two indices and the array index as its source. The third
# index is a nir_variable_mode in case that's useful to the backend.
#
# The intended usage is that the shader will call vulkan_surface_index to
# get an index and then pass that as the buffer index ubo/ssbo calls.
#
# The vulkan_resource_reindex intrinsic takes a resource index in src0
# (the result of a vulkan_resource_index or vulkan_resource_reindex) which
# corresponds to the tuple (set, binding, index) and computes an index
# corresponding to tuple (set, binding, idx + src1).
intrinsic("vulkan_resource_index", src_comp=[1], dest_comp=0,
indices=[DESC_SET, BINDING, DESC_TYPE],
flags=[CAN_ELIMINATE, CAN_REORDER])
intrinsic("vulkan_resource_reindex", src_comp=[0, 1], dest_comp=0,
indices=[DESC_TYPE], flags=[CAN_ELIMINATE, CAN_REORDER])
intrinsic("load_vulkan_descriptor", src_comp=[-1], dest_comp=0,
indices=[DESC_TYPE], flags=[CAN_ELIMINATE, CAN_REORDER])
# atomic intrinsics
#
# All of these atomic memory operations read a value from memory, compute a new
# value using one of the operations below, write the new value to memory, and
# return the original value read.
#
# All variable operations take 2 sources except CompSwap that takes 3. These
# sources represent:
#
# 0: A deref to the memory on which to perform the atomic
# 1: The data parameter to the atomic function (i.e. the value to add
# in shared_atomic_add, etc).
# 2: For CompSwap only: the second data parameter.
#
# All SSBO operations take 3 sources except CompSwap that takes 4. These
# sources represent:
#
# 0: The SSBO buffer index (dynamically uniform in GLSL, possibly non-uniform
# with VK_EXT_descriptor_indexing).
# 1: The offset into the SSBO buffer of the variable that the atomic
# operation will operate on.
# 2: The data parameter to the atomic function (i.e. the value to add
# in ssbo_atomic_add, etc).
# 3: For CompSwap only: the second data parameter.
#
# All shared (and task payload) variable operations take 2 sources
# except CompSwap that takes 3.
# These sources represent:
#
# 0: The offset into the shared variable storage region that the atomic
# operation will operate on.
# 1: The data parameter to the atomic function (i.e. the value to add
# in shared_atomic_add, etc).
# 2: For CompSwap only: the second data parameter.
#
# All global operations take 2 sources except CompSwap that takes 3. These
# sources represent:
#
# 0: The memory address that the atomic operation will operate on.
# 1: The data parameter to the atomic function (i.e. the value to add
# in shared_atomic_add, etc).
# 2: For CompSwap only: the second data parameter.
#
# The 2x32 global variants use a vec2 for the memory address where component X
# has the low 32-bit and component Y has the high 32-bit.
#
# IR3 global operations take 32b vec2 as memory address. IR3 doesn't support
# float atomics.
def memory_atomic_data1(name):
intrinsic("deref_atomic_" + name, src_comp=[-1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("ssbo_atomic_" + name, src_comp=[-1, 1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("shared_atomic_" + name, src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("task_payload_atomic_" + name, src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("global_atomic_" + name, src_comp=[1, 1], dest_comp=1, indices=[])
intrinsic("global_atomic_" + name + "_2x32", src_comp=[2, 1], dest_comp=1, indices=[])
intrinsic("global_atomic_" + name + "_amd", src_comp=[1, 1, 1], dest_comp=1, indices=[BASE])
if not name.startswith('f'):
intrinsic("global_atomic_" + name + "_ir3", src_comp=[2, 1], dest_comp=1, indices=[BASE])
def memory_atomic_data2(name):
intrinsic("deref_atomic_" + name, src_comp=[-1, 1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("ssbo_atomic_" + name, src_comp=[-1, 1, 1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("shared_atomic_" + name, src_comp=[1, 1, 1], dest_comp=1, indices=[BASE])
intrinsic("task_payload_atomic_" + name, src_comp=[1, 1, 1], dest_comp=1, indices=[BASE])
intrinsic("global_atomic_" + name, src_comp=[1, 1, 1], dest_comp=1, indices=[])
intrinsic("global_atomic_" + name + "_2x32", src_comp=[2, 1, 1], dest_comp=1, indices=[])
intrinsic("global_atomic_" + name + "_amd", src_comp=[1, 1, 1, 1], dest_comp=1, indices=[BASE])
if not name.startswith('f'):
intrinsic("global_atomic_" + name + "_ir3", src_comp=[2, 1, 1], dest_comp=1, indices=[BASE])
memory_atomic_data1("add")
memory_atomic_data1("imin")
memory_atomic_data1("umin")
memory_atomic_data1("imax")
memory_atomic_data1("umax")
memory_atomic_data1("and")
memory_atomic_data1("or")
memory_atomic_data1("xor")
memory_atomic_data1("exchange")
memory_atomic_data1("fadd")
memory_atomic_data1("fmin")
memory_atomic_data1("fmax")
memory_atomic_data2("comp_swap")
memory_atomic_data2("fcomp_swap")
def system_value(name, dest_comp, indices=[], bit_sizes=[32]):
intrinsic("load_" + name, [], dest_comp, indices,
flags=[CAN_ELIMINATE, CAN_REORDER], sysval=True,
bit_sizes=bit_sizes)
system_value("frag_coord", 4)
system_value("point_coord", 2)
system_value("line_coord", 1)
system_value("front_face", 1, bit_sizes=[1, 32])
system_value("vertex_id", 1)
system_value("vertex_id_zero_base", 1)
compiler: Add SYSTEM_VALUE_FIRST_VERTEX and instrinsics This VS system value will contain the value passed as <basevertex> for indexed draw calls or the value passed as <first> for non-indexed draw calls. It can be used to calculate the gl_VertexID as SYSTEM_VALUE_VERTEX_ID_ZERO_BASE plus SYSTEM_VALUE_FIRST_VERTEX. From the OpenGL 4.6 spec, 10.4 "Drawing Commands Using Vertex Arrays": - Page 352: "The index of any element transferred to the GL by DrawArraysOneInstance is referred to as its vertex ID, and may be read by a vertex shader as gl_VertexID. The vertex ID of the ith element transferred is first + i." - Page 355: "The index of any element transferred to the GL by DrawElementsOneInstance is referred to as its vertex ID, and may be read by a vertex shader as gl_VertexID. The vertex ID of the ith element transferred is the sum of basevertex and the value stored in the currently bound element array buffer at offset indices + i." Currently the gl_VertexID calculation uses SYSTEM_VALUE_BASE_VERTEX but this will have to change when the value of gl_BaseVertex is fixed. Currently its value is broken for non-indexed draw calls because it must be zero but we are setting it to <first>. v2: use SYSTEM_VALUE_FIRST_VERTEX as name for the value, instead of SYSTEM_VALUE_BASE_VERTEX_ID (Kenneth). v3 (idr): Rebase on Rob Clark converting nir_intrinsics.h to be generated. Reformat commit message to 72 columns. Reviewed-by: Neil Roberts <nroberts@igalia.com> Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
2018-01-25 18:15:38 +00:00
system_value("first_vertex", 1)
system_value("is_indexed_draw", 1)
system_value("base_vertex", 1)
system_value("instance_id", 1)
system_value("base_instance", 1)
system_value("draw_id", 1)
system_value("sample_id", 1)
