mesa/src/amd/vulkan/radv_shader.c

892 lines
29 KiB
C
Raw Normal View History

/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "util/mesa-sha1.h"
#include "util/u_atomic.h"
#include "radv_debug.h"
#include "radv_private.h"
#include "radv_shader.h"
#include "radv_shader_helper.h"
#include "nir/nir.h"
#include "nir/nir_builder.h"
#include "spirv/nir_spirv.h"
#include <llvm-c/Core.h>
#include <llvm-c/TargetMachine.h>
#include <llvm-c/Support.h>
#include "sid.h"
#include "gfx9d.h"
#include "ac_binary.h"
#include "ac_llvm_util.h"
#include "ac_nir_to_llvm.h"
#include "vk_format.h"
#include "util/debug.h"
#include "ac_exp_param.h"
#include "util/string_buffer.h"
static const struct nir_shader_compiler_options nir_options = {
.vertex_id_zero_based = true,
.lower_scmp = true,
.lower_flrp32 = true,
.lower_flrp64 = true,
.lower_device_index_to_zero = true,
.lower_fsat = true,
.lower_fdiv = true,
.lower_sub = true,
.lower_pack_snorm_2x16 = true,
.lower_pack_snorm_4x8 = true,
.lower_pack_unorm_2x16 = true,
.lower_pack_unorm_4x8 = true,
.lower_unpack_snorm_2x16 = true,
.lower_unpack_snorm_4x8 = true,
.lower_unpack_unorm_2x16 = true,
.lower_unpack_unorm_4x8 = true,
.lower_extract_byte = true,
.lower_extract_word = true,
.lower_ffma = true,
.lower_fpow = true,
.max_unroll_iterations = 32
};
VkResult radv_CreateShaderModule(
VkDevice _device,
const VkShaderModuleCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkShaderModule* pShaderModule)
{
RADV_FROM_HANDLE(radv_device, device, _device);
struct radv_shader_module *module;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
assert(pCreateInfo->flags == 0);
module = vk_alloc2(&device->alloc, pAllocator,
sizeof(*module) + pCreateInfo->codeSize, 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (module == NULL)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
module->nir = NULL;
module->size = pCreateInfo->codeSize;
memcpy(module->data, pCreateInfo->pCode, module->size);
_mesa_sha1_compute(module->data, module->size, module->sha1);
*pShaderModule = radv_shader_module_to_handle(module);
return VK_SUCCESS;
}
void radv_DestroyShaderModule(
VkDevice _device,
VkShaderModule _module,
const VkAllocationCallbacks* pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_shader_module, module, _module);
if (!module)
return;
vk_free2(&device->alloc, pAllocator, module);
}
void
radv_optimize_nir(struct nir_shader *shader, bool optimize_conservatively,
bool allow_copies)
{
bool progress;
do {
progress = false;
NIR_PASS(progress, shader, nir_split_array_vars, nir_var_local);
NIR_PASS(progress, shader, nir_shrink_vec_array_vars, nir_var_local);
NIR_PASS_V(shader, nir_lower_vars_to_ssa);
NIR_PASS_V(shader, nir_lower_pack);
if (allow_copies) {
/* Only run this pass in the first call to
* radv_optimize_nir. Later calls assume that we've
* lowered away any copy_deref instructions and we
* don't want to introduce any more.
