mesa/src/gallium/drivers/radeonsi/si_state_shaders.c

1586 lines
50 KiB
C
Raw Normal View History

/*
* Copyright 2012 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Christian König <christian.koenig@amd.com>
* Marek Olšák <maraeo@gmail.com>
*/
#include "si_pipe.h"
#include "si_shader.h"
#include "sid.h"
#include "radeon/r600_cs.h"
#include "tgsi/tgsi_parse.h"
#include "tgsi/tgsi_ureg.h"
#include "util/u_memory.h"
#include "util/u_simple_shaders.h"
static void si_set_tesseval_regs(struct si_shader *shader,
struct si_pm4_state *pm4)
{
struct tgsi_shader_info *info = &shader->selector->info;
unsigned tes_prim_mode = info->properties[TGSI_PROPERTY_TES_PRIM_MODE];
unsigned tes_spacing = info->properties[TGSI_PROPERTY_TES_SPACING];
bool tes_vertex_order_cw = info->properties[TGSI_PROPERTY_TES_VERTEX_ORDER_CW];
bool tes_point_mode = info->properties[TGSI_PROPERTY_TES_POINT_MODE];
unsigned type, partitioning, topology;
switch (tes_prim_mode) {
case PIPE_PRIM_LINES:
type = V_028B6C_TESS_ISOLINE;
break;
case PIPE_PRIM_TRIANGLES:
type = V_028B6C_TESS_TRIANGLE;
break;
case PIPE_PRIM_QUADS:
type = V_028B6C_TESS_QUAD;
break;
default:
assert(0);
return;
}
switch (tes_spacing) {
case PIPE_TESS_SPACING_FRACTIONAL_ODD:
partitioning = V_028B6C_PART_FRAC_ODD;
break;
case PIPE_TESS_SPACING_FRACTIONAL_EVEN:
partitioning = V_028B6C_PART_FRAC_EVEN;
break;
case PIPE_TESS_SPACING_EQUAL:
partitioning = V_028B6C_PART_INTEGER;
break;
default:
assert(0);
return;
}
if (tes_point_mode)
topology = V_028B6C_OUTPUT_POINT;
else if (tes_prim_mode == PIPE_PRIM_LINES)
topology = V_028B6C_OUTPUT_LINE;
else if (tes_vertex_order_cw)
/* for some reason, this must be the other way around */
topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
else
topology = V_028B6C_OUTPUT_TRIANGLE_CW;
si_pm4_set_reg(pm4, R_028B6C_VGT_TF_PARAM,
S_028B6C_TYPE(type) |
S_028B6C_PARTITIONING(partitioning) |
S_028B6C_TOPOLOGY(topology));
}
static void si_shader_ls(struct si_shader *shader)
{
struct si_pm4_state *pm4;
unsigned num_sgprs, num_user_sgprs;
unsigned vgpr_comp_cnt;
uint64_t va;
pm4 = shader->pm4 = CALLOC_STRUCT(si_pm4_state);
if (pm4 == NULL)
return;
va = shader->bo->gpu_address;
si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_USER_SHADER);
/* We need at least 2 components for LS.
* VGPR0-3: (VertexID, RelAutoindex, ???, InstanceID). */
vgpr_comp_cnt = shader->uses_instanceid ? 3 : 1;
num_user_sgprs = SI_LS_NUM_USER_SGPR;
num_sgprs = shader->num_sgprs;
if (num_user_sgprs > num_sgprs) {
/* Last 2 reserved SGPRs are used for VCC */
num_sgprs = num_user_sgprs + 2;
}
assert(num_sgprs <= 104);
si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
si_pm4_set_reg(pm4, R_00B524_SPI_SHADER_PGM_HI_LS, va >> 40);
shader->ls_rsrc1 = S_00B528_VGPRS((shader->num_vgprs - 1) / 4) |
S_00B528_SGPRS((num_sgprs - 1) / 8) |
S_00B528_VGPR_COMP_CNT(vgpr_comp_cnt) |
S_00B528_DX10_CLAMP(shader->dx10_clamp_mode);
shader->ls_rsrc2 = S_00B52C_USER_SGPR(num_user_sgprs) |
S_00B52C_SCRATCH_EN(shader->scratch_bytes_per_wave > 0);
}
static void si_shader_hs(struct si_shader *shader)
{
struct si_pm4_state *pm4;
unsigned num_sgprs, num_user_sgprs;
uint64_t va;
pm4 = shader->pm4 = CALLOC_STRUCT(si_pm4_state);
if (pm4 == NULL)
return;
va = shader->bo->gpu_address;
si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_USER_SHADER);
num_user_sgprs = SI_TCS_NUM_USER_SGPR;
num_sgprs = shader->num_sgprs;
/* One SGPR after user SGPRs is pre-loaded with tessellation factor
* buffer offset. */
if ((num_user_sgprs + 1) > num_sgprs) {
/* Last 2 reserved SGPRs are used for VCC */
num_sgprs = num_user_sgprs + 1 + 2;
}
assert(num_sgprs <= 104);
si_pm4_set_reg(pm4, R_00B420_SPI_SHADER_PGM_LO_HS, va >> 8);
si_pm4_set_reg(pm4, R_00B424_SPI_SHADER_PGM_HI_HS, va >> 40);
si_pm4_set_reg(pm4, R_00B428_SPI_SHADER_PGM_RSRC1_HS,
S_00B428_VGPRS((shader->num_vgprs - 1) / 4) |
S_00B428_SGPRS((num_sgprs - 1) / 8) |
S_00B428_DX10_CLAMP(shader->dx10_clamp_mode));
si_pm4_set_reg(pm4, R_00B42C_SPI_SHADER_PGM_RSRC2_HS,
S_00B42C_USER_SGPR(num_user_sgprs) |
S_00B42C_SCRATCH_EN(shader->scratch_bytes_per_wave > 0));
}
static void si_shader_es(struct si_shader *shader)
{
struct si_pm4_state *pm4;
unsigned num_sgprs, num_user_sgprs;
unsigned vgpr_comp_cnt;
uint64_t va;
pm4 = shader->pm4 = CALLOC_STRUCT(si_pm4_state);
if (pm4 == NULL)
return;
va = shader->bo->gpu_address;
si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_USER_SHADER);
if (shader->selector->type == PIPE_SHADER_VERTEX) {
vgpr_comp_cnt = shader->uses_instanceid ? 3 : 0;
num_user_sgprs = SI_ES_NUM_USER_SGPR;
} else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
vgpr_comp_cnt = 3; /* all components are needed for TES */
num_user_sgprs = SI_TES_NUM_USER_SGPR;
} else
unreachable("invalid shader selector type");
num_sgprs = shader->num_sgprs;
/* One SGPR after user SGPRs is pre-loaded with es2gs_offset */
if ((num_user_sgprs + 1) > num_sgprs) {
/* Last 2 reserved SGPRs are used for VCC */
num_sgprs = num_user_sgprs + 1 + 2;
}
assert(num_sgprs <= 104);
si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, va >> 40);
si_pm4_set_reg(pm4, R_00B328_SPI_SHADER_PGM_RSRC1_ES,
S_00B328_VGPRS((shader->num_vgprs - 1) / 4) |
S_00B328_SGPRS((num_sgprs - 1) / 8) |
S_00B328_VGPR_COMP_CNT(vgpr_comp_cnt) |
S_00B328_DX10_CLAMP(shader->dx10_clamp_mode));
si_pm4_set_reg(pm4, R_00B32C_SPI_SHADER_PGM_RSRC2_ES,