# sample_id_no_per_sample is like sample_id but does not imply per-
# sample shading. See the lower_helper_invocation option.
system_value("sample_id_no_per_sample", 1)
system_value("sample_pos", 2)
# sample_pos_or_center is like sample_pos but does not imply per-sample
# shading. When per-sample dispatch is not enabled, it returns (0.5, 0.5).
system_value("sample_pos_or_center", 2)
system_value("sample_mask_in", 1)
system_value("primitive_id", 1)
system_value("invocation_id", 1)
system_value("tess_coord", 3)
system_value("tess_level_outer", 4)
system_value("tess_level_inner", 2)
system_value("tess_level_outer_default", 4)
system_value("tess_level_inner_default", 2)
system_value("patch_vertices_in", 1)
system_value("local_invocation_id", 3)
system_value("local_invocation_index", 1)
# zero_base indicates it starts from 0 for the current dispatch
# non-zero_base indicates the base is included
system_value("workgroup_id", 3, bit_sizes=[32, 64])
system_value("workgroup_id_zero_base", 3)
# The workgroup_index is intended for situations when a 3 dimensional
# workgroup_id is not available on the HW, but a 1 dimensional index is.
system_value("workgroup_index", 1)
system_value("base_workgroup_id", 3, bit_sizes=[32, 64])
system_value("user_clip_plane", 4, indices=[UCP_ID])
system_value("num_workgroups", 3, bit_sizes=[32, 64])
system_value("num_vertices", 1)
system_value("helper_invocation", 1, bit_sizes=[1, 32])
system_value("layer_id", 1)
system_value("view_index", 1)
system_value("subgroup_size", 1)
system_value("subgroup_invocation", 1)
system_value("subgroup_eq_mask", 0, bit_sizes=[32, 64])
system_value("subgroup_ge_mask", 0, bit_sizes=[32, 64])
system_value("subgroup_gt_mask", 0, bit_sizes=[32, 64])
system_value("subgroup_le_mask", 0, bit_sizes=[32, 64])
system_value("subgroup_lt_mask", 0, bit_sizes=[32, 64])
system_value("num_subgroups", 1)
system_value("subgroup_id", 1)
system_value("workgroup_size", 3)
# note: the definition of global_invocation_id_zero_base is based on
# (workgroup_id * workgroup_size) + local_invocation_id.
# it is *not* based on workgroup_id_zero_base, meaning the work group
# base is already accounted for, and the global base is additive on top of that
system_value("global_invocation_id", 3, bit_sizes=[32, 64])
system_value("global_invocation_id_zero_base", 3, bit_sizes=[32, 64])
system_value("base_global_invocation_id", 3, bit_sizes=[32, 64])
system_value("global_invocation_index", 1, bit_sizes=[32, 64])
system_value("work_dim", 1)
system_value("line_width", 1)
system_value("aa_line_width", 1)
# BASE=0 for global/shader, BASE=1 for local/function
system_value("scratch_base_ptr", 0, bit_sizes=[32,64], indices=[BASE])
system_value("constant_base_ptr", 0, bit_sizes=[32,64])
system_value("shared_base_ptr", 0, bit_sizes=[32,64])
system_value("global_base_ptr", 0, bit_sizes=[32,64])
# Address of a transform feedback buffer, indexed by BASE
system_value("xfb_address", 1, bit_sizes=[32,64], indices=[BASE])
# System values for ray tracing.
system_value("ray_launch_id", 3)
system_value("ray_launch_size", 3)
system_value("ray_world_origin", 3)
system_value("ray_world_direction", 3)
system_value("ray_object_origin", 3)
system_value("ray_object_direction", 3)
system_value("ray_t_min", 1)
system_value("ray_t_max", 1)
system_value("ray_object_to_world", 3, indices=[COLUMN])
system_value("ray_world_to_object", 3, indices=[COLUMN])
system_value("ray_hit_kind", 1)
system_value("ray_flags", 1)
system_value("ray_geometry_index", 1)
system_value("ray_instance_custom_index", 1)
system_value("shader_record_ptr", 1, bit_sizes=[64])
system_value("cull_mask", 1)