*/
NIR_PASS(progress, shader, nir_opt_find_array_copies);
}
NIR_PASS(progress, shader, nir_opt_copy_prop_vars);
NIR_PASS(progress, shader, nir_opt_dead_write_vars);
NIR_PASS_V(shader, nir_lower_alu_to_scalar);
NIR_PASS_V(shader, nir_lower_phis_to_scalar);
NIR_PASS(progress, shader, nir_copy_prop);
NIR_PASS(progress, shader, nir_opt_remove_phis);
NIR_PASS(progress, shader, nir_opt_dce);
if (nir_opt_trivial_continues(shader)) {
progress = true;
NIR_PASS(progress, shader, nir_copy_prop);
NIR_PASS(progress, shader, nir_opt_remove_phis);
NIR_PASS(progress, shader, nir_opt_dce);
}
NIR_PASS(progress, shader, nir_opt_if);
NIR_PASS(progress, shader, nir_opt_dead_cf);
NIR_PASS(progress, shader, nir_opt_cse);
NIR_PASS(progress, shader, nir_opt_peephole_select, 8, true);
NIR_PASS(progress, shader, nir_opt_algebraic);
NIR_PASS(progress, shader, nir_opt_constant_folding);
NIR_PASS(progress, shader, nir_opt_undef);
NIR_PASS(progress, shader, nir_opt_conditional_discard);
if (shader->options->max_unroll_iterations) {
NIR_PASS(progress, shader, nir_opt_loop_unroll, 0);
}
} while (progress && !optimize_conservatively);
NIR_PASS(progress, shader, nir_opt_shrink_load);
NIR_PASS(progress, shader, nir_opt_move_load_ubo);
}
nir_shader *
radv_shader_compile_to_nir(struct radv_device *device,
struct radv_shader_module *module,
const char *entrypoint_name,
gl_shader_stage stage,
const VkSpecializationInfo *spec_info,
const VkPipelineCreateFlags flags)
{
nir_shader *nir;
nir_function *entry_point;
if (module->nir) {
/* Some things such as our meta clear/blit code will give us a NIR
* shader directly. In that case, we just ignore the SPIR-V entirely
* and just use the NIR shader */
nir = module->nir;
nir->options = &nir_options;
nir_validate_shader(nir, "in internal shader");
assert(exec_list_length(&nir->functions) == 1);
struct exec_node *node = exec_list_get_head(&nir->functions);
entry_point = exec_node_data(nir_function, node, node);
} else {
uint32_t *spirv = (uint32_t *) module->data;
assert(module->size % 4 == 0);
if (device->instance->debug_flags & RADV_DEBUG_DUMP_SPIRV)
radv_print_spirv(spirv, module->size, stderr);
uint32_t num_spec_entries = 0;
struct nir_spirv_specialization *spec_entries = NULL;
if (spec_info && spec_info->mapEntryCount > 0) {
num_spec_entries = spec_info->mapEntryCount;
spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
for (uint32_t i = 0; i < num_spec_entries; i++) {
VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
const void *data = spec_info->pData + entry.offset;
assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
spec_entries[i].id = spec_info->pMapEntries[i].constantID;
if (spec_info->dataSize == 8)
spec_entries[i].data64 = *(const uint64_t *)data;
else
spec_entries[i].data32 = *(const uint32_t *)data;
}
}
const struct spirv_to_nir_options spirv_options = {
.caps = {
.device_group = true,
.draw_parameters = true,
.float64 = true,
.image_read_without_format = true,
.image_write_without_format = true,
.tessellation = true,
.int64 = true,
.int16 = true,
.multiview = true,
.subgroup_arithmetic = true,
.subgroup_ballot = true,
.subgroup_basic = true,
.subgroup_quad = true,
.subgroup_shuffle = true,
.subgroup_vote = true,
.variable_pointers = true,
.gcn_shader = true,
.trinary_minmax = true,
.shader_viewport_index_layer = true,
.descriptor_array_dynamic_indexing = true,
.runtime_descriptor_array = true,
.stencil_export = true,
.storage_16bit = true,
.geometry_streams = true,
.transform_feedback = true,
},
};
entry_point = spirv_to_nir(spirv, module->size / 4,
spec_entries, num_spec_entries,
stage, entrypoint_name,
&spirv_options, &nir_options);
nir = entry_point->shader;
assert(nir->info.stage == stage);
nir_validate_shader(nir, "after spirv_to_nir");
free(spec_entries);
/* We have to lower away local constant initializers right before we
* inline functions. That way they get properly initialized at the top
* of the function and not at the top of its caller.
*/
NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_local);
NIR_PASS_V(nir, nir_lower_returns);
NIR_PASS_V(nir, nir_inline_functions);
NIR_PASS_V(nir, nir_copy_prop);
/* Pick off the single entrypoint that we want */
foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
if (func != entry_point)
exec_node_remove(&func->node);
}
assert(exec_list_length(&nir->functions) == 1);
entry_point->name = ralloc_strdup(entry_point, "main");
/* Make sure we lower constant initializers on output variables so that
* nir_remove_dead_variables below sees the corresponding stores
*/
NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_shader_out);
/* Now that we've deleted all but the main function, we can go ahead and
* lower the rest of the constant initializers.