S_00B32C_USER_SGPR(num_user_sgprs) |
S_00B32C_SCRATCH_EN(shader->scratch_bytes_per_wave > 0));
if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
si_set_tesseval_regs(shader, pm4);
}
static void si_shader_gs(struct si_shader *shader)
{
unsigned gs_vert_itemsize = shader->selector->gsvs_vertex_size;
unsigned gs_max_vert_out = shader->selector->gs_max_out_vertices;
unsigned gsvs_itemsize = shader->selector->max_gsvs_emit_size >> 2;
unsigned gs_num_invocations = shader->selector->gs_num_invocations;
unsigned cut_mode;
struct si_pm4_state *pm4;
unsigned num_sgprs, num_user_sgprs;
uint64_t va;
unsigned max_stream = shader->selector->max_gs_stream;
/* The GSVS_RING_ITEMSIZE register takes 15 bits */
assert(gsvs_itemsize < (1 << 15));
pm4 = shader->pm4 = CALLOC_STRUCT(si_pm4_state);
if (pm4 == NULL)
return;
if (gs_max_vert_out <= 128) {
cut_mode = V_028A40_GS_CUT_128;
} else if (gs_max_vert_out <= 256) {
cut_mode = V_028A40_GS_CUT_256;
} else if (gs_max_vert_out <= 512) {
cut_mode = V_028A40_GS_CUT_512;
} else {
assert(gs_max_vert_out <= 1024);
cut_mode = V_028A40_GS_CUT_1024;
}
si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE,
S_028A40_MODE(V_028A40_GS_SCENARIO_G) |
S_028A40_CUT_MODE(cut_mode)|
S_028A40_ES_WRITE_OPTIMIZE(1) |
S_028A40_GS_WRITE_OPTIMIZE(1));
si_pm4_set_reg(pm4, R_028A60_VGT_GSVS_RING_OFFSET_1, gsvs_itemsize);
si_pm4_set_reg(pm4, R_028A64_VGT_GSVS_RING_OFFSET_2, gsvs_itemsize * ((max_stream >= 2) ? 2 : 1));
si_pm4_set_reg(pm4, R_028A68_VGT_GSVS_RING_OFFSET_3, gsvs_itemsize * ((max_stream >= 3) ? 3 : 1));
si_pm4_set_reg(pm4, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
shader->selector->esgs_itemsize / 4);
si_pm4_set_reg(pm4, R_028AB0_VGT_GSVS_RING_ITEMSIZE, gsvs_itemsize * (max_stream + 1));
si_pm4_set_reg(pm4, R_028B38_VGT_GS_MAX_VERT_OUT, gs_max_vert_out);
si_pm4_set_reg(pm4, R_028B5C_VGT_GS_VERT_ITEMSIZE, gs_vert_itemsize >> 2);
si_pm4_set_reg(pm4, R_028B60_VGT_GS_VERT_ITEMSIZE_1, (max_stream >= 1) ? gs_vert_itemsize >> 2 : 0);
si_pm4_set_reg(pm4, R_028B64_VGT_GS_VERT_ITEMSIZE_2, (max_stream >= 2) ? gs_vert_itemsize >> 2 : 0);
si_pm4_set_reg(pm4, R_028B68_VGT_GS_VERT_ITEMSIZE_3, (max_stream >= 3) ? gs_vert_itemsize >> 2 : 0);
si_pm4_set_reg(pm4, R_028B90_VGT_GS_INSTANCE_CNT,
S_028B90_CNT(MIN2(gs_num_invocations, 127)) |
S_028B90_ENABLE(gs_num_invocations > 0));
va = shader->bo->gpu_address;
si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_USER_SHADER);
si_pm4_set_reg(pm4, R_00B220_SPI_SHADER_PGM_LO_GS, va >> 8);
si_pm4_set_reg(pm4, R_00B224_SPI_SHADER_PGM_HI_GS, va >> 40);
num_user_sgprs = SI_GS_NUM_USER_SGPR;
num_sgprs = shader->num_sgprs;
/* Two SGPRs after user SGPRs are pre-loaded with gs2vs_offset, gs_wave_id */
if ((num_user_sgprs + 2) > num_sgprs) {
/* Last 2 reserved SGPRs are used for VCC */
num_sgprs = num_user_sgprs + 2 + 2;
}
assert(num_sgprs <= 104);
si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
S_00B228_VGPRS((shader->num_vgprs - 1) / 4) |
S_00B228_SGPRS((num_sgprs - 1) / 8) |
S_00B228_DX10_CLAMP(shader->dx10_clamp_mode));
si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
S_00B22C_USER_SGPR(num_user_sgprs) |
S_00B22C_SCRATCH_EN(shader->scratch_bytes_per_wave > 0));
}
static void si_shader_vs(struct si_shader *shader)
{
struct si_pm4_state *pm4;
unsigned num_sgprs, num_user_sgprs;
unsigned nparams, vgpr_comp_cnt;
uint64_t va;
unsigned window_space =
shader->selector->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION];
bool enable_prim_id = si_vs_exports_prim_id(shader);
pm4 = shader->pm4 = CALLOC_STRUCT(si_pm4_state);
if (pm4 == NULL)
return;
/* If this is the GS copy shader, the GS state writes this register.
* Otherwise, the VS state writes it.
*/
if (!shader->is_gs_copy_shader) {
si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE,
S_028A40_MODE(enable_prim_id ? V_028A40_GS_SCENARIO_A : 0));
si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, enable_prim_id);
} else
si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, 0);
va = shader->bo->gpu_address;
si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_USER_SHADER);
if (shader->is_gs_copy_shader) {
vgpr_comp_cnt = 0; /* only VertexID is needed for GS-COPY. */
num_user_sgprs = SI_GSCOPY_NUM_USER_SGPR;
} else if (shader->selector->type == PIPE_SHADER_VERTEX) {
vgpr_comp_cnt = shader->uses_instanceid ? 3 : (enable_prim_id ? 2 : 0);
num_user_sgprs = SI_VS_NUM_USER_SGPR;
} else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
vgpr_comp_cnt = 3; /* all components are needed for TES */
num_user_sgprs = SI_TES_NUM_USER_SGPR;
} else
unreachable("invalid shader selector type");
num_sgprs = shader->num_sgprs;
if (num_user_sgprs > num_sgprs) {
/* Last 2 reserved SGPRs are used for VCC */
num_sgprs = num_user_sgprs + 2;
}
assert(num_sgprs <= 104);
/* VS is required to export at least one param. */
nparams = MAX2(shader->nr_param_exports, 1);
si_pm4_set_reg(pm4, R_0286C4_SPI_VS_OUT_CONFIG,
S_0286C4_VS_EXPORT_COUNT(nparams - 1));
si_pm4_set_reg(pm4, R_02870C_SPI_SHADER_POS_FORMAT,
S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
S_02870C_POS1_EXPORT_FORMAT(shader->nr_pos_exports > 1 ?
V_02870C_SPI_SHADER_4COMP :
V_02870C_SPI_SHADER_NONE) |
S_02870C_POS2_EXPORT_FORMAT(shader->nr_pos_exports > 2 ?
V_02870C_SPI_SHADER_4COMP :
V_02870C_SPI_SHADER_NONE) |
S_02870C_POS3_EXPORT_FORMAT(shader->nr_pos_exports > 3 ?