# Driver-specific viewport scale/offset parameters.
#
# VC4 and V3D need to emit a scaled version of the position in the vertex
# shaders for binning, and having system values lets us move the math for that
# into NIR.
#
# Panfrost needs to implement all coordinate transformation in the
# vertex shader; system values allow us to share this routine in NIR.
#
# RADV uses these for NGG primitive culling.
system_value("viewport_x_scale", 1)
system_value("viewport_y_scale", 1)
system_value("viewport_z_scale", 1)
system_value("viewport_x_offset", 1)
system_value("viewport_y_offset", 1)
system_value("viewport_z_offset", 1)
system_value("viewport_scale", 3)
system_value("viewport_offset", 3)
# Blend constant color values. Float values are clamped. Vectored versions are
# provided as well for driver convenience
system_value("blend_const_color_r_float", 1)
system_value("blend_const_color_g_float", 1)
system_value("blend_const_color_b_float", 1)
system_value("blend_const_color_a_float", 1)
system_value("blend_const_color_rgba", 4)
system_value("blend_const_color_rgba8888_unorm", 1)
system_value("blend_const_color_aaaa8888_unorm", 1)
# System values for gl_Color, for radeonsi which interpolates these in the
# shader prolog to handle two-sided color without recompiles and therefore
# doesn't handle these in the main shader part like normal varyings.
system_value("color0", 4)
system_value("color1", 4)
# System value for internal compute shaders in radeonsi.
system_value("user_data_amd", 4)
# Barycentric coordinate intrinsics.
#
# These set up the barycentric coordinates for a particular interpolation.
# The first four are for the simple cases: pixel, centroid, per-sample
# (at gl_SampleID), or pull model (1/W, 1/I, 1/J) at the pixel center. The next
# two handle interpolating at a specified sample location, or interpolating
# with a vec2 offset,
#
# The interp_mode index should be either the INTERP_MODE_SMOOTH or
# INTERP_MODE_NOPERSPECTIVE enum values.
#
# The vec2 value produced by these intrinsics is intended for use as the
# barycoord source of a load_interpolated_input intrinsic.
def barycentric(name, dst_comp, src_comp=[]):
intrinsic("load_barycentric_" + name, src_comp=src_comp, dest_comp=dst_comp,
indices=[INTERP_MODE], flags=[CAN_ELIMINATE, CAN_REORDER])
# no sources.
barycentric("pixel", 2)
barycentric("centroid", 2)
barycentric("sample", 2)
barycentric("model", 3)
# src[] = { sample_id }.
barycentric("at_sample", 2, [1])
# src[] = { offset.xy }.
barycentric("at_offset", 2, [2])
# Load sample position:
#
# Takes a sample # and returns a sample position. Used for lowering
# interpolateAtSample() to interpolateAtOffset()
intrinsic("load_sample_pos_from_id", src_comp=[1], dest_comp=2,
flags=[CAN_ELIMINATE, CAN_REORDER])
intrinsic("load_persp_center_rhw_ir3", dest_comp=1,
flags=[CAN_ELIMINATE, CAN_REORDER])
# Load texture scaling values:
#
# Takes a sampler # and returns 1/size values for multiplying to normalize
# texture coordinates. Used for lowering rect textures.
intrinsic("load_texture_rect_scaling", src_comp=[1], dest_comp=2,
flags=[CAN_ELIMINATE, CAN_REORDER])
# Fragment shader input interpolation delta intrinsic.
#
# For hw where fragment shader input interpolation is handled in shader, the
# load_fs_input_interp deltas intrinsics can be used to load the input deltas
# used for interpolation as follows:
#
# vec3 iid = load_fs_input_interp_deltas(varying_slot)
# vec2 bary = load_barycentric_*(...)
# float result = iid.x + iid.y * bary.y + iid.z * bary.x
intrinsic("load_fs_input_interp_deltas", src_comp=[1], dest_comp=3,
indices=[BASE, COMPONENT, IO_SEMANTICS], flags=[CAN_ELIMINATE, CAN_REORDER])
# Load operations pull data from some piece of GPU memory. All load
# operations operate in terms of offsets into some piece of theoretical
# memory. Loads from externally visible memory (UBO and SSBO) simply take a
# byte offset as a source. Loads from opaque memory (uniforms, inputs, etc.)
# take a base+offset pair where the nir_intrinsic_base() gives the location
# of the start of the variable being loaded and and the offset source is a
# offset into that variable.
#
# Uniform load operations have a nir_intrinsic_range() index that specifies the
# range (starting at base) of the data from which we are loading. If
# range == 0, then the range is unknown.
#
# UBO load operations have a nir_intrinsic_range_base() and
# nir_intrinsic_range() that specify the byte range [range_base,
# range_base+range] of the UBO that the src offset access must lie within.
#
# Some load operations such as UBO/SSBO load and per_vertex loads take an
# additional source to specify which UBO/SSBO/vertex to load from.
#
# The exact address type depends on the lowering pass that generates the
# load/store intrinsics. Typically, this is vec4 units for things such as
# varying slots and float units for fragment shader inputs. UBO and SSBO
# offsets are always in bytes.
def load(name, src_comp, indices=[], flags=[]):
intrinsic("load_" + name, src_comp, dest_comp=0, indices=indices,
flags=flags)
# src[] = { offset }.
load("uniform", [1], [BASE, RANGE, DEST_TYPE], [CAN_ELIMINATE, CAN_REORDER])
# src[] = { buffer_index, offset }.
load("ubo", [-1, 1], [ACCESS, ALIGN_MUL, ALIGN_OFFSET, RANGE_BASE, RANGE], flags=[CAN_ELIMINATE, CAN_REORDER])
# src[] = { buffer_index, offset in vec4 units }. base is also in vec4 units.
load("ubo_vec4", [-1, 1], [ACCESS, BASE, COMPONENT], flags=[CAN_ELIMINATE, CAN_REORDER])
# src[] = { offset }.
load("input", [1], [BASE, COMPONENT, DEST_TYPE, IO_SEMANTICS], [CAN_ELIMINATE, CAN_REORDER])
# src[] = { vertex_id, offset }.
load("input_vertex", [1, 1], [BASE, COMPONENT, DEST_TYPE, IO_SEMANTICS], [CAN_ELIMINATE, CAN_REORDER])