*/
NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
/* Split member structs. We do this before lower_io_to_temporaries so that
* it doesn't lower system values to temporaries by accident.
*/
NIR_PASS_V(nir, nir_split_var_copies);
NIR_PASS_V(nir, nir_split_per_member_structs);
NIR_PASS_V(nir, nir_remove_dead_variables,
nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
NIR_PASS_V(nir, nir_lower_system_values);
NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays);
}
/* Vulkan uses the separate-shader linking model */
nir->info.separate_shader = true;
nir_shader_gather_info(nir, entry_point->impl);
static const nir_lower_tex_options tex_options = {
.lower_txp = ~0,
};
nir_lower_tex(nir, &tex_options);
nir_lower_vars_to_ssa(nir);
if (nir->info.stage == MESA_SHADER_VERTEX ||
nir->info.stage == MESA_SHADER_GEOMETRY) {
NIR_PASS_V(nir, nir_lower_io_to_temporaries,
nir_shader_get_entrypoint(nir), true, true);
} else if (nir->info.stage == MESA_SHADER_TESS_EVAL||
nir->info.stage == MESA_SHADER_FRAGMENT) {
NIR_PASS_V(nir, nir_lower_io_to_temporaries,
nir_shader_get_entrypoint(nir), true, false);
}
nir_split_var_copies(nir);
nir_lower_global_vars_to_local(nir);
nir_remove_dead_variables(nir, nir_var_local);
nir_lower_subgroups(nir, &(struct nir_lower_subgroups_options) {
.subgroup_size = 64,
.ballot_bit_size = 64,
.lower_to_scalar = 1,
.lower_subgroup_masks = 1,
.lower_shuffle = 1,
.lower_shuffle_to_32bit = 1,
.lower_vote_eq_to_ballot = 1,
});
nir_lower_load_const_to_scalar(nir);
if (!(flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT))
radv_optimize_nir(nir, false, true);
/* We call nir_lower_var_copies() after the first radv_optimize_nir()
* to remove any copies introduced by nir_opt_find_array_copies().
*/
nir_lower_var_copies(nir);
/* Indirect lowering must be called after the radv_optimize_nir() loop
* has been called at least once. Otherwise indirect lowering can
* bloat the instruction count of the loop and cause it to be
* considered too large for unrolling.
*/
ac_lower_indirect_derefs(nir, device->physical_device->rad_info.chip_class);
radv_optimize_nir(nir, flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT, false);
return nir;
}
void *
radv_alloc_shader_memory(struct radv_device *device,
struct radv_shader_variant *shader)
{
mtx_lock(&device->shader_slab_mutex);
list_for_each_entry(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
uint64_t offset = 0;
list_for_each_entry(struct radv_shader_variant, s, &slab->shaders, slab_list) {
if (s->bo_offset - offset >= shader->code_size) {
shader->bo = slab->bo;
shader->bo_offset = offset;
list_addtail(&shader->slab_list, &s->slab_list);
mtx_unlock(&device->shader_slab_mutex);
return slab->ptr + offset;
}
offset = align_u64(s->bo_offset + s->code_size, 256);
}
if (slab->size - offset >= shader->code_size) {
shader->bo = slab->bo;
shader->bo_offset = offset;
list_addtail(&shader->slab_list, &slab->shaders);
mtx_unlock(&device->shader_slab_mutex);
return slab->ptr + offset;
}
}
mtx_unlock(&device->shader_slab_mutex);
struct radv_shader_slab *slab = calloc(1, sizeof(struct radv_shader_slab));
slab->size = 256 * 1024;
slab->bo = device->ws->buffer_create(device->ws, slab->size, 256,
RADEON_DOMAIN_VRAM,
RADEON_FLAG_NO_INTERPROCESS_SHARING |
(device->physical_device->cpdma_prefetch_writes_memory ?
