mesa/src/gallium/drivers/radeonsi/si_shader.h

644 lines
21 KiB
C
Raw Normal View History

/*
* Copyright 2012 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Tom Stellard <thomas.stellard@amd.com>
* Michel Dänzer <michel.daenzer@amd.com>
* Christian König <christian.koenig@amd.com>
*/
radeonsi: initial WIP SI code This commit adds initial support for acceleration on SI chips. egltri is starting to work. The SI/R600 llvm backend is currently included in mesa but that may change in the future. The plan is to write a single gallium driver and use gallium to support X acceleration. This commit contains patches from: Tom Stellard <thomas.stellard@amd.com> Michel Dänzer <michel.daenzer@amd.com> Alex Deucher <alexander.deucher@amd.com> Vadim Girlin <vadimgirlin@gmail.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com> The following commits were squashed in: ====================================================================== radeonsi: Remove unused winsys pointer This was removed from r600g in commit: commit 96d882939d612fcc8332f107befec470ed4359de Author: Marek Olšák <maraeo@gmail.com> Date: Fri Feb 17 01:49:49 2012 +0100 gallium: remove unused winsys pointers in pipe_screen and pipe_context A winsys is already a private object of a driver. ====================================================================== radeonsi: Copy color clamping CAPs from r600 Not sure if the values of these CAPS are correct for radeonsi, but the same changed were made to r600g in commit: commit bc1c8369384b5e16547c5bf9728aa78f8dfd66cc Author: Marek Olšák <maraeo@gmail.com> Date: Mon Jan 23 03:11:17 2012 +0100 st/mesa: do vertex and fragment color clamping in shaders For ARB_color_buffer_float. Most hardware can't do it and st/mesa is the perfect place for a fallback. The exceptions are: - r500 (vertex clamp only) - nv50 (both) - nvc0 (both) - softpipe (both) We also have to take into account that r300 can do CLAMPED vertex colors only, while r600 can do UNCLAMPED vertex colors only. The difference can be expressed with the two new CAPs. ====================================================================== radeonsi: Remove PIPE_CAP_OUTPUT_READ This CAP was dropped in commit: commit 04e324008759282728a95a1394bac2c4c2a1a3f9 Author: Marek Olšák <maraeo@gmail.com> Date: Thu Feb 23 23:44:36 2012 +0100 gallium: remove PIPE_SHADER_CAP_OUTPUT_READ r600g is the only driver which has made use of it. The reason the CAP was added was to fix some piglit tests when the GLSL pass lower_output_reads didn't exist. However, not removing output reads breaks the fallback for glClampColorARB, which assumes outputs are not readable. The fix would be non-trivial and my personal preference is to remove the CAP, considering that reading outputs is uncommon and that we can now use lower_output_reads to fix the issue that the CAP was supposed to workaround in the first place. ====================================================================== radeonsi: Add missing parameters to rws->buffer_get_tiling() call This was changed in commit: commit c0c979eebc076b95cc8d18a013ce2968fe6311ad Author: Jerome Glisse <jglisse@redhat.com> Date: Mon Jan 30 17:22:13 2012 -0500 r600g: add support for common surface allocator for tiling v13 Tiled surface have all kind of alignment constraint that needs to be met. Instead of having all this code duplicated btw ddx and mesa use common code in libdrm_radeon this also ensure that both ddx and mesa compute those alignment in the same way. v2 fix evergreen v3 fix compressed texture and workaround cube texture issue by disabling 2D array mode for cubemap (need to check if r7xx and newer are also affected by the issue) v4 fix texture array v5 fix evergreen and newer, split surface values computation from mipmap tree generation so that we can get them directly from the ddx v6 final fix to evergreen tile split value v7 fix mipmap offset to avoid to use random value, use color view depth view to address different layer as hardware is doing some magic rotation depending on the layer v8 fix COLOR_VIEW on r6xx for linear array mode, use COLOR_VIEW on evergreen, align bytes per pixel to a multiple of a dword v9 fix handling of stencil on evergreen, half fix for compressed texture v10 fix evergreen compressed texture proper support for stencil tile split. Fix stencil issue when array mode was clear by the kernel, always program stencil bo. On evergreen depth buffer bo need to be big enough to hold depth buffer + stencil buffer as even with stencil disabled things get written there. v11 rebase on top of mesa, fix pitch issue with 1d surface on evergreen, old ddx overestimate those. Fix linear case when pitch*height < 64. Fix r300g. v12 Fix linear case when pitch*height < 64 for old path, adapt to libdrm API change v13 add libdrm check Signed-off-by: Jerome Glisse <jglisse@redhat.com> ====================================================================== radeonsi: Remove PIPE_TRANSFER_MAP_PERMANENTLY This was removed in commit: commit 62f44f670bb0162e89fd4786af877f8da9ff607c Author: Marek Olšák <maraeo@gmail.com> Date: Mon Mar 5 13:45:00 2012 +0100 Revert "gallium: add flag PIPE_TRANSFER_MAP_PERMANENTLY" This reverts commit 0950086376b1c8b7fb89eda81ed7f2f06dee58bc. It was decided to refactor the transfer API instead of adding workarounds to address the performance issues. ====================================================================== radeonsi: Handle PIPE_VIDEO_CAP_PREFERED_FORMAT. Reintroduced in commit 9d9afcb5bac2931d4b8e6d1aa571e941c5110c90. ====================================================================== radeonsi: nuke the fallback for vertex and fragment color