V_02870C_SPI_SHADER_4COMP :
V_02870C_SPI_SHADER_NONE));
si_pm4_set_reg(pm4, R_00B120_SPI_SHADER_PGM_LO_VS, va >> 8);
si_pm4_set_reg(pm4, R_00B124_SPI_SHADER_PGM_HI_VS, va >> 40);
si_pm4_set_reg(pm4, R_00B128_SPI_SHADER_PGM_RSRC1_VS,
S_00B128_VGPRS((shader->num_vgprs - 1) / 4) |
S_00B128_SGPRS((num_sgprs - 1) / 8) |
S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) |
S_00B128_DX10_CLAMP(shader->dx10_clamp_mode));
si_pm4_set_reg(pm4, R_00B12C_SPI_SHADER_PGM_RSRC2_VS,
S_00B12C_USER_SGPR(num_user_sgprs) |
S_00B12C_SO_BASE0_EN(!!shader->selector->so.stride[0]) |
S_00B12C_SO_BASE1_EN(!!shader->selector->so.stride[1]) |
S_00B12C_SO_BASE2_EN(!!shader->selector->so.stride[2]) |
S_00B12C_SO_BASE3_EN(!!shader->selector->so.stride[3]) |
S_00B12C_SO_EN(!!shader->selector->so.num_outputs) |
S_00B12C_SCRATCH_EN(shader->scratch_bytes_per_wave > 0));
if (window_space)
si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1));
else
si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
S_028818_VTX_W0_FMT(1) |
S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1));
if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
si_set_tesseval_regs(shader, pm4);
}
static void si_shader_ps(struct si_shader *shader)
{
struct tgsi_shader_info *info = &shader->selector->info;
struct si_pm4_state *pm4;
unsigned i, spi_ps_in_control;
unsigned num_sgprs, num_user_sgprs;
unsigned spi_baryc_cntl = 0;
uint64_t va;
bool has_centroid;
pm4 = shader->pm4 = CALLOC_STRUCT(si_pm4_state);
if (pm4 == NULL)
return;
for (i = 0; i < info->num_inputs; i++) {
switch (info->input_semantic_name[i]) {
case TGSI_SEMANTIC_POSITION:
/* SPI_BARYC_CNTL.POS_FLOAT_LOCATION
* Possible vaules:
* 0 -> Position = pixel center (default)
* 1 -> Position = pixel centroid
* 2 -> Position = at sample position
*/
switch (info->input_interpolate_loc[i]) {
case TGSI_INTERPOLATE_LOC_CENTROID:
spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(1);
break;
case TGSI_INTERPOLATE_LOC_SAMPLE:
spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
break;
}
if (info->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] ==
TGSI_FS_COORD_PIXEL_CENTER_INTEGER)
spi_baryc_cntl |= S_0286E0_POS_FLOAT_ULC(1);
break;
}
}
has_centroid = G_0286CC_PERSP_CENTROID_ENA(shader->spi_ps_input_ena) ||
G_0286CC_LINEAR_CENTROID_ENA(shader->spi_ps_input_ena);
spi_ps_in_control = S_0286D8_NUM_INTERP(shader->nparam) |
S_0286D8_BC_OPTIMIZE_DISABLE(has_centroid);
si_pm4_set_reg(pm4, R_0286E0_SPI_BARYC_CNTL, spi_baryc_cntl);
si_pm4_set_reg(pm4, R_0286D8_SPI_PS_IN_CONTROL, spi_ps_in_control);
si_pm4_set_reg(pm4, R_028710_SPI_SHADER_Z_FORMAT, shader->spi_shader_z_format);
si_pm4_set_reg(pm4, R_028714_SPI_SHADER_COL_FORMAT,
shader->spi_shader_col_format);
si_pm4_set_reg(pm4, R_02823C_CB_SHADER_MASK, shader->cb_shader_mask);
va = shader->bo->gpu_address;
si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_USER_SHADER);
si_pm4_set_reg(pm4, R_00B020_SPI_SHADER_PGM_LO_PS, va >> 8);
si_pm4_set_reg(pm4, R_00B024_SPI_SHADER_PGM_HI_PS, va >> 40);
num_user_sgprs = SI_PS_NUM_USER_SGPR;
num_sgprs = shader->num_sgprs;
/* One SGPR after user SGPRs is pre-loaded with {prim_mask, lds_offset} */
if ((num_user_sgprs + 1) > num_sgprs) {
/* Last 2 reserved SGPRs are used for VCC */
num_sgprs = num_user_sgprs + 1 + 2;
}
assert(num_sgprs <= 104);
si_pm4_set_reg(pm4, R_00B028_SPI_SHADER_PGM_RSRC1_PS,
S_00B028_VGPRS((shader->num_vgprs - 1) / 4) |
S_00B028_SGPRS((num_sgprs - 1) / 8) |
S_00B028_DX10_CLAMP(shader->dx10_clamp_mode));
si_pm4_set_reg(pm4, R_00B02C_SPI_SHADER_PGM_RSRC2_PS,
S_00B02C_EXTRA_LDS_SIZE(shader->lds_size) |
S_00B02C_USER_SGPR(num_user_sgprs) |
S_00B32C_SCRATCH_EN(shader->scratch_bytes_per_wave > 0));
}
static void si_shader_init_pm4_state(struct si_shader *shader)
{
if (shader->pm4)
si_pm4_free_state_simple(shader->pm4);
switch (shader->selector->type) {
case PIPE_SHADER_VERTEX:
if (shader->key.vs.as_ls)
si_shader_ls(shader);
else if (shader->key.vs.as_es)
si_shader_es(shader);
else
si_shader_vs(shader);
break;
case PIPE_SHADER_TESS_CTRL:
si_shader_hs(shader);
break;
case PIPE_SHADER_TESS_EVAL:
if (shader->key.tes.as_es)
si_shader_es(shader);
else
si_shader_vs(shader);
break;
case PIPE_SHADER_GEOMETRY:
si_shader_gs(shader);
si_shader_vs(shader->gs_copy_shader);
break;
case PIPE_SHADER_FRAGMENT:
si_shader_ps(shader);
break;
default:
assert(0);
}
}
/* Compute the key for the hw shader variant */
static inline void si_shader_selector_key(struct pipe_context *ctx,
struct si_shader_selector *sel,
union si_shader_key *key)
{
struct si_context *sctx = (struct si_context *)ctx;
unsigned i;
memset(key, 0, sizeof(*key));
switch (sel->type) {
case PIPE_SHADER_VERTEX:
if (sctx->vertex_elements)
for (i = 0; i < sctx->vertex_elements->count; ++i)
key->vs.instance_divisors[i] =
sctx->vertex_elements->elements[i].instance_divisor;
if (sctx->tes_shader.cso)
key->vs.as_ls = 1;
else if (sctx->gs_shader.cso) {
key->vs.as_es = 1;
key->vs.es_enabled_outputs = sctx->gs_shader.cso->inputs_read;
}
if (!sctx->gs_shader.cso && sctx->ps_shader.cso &&
sctx->ps_shader.cso->info.uses_primid)
key->vs.export_prim_id = 1;
break;
case PIPE_SHADER_TESS_CTRL:
key->tcs.prim_mode =
sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_PRIM_MODE];
break;
case PIPE_SHADER_TESS_EVAL:
if (sctx->gs_shader.cso) {
key->tes.as_es = 1;
key->tes.es_enabled_outputs = sctx->gs_shader.cso->inputs_read;
} else if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
key->tes.export_prim_id = 1;
break;
case PIPE_SHADER_GEOMETRY:
break;
case PIPE_SHADER_FRAGMENT: {
struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
if (sel->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS])
key->ps.last_cbuf = MAX2(sctx->framebuffer.state.nr_cbufs, 1) - 1;
key->ps.export_16bpc = sctx->framebuffer.export_16bpc;
if (rs) {
bool is_poly = (sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES &&
sctx->current_rast_prim <= PIPE_PRIM_POLYGON) ||
sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES_ADJACENCY;
bool is_line = !is_poly && sctx->current_rast_prim != PIPE_PRIM_POINTS;
key->ps.color_two_side = rs->two_side;
if (sctx->queued.named.blend) {
key->ps.alpha_to_one = sctx->queued.named.blend->alpha_to_one &&
rs->multisample_enable &&
!sctx->framebuffer.cb0_is_integer;
}
key->ps.poly_stipple = rs->poly_stipple_enable && is_poly;
key->ps.poly_line_smoothing = ((is_poly && rs->poly_smooth) ||
(is_line && rs->line_smooth)) &&
sctx->framebuffer.nr_samples <= 1;
key->ps.clamp_color = rs->clamp_fragment_color;
}
key->ps.alpha_func = PIPE_FUNC_ALWAYS;
/* Alpha-test should be disabled if colorbuffer 0 is integer. */
if (sctx->queued.named.dsa &&
!sctx->framebuffer.cb0_is_integer)
key->ps.alpha_func = sctx->queued.named.dsa->alpha_func;
break;
}
default:
assert(0);
}
}
/* Select the hw shader variant depending on the current state. */
static int si_shader_select(struct pipe_context *ctx,
struct si_shader_ctx_state *state)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_shader_selector *sel = state->cso;
struct si_shader *current = state->current;
union si_shader_key key;
struct si_shader *iter, *shader = NULL;
int r;
si_shader_selector_key(ctx, sel, &key);
/* Check if we don't need to change anything.
