mesa/src/compiler/nir/nir_intrinsics.py

647 lines
29 KiB
Python
Raw Normal View History

#
# Copyright (C) 2018 Red Hat
# Copyright (C) 2014 Intel Corporation
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice (including the next
# paragraph) shall be included in all copies or substantial portions of the
# Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
#
# This file defines all the available intrinsics in one place.
#
# The Intrinsic class corresponds one-to-one with nir_intrinsic_info
# structure.
class Intrinsic(object):
"""Class that represents all the information about an intrinsic opcode.
NOTE: this must be kept in sync with nir_intrinsic_info.
"""
def __init__(self, name, src_components, dest_components,
indices, flags, sysval, bit_sizes):
"""Parameters:
- name: the intrinsic name
- src_components: list of the number of components per src, 0 means
vectorized instruction with number of components given in the
num_components field in nir_intrinsic_instr.
- dest_components: number of destination components, -1 means no
dest, 0 means number of components given in num_components field
in nir_intrinsic_instr.
- indices: list of constant indicies
- flags: list of semantic flags
- sysval: is this a system-value intrinsic
- bit_sizes: allowed dest bit_sizes
"""
assert isinstance(name, str)
assert isinstance(src_components, list)
if src_components:
assert isinstance(src_components[0], int)
assert isinstance(dest_components, int)
assert isinstance(indices, list)
if indices:
assert isinstance(indices[0], str)
assert isinstance(flags, list)
if flags:
assert isinstance(flags[0], str)
assert isinstance(sysval, bool)
if bit_sizes:
assert isinstance(bit_sizes[0], int)
self.name = name
self.num_srcs = len(src_components)
self.src_components = src_components
self.has_dest = (dest_components >= 0)
self.dest_components = dest_components
self.num_indices = len(indices)
self.indices = indices
self.flags = flags
self.sysval = sysval
self.bit_sizes = bit_sizes
#
# Possible indices:
#
# A constant 'base' value that is added to an offset src:
BASE = "NIR_INTRINSIC_BASE"
# For store instructions, a writemask:
WRMASK = "NIR_INTRINSIC_WRMASK"
# The stream-id for GS emit_vertex/end_primitive intrinsics:
STREAM_ID = "NIR_INTRINSIC_STREAM_ID"
# The clip-plane id for load_user_clip_plane intrinsics:
UCP_ID = "NIR_INTRINSIC_UCP_ID"
# The amount of data, starting from BASE, that this instruction
# may access. This is used to provide bounds if the offset is
# not constant.
RANGE = "NIR_INTRINSIC_RANGE"
# The vulkan descriptor set binding for vulkan_resource_index
# intrinsic
DESC_SET = "NIR_INTRINSIC_DESC_SET"
# The vulkan descriptor set binding for vulkan_resource_index
# intrinsic
BINDING = "NIR_INTRINSIC_BINDING"
# Component offset
COMPONENT = "NIR_INTRINSIC_COMPONENT"
# Interpolation mode (only meaningful for FS inputs)
INTERP_MODE = "NIR_INTRINSIC_INTERP_MODE"
# A binary nir_op to use when performing a reduction or scan operation
REDUCTION_OP = "NIR_INTRINSIC_REDUCTION_OP"
# Cluster size for reduction operations
CLUSTER_SIZE = "NIR_INTRINSIC_CLUSTER_SIZE"
# Parameter index for a load_param intrinsic
PARAM_IDX = "NIR_INTRINSIC_PARAM_IDX"
# Image dimensionality for image intrinsics
IMAGE_DIM = "NIR_INTRINSIC_IMAGE_DIM"
# Non-zero if we are accessing an array image
IMAGE_ARRAY = "NIR_INTRINSIC_IMAGE_ARRAY"
# Access qualifiers for image and memory access intrinsics
ACCESS = "NIR_INTRINSIC_ACCESS"
# Image format for image intrinsics
FORMAT = "NIR_INTRINSIC_FORMAT"
# Offset or address alignment
ALIGN_MUL = "NIR_INTRINSIC_ALIGN_MUL"
ALIGN_OFFSET = "NIR_INTRINSIC_ALIGN_OFFSET"
# The vulkan descriptor type for vulkan_resource_index
DESC_TYPE = "NIR_INTRINSIC_DESC_TYPE"
#
# Possible flags:
#
CAN_ELIMINATE = "NIR_INTRINSIC_CAN_ELIMINATE"
CAN_REORDER = "NIR_INTRINSIC_CAN_REORDER"
INTR_OPCODES = {}
def intrinsic(name, src_comp=[], dest_comp=-1, indices=[],
flags=[], sysval=False, bit_sizes=[]):
assert name not in INTR_OPCODES
INTR_OPCODES[name] = Intrinsic(name, src_comp, dest_comp,
indices, flags, sysval, bit_sizes)
intrinsic("nop", flags=[CAN_ELIMINATE])
intrinsic("load_param", dest_comp=0, indices=[PARAM_IDX], flags=[CAN_ELIMINATE])
intrinsic("load_deref", dest_comp=0, src_comp=[-1],
indices=[ACCESS], flags=[CAN_ELIMINATE])
intrinsic("store_deref", src_comp=[-1, 0], indices=[WRMASK, ACCESS])
intrinsic("copy_deref", src_comp=[-1, -1])