# src[] = { vertex, offset }.
load("per_vertex_input", [1, 1], [BASE, COMPONENT, DEST_TYPE, IO_SEMANTICS], [CAN_ELIMINATE, CAN_REORDER])
# src[] = { barycoord, offset }.
load("interpolated_input", [2, 1], [BASE, COMPONENT, DEST_TYPE, IO_SEMANTICS], [CAN_ELIMINATE, CAN_REORDER])
# src[] = { buffer_index, offset }.
load("ssbo", [-1, 1], [ACCESS, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE])
# src[] = { buffer_index }
load("ssbo_address", [1], [], [CAN_ELIMINATE, CAN_REORDER])
# src[] = { offset }.
load("output", [1], [BASE, COMPONENT, DEST_TYPE, IO_SEMANTICS], flags=[CAN_ELIMINATE])
# src[] = { vertex, offset }.
load("per_vertex_output", [1, 1], [BASE, COMPONENT, DEST_TYPE, IO_SEMANTICS], [CAN_ELIMINATE])
# src[] = { primitive, offset }.
load("per_primitive_output", [1, 1], [BASE, COMPONENT, DEST_TYPE, IO_SEMANTICS], [CAN_ELIMINATE])
# src[] = { offset }.
load("shared", [1], [BASE, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE])
# src[] = { offset }.
load("task_payload", [1], [BASE, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE])
# src[] = { offset }.
load("push_constant", [1], [BASE, RANGE], [CAN_ELIMINATE, CAN_REORDER])
# src[] = { offset }.
load("constant", [1], [BASE, RANGE, ALIGN_MUL, ALIGN_OFFSET],
[CAN_ELIMINATE, CAN_REORDER])
# src[] = { address }.
load("global", [1], [ACCESS, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE])
# src[] = { address }.
load("global_2x32", [2], [ACCESS, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE])
# src[] = { address }.
load("global_constant", [1], [ACCESS, ALIGN_MUL, ALIGN_OFFSET],
[CAN_ELIMINATE, CAN_REORDER])
# src[] = { base_address, offset }.
load("global_constant_offset", [1, 1], [ACCESS, ALIGN_MUL, ALIGN_OFFSET],
[CAN_ELIMINATE, CAN_REORDER])
# src[] = { base_address, offset, bound }.
load("global_constant_bounded", [1, 1, 1], [ACCESS, ALIGN_MUL, ALIGN_OFFSET],
[CAN_ELIMINATE, CAN_REORDER])
# src[] = { address }.
load("kernel_input", [1], [BASE, RANGE, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE, CAN_REORDER])
# src[] = { offset }.
load("scratch", [1], [ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE])
# Stores work the same way as loads, except now the first source is the value
# to store and the second (and possibly third) source specify where to store
# the value. SSBO and shared memory stores also have a
# nir_intrinsic_write_mask()
def store(name, srcs, indices=[], flags=[]):
intrinsic("store_" + name, [0] + srcs, indices=indices, flags=flags)
# src[] = { value, offset }.
store("output", [1], [BASE, WRITE_MASK, COMPONENT, SRC_TYPE, IO_SEMANTICS, IO_XFB, IO_XFB2])
# src[] = { value, vertex, offset }.
store("per_vertex_output", [1, 1], [BASE, WRITE_MASK, COMPONENT, SRC_TYPE, IO_SEMANTICS])
# src[] = { value, primitive, offset }.
store("per_primitive_output", [1, 1], [BASE, WRITE_MASK, COMPONENT, SRC_TYPE, IO_SEMANTICS])
# src[] = { value, block_index, offset }
store("ssbo", [-1, 1], [WRITE_MASK, ACCESS, ALIGN_MUL, ALIGN_OFFSET])
# src[] = { value, offset }.
store("shared", [1], [BASE, WRITE_MASK, ALIGN_MUL, ALIGN_OFFSET])
# src[] = { value, offset }.
store("task_payload", [1], [BASE, WRITE_MASK, ALIGN_MUL, ALIGN_OFFSET])
# src[] = { value, address }.
store("global", [1], [WRITE_MASK, ACCESS, ALIGN_MUL, ALIGN_OFFSET])
# src[] = { value, address }.
store("global_2x32", [2], [WRITE_MASK, ACCESS, ALIGN_MUL, ALIGN_OFFSET])
# src[] = { value, offset }.
store("scratch", [1], [ALIGN_MUL, ALIGN_OFFSET, WRITE_MASK])
# A bit field to implement SPIRV FragmentShadingRateKHR
# bit | name | description
# 0 | Vertical2Pixels | Fragment invocation covers 2 pixels vertically
# 1 | Vertical4Pixels | Fragment invocation covers 4 pixels vertically
# 2 | Horizontal2Pixels | Fragment invocation covers 2 pixels horizontally
# 3 | Horizontal4Pixels | Fragment invocation covers 4 pixels horizontally
intrinsic("load_frag_shading_rate", dest_comp=1, bit_sizes=[32],
flags=[CAN_ELIMINATE, CAN_REORDER])
# OpenCL printf instruction
# First source is a deref to the format string
# Second source is a deref to a struct containing the args
# Dest is success or failure
intrinsic("printf", src_comp=[1, 1], dest_comp=1, bit_sizes=[32])
# Since most drivers will want to lower to just dumping args
# in a buffer, nir_lower_printf will do that, but requires
# the driver to at least provide a base location
system_value("printf_buffer_address", 1, bit_sizes=[32,64])
# Mesh shading MultiView intrinsics
system_value("mesh_view_count", 1)
load("mesh_view_indices", [1], [BASE, RANGE], [CAN_ELIMINATE, CAN_REORDER])
# Used to pass values from the preamble to the main shader.
# This should use something similar to Vulkan push constants and load_preamble
# should be relatively cheap.
# For now we only support accesses with a constant offset.
load("preamble", [], indices=[BASE], flags=[CAN_ELIMINATE, CAN_REORDER])
store("preamble", [], indices=[BASE])