clamping Ported from r600g commit c2b800cf38b299c1ab1c53dc0e4ea00c7acef853. ====================================================================== radeonsi: don't expose transform_feedback2 without kernel support Ported from r600g commit 15146fd1bcbb08e44a1cbb984440ee1a5de63d48. ====================================================================== radeonsi: Handle PIPE_CAP_GLSL_FEATURE_LEVEL. Ported from r600g part of commit 171be755223d99f8cc5cc1bdaf8bd7b4caa04b4f. ====================================================================== radeonsi: set minimum point size to 1.0 for non-sprite non-aa points. Ported from r600g commit f183cc9ce3ad1d043bdf8b38fd519e8f437714fc. ====================================================================== radeonsi: rework and consolidate stencilref state setting. Ported from r600g commit a2361946e782b57f0c63587841ca41c0ea707070. ====================================================================== radeonsi: cleanup setting DB_SHADER_CONTROL. Ported from r600g commit 3d061caaed13b646ff40754f8ebe73f3d4983c5b. ====================================================================== radeonsi: Get rid of register masks. Ported from r600g commits 3d061caaed13b646ff40754f8ebe73f3d4983c5b..9344ab382a1765c1a7c2560e771485edf4954fe2. ====================================================================== radeonsi: get rid of r600_context_reg. Ported from r600g commits 9344ab382a1765c1a7c2560e771485edf4954fe2..bed20f02a771f43e1c5092254705701c228cfa7f. ====================================================================== radeonsi: Fix regression from 'Get rid of register masks'. ====================================================================== radeonsi: optimize r600_resource_va. Ported from r600g commit 669d8766ff3403938794eb80d7769347b6e52174. ====================================================================== radeonsi: remove u8,u16,u32,u64 types. Ported from r600g commit 78293b99b23268e6698f1267aaf40647c17d95a5. ====================================================================== radeonsi: merge r600_context with r600_pipe_context. Ported from r600g commit e4340c1908a6a3b09e1a15d5195f6da7d00494d0. ====================================================================== radeonsi: Miscellaneous context cleanups. Ported from r600g commits e4340c1908a6a3b09e1a15d5195f6da7d00494d0..621e0db71c5ddcb379171064a4f720c9cf01e888. ====================================================================== radeonsi: add a new simple API for state emission. Ported from r600g commits 621e0db71c5ddcb379171064a4f720c9cf01e888..f661405637bba32c2cfbeecf6e2e56e414e9521e. ====================================================================== radeonsi: Also remove sbu_flags member of struct r600_reg. Requires using sid.h instead of r600d.h for the new CP_COHER_CNTL definitions, so some code needs to be disabled for now. ====================================================================== radeonsi: Miscellaneous simplifications. Ported from r600g commits 38bf2763482b4f1b6d95cd51aecec75601d8b90f and b0337b679ad4c2feae59215104cfa60b58a619d5. ====================================================================== radeonsi: Handle PIPE_CAP_QUADS_FOLLOW_PROVOKING_VERTEX_CONVENTION. Ported from commit 8b4f7b0672d663273310fffa9490ad996f5b914a. ====================================================================== radeonsi: Use a fake reloc to sleep for fences. Ported from r600g commit 8cd03b933cf868ff867e2db4a0937005a02fd0e4. ====================================================================== radeonsi: adapt to get_query_result interface change. Ported from r600g commit 4445e170bee23a3607ece0e010adef7058ac6a11.
2012-01-06 22:38:37 +00:00
/* The compiler middle-end architecture: Explaining (non-)monolithic shaders
* -------------------------------------------------------------------------
*
* Typically, there is one-to-one correspondence between API and HW shaders,
* that is, for every API shader, there is exactly one shader binary in
* the driver.
*
* The problem with that is that we also have to emulate some API states
* (e.g. alpha-test, and many others) in shaders too. The two obvious ways
* to deal with it are:
* - each shader has multiple variants for each combination of emulated states,
* and the variants are compiled on demand, possibly relying on a shader
* cache for good performance
* - patch shaders at the binary level
*
* This driver uses something completely different. The emulated states are
* usually implemented at the beginning or end of shaders. Therefore, we can
* split the shader into 3 parts:
* - prolog part (shader code dependent on states)
* - main part (the API shader)
* - epilog part (shader code dependent on states)
*
* Each part is compiled as a separate shader and the final binaries are
* concatenated. This type of shader is called non-monolithic, because it
* consists of multiple independent binaries. Creating a new shader variant
* is therefore only a concatenation of shader parts (binaries) and doesn't
* involve any compilation. The main shader parts are the only parts that are
* compiled when applications create shader objects. The prolog and epilog
* parts are compiled on the first use and saved, so that their binaries can
* be reused by many other shaders.
*
* One of the roles of the prolog part is to compute vertex buffer addresses
* for vertex shaders. A few of the roles of the epilog part are color buffer
* format conversions in pixel shaders that we have to do manually, and write
* tessellation factors in tessellation control shaders. The prolog and epilog
* have many other important responsibilities in various shader stages.