# Interpolation of input. The interp_deref_at* intrinsics are similar to the
# load_var intrinsic acting on a shader input except that they interpolate the
# input differently. The at_sample and at_offset intrinsics take an
# additional source that is an integer sample id or a vec2 position offset
# respectively.
intrinsic("interp_deref_at_centroid", dest_comp=0, src_comp=[1],
flags=[ CAN_ELIMINATE, CAN_REORDER])
intrinsic("interp_deref_at_sample", src_comp=[1, 1], dest_comp=0,
flags=[CAN_ELIMINATE, CAN_REORDER])
intrinsic("interp_deref_at_offset", src_comp=[1, 2], dest_comp=0,
flags=[CAN_ELIMINATE, CAN_REORDER])
# Ask the driver for the size of a given buffer. It takes the buffer index
# as source.
intrinsic("get_buffer_size", src_comp=[-1], dest_comp=1,
flags=[CAN_ELIMINATE, CAN_REORDER])
# a barrier is an intrinsic with no inputs/outputs but which can't be moved
# around/optimized in general
def barrier(name):
intrinsic(name)
barrier("barrier")
barrier("discard")
# Memory barrier with semantics analogous to the memoryBarrier() GLSL
# intrinsic.
barrier("memory_barrier")
# Shader clock intrinsic with semantics analogous to the clock2x32ARB()
# GLSL intrinsic.
# The latter can be used as code motion barrier, which is currently not
# feasible with NIR.
intrinsic("shader_clock", dest_comp=2, flags=[CAN_ELIMINATE])
# Shader ballot intrinsics with semantics analogous to the
#
# ballotARB()
# readInvocationARB()
# readFirstInvocationARB()
#
# GLSL functions from ARB_shader_ballot.
intrinsic("ballot", src_comp=[1], dest_comp=0, flags=[CAN_ELIMINATE])
intrinsic("read_invocation", src_comp=[0, 1], dest_comp=0, flags=[CAN_ELIMINATE])
intrinsic("read_first_invocation", src_comp=[0], dest_comp=0, flags=[CAN_ELIMINATE])
# Additional SPIR-V ballot intrinsics
#
# These correspond to the SPIR-V opcodes
#
# OpGroupUniformElect
# OpSubgroupFirstInvocationKHR
intrinsic("elect", dest_comp=1, flags=[CAN_ELIMINATE])
intrinsic("first_invocation", dest_comp=1, flags=[CAN_ELIMINATE])
# Memory barrier with semantics analogous to the compute shader
# groupMemoryBarrier(), memoryBarrierAtomicCounter(), memoryBarrierBuffer(),
# memoryBarrierImage() and memoryBarrierShared() GLSL intrinsics.
barrier("group_memory_barrier")
barrier("memory_barrier_atomic_counter")
barrier("memory_barrier_buffer")
barrier("memory_barrier_image")
barrier("memory_barrier_shared")
barrier("begin_invocation_interlock")
barrier("end_invocation_interlock")
# A conditional discard, with a single boolean source.
intrinsic("discard_if", src_comp=[1])
# ARB_shader_group_vote intrinsics
intrinsic("vote_any", src_comp=[1], dest_comp=1, flags=[CAN_ELIMINATE])
intrinsic("vote_all", src_comp=[1], dest_comp=1, flags=[CAN_ELIMINATE])
intrinsic("vote_feq", src_comp=[0], dest_comp=1, flags=[CAN_ELIMINATE])
intrinsic("vote_ieq", src_comp=[0], dest_comp=1, flags=[CAN_ELIMINATE])