# IR3-specific version of most SSBO intrinsics. The only different
# compare to the originals is that they add an extra source to hold
# the dword-offset, which is needed by the backend code apart from
# the byte-offset already provided by NIR in one of the sources.
#
# NIR lowering pass 'ir3_nir_lower_io_offset' will replace the
# original SSBO intrinsics by these, placing the computed
# dword-offset always in the last source.
#
# The float versions are not handled because those are not supported
# by the backend.
store("ssbo_ir3", [1, 1, 1],
indices=[WRITE_MASK, ACCESS, ALIGN_MUL, ALIGN_OFFSET])
load("ssbo_ir3", [1, 1, 1],
indices=[ACCESS, ALIGN_MUL, ALIGN_OFFSET], flags=[CAN_ELIMINATE])
intrinsic("ssbo_atomic_add_ir3", src_comp=[1, 1, 1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("ssbo_atomic_imin_ir3", src_comp=[1, 1, 1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("ssbo_atomic_umin_ir3", src_comp=[1, 1, 1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("ssbo_atomic_imax_ir3", src_comp=[1, 1, 1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("ssbo_atomic_umax_ir3", src_comp=[1, 1, 1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("ssbo_atomic_and_ir3", src_comp=[1, 1, 1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("ssbo_atomic_or_ir3", src_comp=[1, 1, 1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("ssbo_atomic_xor_ir3", src_comp=[1, 1, 1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("ssbo_atomic_exchange_ir3", src_comp=[1, 1, 1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("ssbo_atomic_comp_swap_ir3", src_comp=[1, 1, 1, 1, 1], dest_comp=1, indices=[ACCESS])
# System values for freedreno geometry shaders.
system_value("vs_primitive_stride_ir3", 1)
system_value("vs_vertex_stride_ir3", 1)
system_value("gs_header_ir3", 1)
system_value("primitive_location_ir3", 1, indices=[DRIVER_LOCATION])
# System values for freedreno tessellation shaders.
system_value("hs_patch_stride_ir3", 1)
system_value("tess_factor_base_ir3", 2)
system_value("tess_param_base_ir3", 2)
system_value("tcs_header_ir3", 1)
2021-08-02 10:55:15 +01:00
system_value("rel_patch_id_ir3", 1)
# System values for freedreno compute shaders.
system_value("subgroup_id_shift_ir3", 1)
# IR3-specific intrinsics for tessellation control shaders. cond_end_ir3 end
# the shader when src0 is false and is used to narrow down the TCS shader to
# just thread 0 before writing out tessellation levels.
intrinsic("cond_end_ir3", src_comp=[1])
# end_patch_ir3 is used just before thread 0 exist the TCS and presumably
# signals the TE that the patch is complete and can be tessellated.
intrinsic("end_patch_ir3")
# IR3-specific load/store intrinsics. These access a buffer used to pass data
# between geometry stages - perhaps it's explicit access to the vertex cache.
# src[] = { value, offset }.
store("shared_ir3", [1], [BASE, ALIGN_MUL, ALIGN_OFFSET])
# src[] = { offset }.
load("shared_ir3", [1], [BASE, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE])
# IR3-specific load/store global intrinsics. They take a 64-bit base address
# and a 32-bit offset. The hardware will add the base and the offset, which
# saves us from doing 64-bit math on the base address.
# src[] = { value, address(vec2 of hi+lo uint32_t), offset }.
# const_index[] = { write_mask, align_mul, align_offset }
store("global_ir3", [2, 1], indices=[ACCESS, ALIGN_MUL, ALIGN_OFFSET])
# src[] = { address(vec2 of hi+lo uint32_t), offset }.
# const_index[] = { access, align_mul, align_offset }
load("global_ir3", [2, 1], indices=[ACCESS, ALIGN_MUL, ALIGN_OFFSET], flags=[CAN_ELIMINATE])
# IR3-specific bindless handle specifier. Similar to vulkan_resource_index, but
# without the binding because the hardware expects a single flattened index
# rather than a (binding, index) pair. We may also want to use this with GL.
# Note that this doesn't actually turn into a HW instruction.
intrinsic("bindless_resource_ir3", [1], dest_comp=1, indices=[DESC_SET], flags=[CAN_ELIMINATE, CAN_REORDER])
# IR3-specific intrinsics for shader preamble. These are meant to be used like
# this:
#
# if (preamble_start()) {
# if (subgroupElect()) {
# // preamble
# ...
# preamble_end();
# }
# }
# // main shader
# ...
intrinsic("preamble_start_ir3", [], dest_comp=1, flags=[CAN_ELIMINATE, CAN_REORDER])
barrier("preamble_end_ir3")
# IR3-specific intrinsic for stc. Should be used in the shader preamble.
store("uniform_ir3", [], indices=[BASE])
# IR3-specific intrinsic for ldc.k. Copies UBO to constant file.
# base is the const file base in components, range is the amount to copy in
# vec4's.
intrinsic("copy_ubo_to_uniform_ir3", [1, 1], indices=[BASE, RANGE])
# DXIL specific intrinsics
# src[] = { value, mask, index, offset }.
intrinsic("store_ssbo_masked_dxil", [1, 1, 1, 1])
# src[] = { value, index }.
intrinsic("store_shared_dxil", [1, 1])
# src[] = { value, mask, index }.
intrinsic("store_shared_masked_dxil", [1, 1, 1])
# src[] = { value, index }.
intrinsic("store_scratch_dxil", [1, 1])
# src[] = { index }.
load("shared_dxil", [1], [], [CAN_ELIMINATE])
# src[] = { index }.
load("scratch_dxil", [1], [], [CAN_ELIMINATE])
# src[] = { deref_var, offset }
load("ptr_dxil", [1, 1], [], [])
# src[] = { index, 16-byte-based-offset }
load("ubo_dxil", [1, 1], [], [CAN_ELIMINATE, CAN_REORDER])