* They don't just "emulate legacy stuff".
*
* Monolithic shaders are shaders where the parts are combined before LLVM
* compilation, and the whole thing is compiled and optimized as one unit with
* one binary on the output. The result is the same as the non-monolithic
* shader, but the final code can be better, because LLVM can optimize across
* all shader parts. Monolithic shaders aren't usually used except for these
* special cases:
*
* 1) Some rarely-used states require modification of the main shader part
* itself, and in such cases, only the monolithic shader variant is
* compiled, and that's always done on the first use.
*
* 2) When we do cross-stage optimizations for separate shader objects and
* e.g. eliminate unused shader varyings, the resulting optimized shader
* variants are always compiled as monolithic shaders, and always
* asynchronously (i.e. not stalling ongoing rendering). We call them
* "optimized monolithic" shaders. The important property here is that
* the non-monolithic unoptimized shader variant is always available for use
* when the asynchronous compilation of the optimized shader is not done
* yet.
*
* Starting with GFX9 chips, some shader stages are merged, and the number of
* shader parts per shader increased. The complete new list of shader parts is:
* - 1st shader: prolog part
* - 1st shader: main part
* - 2nd shader: prolog part
* - 2nd shader: main part
* - 2nd shader: epilog part
*/
/* How linking shader inputs and outputs between vertex, tessellation, and
* geometry shaders works.
*
* Inputs and outputs between shaders are stored in a buffer. This buffer
* lives in LDS (typical case for tessellation), but it can also live
* in memory (ESGS). Each input or output has a fixed location within a vertex.
* The highest used input or output determines the stride between vertices.
*
* Since GS and tessellation are only possible in the OpenGL core profile,
* only these semantics are valid for per-vertex data:
*
* Name Location
*
* POSITION 0
* PSIZE 1
* CLIPDIST0..1 2..3
* CULLDIST0..1 (not implemented)
* GENERIC0..31 4..35
*
* For example, a shader only writing GENERIC0 has the output stride of 5.
*
* Only these semantics are valid for per-patch data:
*
* Name Location
*
* TESSOUTER 0
* TESSINNER 1
* PATCH0..29 2..31
*
* That's how independent shaders agree on input and output locations.
* The si_shader_io_get_unique_index function assigns the locations.
*
* For tessellation, other required information for calculating the input and
* output addresses like the vertex stride, the patch stride, and the offsets
* where per-vertex and per-patch data start, is passed to the shader via
* user data SGPRs. The offsets and strides are calculated at draw time and
* aren't available at compile time.
*/
#ifndef SI_SHADER_H
#define SI_SHADER_H
radeonsi: initial WIP SI code This commit adds initial support for acceleration on SI chips. egltri is starting to work. The SI/R600 llvm backend is currently included in mesa but that may change in the future. The plan is to write a single gallium driver and use gallium to support X acceleration. This commit contains patches from: Tom Stellard <thomas.stellard@amd.com> Michel Dänzer <michel.daenzer@amd.com> Alex Deucher <alexander.deucher@amd.com> Vadim Girlin <vadimgirlin@gmail.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com> The following commits were squashed in: ====================================================================== radeonsi: Remove unused winsys pointer This was removed from r600g in commit: commit 96d882939d612fcc8332f107befec470ed4359de Author: Marek Olšák <maraeo@gmail.com> Date: Fri Feb 17 01:49:49 2012 +0100 gallium: remove unused winsys pointers in pipe_screen and pipe_context A winsys is already a private object of a driver. ====================================================================== radeonsi: Copy color clamping CAPs from r600 Not sure if the values of these CAPS are correct for radeonsi, but the same changed were made to r600g in commit: commit bc1c8369384b5e16547c5bf9728aa78f8dfd66cc Author: Marek Olšák <maraeo@gmail.com> Date: Mon Jan 23 03:11:17 2012 +0100 st/mesa: do vertex and fragment color clamping in shaders For ARB_color_buffer_float. Most hardware can't do it and st/mesa is the perfect place for a fallback. The exceptions are: - r500 (vertex clamp only) - nv50 (both) - nvc0 (both) - softpipe (both) We also have to take into account that r300 can do CLAMPED vertex colors only, while r600 can do UNCLAMPED vertex colors only. The difference can be expressed with the two new CAPs. ====================================================================== radeonsi: Remove PIPE_CAP_OUTPUT_READ This CAP was dropped in commit: commit 04e324008759282728a95a1394bac2c4c2a1a3f9 Author: Marek Olšák <maraeo@gmail.com> Date: Thu Feb 23 23:44:36 2012 +0100 gallium: remove PIPE_SHADER_CAP_OUTPUT_READ r600g is the only driver which has made use of it. The reason the CAP was added was to fix some piglit tests when the GLSL pass lower_output_reads didn't exist. However, not removing output reads breaks the fallback for glClampColorARB, which assumes outputs are not readable. The fix would be non-trivial and my personal preference is to remove the CAP, considering that reading outputs is uncommon and that we can now use lower_output_reads to fix the issue that the CAP was supposed to workaround in the first place. ====================================================================== radeonsi: Add missing parameters to rws->buffer_get_tiling() call This was changed in commit: commit c0c979eebc076b95cc8d18a013ce2968fe6311ad Author: Jerome Glisse <jglisse@redhat.com> Date: Mon Jan 30 17:22:13 2012 -0500 r600g: add support for common surface allocator for tiling v13 Tiled surface have all kind of alignment constraint that needs to be met. Instead of having all this code duplicated btw ddx and mesa use common code in libdrm_radeon this