# Ballot ALU operations from SPIR-V.
#
# These operations work like their ALU counterparts except that the operate
# on a uvec4 which is treated as a 128bit integer. Also, they are, in
# general, free to ignore any bits which are above the subgroup size.
intrinsic("ballot_bitfield_extract", src_comp=[4, 1], dest_comp=1, flags=[CAN_ELIMINATE])
intrinsic("ballot_bit_count_reduce", src_comp=[4], dest_comp=1, flags=[CAN_ELIMINATE])
intrinsic("ballot_bit_count_inclusive", src_comp=[4], dest_comp=1, flags=[CAN_ELIMINATE])
intrinsic("ballot_bit_count_exclusive", src_comp=[4], dest_comp=1, flags=[CAN_ELIMINATE])
intrinsic("ballot_find_lsb", src_comp=[4], dest_comp=1, flags=[CAN_ELIMINATE])
intrinsic("ballot_find_msb", src_comp=[4], dest_comp=1, flags=[CAN_ELIMINATE])
# Shuffle operations from SPIR-V.
intrinsic("shuffle", src_comp=[0, 1], dest_comp=0, flags=[CAN_ELIMINATE])
intrinsic("shuffle_xor", src_comp=[0, 1], dest_comp=0, flags=[CAN_ELIMINATE])
intrinsic("shuffle_up", src_comp=[0, 1], dest_comp=0, flags=[CAN_ELIMINATE])
intrinsic("shuffle_down", src_comp=[0, 1], dest_comp=0, flags=[CAN_ELIMINATE])
# Quad operations from SPIR-V.
intrinsic("quad_broadcast", src_comp=[0, 1], dest_comp=0, flags=[CAN_ELIMINATE])
intrinsic("quad_swap_horizontal", src_comp=[0], dest_comp=0, flags=[CAN_ELIMINATE])
intrinsic("quad_swap_vertical", src_comp=[0], dest_comp=0, flags=[CAN_ELIMINATE])
intrinsic("quad_swap_diagonal", src_comp=[0], dest_comp=0, flags=[CAN_ELIMINATE])
intrinsic("reduce", src_comp=[0], dest_comp=0, indices=[REDUCTION_OP, CLUSTER_SIZE],
flags=[CAN_ELIMINATE])
intrinsic("inclusive_scan", src_comp=[0], dest_comp=0, indices=[REDUCTION_OP],
flags=[CAN_ELIMINATE])
intrinsic("exclusive_scan", src_comp=[0], dest_comp=0, indices=[REDUCTION_OP],
flags=[CAN_ELIMINATE])
# Basic Geometry Shader intrinsics.
#
# emit_vertex implements GLSL's EmitStreamVertex() built-in. It takes a single
# index, which is the stream ID to write to.
#
# end_primitive implements GLSL's EndPrimitive() built-in.
intrinsic("emit_vertex", indices=[STREAM_ID])
intrinsic("end_primitive", indices=[STREAM_ID])
# Geometry Shader intrinsics with a vertex count.
#
# Alternatively, drivers may implement these intrinsics, and use
# nir_lower_gs_intrinsics() to convert from the basic intrinsics.
#
# These maintain a count of the number of vertices emitted, as an additional
# unsigned integer source.
intrinsic("emit_vertex_with_counter", src_comp=[1], indices=[STREAM_ID])
intrinsic("end_primitive_with_counter", src_comp=[1], indices=[STREAM_ID])
intrinsic("set_vertex_count", src_comp=[1])
# Atomic counters
#
# The *_var variants take an atomic_uint nir_variable, while the other,
# lowered, variants take a constant buffer index and register offset.
def atomic(name, flags=[]):
intrinsic(name + "_deref", src_comp=[-1], dest_comp=1, flags=flags)
intrinsic(name, src_comp=[1], dest_comp=1, indices=[BASE], flags=flags)
def atomic2(name):
intrinsic(name + "_deref", src_comp=[-1, 1], dest_comp=1)
intrinsic(name, src_comp=[1, 1], dest_comp=1, indices=[BASE])
def atomic3(name):
intrinsic(name + "_deref", src_comp=[-1, 1, 1], dest_comp=1)
intrinsic(name, src_comp=[1, 1, 1], dest_comp=1, indices=[BASE])
atomic("atomic_counter_inc")
atomic("atomic_counter_pre_dec")
atomic("atomic_counter_post_dec")
atomic("atomic_counter_read", flags=[CAN_ELIMINATE])
atomic2("atomic_counter_add")
atomic2("atomic_counter_min")
atomic2("atomic_counter_max")
atomic2("atomic_counter_and")
atomic2("atomic_counter_or")
atomic2("atomic_counter_xor")
atomic2("atomic_counter_exchange")
atomic3("atomic_counter_comp_swap")