# DXIL Shared atomic intrinsics
#
# All of the shared variable atomic memory operations read a value from
# memory, compute a new value using one of the operations below, write the
# new value to memory, and return the original value read.
#
# All operations take 2 sources:
#
# 0: The index in the i32 array for by the shared memory region
# 1: The data parameter to the atomic function (i.e. the value to add
# in shared_atomic_add, etc).
intrinsic("shared_atomic_add_dxil", src_comp=[1, 1], dest_comp=1)
intrinsic("shared_atomic_imin_dxil", src_comp=[1, 1], dest_comp=1)
intrinsic("shared_atomic_umin_dxil", src_comp=[1, 1], dest_comp=1)
intrinsic("shared_atomic_imax_dxil", src_comp=[1, 1], dest_comp=1)
intrinsic("shared_atomic_umax_dxil", src_comp=[1, 1], dest_comp=1)
intrinsic("shared_atomic_and_dxil", src_comp=[1, 1], dest_comp=1)
intrinsic("shared_atomic_or_dxil", src_comp=[1, 1], dest_comp=1)
intrinsic("shared_atomic_xor_dxil", src_comp=[1, 1], dest_comp=1)
intrinsic("shared_atomic_exchange_dxil", src_comp=[1, 1], dest_comp=1)
intrinsic("shared_atomic_comp_swap_dxil", src_comp=[1, 1, 1], dest_comp=1)
# Intrinsics used by the Midgard/Bifrost blend pipeline. These are defined
# within a blend shader to read/write the raw value from the tile buffer,
# without applying any format conversion in the process. If the shader needs
# usable pixel values, it must apply format conversions itself.
#
# These definitions are generic, but they are explicitly vendored to prevent
# other drivers from using them, as their semantics is defined in terms of the
# Midgard/Bifrost hardware tile buffer and may not line up with anything sane.
# One notable divergence is sRGB, which is asymmetric: raw_input_pan requires
# an sRGB->linear conversion, but linear values should be written to
# raw_output_pan and the hardware handles linear->sRGB.
# src[] = { value }
store("raw_output_pan", [], [])
store("combined_output_pan", [1, 1, 1, 4], [BASE, COMPONENT, SRC_TYPE, DEST_TYPE])
load("raw_output_pan", [1], [BASE], [CAN_ELIMINATE, CAN_REORDER])
# Loads the sampler paramaters <min_lod, max_lod, lod_bias>
# src[] = { sampler_index }
load("sampler_lod_parameters_pan", [1], flags=[CAN_ELIMINATE, CAN_REORDER])
# Loads the sample position array on Bifrost, in a packed Arm-specific format
system_value("sample_positions_pan", 1, bit_sizes=[64])
# R600 specific instrincs
#
# location where the tesselation data is stored in LDS
system_value("tcs_in_param_base_r600", 4)
system_value("tcs_out_param_base_r600", 4)
system_value("tcs_rel_patch_id_r600", 1)
system_value("tcs_tess_factor_base_r600", 1)
# the tess coords come as xy only, z has to be calculated
system_value("tess_coord_r600", 2)
# load as many components as needed giving per-component addresses
intrinsic("load_local_shared_r600", src_comp=[0], dest_comp=0, indices = [], flags = [CAN_ELIMINATE])
store("local_shared_r600", [1], [WRITE_MASK])
store("tf_r600", [])
# AMD GCN/RDNA specific intrinsics
# src[] = { descriptor, base address, scalar offset }
intrinsic("load_buffer_amd", src_comp=[4, 1, 1], dest_comp=0, indices=[BASE, IS_SWIZZLED, SLC_AMD, MEMORY_MODES], flags=[CAN_ELIMINATE])
# src[] = { store value, descriptor, base address, scalar offset }
intrinsic("store_buffer_amd", src_comp=[0, 4, 1, 1], indices=[BASE, WRITE_MASK, IS_SWIZZLED, SLC_AMD, MEMORY_MODES])
# src[] = { address, unsigned 32-bit offset }.
load("global_amd", [1, 1], indices=[BASE, ACCESS, ALIGN_MUL, ALIGN_OFFSET], flags=[CAN_ELIMINATE])
# src[] = { value, address, unsigned 32-bit offset }.
store("global_amd", [1, 1], indices=[BASE, ACCESS, ALIGN_MUL, ALIGN_OFFSET, WRITE_MASK])
# Same as shared_atomic_add, but with GDS. src[] = {store_val, gds_addr, m0}
intrinsic("gds_atomic_add_amd", src_comp=[1, 1, 1], dest_comp=1, indices=[BASE])
# Descriptor where TCS outputs are stored for TES
system_value("ring_tess_offchip_amd", 4)
system_value("ring_tess_offchip_offset_amd", 1)
# Descriptor where TCS outputs are stored for the HW tessellator
system_value("ring_tess_factors_amd", 4)
system_value("ring_tess_factors_offset_amd", 1)
# Descriptor where ES outputs are stored for GS to read on GFX6-8
system_value("ring_esgs_amd", 4)
system_value("ring_es2gs_offset_amd", 1)
# Address of the task shader draw ring (used for VARYING_SLOT_TASK_COUNT)
system_value("ring_task_draw_amd", 4)
# Address of the task shader payload ring (used for all other outputs)
system_value("ring_task_payload_amd", 4)
# Address of the mesh shader scratch ring (used for excess mesh shader outputs)
system_value("ring_mesh_scratch_amd", 4)
system_value("ring_mesh_scratch_offset_amd", 1)
# Pointer into the draw and payload rings
system_value("task_ring_entry_amd", 1)
# Pointer into the draw and payload rings
system_value("task_ib_addr", 2)
system_value("task_ib_stride", 1)
# Number of patches processed by each TCS workgroup
system_value("tcs_num_patches_amd", 1)
# Relative tessellation patch ID within the current workgroup
system_value("tess_rel_patch_id_amd", 1)
# Vertex offsets used for GS per-vertex inputs
system_value("gs_vertex_offset_amd", 1, [BASE])