0 : RADEON_FLAG_READ_ONLY));
slab->ptr = (char*)device->ws->buffer_map(slab->bo);
list_inithead(&slab->shaders);
mtx_lock(&device->shader_slab_mutex);
list_add(&slab->slabs, &device->shader_slabs);
shader->bo = slab->bo;
shader->bo_offset = 0;
list_add(&shader->slab_list, &slab->shaders);
mtx_unlock(&device->shader_slab_mutex);
return slab->ptr;
}
void
radv_destroy_shader_slabs(struct radv_device *device)
{
list_for_each_entry_safe(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
device->ws->buffer_destroy(slab->bo);
free(slab);
}
mtx_destroy(&device->shader_slab_mutex);
}
/* For the UMR disassembler. */
#define DEBUGGER_END_OF_CODE_MARKER 0xbf9f0000 /* invalid instruction */
#define DEBUGGER_NUM_MARKERS 5
static unsigned
radv_get_shader_binary_size(struct ac_shader_binary *binary)
{
return binary->code_size + DEBUGGER_NUM_MARKERS * 4;
}
static void
radv_fill_shader_variant(struct radv_device *device,
struct radv_shader_variant *variant,
struct ac_shader_binary *binary,
gl_shader_stage stage)
{
bool scratch_enabled = variant->config.scratch_bytes_per_wave > 0;
struct radv_shader_info *info = &variant->info.info;
unsigned vgpr_comp_cnt = 0;
variant->code_size = radv_get_shader_binary_size(binary);
variant->rsrc2 = S_00B12C_USER_SGPR(variant->info.num_user_sgprs) |
S_00B12C_USER_SGPR_MSB(variant->info.num_user_sgprs >> 5) |
S_00B12C_SCRATCH_EN(scratch_enabled) |
S_00B12C_SO_BASE0_EN(!!info->so.strides[0]) |
S_00B12C_SO_BASE1_EN(!!info->so.strides[1]) |
S_00B12C_SO_BASE2_EN(!!info->so.strides[2]) |
S_00B12C_SO_BASE3_EN(!!info->so.strides[3]) |
S_00B12C_SO_EN(!!info->so.num_outputs);
variant->rsrc1 = S_00B848_VGPRS((variant->config.num_vgprs - 1) / 4) |
S_00B848_SGPRS((variant->config.num_sgprs - 1) / 8) |
S_00B848_DX10_CLAMP(1) |
S_00B848_FLOAT_MODE(variant->config.float_mode);
switch (stage) {
case MESA_SHADER_TESS_EVAL:
vgpr_comp_cnt = 3;
variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
break;
case MESA_SHADER_TESS_CTRL:
if (device->physical_device->rad_info.chip_class >= GFX9) {
vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
} else {
variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
}
break;
case MESA_SHADER_VERTEX:
case MESA_SHADER_GEOMETRY:
vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
break;
case MESA_SHADER_FRAGMENT:
break;
case MESA_SHADER_COMPUTE:
variant->rsrc2 |=
S_00B84C_TGID_X_EN(info->cs.uses_block_id[0]) |
S_00B84C_TGID_Y_EN(info->cs.uses_block_id[1]) |
S_00B84C_TGID_Z_EN(info->cs.uses_block_id[2]) |
S_00B84C_TIDIG_COMP_CNT(info->cs.uses_thread_id[2] ? 2 :
info->cs.uses_thread_id[1] ? 1 : 0) |
S_00B84C_TG_SIZE_EN(info->cs.uses_local_invocation_idx) |
S_00B84C_LDS_SIZE(variant->config.lds_size);
break;
default:
unreachable("unsupported shader type");
break;
}
if (device->physical_device->rad_info.chip_class >= GFX9 &&
stage == MESA_SHADER_GEOMETRY) {
unsigned es_type = variant->info.gs.es_type;
unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt;
if (es_type == MESA_SHADER_VERTEX) {
es_vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
} else if (es_type == MESA_SHADER_TESS_EVAL) {
es_vgpr_comp_cnt = 3;
} else {
unreachable("invalid shader ES type");
}
/* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
* VGPR[0:4] are always loaded.