# Image load, store and atomic intrinsics.
#
# All image intrinsics come in two versions. One which take an image target
# passed as a deref chain as the first source and one which takes an index or
# handle as the first source. In the first version, the image variable
# contains the memory and layout qualifiers that influence the semantics of
# the intrinsic. In the second, the image format and access qualifiers are
# provided as constant indices.
#
# All image intrinsics take a four-coordinate vector and a sample index as
# 2nd and 3rd sources, determining the location within the image that will be
# accessed by the intrinsic. Components not applicable to the image target
# in use are undefined. Image store takes an additional four-component
# argument with the value to be written, and image atomic operations take
# either one or two additional scalar arguments with the same meaning as in
# the ARB_shader_image_load_store specification.
def image(name, src_comp=[], **kwargs):
intrinsic("image_deref_" + name, src_comp=[1] + src_comp, **kwargs)
intrinsic("image_" + name, src_comp=[1] + src_comp,
indices=[IMAGE_DIM, IMAGE_ARRAY, FORMAT, ACCESS], **kwargs)
image("load", src_comp=[4, 1], dest_comp=0, flags=[CAN_ELIMINATE])
image("store", src_comp=[4, 1, 0])
image("atomic_add", src_comp=[4, 1, 1], dest_comp=1)
image("atomic_min", src_comp=[4, 1, 1], dest_comp=1)
image("atomic_max", src_comp=[4, 1, 1], dest_comp=1)
image("atomic_and", src_comp=[4, 1, 1], dest_comp=1)
image("atomic_or", src_comp=[4, 1, 1], dest_comp=1)
image("atomic_xor", src_comp=[4, 1, 1], dest_comp=1)
image("atomic_exchange", src_comp=[4, 1, 1], dest_comp=1)
image("atomic_comp_swap", src_comp=[4, 1, 1, 1], dest_comp=1)
image("atomic_fadd", src_comp=[1, 4, 1, 1], dest_comp=1)
image("size", dest_comp=0, flags=[CAN_ELIMINATE, CAN_REORDER])
image("samples", dest_comp=1, flags=[CAN_ELIMINATE, CAN_REORDER])
# Intel-specific query for loading from the brw_image_param struct passed
# into the shader as a uniform. The variable is a deref to the image
# variable. The const index specifies which of the six parameters to load.
intrinsic("image_deref_load_param_intel", src_comp=[1], dest_comp=0,
indices=[BASE], flags=[CAN_ELIMINATE, CAN_REORDER])
anv,i965: Lower away image derefs in the driver Previously, the back-end compiler turn image access into magic uniform reads and there was a complex contract between back-end compiler and driver about setting up and filling out those params. As of this commit, both drivers now lower image_deref_load_param_intel intrinsics to load_uniform intrinsics controlled by the driver and lower the other image_deref_* intrinsics to image_* intrinsics which take an actual binding table index. There are still "magic" uniforms but they are now added and controlled entirely by the driver and that contract no longer spans components. This also has the side-effect of making most image use compile-time binding table indices. Previously, all image access pulled the binding table index from a uniform. Part of the reason for this was that the magic uniforms made it difficult to decouple binding table indices from the uniforms and, since they are indexed completely differently (especially in Vulkan), it was hard to pull them apart. Now that the driver is handling both, it's trivial to decouple the two and provide actual binding table indices. Shader-db results on Kaby Lake: total instructions in shared programs: 15166872 -> 15164293 (-0.02%) instructions in affected programs: 115834 -> 113255 (-2.23%) helped: 191 HURT: 0 total cycles in shared programs: 571311495 -> 571196465 (-0.02%) cycles in affected programs: 4757115 -> 4642085 (-2.42%) helped: 73 HURT: 67 total spills in shared programs: 10951 -> 10926 (-0.23%) spills in affected programs: 742 -> 717 (-3.37%) helped: 7 HURT: 0 total fills in shared programs: 22226 -> 22201 (-0.11%) fills in affected programs: 1146 -> 1121 (-2.18%) helped: 7 HURT: 0 Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
2018-08-16 22:23:10 +01:00
image("load_raw_intel", src_comp=[1], dest_comp=0,
flags=[CAN_ELIMINATE])
image("store_raw_intel", src_comp=[1, 0])