also ensure that both ddx and mesa compute those alignment in the same way. v2 fix evergreen v3 fix compressed texture and workaround cube texture issue by disabling 2D array mode for cubemap (need to check if r7xx and newer are also affected by the issue) v4 fix texture array v5 fix evergreen and newer, split surface values computation from mipmap tree generation so that we can get them directly from the ddx v6 final fix to evergreen tile split value v7 fix mipmap offset to avoid to use random value, use color view depth view to address different layer as hardware is doing some magic rotation depending on the layer v8 fix COLOR_VIEW on r6xx for linear array mode, use COLOR_VIEW on evergreen, align bytes per pixel to a multiple of a dword v9 fix handling of stencil on evergreen, half fix for compressed texture v10 fix evergreen compressed texture proper support for stencil tile split. Fix stencil issue when array mode was clear by the kernel, always program stencil bo. On evergreen depth buffer bo need to be big enough to hold depth buffer + stencil buffer as even with stencil disabled things get written there. v11 rebase on top of mesa, fix pitch issue with 1d surface on evergreen, old ddx overestimate those. Fix linear case when pitch*height < 64. Fix r300g. v12 Fix linear case when pitch*height < 64 for old path, adapt to libdrm API change v13 add libdrm check Signed-off-by: Jerome Glisse <jglisse@redhat.com> ====================================================================== radeonsi: Remove PIPE_TRANSFER_MAP_PERMANENTLY This was removed in commit: commit 62f44f670bb0162e89fd4786af877f8da9ff607c Author: Marek Olšák <maraeo@gmail.com> Date: Mon Mar 5 13:45:00 2012 +0100 Revert "gallium: add flag PIPE_TRANSFER_MAP_PERMANENTLY" This reverts commit 0950086376b1c8b7fb89eda81ed7f2f06dee58bc. It was decided to refactor the transfer API instead of adding workarounds to address the performance issues. ====================================================================== radeonsi: Handle PIPE_VIDEO_CAP_PREFERED_FORMAT. Reintroduced in commit 9d9afcb5bac2931d4b8e6d1aa571e941c5110c90. ====================================================================== radeonsi: nuke the fallback for vertex and fragment color clamping Ported from r600g commit c2b800cf38b299c1ab1c53dc0e4ea00c7acef853. ====================================================================== radeonsi: don't expose transform_feedback2 without kernel support Ported from r600g commit 15146fd1bcbb08e44a1cbb984440ee1a5de63d48. ====================================================================== radeonsi: Handle PIPE_CAP_GLSL_FEATURE_LEVEL. Ported from r600g part of commit 171be755223d99f8cc5cc1bdaf8bd7b4caa04b4f. ====================================================================== radeonsi: set minimum point size to 1.0 for non-sprite non-aa points. Ported from r600g commit f183cc9ce3ad1d043bdf8b38fd519e8f437714fc. ====================================================================== radeonsi: rework and consolidate stencilref state setting. Ported from r600g commit a2361946e782b57f0c63587841ca41c0ea707070. ====================================================================== radeonsi: cleanup setting DB_SHADER_CONTROL. Ported from r600g commit 3d061caaed13b646ff40754f8ebe73f3d4983c5b. ====================================================================== radeonsi: Get rid of register masks. Ported from r600g commits 3d061caaed13b646ff40754f8ebe73f3d4983c5b..9344ab382a1765c1a7c2560e771485edf4954fe2. ====================================================================== radeonsi: get rid of r600_context_reg. Ported from r600g commits 9344ab382a1765c1a7c2560e771485edf4954fe2..bed20f02a771f43e1c5092254705701c228cfa7f. ====================================================================== radeonsi: Fix regression from 'Get rid of register masks'. ====================================================================== radeonsi: optimize r600_resource_va. Ported from r600g commit 669d8766ff3403938794eb80d7769347b6e52174. ====================================================================== radeonsi: remove u8,u16,u32,u64 types. Ported from r600g commit 78293b99b23268e6698f1267aaf40647c17d95a5. ====================================================================== radeonsi: merge r600_context with r600_pipe_context. Ported from r600g commit e4340c1908a6a3b09e1a15d5195f6da7d00494d0. ====================================================================== radeonsi: Miscellaneous context cleanups. Ported from r600g commits e4340c1908a6a3b09e1a15d5195f6da7d00494d0..621e0db71c5ddcb379171064a4f720c9cf01e888. ====================================================================== radeonsi: add a new simple API for state emission. Ported from r600g commits 621e0db71c5ddcb379171064a4f720c9cf01e888..f661405637bba32c2cfbeecf6e2e56e414e9521e. ====================================================================== radeonsi: Also remove sbu_flags member of struct r600_reg. Requires using sid.h instead of r600d.h for the new CP_COHER_CNTL definitions, so some code needs to be disabled for now. ====================================================================== radeonsi: Miscellaneous simplifications. Ported from r600g commits 38bf2763482b4f1b6d95cd51aecec75601d8b90f and b0337b679ad4c2feae59215104cfa60b58a619d5. ====================================================================== radeonsi: Handle PIPE_CAP_QUADS_FOLLOW_PROVOKING_VERTEX_CONVENTION. Ported from commit 8b4f7b0672d663273310fffa9490ad996f5b914a. ====================================================================== radeonsi: Use a fake reloc to sleep for fences. Ported from r600g commit 8cd03b933cf868ff867e2db4a0937005a02fd0e4. ====================================================================== radeonsi: adapt to get_query_result interface change. Ported from r600g commit 4445e170bee23a3607ece0e010adef7058ac6a11.