* This path is also used for most shaders that don't need multiple
* variants, it will cost just a computation of the key and this
* test. */
if (likely(current && memcmp(&current->key, &key, sizeof(key)) == 0))
return 0;
pipe_mutex_lock(sel->mutex);
/* Find the shader variant. */
for (iter = sel->first_variant; iter; iter = iter->next_variant) {
/* Don't check the "current" shader. We checked it above. */
if (current != iter &&
memcmp(&iter->key, &key, sizeof(key)) == 0) {
state->current = iter;
pipe_mutex_unlock(sel->mutex);
return 0;
}
}
/* Build a new shader. */
shader = CALLOC_STRUCT(si_shader);
if (!shader) {
pipe_mutex_unlock(sel->mutex);
return -ENOMEM;
}
shader->selector = sel;
shader->key = key;
r = si_shader_create(sctx->screen, sctx->tm, shader);
if (unlikely(r)) {
R600_ERR("Failed to build shader variant (type=%u) %d\n",
sel->type, r);
FREE(shader);
pipe_mutex_unlock(sel->mutex);
return r;
}
si_shader_init_pm4_state(shader);
if (!sel->last_variant) {
sel->first_variant = shader;
sel->last_variant = shader;
} else {
sel->last_variant->next_variant = shader;
sel->last_variant = shader;
}
state->current = shader;
p_atomic_inc(&sctx->screen->b.num_compilations);
pipe_mutex_unlock(sel->mutex);
return 0;
}
static void *si_create_shader_selector(struct pipe_context *ctx,
const struct pipe_shader_state *state)
{
struct si_screen *sscreen = (struct si_screen *)ctx->screen;
struct si_shader_selector *sel = CALLOC_STRUCT(si_shader_selector);
int i;
if (!sel)
return NULL;
sel->tokens = tgsi_dup_tokens(state->tokens);
if (!sel->tokens) {
FREE(sel);
return NULL;
}
sel->so = state->stream_output;
tgsi_scan_shader(state->tokens, &sel->info);
sel->type = util_pipe_shader_from_tgsi_processor(sel->info.processor);
p_atomic_inc(&sscreen->b.num_shaders_created);
/* First set which opcode uses which (i,j) pair. */
if (sel->info.uses_persp_opcode_interp_centroid)
sel->info.uses_persp_centroid = true;
if (sel->info.uses_linear_opcode_interp_centroid)
sel->info.uses_linear_centroid = true;
if (sel->info.uses_persp_opcode_interp_offset ||
sel->info.uses_persp_opcode_interp_sample)
sel->info.uses_persp_center = true;
if (sel->info.uses_linear_opcode_interp_offset ||
sel->info.uses_linear_opcode_interp_sample)
sel->info.uses_linear_center = true;
/* Determine if the shader has to use a conditional assignment when
* emulating force_persample_interp.
*/
sel->forces_persample_interp_for_persp =
sel->info.uses_persp_center +
sel->info.uses_persp_centroid +
sel->info.uses_persp_sample >= 2;
sel->forces_persample_interp_for_linear =
sel->info.uses_linear_center +
sel->info.uses_linear_centroid +
sel->info.uses_linear_sample >= 2;
switch (sel->type) {
case PIPE_SHADER_GEOMETRY:
sel->gs_output_prim =
sel->info.properties[TGSI_PROPERTY_GS_OUTPUT_PRIM];
sel->gs_max_out_vertices =
sel->info.properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
sel->gs_num_invocations =
sel->info.properties[TGSI_PROPERTY_GS_INVOCATIONS];
sel->gsvs_vertex_size = sel->info.num_outputs * 16;
sel->max_gsvs_emit_size = sel->gsvs_vertex_size *
sel->gs_max_out_vertices;
sel->max_gs_stream = 0;
for (i = 0; i < sel->so.num_outputs; i++)
sel->max_gs_stream = MAX2(sel->max_gs_stream,
sel->so.output[i].stream);
for (i = 0; i < sel->info.num_inputs; i++) {
unsigned name = sel->info.input_semantic_name[i];
unsigned index = sel->info.input_semantic_index[i];
switch (name) {
case TGSI_SEMANTIC_PRIMID:
break;
default:
sel->inputs_read |=
1llu << si_shader_io_get_unique_index(name, index);
}
}
break;
case PIPE_SHADER_VERTEX:
case PIPE_SHADER_TESS_CTRL:
for (i = 0; i < sel->info.num_outputs; i++) {
unsigned name = sel->info.output_semantic_name[i];
unsigned index = sel->info.output_semantic_index[i];
switch (name) {
case TGSI_SEMANTIC_TESSINNER:
case TGSI_SEMANTIC_TESSOUTER:
case TGSI_SEMANTIC_PATCH:
sel->patch_outputs_written |=
1llu << si_shader_io_get_unique_index(name, index);
break;
default:
sel->outputs_written |=
1llu << si_shader_io_get_unique_index(name, index);
}
}
sel->esgs_itemsize = util_last_bit64(sel->outputs_written) * 16;
break;
case PIPE_SHADER_FRAGMENT:
for (i = 0; i < sel->info.num_outputs; i++) {
unsigned name = sel->info.output_semantic_name[i];
unsigned index = sel->info.output_semantic_index[i];
if (name == TGSI_SEMANTIC_COLOR)
sel->ps_colors_written |= 1 << index;
}
break;
}
if (sscreen->b.debug_flags & DBG_PRECOMPILE) {
struct si_shader_ctx_state state = {sel};
if (si_shader_select(ctx, &state)) {
fprintf(stderr, "radeonsi: can't create a shader\n");
tgsi_free_tokens(sel->tokens);
FREE(sel);
return NULL;
}
}
pipe_mutex_init(sel->mutex);
return sel;
}
/**
* Normally, we only emit 1 viewport and 1 scissor if no shader is using
* the VIEWPORT_INDEX output, and emitting the other viewports and scissors
* is delayed. When a shader with VIEWPORT_INDEX appears, this should be
* called to emit the rest.