# Vulkan descriptor set intrinsics
#
# The Vulkan API uses a different binding model from GL. In the Vulkan
# API, all external resources are represented by a tuple:
#
# (descriptor set, binding, array index)
#
# where the array index is the only thing allowed to be indirect. The
# vulkan_surface_index intrinsic takes the descriptor set and binding as
# its first two indices and the array index as its source. The third
# index is a nir_variable_mode in case that's useful to the backend.
#
# The intended usage is that the shader will call vulkan_surface_index to
# get an index and then pass that as the buffer index ubo/ssbo calls.
#
# The vulkan_resource_reindex intrinsic takes a resource index in src0
# (the result of a vulkan_resource_index or vulkan_resource_reindex) which
# corresponds to the tuple (set, binding, index) and computes an index
# corresponding to tuple (set, binding, idx + src1).
intrinsic("vulkan_resource_index", src_comp=[1], dest_comp=0,
indices=[DESC_SET, BINDING, DESC_TYPE],
flags=[CAN_ELIMINATE, CAN_REORDER])
intrinsic("vulkan_resource_reindex", src_comp=[0, 1], dest_comp=0,
indices=[DESC_TYPE], flags=[CAN_ELIMINATE, CAN_REORDER])
intrinsic("load_vulkan_descriptor", src_comp=[-1], dest_comp=0,
indices=[DESC_TYPE], flags=[CAN_ELIMINATE, CAN_REORDER])
# variable atomic intrinsics
#
# All of these variable atomic memory operations read a value from memory,
# compute a new value using one of the operations below, write the new value
# to memory, and return the original value read.
#
# All operations take 2 sources except CompSwap that takes 3. These sources
# represent:
#
# 0: A deref to the memory on which to perform the atomic
# 1: The data parameter to the atomic function (i.e. the value to add
# in shared_atomic_add, etc).
# 2: For CompSwap only: the second data parameter.
intrinsic("deref_atomic_add", src_comp=[-1, 1], dest_comp=1)
intrinsic("deref_atomic_imin", src_comp=[-1, 1], dest_comp=1)
intrinsic("deref_atomic_umin", src_comp=[-1, 1], dest_comp=1)
intrinsic("deref_atomic_imax", src_comp=[-1, 1], dest_comp=1)
intrinsic("deref_atomic_umax", src_comp=[-1, 1], dest_comp=1)
intrinsic("deref_atomic_and", src_comp=[-1, 1], dest_comp=1)
intrinsic("deref_atomic_or", src_comp=[-1, 1], dest_comp=1)
intrinsic("deref_atomic_xor", src_comp=[-1, 1], dest_comp=1)
intrinsic("deref_atomic_exchange", src_comp=[-1, 1], dest_comp=1)
intrinsic("deref_atomic_comp_swap", src_comp=[-1, 1, 1], dest_comp=1)
intrinsic("deref_atomic_fadd", src_comp=[-1, 1], dest_comp=1)
intrinsic("deref_atomic_fmin", src_comp=[-1, 1], dest_comp=1)
intrinsic("deref_atomic_fmax", src_comp=[-1, 1], dest_comp=1)
intrinsic("deref_atomic_fcomp_swap", src_comp=[-1, 1, 1], dest_comp=1)