2012-01-06 22:38:37 +00:00
#include <llvm-c/Core.h> /* LLVMModuleRef */
#include <llvm-c/TargetMachine.h>
#include "tgsi/tgsi_scan.h"
#include "util/u_queue.h"
#include "ac_binary.h"
#include "si_state.h"
#define SI_MAX_VS_OUTPUTS 40
/* Shader IO unique indices are supported for TGSI_SEMANTIC_GENERIC with an
* index smaller than this.
*/
#define SI_MAX_IO_GENERIC 46
/* SGPR user data indices */
enum {
/* GFX9 merged shaders have RW_BUFFERS among the first 8 system SGPRs,
* and these two are used for other purposes.
*/
SI_SGPR_RW_BUFFERS, /* rings (& stream-out, VS only) */
SI_SGPR_RW_BUFFERS_HI,
SI_SGPR_CONST_AND_SHADER_BUFFERS,
SI_SGPR_CONST_AND_SHADER_BUFFERS_HI,
SI_SGPR_SAMPLERS_AND_IMAGES,
SI_SGPR_SAMPLERS_AND_IMAGES_HI,
SI_NUM_RESOURCE_SGPRS,
/* all VS variants */
SI_SGPR_VERTEX_BUFFERS = SI_NUM_RESOURCE_SGPRS,
SI_SGPR_VERTEX_BUFFERS_HI,
SI_SGPR_BASE_VERTEX,
SI_SGPR_START_INSTANCE,
SI_SGPR_DRAWID,
SI_SGPR_VS_STATE_BITS,
SI_VS_NUM_USER_SGPR,
/* TES */
SI_SGPR_TES_OFFCHIP_LAYOUT = SI_NUM_RESOURCE_SGPRS,
SI_SGPR_TES_OFFCHIP_ADDR_BASE64K,
SI_TES_NUM_USER_SGPR,
/* GFX6-8: TCS only */
GFX6_SGPR_TCS_OFFCHIP_LAYOUT = SI_NUM_RESOURCE_SGPRS,
GFX6_SGPR_TCS_OUT_OFFSETS,
GFX6_SGPR_TCS_OUT_LAYOUT,
GFX6_SGPR_TCS_IN_LAYOUT,
GFX6_SGPR_TCS_OFFCHIP_ADDR_BASE64K,
GFX6_SGPR_TCS_FACTOR_ADDR_BASE64K,
GFX6_TCS_NUM_USER_SGPR,
/* GFX9: Merged LS-HS (VS-TCS) only. */
GFX9_SGPR_TCS_OFFCHIP_LAYOUT = SI_VS_NUM_USER_SGPR,
GFX9_SGPR_TCS_OUT_OFFSETS,
GFX9_SGPR_TCS_OUT_LAYOUT,
GFX9_SGPR_TCS_OFFCHIP_ADDR_BASE64K,
GFX9_SGPR_TCS_FACTOR_ADDR_BASE64K,
GFX9_SGPR_unused_to_align_the_next_pointer,
GFX9_SGPR_TCS_CONST_AND_SHADER_BUFFERS,
GFX9_SGPR_TCS_CONST_AND_SHADER_BUFFERS_HI,
GFX9_SGPR_TCS_SAMPLERS_AND_IMAGES,
GFX9_SGPR_TCS_SAMPLERS_AND_IMAGES_HI,
GFX9_TCS_NUM_USER_SGPR,
/* GFX9: Merged ES-GS (VS-GS or TES-GS). */
GFX9_SGPR_GS_CONST_AND_SHADER_BUFFERS = SI_VS_NUM_USER_SGPR,
GFX9_SGPR_GS_CONST_AND_SHADER_BUFFERS_HI,
GFX9_SGPR_GS_SAMPLERS_AND_IMAGES,
GFX9_SGPR_GS_SAMPLERS_AND_IMAGES_HI,
GFX9_GS_NUM_USER_SGPR,
/* GS limits */
GFX6_GS_NUM_USER_SGPR = SI_NUM_RESOURCE_SGPRS,
SI_GSCOPY_NUM_USER_SGPR = SI_SGPR_RW_BUFFERS_HI + 1,
/* PS only */
SI_SGPR_ALPHA_REF = SI_NUM_RESOURCE_SGPRS,
SI_PS_NUM_USER_SGPR,
};
/* LLVM function parameter indices */
enum {
SI_NUM_RESOURCE_PARAMS = 3,
/* PS only parameters */
SI_PARAM_ALPHA_REF = SI_NUM_RESOURCE_PARAMS,
SI_PARAM_PRIM_MASK,
SI_PARAM_PERSP_SAMPLE,
SI_PARAM_PERSP_CENTER,
SI_PARAM_PERSP_CENTROID,
SI_PARAM_PERSP_PULL_MODEL,
SI_PARAM_LINEAR_SAMPLE,
SI_PARAM_LINEAR_CENTER,