# AMD merged shader intrinsics
# Whether the current invocation has an input vertex / primitive to process (also known as "ES thread" or "GS thread").
# Not safe to reorder because it changes after overwrite_subgroup_num_vertices_and_primitives_amd.
# Also, the generated code is more optimal if they are not CSE'd.
intrinsic("has_input_vertex_amd", src_comp=[], dest_comp=1, bit_sizes=[1], indices=[])
intrinsic("has_input_primitive_amd", src_comp=[], dest_comp=1, bit_sizes=[1], indices=[])
# AMD NGG intrinsics
# Number of initial input vertices in the current workgroup.
system_value("workgroup_num_input_vertices_amd", 1)
# Number of initial input primitives in the current workgroup.
system_value("workgroup_num_input_primitives_amd", 1)
# For NGG passthrough mode only. Pre-packed argument for export_primitive_amd.
system_value("packed_passthrough_primitive_amd", 1)
# Whether NGG GS should execute shader query.
system_value("shader_query_enabled_amd", dest_comp=1, bit_sizes=[1])
# Whether the shader should cull front facing triangles.
intrinsic("load_cull_front_face_enabled_amd", dest_comp=1, bit_sizes=[1], flags=[CAN_ELIMINATE])
# Whether the shader should cull back facing triangles.
intrinsic("load_cull_back_face_enabled_amd", dest_comp=1, bit_sizes=[1], flags=[CAN_ELIMINATE])
# True if face culling should use CCW (false if CW).
intrinsic("load_cull_ccw_amd", dest_comp=1, bit_sizes=[1], flags=[CAN_ELIMINATE])
# Whether the shader should cull small primitives that are not visible in a pixel.
intrinsic("load_cull_small_primitives_enabled_amd", dest_comp=1, bit_sizes=[1], flags=[CAN_ELIMINATE])
# Whether any culling setting is enabled in the shader.
intrinsic("load_cull_any_enabled_amd", dest_comp=1, bit_sizes=[1], flags=[CAN_ELIMINATE])
# Small primitive culling precision
intrinsic("load_cull_small_prim_precision_amd", dest_comp=1, bit_sizes=[32], flags=[CAN_ELIMINATE, CAN_REORDER])
# Initial edge flags in a Vertex Shader, packed into the format the HW needs for primitive export.
intrinsic("load_initial_edgeflags_amd", src_comp=[], dest_comp=1, bit_sizes=[32], indices=[])
# Exports the current invocation's vertex. This is a placeholder where all vertex attribute export instructions should be emitted.
intrinsic("export_vertex_amd", src_comp=[], indices=[])
# Exports the current invocation's primitive. src[] = {packed_primitive_data}.
intrinsic("export_primitive_amd", src_comp=[1], indices=[])
# Allocates export space for vertices and primitives. src[] = {num_vertices, num_primitives}.
intrinsic("alloc_vertices_and_primitives_amd", src_comp=[1, 1], indices=[])
# Overwrites VS input registers, for use with vertex compaction after culling. src = {vertex_id, instance_id}.
intrinsic("overwrite_vs_arguments_amd", src_comp=[1, 1], indices=[])
# Overwrites TES input registers, for use with vertex compaction after culling. src = {tes_u, tes_v, rel_patch_id, patch_id}.
intrinsic("overwrite_tes_arguments_amd", src_comp=[1, 1, 1, 1], indices=[])
# The address of the sbt descriptors.
system_value("sbt_base_amd", 1, bit_sizes=[64])
# 1. HW descriptor
# 2. BVH node(64-bit pointer as 2x32 ...)
# 3. ray extent
# 4. ray origin
# 5. ray direction
# 6. inverse ray direction (componentwise 1.0/ray direction)
intrinsic("bvh64_intersect_ray_amd", [4, 2, 1, 3, 3, 3], 4, flags=[CAN_ELIMINATE, CAN_REORDER])
# Return of a callable in raytracing pipelines
intrinsic("rt_return_amd")
# offset into scratch for the input callable data in a raytracing pipeline.
system_value("rt_arg_scratch_offset_amd", 1)
# Whether to call the anyhit shader for an intersection in an intersection shader.
system_value("intersection_opaque_amd", 1, bit_sizes=[1])
# Used for indirect ray tracing.
system_value("ray_launch_size_addr_amd", 1, bit_sizes=[64])
# Load forced VRS rates.
intrinsic("load_force_vrs_rates_amd", dest_comp=1, bit_sizes=[32], flags=[CAN_ELIMINATE, CAN_REORDER])
intrinsic("load_scalar_arg_amd", dest_comp=0, bit_sizes=[32], indices=[BASE, ARG_UPPER_BOUND_U32_AMD], flags=[CAN_ELIMINATE, CAN_REORDER])
intrinsic("load_vector_arg_amd", dest_comp=0, bit_sizes=[32], indices=[BASE, ARG_UPPER_BOUND_U32_AMD], flags=[CAN_ELIMINATE, CAN_REORDER])
# src[] = { 64-bit base address, 32-bit offset }.
intrinsic("load_smem_amd", src_comp=[1, 1], dest_comp=0, bit_sizes=[32],
indices=[ALIGN_MUL, ALIGN_OFFSET],
flags=[CAN_ELIMINATE, CAN_REORDER])
# src[] = { offset }.
intrinsic("load_shared2_amd", [1], dest_comp=2, indices=[OFFSET0, OFFSET1, ST64], flags=[CAN_ELIMINATE])
# src[] = { value, offset }.
intrinsic("store_shared2_amd", [2, 1], indices=[OFFSET0, OFFSET1, ST64])
# Vertex stride in LS-HS buffer
system_value("lshs_vertex_stride_amd", 1)
# Per patch data offset in HS VRAM output buffer
system_value("hs_out_patch_data_offset_amd", 1)
# V3D-specific instrinc for tile buffer color reads.
#
# The hardware requires that we read the samples and components of a pixel
# in order, so we cannot eliminate or remove any loads in a sequence.
#
# src[] = { render_target }
# BASE = sample index
load("tlb_color_v3d", [1], [BASE, COMPONENT], [])