# SSBO atomic intrinsics
#
# All of the SSBO atomic memory operations read a value from memory,
# compute a new value using one of the operations below, write the new
# value to memory, and return the original value read.
#
# All operations take 3 sources except CompSwap that takes 4. These
# sources represent:
#
# 0: The SSBO buffer index.
# 1: The offset into the SSBO buffer of the variable that the atomic
# operation will operate on.
# 2: The data parameter to the atomic function (i.e. the value to add
# in ssbo_atomic_add, etc).
# 3: For CompSwap only: the second data parameter.
intrinsic("ssbo_atomic_add", src_comp=[1, 1, 1], dest_comp=1)
intrinsic("ssbo_atomic_imin", src_comp=[1, 1, 1], dest_comp=1)
intrinsic("ssbo_atomic_umin", src_comp=[1, 1, 1], dest_comp=1)
intrinsic("ssbo_atomic_imax", src_comp=[1, 1, 1], dest_comp=1)
intrinsic("ssbo_atomic_umax", src_comp=[1, 1, 1], dest_comp=1)
intrinsic("ssbo_atomic_and", src_comp=[1, 1, 1], dest_comp=1)
intrinsic("ssbo_atomic_or", src_comp=[1, 1, 1], dest_comp=1)
intrinsic("ssbo_atomic_xor", src_comp=[1, 1, 1], dest_comp=1)
intrinsic("ssbo_atomic_exchange", src_comp=[1, 1, 1], dest_comp=1)
intrinsic("ssbo_atomic_comp_swap", src_comp=[1, 1, 1, 1], dest_comp=1)
intrinsic("ssbo_atomic_fadd", src_comp=[1, 1, 1], dest_comp=1)
intrinsic("ssbo_atomic_fmin", src_comp=[1, 1, 1], dest_comp=1)
intrinsic("ssbo_atomic_fmax", src_comp=[1, 1, 1], dest_comp=1)
intrinsic("ssbo_atomic_fcomp_swap", src_comp=[1, 1, 1, 1], dest_comp=1)
# CS shared variable atomic intrinsics
#
# All of the shared variable atomic memory operations read a value from
# memory, compute a new value using one of the operations below, write the
# new value to memory, and return the original value read.
#
# All operations take 2 sources except CompSwap that takes 3. These
# sources represent:
#
# 0: The offset into the shared variable storage region that the atomic
# operation will operate on.
# 1: The data parameter to the atomic function (i.e. the value to add
# in shared_atomic_add, etc).
# 2: For CompSwap only: the second data parameter.
intrinsic("shared_atomic_add", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("shared_atomic_imin", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("shared_atomic_umin", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("shared_atomic_imax", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("shared_atomic_umax", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("shared_atomic_and", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("shared_atomic_or", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("shared_atomic_xor", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("shared_atomic_exchange", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("shared_atomic_comp_swap", src_comp=[1, 1, 1], dest_comp=1, indices=[BASE])
intrinsic("shared_atomic_fadd", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("shared_atomic_fmin", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("shared_atomic_fmax", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("shared_atomic_fcomp_swap", src_comp=[1, 1, 1], dest_comp=1, indices=[BASE])
# Global atomic intrinsics
#
# All of the shared variable atomic memory operations read a value from
# memory, compute a new value using one of the operations below, write the
# new value to memory, and return the original value read.
#
# All operations take 2 sources except CompSwap that takes 3. These
# sources represent:
#
# 0: The memory address that the atomic operation will operate on.
# 1: The data parameter to the atomic function (i.e. the value to add
# in shared_atomic_add, etc).
# 2: For CompSwap only: the second data parameter.
intrinsic("global_atomic_add", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("global_atomic_imin", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("global_atomic_umin", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("global_atomic_imax", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("global_atomic_umax", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("global_atomic_and", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("global_atomic_or", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("global_atomic_xor", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("global_atomic_exchange", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("global_atomic_comp_swap", src_comp=[1, 1, 1], dest_comp=1, indices=[BASE])
intrinsic("global_atomic_fadd", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("global_atomic_fmin", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("global_atomic_fmax", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("global_atomic_fcomp_swap", src_comp=[1, 1, 1], dest_comp=1, indices=[BASE])