SI_PARAM_LINEAR_CENTROID,
SI_PARAM_LINE_STIPPLE_TEX,
SI_PARAM_POS_X_FLOAT,
SI_PARAM_POS_Y_FLOAT,
SI_PARAM_POS_Z_FLOAT,
SI_PARAM_POS_W_FLOAT,
SI_PARAM_FRONT_FACE,
SI_PARAM_ANCILLARY,
SI_PARAM_SAMPLE_COVERAGE,
SI_PARAM_POS_FIXED_PT,
SI_NUM_PARAMS = SI_PARAM_POS_FIXED_PT + 9, /* +8 for COLOR[0..1] */
};
/* Fields of driver-defined VS state SGPR. */
/* Clamp vertex color output (only used in VS as VS). */
#define S_VS_STATE_CLAMP_VERTEX_COLOR(x) (((unsigned)(x) & 0x1) << 0)
#define C_VS_STATE_CLAMP_VERTEX_COLOR 0xFFFFFFFE
#define S_VS_STATE_INDEXED(x) (((unsigned)(x) & 0x1) << 1)
#define C_VS_STATE_INDEXED 0xFFFFFFFD
#define S_VS_STATE_LS_OUT_PATCH_SIZE(x) (((unsigned)(x) & 0x1FFF) << 8)
#define C_VS_STATE_LS_OUT_PATCH_SIZE 0xFFE000FF
#define S_VS_STATE_LS_OUT_VERTEX_SIZE(x) (((unsigned)(x) & 0xFF) << 24)
#define C_VS_STATE_LS_OUT_VERTEX_SIZE 0x00FFFFFF
/* SI-specific system values. */
enum {
TGSI_SEMANTIC_DEFAULT_TESSOUTER_SI = TGSI_SEMANTIC_COUNT,
TGSI_SEMANTIC_DEFAULT_TESSINNER_SI,
};
/* For VS shader key fix_fetch. */
enum {
SI_FIX_FETCH_NONE = 0,
SI_FIX_FETCH_A2_SNORM,
SI_FIX_FETCH_A2_SSCALED,
SI_FIX_FETCH_A2_SINT,
SI_FIX_FETCH_RGBA_32_UNORM,
SI_FIX_FETCH_RGBX_32_UNORM,
SI_FIX_FETCH_RGBA_32_SNORM,
SI_FIX_FETCH_RGBX_32_SNORM,
SI_FIX_FETCH_RGBA_32_USCALED,
SI_FIX_FETCH_RGBA_32_SSCALED,
SI_FIX_FETCH_RGBA_32_FIXED,
SI_FIX_FETCH_RGBX_32_FIXED,
SI_FIX_FETCH_RG_64_FLOAT,
SI_FIX_FETCH_RGB_64_FLOAT,
SI_FIX_FETCH_RGBA_64_FLOAT,
SI_FIX_FETCH_RGB_8, /* A = 1.0 */
SI_FIX_FETCH_RGB_8_INT, /* A = 1 */
SI_FIX_FETCH_RGB_16,
SI_FIX_FETCH_RGB_16_INT,
};
struct si_shader;
/* State of the context creating the shader object. */
struct si_compiler_ctx_state {
/* Should only be used by si_init_shader_selector_async and
* si_build_shader_variant if thread_index == -1 (non-threaded). */
LLVMTargetMachineRef tm;
/* Used if thread_index == -1 or if debug.async is true. */
struct pipe_debug_callback debug;
/* Used for creating the log string for gallium/ddebug. */
bool is_debug_context;
};
/* A shader selector is a gallium CSO and contains shader variants and
* binaries for one TGSI program. This can be shared by multiple contexts.
*/
struct si_shader_selector {
struct pipe_reference reference;
struct si_screen *screen;
struct util_queue_fence ready;
struct si_compiler_ctx_state compiler_ctx_state;
mtx_t mutex;
struct si_shader *first_variant; /* immutable after the first variant */
struct si_shader *last_variant; /* mutable */
/* The compiled TGSI shader expecting a prolog and/or epilog (not
* uploaded to a buffer).