*/
if (info->uses_invocation_id) {
gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
} else if (info->uses_prim_id) {
gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
} else if (variant->info.gs.vertices_in >= 3) {
gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
} else {
gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
}
variant->rsrc1 |= S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt);
variant->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
S_00B22C_OC_LDS_EN(es_type == MESA_SHADER_TESS_EVAL);
} else if (device->physical_device->rad_info.chip_class >= GFX9 &&
stage == MESA_SHADER_TESS_CTRL) {
variant->rsrc1 |= S_00B428_LS_VGPR_COMP_CNT(vgpr_comp_cnt);
} else {
variant->rsrc1 |= S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt);
}
void *ptr = radv_alloc_shader_memory(device, variant);
memcpy(ptr, binary->code, binary->code_size);
/* Add end-of-code markers for the UMR disassembler. */
uint32_t *ptr32 = (uint32_t *)ptr + binary->code_size / 4;
for (unsigned i = 0; i < DEBUGGER_NUM_MARKERS; i++)
ptr32[i] = DEBUGGER_END_OF_CODE_MARKER;
}
static void radv_init_llvm_target()
{
LLVMInitializeAMDGPUTargetInfo();
LLVMInitializeAMDGPUTarget();
LLVMInitializeAMDGPUTargetMC();
LLVMInitializeAMDGPUAsmPrinter();
/* For inline assembly. */
LLVMInitializeAMDGPUAsmParser();
/* Workaround for bug in llvm 4.0 that causes image intrinsics
* to disappear.
* https://reviews.llvm.org/D26348
*
* Workaround for bug in llvm that causes the GPU to hang in presence
* of nested loops because there is an exec mask issue. The proper
* solution is to fix LLVM but this might require a bunch of work.
* https://bugs.llvm.org/show_bug.cgi?id=37744
*
* "mesa" is the prefix for error messages.
*/
const char *argv[3] = { "mesa", "-simplifycfg-sink-common=false",
"-amdgpu-skip-threshold=1" };
LLVMParseCommandLineOptions(3, argv, NULL);
}
static once_flag radv_init_llvm_target_once_flag = ONCE_FLAG_INIT;
static void radv_init_llvm_once(void)
{
call_once(&radv_init_llvm_target_once_flag, radv_init_llvm_target);
}
static struct radv_shader_variant *
shader_variant_create(struct radv_device *device,
struct radv_shader_module *module,
struct nir_shader * const *shaders,
int shader_count,
gl_shader_stage stage,
struct radv_nir_compiler_options *options,
bool gs_copy_shader,
void **code_out,
unsigned *code_size_out)
{
enum radeon_family chip_family = device->physical_device->rad_info.family;
enum ac_target_machine_options tm_options = 0;
struct radv_shader_variant *variant;
struct ac_shader_binary binary;
struct ac_llvm_compiler ac_llvm;
bool thread_compiler;
variant = calloc(1, sizeof(struct radv_shader_variant));
if (!variant)
return NULL;
options->family = chip_family;
options->chip_class = device->physical_device->rad_info.chip_class;
options->dump_shader = radv_can_dump_shader(device, module, gs_copy_shader);
options->dump_preoptir = options->dump_shader &&
device->instance->debug_flags & RADV_DEBUG_PREOPTIR;
options->record_llvm_ir = device->keep_shader_info;
options->check_ir = device->instance->debug_flags & RADV_DEBUG_CHECKIR;
options->tess_offchip_block_dw_size = device->tess_offchip_block_dw_size;
options->address32_hi = device->physical_device->rad_info.address32_hi;
if (options->supports_spill)
tm_options |= AC_TM_SUPPORTS_SPILL;