def system_value(name, dest_comp, indices=[], bit_sizes=[32]):
intrinsic("load_" + name, [], dest_comp, indices,
flags=[CAN_ELIMINATE, CAN_REORDER], sysval=True,
bit_sizes=bit_sizes)
system_value("frag_coord", 4)
system_value("front_face", 1, bit_sizes=[1, 32])
system_value("vertex_id", 1)
system_value("vertex_id_zero_base", 1)
compiler: Add SYSTEM_VALUE_FIRST_VERTEX and instrinsics This VS system value will contain the value passed as <basevertex> for indexed draw calls or the value passed as <first> for non-indexed draw calls. It can be used to calculate the gl_VertexID as SYSTEM_VALUE_VERTEX_ID_ZERO_BASE plus SYSTEM_VALUE_FIRST_VERTEX. From the OpenGL 4.6 spec, 10.4 "Drawing Commands Using Vertex Arrays": - Page 352: "The index of any element transferred to the GL by DrawArraysOneInstance is referred to as its vertex ID, and may be read by a vertex shader as gl_VertexID. The vertex ID of the ith element transferred is first + i." - Page 355: "The index of any element transferred to the GL by DrawElementsOneInstance is referred to as its vertex ID, and may be read by a vertex shader as gl_VertexID. The vertex ID of the ith element transferred is the sum of basevertex and the value stored in the currently bound element array buffer at offset indices + i." Currently the gl_VertexID calculation uses SYSTEM_VALUE_BASE_VERTEX but this will have to change when the value of gl_BaseVertex is fixed. Currently its value is broken for non-indexed draw calls because it must be zero but we are setting it to <first>. v2: use SYSTEM_VALUE_FIRST_VERTEX as name for the value, instead of SYSTEM_VALUE_BASE_VERTEX_ID (Kenneth). v3 (idr): Rebase on Rob Clark converting nir_intrinsics.h to be generated. Reformat commit message to 72 columns. Reviewed-by: Neil Roberts <nroberts@igalia.com> Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
2018-01-25 18:15:38 +00:00
system_value("first_vertex", 1)
system_value("is_indexed_draw", 1)
system_value("base_vertex", 1)
system_value("instance_id", 1)
system_value("base_instance", 1)
system_value("draw_id", 1)
system_value("sample_id", 1)
# sample_id_no_per_sample is like sample_id but does not imply per-
# sample shading. See the lower_helper_invocation option.
system_value("sample_id_no_per_sample", 1)
system_value("sample_pos", 2)
system_value("sample_mask_in", 1)
system_value("primitive_id", 1)
system_value("invocation_id", 1)
system_value("tess_coord", 3)
system_value("tess_level_outer", 4)
system_value("tess_level_inner", 2)
system_value("patch_vertices_in", 1)
system_value("local_invocation_id", 3)
system_value("local_invocation_index", 1)
system_value("work_group_id", 3)
system_value("user_clip_plane", 4, indices=[UCP_ID])
system_value("num_work_groups", 3)
system_value("helper_invocation", 1, bit_sizes=[1, 32])
system_value("alpha_ref_float", 1)
system_value("layer_id", 1)
system_value("view_index", 1)
system_value("subgroup_size", 1)
system_value("subgroup_invocation", 1)
system_value("subgroup_eq_mask", 0, bit_sizes=[32, 64])
system_value("subgroup_ge_mask", 0, bit_sizes=[32, 64])
system_value("subgroup_gt_mask", 0, bit_sizes=[32, 64])
system_value("subgroup_le_mask", 0, bit_sizes=[32, 64])
system_value("subgroup_lt_mask", 0, bit_sizes=[32, 64])
system_value("num_subgroups", 1)
system_value("subgroup_id", 1)
system_value("local_group_size", 3)
system_value("global_invocation_id", 3)
system_value("work_dim", 1)
# Blend constant color values. Float values are clamped.#
system_value("blend_const_color_r_float", 1)
system_value("blend_const_color_g_float", 1)
system_value("blend_const_color_b_float", 1)
system_value("blend_const_color_a_float", 1)
system_value("blend_const_color_rgba8888_unorm", 1)
system_value("blend_const_color_aaaa8888_unorm", 1)
# Barycentric coordinate intrinsics.
#
# These set up the barycentric coordinates for a particular interpolation.
# The first three are for the simple cases: pixel, centroid, or per-sample
# (at gl_SampleID). The next two handle interpolating at a specified
# sample location, or interpolating with a vec2 offset,
#
# The interp_mode index should be either the INTERP_MODE_SMOOTH or
# INTERP_MODE_NOPERSPECTIVE enum values.
#
# The vec2 value produced by these intrinsics is intended for use as the
# barycoord source of a load_interpolated_input intrinsic.
def barycentric(name, src_comp=[]):
intrinsic("load_barycentric_" + name, src_comp=src_comp, dest_comp=2,
indices=[INTERP_MODE], flags=[CAN_ELIMINATE, CAN_REORDER])
# no sources. const_index[] = { interp_mode }
barycentric("pixel")
barycentric("centroid")
barycentric("sample")
# src[] = { sample_id }. const_index[] = { interp_mode }
barycentric("at_sample", [1])
# src[] = { offset.xy }. const_index[] = { interp_mode }
barycentric("at_offset", [2])