*/
struct si_shader *main_shader_part;
struct si_shader *main_shader_part_ls; /* as_ls is set in the key */
struct si_shader *main_shader_part_es; /* as_es is set in the key */
struct si_shader *gs_copy_shader;
struct tgsi_token *tokens;
struct pipe_stream_output_info so;
struct tgsi_shader_info info;
/* PIPE_SHADER_[VERTEX|FRAGMENT|...] */
unsigned type;
bool vs_needs_prolog;
unsigned pa_cl_vs_out_cntl;
ubyte clipdist_mask;
ubyte culldist_mask;
/* GS parameters. */
unsigned esgs_itemsize;
unsigned gs_input_verts_per_prim;
unsigned gs_output_prim;
unsigned gs_max_out_vertices;
unsigned gs_num_invocations;
unsigned max_gs_stream; /* count - 1 */
unsigned gsvs_vertex_size;
unsigned max_gsvs_emit_size;
unsigned enabled_streamout_buffer_mask;
/* PS parameters. */
unsigned color_attr_index[2];
unsigned db_shader_control;
/* Set 0xf or 0x0 (4 bits) per each written output.
* ANDed with spi_shader_col_format.
*/
unsigned colors_written_4bit;
/* CS parameters */
unsigned local_size;
uint64_t outputs_written; /* "get_unique_index" bits */
uint32_t patch_outputs_written; /* "get_unique_index_patch" bits */
uint64_t inputs_read; /* "get_unique_index" bits */
/* bitmasks of used descriptor slots */
uint32_t active_const_and_shader_buffers;
uint64_t active_samplers_and_images;
};
/* Valid shader configurations:
*
* API shaders VS | TCS | TES | GS |pass| PS
* are compiled as: | | | |thru|
* | | | | |
* Only VS & PS: VS | | | | | PS
* GFX6 - with GS: ES | | | GS | VS | PS
* - with tess: LS | HS | VS | | | PS
* - with both: LS | HS | ES | GS | VS | PS
* GFX9 - with GS: -> | | | GS | VS | PS
* - with tess: -> | HS | VS | | | PS
* - with both: -> | HS | -> | GS | VS | PS
*
* -> = merged with the next stage
*/
/* Common VS bits between the shader key and the prolog key. */
struct si_vs_prolog_bits {
unsigned instance_divisors[SI_MAX_ATTRIBS];
};
/* Common TCS bits between the shader key and the epilog key. */
struct si_tcs_epilog_bits {
unsigned prim_mode:3;
unsigned tes_reads_tess_factors:1;
};
struct si_gs_prolog_bits {
unsigned tri_strip_adj_fix:1;
};
/* Common PS bits between the shader key and the prolog key. */
struct si_ps_prolog_bits {
unsigned color_two_side:1;
unsigned flatshade_colors:1;
unsigned poly_stipple:1;
unsigned force_persp_sample_interp:1;
unsigned force_linear_sample_interp:1;
unsigned force_persp_center_interp:1;
unsigned force_linear_center_interp:1;
unsigned bc_optimize_for_persp:1;
unsigned bc_optimize_for_linear:1;
};
/* Common PS bits between the shader key and the epilog key. */
struct si_ps_epilog_bits {
unsigned spi_shader_col_format;
unsigned color_is_int8:8;
unsigned color_is_int10:8;
unsigned last_cbuf:3;
unsigned alpha_func:3;
unsigned alpha_to_one:1;
unsigned poly_line_smoothing:1;
unsigned clamp_color:1;
};
union si_shader_part_key {
struct {
struct si_vs_prolog_bits states;
unsigned num_input_sgprs:6;
/* For merged stages such as LS-HS, HS input VGPRs are first. */
unsigned num_merged_next_stage_vgprs:3;
unsigned last_input:4;
unsigned as_ls:1;
/* Prologs for monolithic shaders shouldn't set EXEC. */
unsigned is_monolithic:1;
} vs_prolog;
struct {
struct si_tcs_epilog_bits states;
} tcs_epilog;
struct {
struct si_gs_prolog_bits states;
/* Prologs of monolithic shaders shouldn't set EXEC. */
unsigned is_monolithic:1;
} gs_prolog;
struct {
struct si_ps_prolog_bits states;
unsigned num_input_sgprs:6;
unsigned num_input_vgprs:5;
/* Color interpolation and two-side color selection. */
unsigned colors_read:8; /* color input components read */
unsigned num_interp_inputs:5; /* BCOLOR is at this location */
unsigned face_vgpr_index:5;
unsigned wqm:1;
char color_attr_index[2];
char color_interp_vgpr_index[2]; /* -1 == constant */
} ps_prolog;
struct {
struct si_ps_epilog_bits states;
unsigned colors_written:8;
unsigned writes_z:1;
unsigned writes_stencil:1;
unsigned writes_samplemask:1;
} ps_epilog;
};
struct si_shader_key {
/* Prolog and epilog flags. */
union {
struct {
struct si_vs_prolog_bits prolog;
} vs;
struct {
struct si_vs_prolog_bits ls_prolog; /* for merged LS-HS */
struct si_shader_selector *ls; /* for merged LS-HS */
struct si_tcs_epilog_bits epilog;
} tcs; /* tessellation control shader */
struct {
struct si_vs_prolog_bits vs_prolog; /* for merged ES-GS */
struct si_shader_selector *es; /* for merged ES-GS */
struct si_gs_prolog_bits prolog;
} gs;
struct {
struct si_ps_prolog_bits prolog;
struct si_ps_epilog_bits epilog;
} ps;
} part;
/* These two are initially set according to the NEXT_SHADER property,
* or guessed if the property doesn't seem correct.