# V3D-specific instrinc for per-sample tile buffer color writes.
#
# The driver backend needs to identify per-sample color writes and emit
# specific code for them.
#
# src[] = { value, render_target }
# BASE = sample index
store("tlb_sample_color_v3d", [1], [BASE, COMPONENT, SRC_TYPE], [])
# V3D-specific intrinsic to load the number of layers attached to
# the target framebuffer
intrinsic("load_fb_layers_v3d", dest_comp=1, flags=[CAN_ELIMINATE, CAN_REORDER])
# Logical complement of load_front_face, mapping to an AGX system value
system_value("back_face_agx", 1, bit_sizes=[1, 32])
# Intel-specific query for loading from the brw_image_param struct passed
# into the shader as a uniform. The variable is a deref to the image
# variable. The const index specifies which of the six parameters to load.
intrinsic("image_deref_load_param_intel", src_comp=[1], dest_comp=0,
indices=[BASE], flags=[CAN_ELIMINATE, CAN_REORDER])
image("load_raw_intel", src_comp=[1], dest_comp=0,
flags=[CAN_ELIMINATE])
image("store_raw_intel", src_comp=[1, 0])
# Intrinsic to load a block of at least 32B of constant data from a 64-bit
# global memory address. The memory address must be uniform and 32B-aligned.
# The second source is a predicate which indicates whether or not to actually
# do the load.
# src[] = { address, predicate }.
intrinsic("load_global_const_block_intel", src_comp=[1, 1], dest_comp=0,
bit_sizes=[32], indices=[BASE], flags=[CAN_ELIMINATE, CAN_REORDER])
# Number of data items being operated on for a SIMD program.
system_value("simd_width_intel", 1)
# Load a relocatable 32-bit value
intrinsic("load_reloc_const_intel", dest_comp=1, bit_sizes=[32],
indices=[PARAM_IDX], flags=[CAN_ELIMINATE, CAN_REORDER])
# 64-bit global address for a Vulkan descriptor set
# src[0] = { set }
intrinsic("load_desc_set_address_intel", dest_comp=1, bit_sizes=[64],
src_comp=[1], flags=[CAN_ELIMINATE, CAN_REORDER])
# OpSubgroupBlockReadINTEL and OpSubgroupBlockWriteINTEL from SPV_INTEL_subgroups.
intrinsic("load_deref_block_intel", dest_comp=0, src_comp=[-1],
indices=[ACCESS], flags=[CAN_ELIMINATE])
intrinsic("store_deref_block_intel", src_comp=[-1, 0], indices=[WRITE_MASK, ACCESS])
# src[] = { address }.
load("global_block_intel", [1], [ACCESS, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE])
# src[] = { buffer_index, offset }.
load("ssbo_block_intel", [-1, 1], [ACCESS, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE])
# src[] = { offset }.
load("shared_block_intel", [1], [BASE, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE])
# src[] = { value, address }.
store("global_block_intel", [1], [WRITE_MASK, ACCESS, ALIGN_MUL, ALIGN_OFFSET])
# src[] = { value, block_index, offset }
store("ssbo_block_intel", [-1, 1], [WRITE_MASK, ACCESS, ALIGN_MUL, ALIGN_OFFSET])
# src[] = { value, offset }.
store("shared_block_intel", [1], [BASE, WRITE_MASK, ALIGN_MUL, ALIGN_OFFSET])
# Intrinsics for Intel mesh shading
system_value("mesh_inline_data_intel", 1, [ALIGN_OFFSET], bit_sizes=[32, 64])
# Intrinsics for Intel bindless thread dispatch
# BASE=brw_topoloy_id
system_value("topology_id_intel", 1, indices=[BASE])
system_value("btd_stack_id_intel", 1)
system_value("btd_global_arg_addr_intel", 1, bit_sizes=[64])
system_value("btd_local_arg_addr_intel", 1, bit_sizes=[64])
system_value("btd_resume_sbt_addr_intel", 1, bit_sizes=[64])
# src[] = { global_arg_addr, btd_record }
intrinsic("btd_spawn_intel", src_comp=[1, 1])
# RANGE=stack_size
intrinsic("btd_stack_push_intel", indices=[STACK_SIZE])
# src[] = { }
intrinsic("btd_retire_intel")
# Intel-specific ray-tracing intrinsic
# src[] = { globals, level, operation } SYNCHRONOUS=synchronous
intrinsic("trace_ray_intel", src_comp=[1, 1, 1], indices=[SYNCHRONOUS])
# System values used for ray-tracing on Intel
system_value("ray_base_mem_addr_intel", 1, bit_sizes=[64])
system_value("ray_hw_stack_size_intel", 1)
system_value("ray_sw_stack_size_intel", 1)
system_value("ray_num_dss_rt_stacks_intel", 1)
system_value("ray_hit_sbt_addr_intel", 1, bit_sizes=[64])
system_value("ray_hit_sbt_stride_intel", 1, bit_sizes=[16])
system_value("ray_miss_sbt_addr_intel", 1, bit_sizes=[64])
system_value("ray_miss_sbt_stride_intel", 1, bit_sizes=[16])
system_value("callable_sbt_addr_intel", 1, bit_sizes=[64])
system_value("callable_sbt_stride_intel", 1, bit_sizes=[16])
system_value("leaf_opaque_intel", 1, bit_sizes=[1])
system_value("leaf_procedural_intel", 1, bit_sizes=[1])
# Values :
# 0: AnyHit
# 1: ClosestHit
# 2: Miss
# 3: Intersection
system_value("btd_shader_type_intel", 1)
system_value("ray_query_global_intel", 1, bit_sizes=[64])
# In order to deal with flipped render targets, gl_PointCoord may be flipped
# in the shader requiring a shader key or extra instructions or it may be
# flipped in hardware based on a state bit. This version of gl_PointCoord
# is defined to be whatever thing the hardware can easily give you, so long as
# it's in normalized coordinates in the range [0, 1] across the point.
intrinsic("load_point_coord_maybe_flipped", dest_comp=2, bit_sizes=[32])