*/
static void si_update_viewports_and_scissors(struct si_context *sctx)
{
struct tgsi_shader_info *info = si_get_vs_info(sctx);
if (!info || !info->writes_viewport_index)
return;
if (sctx->scissors.dirty_mask)
si_mark_atom_dirty(sctx, &sctx->scissors.atom);
if (sctx->viewports.dirty_mask)
si_mark_atom_dirty(sctx, &sctx->viewports.atom);
}
static void si_bind_vs_shader(struct pipe_context *ctx, void *state)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_shader_selector *sel = state;
if (sctx->vs_shader.cso == sel)
return;
sctx->vs_shader.cso = sel;
sctx->vs_shader.current = sel ? sel->first_variant : NULL;
si_mark_atom_dirty(sctx, &sctx->clip_regs);
si_update_viewports_and_scissors(sctx);
}
static void si_bind_gs_shader(struct pipe_context *ctx, void *state)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_shader_selector *sel = state;
bool enable_changed = !!sctx->gs_shader.cso != !!sel;
if (sctx->gs_shader.cso == sel)
return;
sctx->gs_shader.cso = sel;
sctx->gs_shader.current = sel ? sel->first_variant : NULL;
si_mark_atom_dirty(sctx, &sctx->clip_regs);
sctx->last_rast_prim = -1; /* reset this so that it gets updated */
if (enable_changed)
si_shader_change_notify(sctx);
si_update_viewports_and_scissors(sctx);
}
static void si_bind_tcs_shader(struct pipe_context *ctx, void *state)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_shader_selector *sel = state;
bool enable_changed = !!sctx->tcs_shader.cso != !!sel;
if (sctx->tcs_shader.cso == sel)
return;
sctx->tcs_shader.cso = sel;
sctx->tcs_shader.current = sel ? sel->first_variant : NULL;
if (enable_changed)
sctx->last_tcs = NULL; /* invalidate derived tess state */
}
static void si_bind_tes_shader(struct pipe_context *ctx, void *state)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_shader_selector *sel = state;
bool enable_changed = !!sctx->tes_shader.cso != !!sel;
if (sctx->tes_shader.cso == sel)
return;
sctx->tes_shader.cso = sel;
sctx->tes_shader.current = sel ? sel->first_variant : NULL;
si_mark_atom_dirty(sctx, &sctx->clip_regs);
sctx->last_rast_prim = -1; /* reset this so that it gets updated */
if (enable_changed) {
si_shader_change_notify(sctx);
sctx->last_tes_sh_base = -1; /* invalidate derived tess state */
}
si_update_viewports_and_scissors(sctx);
}
static void si_bind_ps_shader(struct pipe_context *ctx, void *state)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_shader_selector *sel = state;
/* skip if supplied shader is one already in use */
if (sctx->ps_shader.cso == sel)
return;
sctx->ps_shader.cso = sel;
sctx->ps_shader.current = sel ? sel->first_variant : NULL;
si_mark_atom_dirty(sctx, &sctx->cb_target_mask);
}
static void si_delete_shader_selector(struct pipe_context *ctx, void *state)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_shader_selector *sel = (struct si_shader_selector *)state;
struct si_shader *p = sel->first_variant, *c;
struct si_shader_ctx_state *current_shader[SI_NUM_SHADERS] = {
[PIPE_SHADER_VERTEX] = &sctx->vs_shader,
[PIPE_SHADER_TESS_CTRL] = &sctx->tcs_shader,
[PIPE_SHADER_TESS_EVAL] = &sctx->tes_shader,
[PIPE_SHADER_GEOMETRY] = &sctx->gs_shader,
[PIPE_SHADER_FRAGMENT] = &sctx->ps_shader,
};
if (current_shader[sel->type]->cso == sel) {
current_shader[sel->type]->cso = NULL;
current_shader[sel->type]->current = NULL;
}
while (p) {
c = p->next_variant;
switch (sel->type) {
case PIPE_SHADER_VERTEX:
if (p->key.vs.as_ls)
si_pm4_delete_state(sctx, ls, p->pm4);
else if (p->key.vs.as_es)
si_pm4_delete_state(sctx, es, p->pm4);
else
si_pm4_delete_state(sctx, vs, p->pm4);
break;
case PIPE_SHADER_TESS_CTRL:
si_pm4_delete_state(sctx, hs, p->pm4);
break;
case PIPE_SHADER_TESS_EVAL:
if (p->key.tes.as_es)
si_pm4_delete_state(sctx, es, p->pm4);
else
si_pm4_delete_state(sctx, vs, p->pm4);
break;
case PIPE_SHADER_GEOMETRY:
si_pm4_delete_state(sctx, gs, p->pm4);
si_pm4_delete_state(sctx, vs, p->gs_copy_shader->pm4);
break;
case PIPE_SHADER_FRAGMENT:
si_pm4_delete_state(sctx, ps, p->pm4);
break;
}
si_shader_destroy(p);
free(p);
p = c;
}
pipe_mutex_destroy(sel->mutex);
free(sel->tokens);
free(sel);
}
static void si_emit_spi_map(struct si_context *sctx, struct r600_atom *atom)
{
struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
struct si_shader *ps = sctx->ps_shader.current;
struct si_shader *vs = si_get_vs_state(sctx);
struct tgsi_shader_info *psinfo;
struct tgsi_shader_info *vsinfo = &vs->selector->info;
unsigned i, j, tmp, num_written = 0;
if (!ps || !ps->nparam)
return;
psinfo = &ps->selector->info;
radeon_set_context_reg_seq(cs, R_028644_SPI_PS_INPUT_CNTL_0, ps->nparam);
for (i = 0; i < psinfo->num_inputs; i++) {
unsigned name = psinfo->input_semantic_name[i];
unsigned index = psinfo->input_semantic_index[i];
unsigned interpolate = psinfo->input_interpolate[i];
unsigned param_offset = ps->ps_input_param_offset[i];
if (name == TGSI_SEMANTIC_POSITION ||
name == TGSI_SEMANTIC_FACE)
/* Read from preloaded VGPRs, not parameters */
continue;
bcolor:
tmp = 0;
if (interpolate == TGSI_INTERPOLATE_CONSTANT ||
(interpolate == TGSI_INTERPOLATE_COLOR && sctx->flatshade))
tmp |= S_028644_FLAT_SHADE(1);
if (name == TGSI_SEMANTIC_PCOORD ||
(name == TGSI_SEMANTIC_TEXCOORD &&
sctx->sprite_coord_enable & (1 << index))) {
tmp |= S_028644_PT_SPRITE_TEX(1);
}
for (j = 0; j < vsinfo->num_outputs; j++) {
if (name == vsinfo->output_semantic_name[j] &&
index == vsinfo->output_semantic_index[j]) {
tmp |= S_028644_OFFSET(vs->vs_output_param_offset[j]);
break;
}
}
if (name == TGSI_SEMANTIC_PRIMID)
/* PrimID is written after the last output. */
tmp |= S_028644_OFFSET(vs->vs_output_param_offset[vsinfo->num_outputs]);
else if (j == vsinfo->num_outputs && !G_028644_PT_SPRITE_TEX(tmp)) {
/* No corresponding output found, load defaults into input.