*/
unsigned as_es:1; /* export shader, which precedes GS */
unsigned as_ls:1; /* local shader, which precedes TCS */
/* Flags for monolithic compilation only. */
struct {
/* One byte for every input: SI_FIX_FETCH_* enums. */
uint8_t vs_fix_fetch[SI_MAX_ATTRIBS];
union {
uint64_t ff_tcs_inputs_to_copy; /* for fixed-func TCS */
/* When PS needs PrimID and GS is disabled. */
unsigned vs_export_prim_id:1;
} u;
} mono;
/* Optimization flags for asynchronous compilation only. */
struct {
/* For HW VS (it can be VS, TES, GS) */
uint64_t kill_outputs; /* "get_unique_index" bits */
unsigned clip_disable:1;
/* For shaders where monolithic variants have better code.
*
* This is a flag that has no effect on code generation,
* but forces monolithic shaders to be used as soon as
* possible, because it's in the "opt" group.
*/
unsigned prefer_mono:1;
} opt;
};
struct si_shader_config {
unsigned num_sgprs;
unsigned num_vgprs;
unsigned spilled_sgprs;
unsigned spilled_vgprs;
unsigned private_mem_vgprs;
unsigned lds_size;
unsigned spi_ps_input_ena;
unsigned spi_ps_input_addr;
unsigned float_mode;
unsigned scratch_bytes_per_wave;
unsigned rsrc1;
unsigned rsrc2;
};
/* GCN-specific shader info. */
struct si_shader_info {
ubyte vs_output_param_offset[SI_MAX_VS_OUTPUTS];
ubyte num_input_sgprs;
ubyte num_input_vgprs;
char face_vgpr_index;
bool uses_instanceid;
ubyte nr_pos_exports;
ubyte nr_param_exports;
};
struct si_shader {
struct si_compiler_ctx_state compiler_ctx_state;
struct si_shader_selector *selector;
struct si_shader_selector *previous_stage_sel; /* for refcounting */
struct si_shader *next_variant;
struct si_shader_part *prolog;
struct si_shader *previous_stage; /* for GFX9 */
struct si_shader_part *prolog2;
struct si_shader_part *epilog;
struct si_pm4_state *pm4;
struct r600_resource *bo;
struct r600_resource *scratch_bo;
struct si_shader_key key;
struct util_queue_fence optimized_ready;
bool compilation_failed;
bool is_monolithic;
bool is_optimized;
bool is_binary_shared;
bool is_gs_copy_shader;
/* The following data is all that's needed for binary shaders. */
struct ac_shader_binary binary;
struct si_shader_config config;
struct si_shader_info info;
/* Shader key + LLVM IR + disassembly + statistics.
* Generated for debug contexts only.
*/
char *shader_log;
size_t shader_log_size;
};
struct si_shader_part {
struct si_shader_part *next;
union si_shader_part_key key;
struct ac_shader_binary binary;
struct si_shader_config config;
};
/* si_shader.c */
struct si_shader *
si_generate_gs_copy_shader(struct si_screen *sscreen,
LLVMTargetMachineRef tm,
struct si_shader_selector *gs_selector,
struct pipe_debug_callback *debug);
int si_compile_tgsi_shader(struct si_screen *sscreen,
LLVMTargetMachineRef tm,
struct si_shader *shader,
bool is_monolithic,
struct pipe_debug_callback *debug);
int si_shader_create(struct si_screen *sscreen, LLVMTargetMachineRef tm,
struct si_shader *shader,
struct pipe_debug_callback *debug);
void si_shader_destroy(struct si_shader *shader);
unsigned si_shader_io_get_unique_index_patch(unsigned semantic_name, unsigned index);
unsigned si_shader_io_get_unique_index(unsigned semantic_name, unsigned index);
int si_shader_binary_upload(struct si_screen *sscreen, struct si_shader *shader);
void si_shader_dump(struct si_screen *sscreen, const struct si_shader *shader,
struct pipe_debug_callback *debug, unsigned processor,
FILE *f, bool check_debug_option);
void si_multiwave_lds_size_workaround(struct si_screen *sscreen,
unsigned *lds_size);
void si_shader_apply_scratch_relocs(struct si_shader *shader,
uint64_t scratch_va);
void si_shader_binary_read_config(struct ac_shader_binary *binary,
struct si_shader_config *conf,
unsigned symbol_offset);
unsigned si_get_spi_shader_z_format(bool writes_z, bool writes_stencil,
bool writes_samplemask);
const char *si_get_shader_name(const struct si_shader *shader, unsigned processor);
/* Inline helpers. */
/* Return the pointer to the main shader part's pointer. */
static inline struct si_shader **
si_get_main_shader_part(struct si_shader_selector *sel,
struct si_shader_key *key)
{
if (key->as_ls)
return &sel->main_shader_part_ls;
if (key->as_es)
return &sel->main_shader_part_es;
return &sel->main_shader_part;
}
static inline bool
si_shader_uses_bindless_samplers(struct si_shader_selector *selector)
{
return selector ? selector->info.uses_bindless_samplers : false;
}
static inline bool
si_shader_uses_bindless_images(struct si_shader_selector *selector)
{
return selector ? selector->info.uses_bindless_images : false;
}
#endif