if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED)
tm_options |= AC_TM_SISCHED;
if (options->check_ir)
tm_options |= AC_TM_CHECK_IR;
thread_compiler = !(device->instance->debug_flags & RADV_DEBUG_NOTHREADLLVM);
radv_init_llvm_once();
radv_init_llvm_compiler(&ac_llvm,
thread_compiler,
chip_family, tm_options);
if (gs_copy_shader) {
assert(shader_count == 1);
radv_compile_gs_copy_shader(&ac_llvm, *shaders, &binary,
&variant->config, &variant->info,
options);
} else {
radv_compile_nir_shader(&ac_llvm, &binary, &variant->config,
&variant->info, shaders, shader_count,
options);
}
radv_destroy_llvm_compiler(&ac_llvm, thread_compiler);
radv_fill_shader_variant(device, variant, &binary, stage);
if (code_out) {
*code_out = binary.code;
radv: return binary code_size not variant code size to cache The code sizes return here get passed to the cache shader insert function, which then memcpy from the code ptr, and causes all sorts of valgrind errors like: ==6755== Invalid read of size 8 ==6755== at 0x4C32FEE: memcpy@GLIBC_2.2.5 (vg_replace_strmem.c:1021) ==6755== by 0x2305D4C7: radv_pipeline_cache_insert_shaders (radv_pipeline_cache.c:416) ==6755== by 0x2305791D: radv_create_shaders (radv_pipeline.c:2158) ==6755== by 0x2305C523: radv_pipeline_init (radv_pipeline.c:3404) ==6755== by 0x2305C890: radv_graphics_pipeline_create (radv_pipeline.c:3515) ==6755== by 0x230188AB: radv_device_init_meta_blit_color (radv_meta_blit.c:871) ==6755== by 0x2301D50E: radv_device_init_meta_blit_state (radv_meta_blit.c:1278) ==6755== by 0x23011893: radv_device_init_meta (radv_meta.c:352) ==6755== by 0x2300744B: radv_CreateDevice (radv_device.c:1576) ==6755== by 0x5187D0F: ??? (in /usr/lib64/libvulkan.so.1.1.77) ==6755== by 0x518F6A3: ??? (in /usr/lib64/libvulkan.so.1.1.77) ==6755== by 0x5192A42: vkCreateDevice (in /usr/lib64/libvulkan.so.1.1.77) ==6755== Address 0x22a58548 is 4 bytes after a block of size 116 alloc'd ==6755== at 0x4C2EBAB: malloc (vg_replace_malloc.c:299) ==6755== by 0x23089DC4: ac_elf_read (ac_binary.c:144) ==6755== by 0x23090A60: ac_compile_module_to_binary (ac_llvm_helper.cpp:162) ==6755== by 0x23053F06: compile_to_memory_buffer (radv_llvm_helper.cpp:58) ==6755== by 0x23053F06: radv_compile_to_binary (radv_llvm_helper.cpp:98) ==6755== by 0x23052769: ac_llvm_compile (radv_nir_to_llvm.c:3394) ==6755== by 0x23052823: ac_compile_llvm_module (radv_nir_to_llvm.c:3418) ==6755== by 0x23053C05: radv_compile_nir_shader (radv_nir_to_llvm.c:3542) ==6755== by 0x23061B4E: shader_variant_create (radv_shader.c:580) ==6755== by 0x23061CFD: radv_shader_variant_create (radv_shader.c:634) ==6755== by 0x23057765: radv_create_shaders (radv_pipeline.c:2123) ==6755== by 0x2305C523: radv_pipeline_init (radv_pipeline.c:3404) ==6755== by 0x2305C890: radv_graphics_pipeline_create (radv_pipeline.c:3515) Since we are just inserting the code into the cache, we can avoid these bad reads and data in the cache by just using the binary code size here. Fixes: 939e5a382 (radv: add padding for the UMR disassembler) Reviewed-by: Samuel Pitoiset <samuel.pitoiset@gmail.com>
2018-07-27 05:18:02 +01:00
*code_size_out = binary.code_size;
} else
free(binary.code);
free(binary.config);
free(binary.rodata);
free(binary.global_symbol_offsets);
free(binary.relocs);
variant->ref_count = 1;