* Don't set any other bits.
* (FLAT_SHADE=1 completely changes behavior) */
tmp = S_028644_OFFSET(0x20);
}
assert(param_offset == num_written);
radeon_emit(cs, tmp);
num_written++;
if (name == TGSI_SEMANTIC_COLOR &&
ps->key.ps.color_two_side) {
name = TGSI_SEMANTIC_BCOLOR;
param_offset++;
goto bcolor;
}
}
assert(ps->nparam == num_written);
}
static void si_emit_spi_ps_input(struct si_context *sctx, struct r600_atom *atom)
{
struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
struct si_shader *ps = sctx->ps_shader.current;
unsigned input_ena;
if (!ps)
return;
input_ena = ps->spi_ps_input_ena;
/* we need to enable at least one of them, otherwise we hang the GPU */
assert(G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
G_0286CC_PERSP_CENTER_ENA(input_ena) ||
G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
G_0286CC_PERSP_PULL_MODEL_ENA(input_ena) ||
G_0286CC_LINEAR_SAMPLE_ENA(input_ena) ||
G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
G_0286CC_LINEAR_CENTROID_ENA(input_ena) ||
G_0286CC_LINE_STIPPLE_TEX_ENA(input_ena));
if (sctx->force_persample_interp) {
unsigned num_persp = G_0286CC_PERSP_SAMPLE_ENA(input_ena) +
G_0286CC_PERSP_CENTER_ENA(input_ena) +
G_0286CC_PERSP_CENTROID_ENA(input_ena);
unsigned num_linear = G_0286CC_LINEAR_SAMPLE_ENA(input_ena) +
G_0286CC_LINEAR_CENTER_ENA(input_ena) +
G_0286CC_LINEAR_CENTROID_ENA(input_ena);
/* If only one set of (i,j) coordinates is used, we can disable
* CENTER/CENTROID, enable SAMPLE and it will load SAMPLE coordinates
* where CENTER/CENTROID are expected, effectively forcing per-sample
* interpolation.
*/
if (num_persp == 1) {
input_ena &= C_0286CC_PERSP_CENTER_ENA;
input_ena &= C_0286CC_PERSP_CENTROID_ENA;
input_ena |= G_0286CC_PERSP_SAMPLE_ENA(1);
}
if (num_linear == 1) {
input_ena &= C_0286CC_LINEAR_CENTER_ENA;
input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
input_ena |= G_0286CC_LINEAR_SAMPLE_ENA(1);
}
/* If at least 2 sets of coordinates are used, we can't use this
* trick and have to select SAMPLE using a conditional assignment
* in the shader with "force_persample_interp" being a shader constant.
*/
}
radeon_set_context_reg_seq(cs, R_0286CC_SPI_PS_INPUT_ENA, 2);
radeon_emit(cs, input_ena);
radeon_emit(cs, input_ena);
if (ps->selector->forces_persample_interp_for_persp ||
ps->selector->forces_persample_interp_for_linear)
radeon_set_sh_reg(cs, R_00B030_SPI_SHADER_USER_DATA_PS_0 +
SI_SGPR_PS_STATE_BITS * 4,
sctx->force_persample_interp);
}
/**
* Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
*/
static void si_init_config_add_vgt_flush(struct si_context *sctx)
{
if (sctx->init_config_has_vgt_flush)
return;
si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
si_pm4_cmd_add(sctx->init_config, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
si_pm4_cmd_end(sctx->init_config, false);
sctx->init_config_has_vgt_flush = true;
}
/* Initialize state related to ESGS / GSVS ring buffers */
static void si_init_gs_rings(struct si_context *sctx)
{
unsigned esgs_ring_size = 128 * 1024;
2015-04-16 19:44:54 +01:00
unsigned gsvs_ring_size = 60 * 1024 * 1024;
assert(!sctx->esgs_ring && !sctx->gsvs_ring);
sctx->esgs_ring = pipe_buffer_create(sctx->b.b.screen, PIPE_BIND_CUSTOM,
PIPE_USAGE_DEFAULT, esgs_ring_size);
if (!sctx->esgs_ring)
return;
sctx->gsvs_ring = pipe_buffer_create(sctx->b.b.screen, PIPE_BIND_CUSTOM,
PIPE_USAGE_DEFAULT, gsvs_ring_size);
if (!sctx->gsvs_ring) {
pipe_resource_reference(&sctx->esgs_ring, NULL);
return;
}
si_init_config_add_vgt_flush(sctx);
/* Append these registers to the init config state. */
if (sctx->b.chip_class >= CIK) {
2015-04-16 19:44:54 +01:00
if (sctx->b.chip_class >= VI) {
/* The maximum sizes are 63.999 MB on VI, because
* the register fields only have 18 bits. */
assert(esgs_ring_size / 256 < (1 << 18));
assert(gsvs_ring_size / 256 < (1 << 18));
}
si_pm4_set_reg(sctx->init_config, R_030900_VGT_ESGS_RING_SIZE,
esgs_ring_size / 256);
si_pm4_set_reg(sctx->init_config, R_030904_VGT_GSVS_RING_SIZE,
gsvs_ring_size / 256);
} else {
si_pm4_set_reg(sctx->init_config, R_0088C8_VGT_ESGS_RING_SIZE,
esgs_ring_size / 256);
si_pm4_set_reg(sctx->init_config, R_0088CC_VGT_GSVS_RING_SIZE,
gsvs_ring_size / 256);
}
/* Flush the context to re-emit the init_config state.
* This is done only once in a lifetime of a context.