# Load operations pull data from some piece of GPU memory. All load
# operations operate in terms of offsets into some piece of theoretical
# memory. Loads from externally visible memory (UBO and SSBO) simply take a
# byte offset as a source. Loads from opaque memory (uniforms, inputs, etc.)
# take a base+offset pair where the base (const_index[0]) gives the location
# of the start of the variable being loaded and and the offset source is a
# offset into that variable.
#
# Uniform load operations have a second "range" index that specifies the
# range (starting at base) of the data from which we are loading. If
# const_index[1] == 0, then the range is unknown.
#
# Some load operations such as UBO/SSBO load and per_vertex loads take an
# additional source to specify which UBO/SSBO/vertex to load from.
#
# The exact address type depends on the lowering pass that generates the
# load/store intrinsics. Typically, this is vec4 units for things such as
# varying slots and float units for fragment shader inputs. UBO and SSBO
# offsets are always in bytes.
def load(name, num_srcs, indices=[], flags=[]):
intrinsic("load_" + name, [1] * num_srcs, dest_comp=0, indices=indices,
flags=flags)
# src[] = { offset }. const_index[] = { base, range }
load("uniform", 1, [BASE, RANGE], [CAN_ELIMINATE, CAN_REORDER])
# src[] = { buffer_index, offset }. const_index[] = { align_mul, align_offset }
load("ubo", 2, [ALIGN_MUL, ALIGN_OFFSET], flags=[CAN_ELIMINATE, CAN_REORDER])
# src[] = { offset }. const_index[] = { base, component }
load("input", 1, [BASE, COMPONENT], [CAN_ELIMINATE, CAN_REORDER])
# src[] = { vertex, offset }. const_index[] = { base, component }
load("per_vertex_input", 2, [BASE, COMPONENT], [CAN_ELIMINATE, CAN_REORDER])
# src[] = { barycoord, offset }. const_index[] = { base, component }
intrinsic("load_interpolated_input", src_comp=[2, 1], dest_comp=0,
indices=[BASE, COMPONENT], flags=[CAN_ELIMINATE, CAN_REORDER])
# src[] = { buffer_index, offset }.
# const_index[] = { access, align_mul, align_offset }
load("ssbo", 2, [ACCESS, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE])
# src[] = { offset }. const_index[] = { base, component }
load("output", 1, [BASE, COMPONENT], flags=[CAN_ELIMINATE])
# src[] = { vertex, offset }. const_index[] = { base }
load("per_vertex_output", 2, [BASE, COMPONENT], [CAN_ELIMINATE])
# src[] = { offset }. const_index[] = { base, align_mul, align_offset }
load("shared", 1, [BASE, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE])
# src[] = { offset }. const_index[] = { base, range }
load("push_constant", 1, [BASE, RANGE], [CAN_ELIMINATE, CAN_REORDER])
# src[] = { offset }. const_index[] = { base, range }
load("constant", 1, [BASE, RANGE], [CAN_ELIMINATE, CAN_REORDER])
# src[] = { address }.
# const_index[] = { access, align_mul, align_offset }
load("global", 1, [ACCESS, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE])
# Stores work the same way as loads, except now the first source is the value
# to store and the second (and possibly third) source specify where to store
# the value. SSBO and shared memory stores also have a write mask as
# const_index[0].
def store(name, num_srcs, indices=[], flags=[]):
intrinsic("store_" + name, [0] + ([1] * (num_srcs - 1)), indices=indices, flags=flags)
# src[] = { value, offset }. const_index[] = { base, write_mask, component }
store("output", 2, [BASE, WRMASK, COMPONENT])
# src[] = { value, vertex, offset }.
# const_index[] = { base, write_mask, component }
store("per_vertex_output", 3, [BASE, WRMASK, COMPONENT])
# src[] = { value, block_index, offset }
# const_index[] = { write_mask, access, align_mul, align_offset }
store("ssbo", 3, [WRMASK, ACCESS, ALIGN_MUL, ALIGN_OFFSET])
# src[] = { value, offset }.
# const_index[] = { base, write_mask, align_mul, align_offset }
store("shared", 2, [BASE, WRMASK, ALIGN_MUL, ALIGN_OFFSET])
# src[] = { value, address }.
# const_index[] = { write_mask, align_mul, align_offset }
store("global", 2, [WRMASK, ACCESS, ALIGN_MUL, ALIGN_OFFSET])