if (device->keep_shader_info) {
variant->disasm_string = binary.disasm_string;
variant->llvm_ir_string = binary.llvm_ir_string;
if (!gs_copy_shader && !module->nir) {
variant->nir = *shaders;
variant->spirv = (uint32_t *)module->data;
variant->spirv_size = module->size;
}
} else {
free(binary.disasm_string);
}
return variant;
}
struct radv_shader_variant *
radv_shader_variant_create(struct radv_device *device,
struct radv_shader_module *module,
struct nir_shader *const *shaders,
int shader_count,
struct radv_pipeline_layout *layout,
const struct radv_shader_variant_key *key,
void **code_out,
unsigned *code_size_out)
{
struct radv_nir_compiler_options options = {0};
options.layout = layout;
if (key)
options.key = *key;
options.unsafe_math = !!(device->instance->debug_flags & RADV_DEBUG_UNSAFE_MATH);
options.supports_spill = true;
return shader_variant_create(device, module, shaders, shader_count, shaders[shader_count - 1]->info.stage,
&options, false, code_out, code_size_out);
}
struct radv_shader_variant *
radv_create_gs_copy_shader(struct radv_device *device,
struct nir_shader *shader,
void **code_out,
unsigned *code_size_out,
bool multiview)
{
struct radv_nir_compiler_options options = {0};
options.key.has_multiview_view_index = multiview;
return shader_variant_create(device, NULL, &shader, 1, MESA_SHADER_VERTEX,
&options, true, code_out, code_size_out);
}
void
radv_shader_variant_destroy(struct radv_device *device,
struct radv_shader_variant *variant)
{
if (!p_atomic_dec_zero(&variant->ref_count))
return;
mtx_lock(&device->shader_slab_mutex);
list_del(&variant->slab_list);
mtx_unlock(&device->shader_slab_mutex);
ralloc_free(variant->nir);
free(variant->disasm_string);
free(variant->llvm_ir_string);
free(variant);
}
const char *
radv_get_shader_name(struct radv_shader_variant *var, gl_shader_stage stage)
{
switch (stage) {
case MESA_SHADER_VERTEX: return var->info.vs.as_ls ? "Vertex Shader as LS" : var->info.vs.as_es ? "Vertex Shader as ES" : "Vertex Shader as VS";
case MESA_SHADER_GEOMETRY: return "Geometry Shader";
case MESA_SHADER_FRAGMENT: return "Pixel Shader";
case MESA_SHADER_COMPUTE: return "Compute Shader";
case MESA_SHADER_TESS_CTRL: return "Tessellation Control Shader";
case MESA_SHADER_TESS_EVAL: return var->info.tes.as_es ? "Tessellation Evaluation Shader as ES" : "Tessellation Evaluation Shader as VS";
default:
return "Unknown shader";
};
}
static void
generate_shader_stats(struct radv_device *device,
struct radv_shader_variant *variant,
gl_shader_stage stage,
struct _mesa_string_buffer *buf)
{
unsigned lds_increment = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
struct ac_shader_config *conf;
unsigned max_simd_waves;
unsigned lds_per_wave = 0;
max_simd_waves = ac_get_max_simd_waves(device->physical_device->rad_info.family);
conf = &variant->config;
if (stage == MESA_SHADER_FRAGMENT) {
lds_per_wave = conf->lds_size * lds_increment +
align(variant->info.fs.num_interp * 48,
lds_increment);
}
if (conf->num_sgprs)
max_simd_waves =
MIN2(max_simd_waves,
radv_get_num_physical_sgprs(device->physical_device) / conf->num_sgprs);
if (conf->num_vgprs)
max_simd_waves =
MIN2(max_simd_waves,
RADV_NUM_PHYSICAL_VGPRS / conf->num_vgprs);
/* LDS is 64KB per CU (4 SIMDs), divided into 16KB blocks per SIMD
* that PS can use.