*/
si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
sctx->b.initial_gfx_cs_size = 0; /* force flush */
si_context_gfx_flush(sctx, RADEON_FLUSH_ASYNC, NULL);
si_set_ring_buffer(&sctx->b.b, PIPE_SHADER_VERTEX, SI_RING_ESGS,
sctx->esgs_ring, 0, esgs_ring_size,
true, true, 4, 64, 0);
si_set_ring_buffer(&sctx->b.b, PIPE_SHADER_GEOMETRY, SI_RING_ESGS,
sctx->esgs_ring, 0, esgs_ring_size,
false, false, 0, 0, 0);
si_set_ring_buffer(&sctx->b.b, PIPE_SHADER_VERTEX, SI_RING_GSVS,
sctx->gsvs_ring, 0, gsvs_ring_size,
false, false, 0, 0, 0);
}
static void si_update_gsvs_ring_bindings(struct si_context *sctx)
{
unsigned gsvs_itemsize = sctx->gs_shader.cso->max_gsvs_emit_size;
uint64_t offset;
if (gsvs_itemsize == sctx->last_gsvs_itemsize)
return;
sctx->last_gsvs_itemsize = gsvs_itemsize;
si_set_ring_buffer(&sctx->b.b, PIPE_SHADER_GEOMETRY, SI_RING_GSVS,
sctx->gsvs_ring, gsvs_itemsize,
64, true, true, 4, 16, 0);
offset = gsvs_itemsize * 64;
si_set_ring_buffer(&sctx->b.b, PIPE_SHADER_GEOMETRY, SI_RING_GSVS_1,
sctx->gsvs_ring, gsvs_itemsize,
64, true, true, 4, 16, offset);
offset = (gsvs_itemsize * 2) * 64;
si_set_ring_buffer(&sctx->b.b, PIPE_SHADER_GEOMETRY, SI_RING_GSVS_2,
sctx->gsvs_ring, gsvs_itemsize,
64, true, true, 4, 16, offset);
offset = (gsvs_itemsize * 3) * 64;
si_set_ring_buffer(&sctx->b.b, PIPE_SHADER_GEOMETRY, SI_RING_GSVS_3,
sctx->gsvs_ring, gsvs_itemsize,
64, true, true, 4, 16, offset);
}
/**
* @returns 1 if \p sel has been updated to use a new scratch buffer
* 0 if not
* < 0 if there was a failure
*/
static int si_update_scratch_buffer(struct si_context *sctx,
struct si_shader *shader)
{
uint64_t scratch_va = sctx->scratch_buffer->gpu_address;
int r;
if (!shader)
return 0;
/* This shader doesn't need a scratch buffer */
if (shader->scratch_bytes_per_wave == 0)
return 0;
/* This shader is already configured to use the current
* scratch buffer. */
if (shader->scratch_bo == sctx->scratch_buffer)
return 0;
assert(sctx->scratch_buffer);
si_shader_apply_scratch_relocs(sctx, shader, scratch_va);
/* Replace the shader bo with a new bo that has the relocs applied. */
r = si_shader_binary_upload(sctx->screen, shader);
if (r)
return r;
/* Update the shader state to use the new shader bo. */
si_shader_init_pm4_state(shader);
r600_resource_reference(&shader->scratch_bo, sctx->scratch_buffer);
return 1;
}
static unsigned si_get_current_scratch_buffer_size(struct si_context *sctx)
{
return sctx->scratch_buffer ? sctx->scratch_buffer->b.b.width0 : 0;
}
static unsigned si_get_scratch_buffer_bytes_per_wave(struct si_shader *shader)
{
return shader ? shader->scratch_bytes_per_wave : 0;
}
static unsigned si_get_max_scratch_bytes_per_wave(struct si_context *sctx)
{
unsigned bytes = 0;
bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->ps_shader.current));
bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->gs_shader.current));
bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->vs_shader.current));
bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tcs_shader.current));
bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tes_shader.current));
return bytes;
}
static bool si_update_spi_tmpring_size(struct si_context *sctx)
{
unsigned current_scratch_buffer_size =
si_get_current_scratch_buffer_size(sctx);
unsigned scratch_bytes_per_wave =
si_get_max_scratch_bytes_per_wave(sctx);
unsigned scratch_needed_size = scratch_bytes_per_wave *
sctx->scratch_waves;
int r;
if (scratch_needed_size > 0) {
if (scratch_needed_size > current_scratch_buffer_size) {
/* Create a bigger scratch buffer */
pipe_resource_reference(
(struct pipe_resource**)&sctx->scratch_buffer,
NULL);
sctx->scratch_buffer =
si_resource_create_custom(&sctx->screen->b.b,
PIPE_USAGE_DEFAULT, scratch_needed_size);
if (!sctx->scratch_buffer)
return false;
sctx->emit_scratch_reloc = true;
}
/* Update the shaders, so they are using the latest scratch. The
* scratch buffer may have been changed since these shaders were
* last used, so we still need to try to update them, even if
* they require scratch buffers smaller than the current size.
*/
r = si_update_scratch_buffer(sctx, sctx->ps_shader.current);
if (r < 0)
return false;
if (r == 1)
si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
r = si_update_scratch_buffer(sctx, sctx->gs_shader.current);
if (r < 0)
return false;
if (r == 1)
si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
r = si_update_scratch_buffer(sctx, sctx->tcs_shader.current);
if (r < 0)
return false;
if (r == 1)
si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
/* VS can be bound as LS, ES, or VS. */
r = si_update_scratch_buffer(sctx, sctx->vs_shader.current);
if (r < 0)
return false;
if (r == 1) {
if (sctx->tes_shader.current)
si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
else if (sctx->gs_shader.current)
si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
else
si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
}
/* TES can be bound as ES or VS. */
r = si_update_scratch_buffer(sctx, sctx->tes_shader.current);
if (r < 0)
return false;
if (r == 1) {
if (sctx->gs_shader.current)
si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
else
si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
}
}
/* The LLVM shader backend should be reporting aligned scratch_sizes. */
assert((scratch_needed_size & ~0x3FF) == scratch_needed_size &&
"scratch size should already be aligned correctly.");
sctx->spi_tmpring_size = S_0286E8_WAVES(sctx->scratch_waves) |
S_0286E8_WAVESIZE(scratch_bytes_per_wave >> 10);
return true;
}
static void si_init_tess_factor_ring(struct si_context *sctx)
{
assert(!sctx->tf_ring);
sctx->tf_ring = pipe_buffer_create(sctx->b.b.screen, PIPE_BIND_CUSTOM,
PIPE_USAGE_DEFAULT,
32768 * sctx->screen->b.info.max_se);
if (!sctx->tf_ring)
return;
assert(((sctx->tf_ring->width0 / 4) & C_030938_SIZE) == 0);
si_init_config_add_vgt_flush(sctx);
/* Append these registers to the init config state. */
if (sctx->b.chip_class >= CIK) {
si_pm4_set_reg(sctx->init_config, R_030938_VGT_TF_RING_SIZE,
S_030938_SIZE(sctx->tf_ring->width0 / 4));
si_pm4_set_reg(sctx->init_config, R_030940_VGT_TF_MEMORY_BASE,
r600_resource(sctx->tf_ring)->gpu_address >> 8);
} else {
si_pm4_set_reg(sctx->init_config, R_008988_VGT_TF_RING_SIZE,
S_008988_SIZE(sctx->tf_ring->width0 / 4));
si_pm4_set_reg(sctx->init_config, R_0089B8_VGT_TF_MEMORY_BASE,
r600_resource(sctx->tf_ring)->gpu_address >> 8);
}
/* Flush the context to re-emit the init_config state.
* This is done only once in a lifetime of a context.
*/
si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
sctx->b.initial_gfx_cs_size = 0; /* force flush */
si_context_gfx_flush(sctx, RADEON_FLUSH_ASYNC, NULL);
si_set_ring_buffer(&sctx->b.b, PIPE_SHADER_TESS_CTRL,
SI_RING_TESS_FACTOR, sctx->tf_ring, 0,
sctx->tf_ring->width0, false, false, 0, 0, 0);
}
/**
* This is used when TCS is NULL in the VS->TCS->TES chain. In this case,
* VS passes its outputs to TES directly, so the fixed-function shader only
* has to write TESSOUTER and TESSINNER.
*/
static void si_generate_fixed_func_tcs(struct si_context *sctx)
{
struct ureg_src const0, const1;
struct ureg_dst tessouter, tessinner;
struct ureg_program *ureg = ureg_create(TGSI_PROCESSOR_TESS_CTRL);
if (!ureg)
return; /* if we get here, we're screwed */
assert(!sctx->fixed_func_tcs_shader.cso);
ureg_DECL_constant2D(ureg, 0, 1, SI_DRIVER_STATE_CONST_BUF);
const0 = ureg_src_dimension(ureg_src_register(TGSI_FILE_CONSTANT, 0),
SI_DRIVER_STATE_CONST_BUF);
const1 = ureg_src_dimension(ureg_src_register(TGSI_FILE_CONSTANT, 1),
SI_DRIVER_STATE_CONST_BUF);
tessouter = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSOUTER, 0);
tessinner = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSINNER, 0);
ureg_MOV(ureg, tessouter, const0);
ureg_MOV(ureg, tessinner, const1);
ureg_END(ureg);
sctx->fixed_func_tcs_shader.cso =
ureg_create_shader_and_destroy(ureg, &sctx->b.b);
}
static void si_update_vgt_shader_config(struct si_context *sctx)
{
/* Calculate the index of the config.
* 0 = VS, 1 = VS+GS, 2 = VS+Tess, 3 = VS+Tess+GS */
unsigned index = 2*!!sctx->tes_shader.cso + !!sctx->gs_shader.cso;
struct si_pm4_state **pm4 = &sctx->vgt_shader_config[index];
if (!*pm4) {
uint32_t stages = 0;
*pm4 = CALLOC_STRUCT(si_pm4_state);
if (sctx->tes_shader.cso) {
stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) |
S_028B54_HS_EN(1);
if (sctx->gs_shader.cso)
stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) |
S_028B54_GS_EN(1) |
S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
else
stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
} else if (sctx->gs_shader.cso) {
stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) |
S_028B54_GS_EN(1) |
S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
}
si_pm4_set_reg(*pm4, R_028B54_VGT_SHADER_STAGES_EN, stages);
}
si_pm4_bind_state(sctx, vgt_shader_config, *pm4);
}
static void si_update_so(struct si_context *sctx, struct si_shader_selector *shader)
{
struct pipe_stream_output_info *so = &shader->so;
uint32_t enabled_stream_buffers_mask = 0;
int i;
for (i = 0; i < so->num_outputs; i++)
enabled_stream_buffers_mask |= (1 << so->output[i].output_buffer) << (so->output[i].stream * 4);
sctx->b.streamout.enabled_stream_buffers_mask = enabled_stream_buffers_mask;
sctx->b.streamout.stride_in_dw = shader->so.stride;
}
bool si_update_shaders(struct si_context *sctx)
{
struct pipe_context *ctx = (struct pipe_context*)sctx;
struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
int r;
/* Update stages before GS. */
if (sctx->tes_shader.cso) {
if (!sctx->tf_ring) {
si_init_tess_factor_ring(sctx);
if (!sctx->tf_ring)
return false;
}
/* VS as LS */
r = si_shader_select(ctx, &sctx->vs_shader);
if (r)
return false;
si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
if (sctx->tcs_shader.cso) {
r = si_shader_select(ctx, &sctx->tcs_shader);
if (r)
return false;
si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
} else {
if (!sctx->fixed_func_tcs_shader.cso) {
si_generate_fixed_func_tcs(sctx);
if (!sctx->fixed_func_tcs_shader.cso)
return false;
}
r = si_shader_select(ctx, &sctx->fixed_func_tcs_shader);
if (r)
return false;
si_pm4_bind_state(sctx, hs,
sctx->fixed_func_tcs_shader.current->pm4);
}
r = si_shader_select(ctx, &sctx->tes_shader);
if (r)
return false;
if (sctx->gs_shader.cso) {
/* TES as ES */
si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
} else {
/* TES as VS */
si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
si_update_so(sctx, sctx->tes_shader.cso);
}
} else if (sctx->gs_shader.cso) {
/* VS as ES */
r = si_shader_select(ctx, &sctx->vs_shader);
if (r)
return false;
si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
} else {
/* VS as VS */
r = si_shader_select(ctx, &sctx->vs_shader);
if (r)
return false;
si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
si_update_so(sctx, sctx->vs_shader.cso);
}
/* Update GS. */
if (sctx->gs_shader.cso) {
r = si_shader_select(ctx, &sctx->gs_shader);
if (r)
return false;
si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
si_pm4_bind_state(sctx, vs, sctx->gs_shader.current->gs_copy_shader->pm4);
si_update_so(sctx, sctx->gs_shader.cso);
if (!sctx->gsvs_ring) {
si_init_gs_rings(sctx);
if (!sctx->gsvs_ring)
return false;
}
si_update_gsvs_ring_bindings(sctx);
} else {
si_pm4_bind_state(sctx, gs, NULL);
si_pm4_bind_state(sctx, es, NULL);
}
si_update_vgt_shader_config(sctx);
if (sctx->ps_shader.cso) {
r = si_shader_select(ctx, &sctx->ps_shader);
if (r)
return false;
si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
if (si_pm4_state_changed(sctx, ps) || si_pm4_state_changed(sctx, vs) ||
sctx->sprite_coord_enable != rs->sprite_coord_enable ||
sctx->flatshade != rs->flatshade) {
sctx->sprite_coord_enable = rs->sprite_coord_enable;
sctx->flatshade = rs->flatshade;
si_mark_atom_dirty(sctx, &sctx->spi_map);
}
if (si_pm4_state_changed(sctx, ps) ||
sctx->force_persample_interp != rs->force_persample_interp) {
sctx->force_persample_interp = rs->force_persample_interp;
si_mark_atom_dirty(sctx, &sctx->spi_ps_input);
}
if (sctx->ps_db_shader_control != sctx->ps_shader.current->db_shader_control) {
sctx->ps_db_shader_control = sctx->ps_shader.current->db_shader_control;
si_mark_atom_dirty(sctx, &sctx->db_render_state);
}
if (sctx->smoothing_enabled != sctx->ps_shader.current->key.ps.poly_line_smoothing) {
sctx->smoothing_enabled = sctx->ps_shader.current->key.ps.poly_line_smoothing;
si_mark_atom_dirty(sctx, &sctx->msaa_config);
if (sctx->b.chip_class == SI)
si_mark_atom_dirty(sctx, &sctx->db_render_state);
}
}
if (si_pm4_state_changed(sctx, ls) ||
si_pm4_state_changed(sctx, hs) ||
si_pm4_state_changed(sctx, es) ||
si_pm4_state_changed(sctx, gs) ||
si_pm4_state_changed(sctx, vs) ||
si_pm4_state_changed(sctx, ps)) {
if (!si_update_spi_tmpring_size(sctx))
return false;
}
return true;
}
void si_init_shader_functions(struct si_context *sctx)
{
si_init_atom(sctx, &sctx->spi_map, &sctx->atoms.s.spi_map, si_emit_spi_map);
si_init_atom(sctx, &sctx->spi_ps_input, &sctx->atoms.s.spi_ps_input, si_emit_spi_ps_input);
sctx->b.b.create_vs_state = si_create_shader_selector;
sctx->b.b.create_tcs_state = si_create_shader_selector;
sctx->b.b.create_tes_state = si_create_shader_selector;
sctx->b.b.create_gs_state = si_create_shader_selector;
sctx->b.b.create_fs_state = si_create_shader_selector;
sctx->b.b.bind_vs_state = si_bind_vs_shader;
sctx->b.b.bind_tcs_state = si_bind_tcs_shader;
sctx->b.b.bind_tes_state = si_bind_tes_shader;
sctx->b.b.bind_gs_state = si_bind_gs_shader;
sctx->b.b.bind_fs_state = si_bind_ps_shader;
sctx->b.b.delete_vs_state = si_delete_shader_selector;
sctx->b.b.delete_tcs_state = si_delete_shader_selector;
sctx->b.b.delete_tes_state = si_delete_shader_selector;
sctx->b.b.delete_gs_state = si_delete_shader_selector;
sctx->b.b.delete_fs_state = si_delete_shader_selector;
}