*/
if (lds_per_wave)
max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
if (stage == MESA_SHADER_FRAGMENT) {
_mesa_string_buffer_printf(buf, "*** SHADER CONFIG ***\n"
"SPI_PS_INPUT_ADDR = 0x%04x\n"
"SPI_PS_INPUT_ENA = 0x%04x\n",
conf->spi_ps_input_addr, conf->spi_ps_input_ena);
}
_mesa_string_buffer_printf(buf, "*** SHADER STATS ***\n"
"SGPRS: %d\n"
"VGPRS: %d\n"
"Spilled SGPRs: %d\n"
"Spilled VGPRs: %d\n"
"PrivMem VGPRS: %d\n"
"Code Size: %d bytes\n"
"LDS: %d blocks\n"
"Scratch: %d bytes per wave\n"
"Max Waves: %d\n"
"********************\n\n\n",
conf->num_sgprs, conf->num_vgprs,
conf->spilled_sgprs, conf->spilled_vgprs,
variant->info.private_mem_vgprs, variant->code_size,
conf->lds_size, conf->scratch_bytes_per_wave,
max_simd_waves);
}
void
radv_shader_dump_stats(struct radv_device *device,
struct radv_shader_variant *variant,
gl_shader_stage stage,
FILE *file)
{
struct _mesa_string_buffer *buf = _mesa_string_buffer_create(NULL, 256);
generate_shader_stats(device, variant, stage, buf);
fprintf(file, "\n%s:\n", radv_get_shader_name(variant, stage));
fprintf(file, "%s", buf->buf);
_mesa_string_buffer_destroy(buf);
}
VkResult
radv_GetShaderInfoAMD(VkDevice _device,
VkPipeline _pipeline,
VkShaderStageFlagBits shaderStage,
VkShaderInfoTypeAMD infoType,
size_t* pInfoSize,
void* pInfo)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
gl_shader_stage stage = vk_to_mesa_shader_stage(shaderStage);
struct radv_shader_variant *variant = pipeline->shaders[stage];
struct _mesa_string_buffer *buf;
VkResult result = VK_SUCCESS;
/* Spec doesn't indicate what to do if the stage is invalid, so just
* return no info for this. */
if (!variant)
return vk_error(device->instance, VK_ERROR_FEATURE_NOT_PRESENT);
switch (infoType) {
case VK_SHADER_INFO_TYPE_STATISTICS_AMD:
if (!pInfo) {
*pInfoSize = sizeof(VkShaderStatisticsInfoAMD);
} else {
unsigned lds_multiplier = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
struct ac_shader_config *conf = &variant->config;
VkShaderStatisticsInfoAMD statistics = {};
statistics.shaderStageMask = shaderStage;
statistics.numPhysicalVgprs = RADV_NUM_PHYSICAL_VGPRS;
statistics.numPhysicalSgprs = radv_get_num_physical_sgprs(device->physical_device);
statistics.numAvailableSgprs = statistics.numPhysicalSgprs;
if (stage == MESA_SHADER_COMPUTE) {
unsigned *local_size = variant->nir->info.cs.local_size;
unsigned workgroup_size = local_size[0] * local_size[1] * local_size[2];
statistics.numAvailableVgprs = statistics.numPhysicalVgprs /
ceil((double)workgroup_size / statistics.numPhysicalVgprs);
statistics.computeWorkGroupSize[0] = local_size[0];
statistics.computeWorkGroupSize[1] = local_size[1];
statistics.computeWorkGroupSize[2] = local_size[2];
} else {
statistics.numAvailableVgprs = statistics.numPhysicalVgprs;
}
statistics.resourceUsage.numUsedVgprs = conf->num_vgprs;
statistics.resourceUsage.numUsedSgprs = conf->num_sgprs;
statistics.resourceUsage.ldsSizePerLocalWorkGroup = 32768;
statistics.resourceUsage.ldsUsageSizeInBytes = conf->lds_size * lds_multiplier;
statistics.resourceUsage.scratchMemUsageInBytes = conf->scratch_bytes_per_wave;
size_t size = *pInfoSize;
*pInfoSize = sizeof(statistics);
memcpy(pInfo, &statistics, MIN2(size, *pInfoSize));
if (size < *pInfoSize)
result = VK_INCOMPLETE;
}
break;
case VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD:
buf = _mesa_string_buffer_create(NULL, 1024);
_mesa_string_buffer_printf(buf, "%s:\n", radv_get_shader_name(variant, stage));
_mesa_string_buffer_printf(buf, "%s\n\n", variant->llvm_ir_string);
_mesa_string_buffer_printf(buf, "%s\n\n", variant->disasm_string);
generate_shader_stats(device, variant, stage, buf);
/* Need to include the null terminator. */
size_t length = buf->length + 1;
if (!pInfo) {
*pInfoSize = length;
} else {
size_t size = *pInfoSize;
*pInfoSize = length;
memcpy(pInfo, buf->buf, MIN2(size, length));
if (size < length)
result = VK_INCOMPLETE;
}
_mesa_string_buffer_destroy(buf);
break;
default:
/* VK_SHADER_INFO_TYPE_BINARY_AMD unimplemented for now. */
result = VK_ERROR_FEATURE_NOT_PRESENT;
break;
}
return result;
}