mesa/src/amd/vulkan/radv_shader.c

780 lines
25 KiB
C
Raw Normal View History

/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "util/mesa-sha1.h"
#include "util/u_atomic.h"
#include "radv_debug.h"
#include "radv_private.h"
#include "radv_shader.h"
#include "nir/nir.h"
#include "nir/nir_builder.h"
#include "spirv/nir_spirv.h"
#include <llvm-c/Core.h>
#include <llvm-c/TargetMachine.h>
#include "sid.h"
#include "gfx9d.h"
#include "ac_binary.h"
#include "ac_llvm_util.h"
#include "ac_nir_to_llvm.h"
#include "vk_format.h"
#include "util/debug.h"
#include "ac_exp_param.h"
#include "util/string_buffer.h"
static const struct nir_shader_compiler_options nir_options = {
.vertex_id_zero_based = true,
.lower_scmp = true,
.lower_flrp32 = true,
.lower_flrp64 = true,
.lower_fsat = true,
.lower_fdiv = true,
.lower_sub = true,
.lower_pack_snorm_2x16 = true,
.lower_pack_snorm_4x8 = true,
.lower_pack_unorm_2x16 = true,
.lower_pack_unorm_4x8 = true,
.lower_unpack_snorm_2x16 = true,
.lower_unpack_snorm_4x8 = true,
.lower_unpack_unorm_2x16 = true,
.lower_unpack_unorm_4x8 = true,
.lower_extract_byte = true,
.lower_extract_word = true,
.lower_ffma = true,
.max_unroll_iterations = 32
};
VkResult radv_CreateShaderModule(
VkDevice _device,
const VkShaderModuleCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkShaderModule* pShaderModule)
{
RADV_FROM_HANDLE(radv_device, device, _device);
struct radv_shader_module *module;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
assert(pCreateInfo->flags == 0);
module = vk_alloc2(&device->alloc, pAllocator,
sizeof(*module) + pCreateInfo->codeSize, 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (module == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
module->nir = NULL;
module->size = pCreateInfo->codeSize;
memcpy(module->data, pCreateInfo->pCode, module->size);
_mesa_sha1_compute(module->data, module->size, module->sha1);
*pShaderModule = radv_shader_module_to_handle(module);
return VK_SUCCESS;
}
void radv_DestroyShaderModule(
VkDevice _device,
VkShaderModule _module,
const VkAllocationCallbacks* pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_shader_module, module, _module);
if (!module)
return;
vk_free2(&device->alloc, pAllocator, module);
}
void
radv_optimize_nir(struct nir_shader *shader)
{
bool progress;
do {
progress = false;
NIR_PASS_V(shader, nir_lower_vars_to_ssa);
NIR_PASS_V(shader, nir_lower_64bit_pack);
NIR_PASS_V(shader, nir_lower_alu_to_scalar);
NIR_PASS_V(shader, nir_lower_phis_to_scalar);
NIR_PASS(progress, shader, nir_copy_prop);
NIR_PASS(progress, shader, nir_opt_remove_phis);
NIR_PASS(progress, shader, nir_opt_dce);
if (nir_opt_trivial_continues(shader)) {
progress = true;
NIR_PASS(progress, shader, nir_copy_prop);
NIR_PASS(progress, shader, nir_opt_remove_phis);
NIR_PASS(progress, shader, nir_opt_dce);
}
NIR_PASS(progress, shader, nir_opt_if);
NIR_PASS(progress, shader, nir_opt_dead_cf);
NIR_PASS(progress, shader, nir_opt_cse);
NIR_PASS(progress, shader, nir_opt_peephole_select, 8);
NIR_PASS(progress, shader, nir_opt_algebraic);
NIR_PASS(progress, shader, nir_opt_constant_folding);
NIR_PASS(progress, shader, nir_opt_undef);
NIR_PASS(progress, shader, nir_opt_conditional_discard);
if (shader->options->max_unroll_iterations) {
NIR_PASS(progress, shader, nir_opt_loop_unroll, 0);
}
} while (progress);
}
nir_shader *
radv_shader_compile_to_nir(struct radv_device *device,
struct radv_shader_module *module,
const char *entrypoint_name,
gl_shader_stage stage,
const VkSpecializationInfo *spec_info)
{
if (strcmp(entrypoint_name, "main") != 0) {
radv_finishme("Multiple shaders per module not really supported");
}
nir_shader *nir;
nir_function *entry_point;
if (module->nir) {
/* Some things such as our meta clear/blit code will give us a NIR
* shader directly. In that case, we just ignore the SPIR-V entirely
* and just use the NIR shader */
nir = module->nir;
nir->options = &nir_options;
nir_validate_shader(nir);
assert(exec_list_length(&nir->functions) == 1);
struct exec_node *node = exec_list_get_head(&nir->functions);
entry_point = exec_node_data(nir_function, node, node);
} else {
uint32_t *spirv = (uint32_t *) module->data;
assert(module->size % 4 == 0);
if (device->instance->debug_flags & RADV_DEBUG_DUMP_SPIRV)
radv_print_spirv(spirv, module->size, stderr);
uint32_t num_spec_entries = 0;
struct nir_spirv_specialization *spec_entries = NULL;
if (spec_info && spec_info->mapEntryCount > 0) {
num_spec_entries = spec_info->mapEntryCount;
spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
for (uint32_t i = 0; i < num_spec_entries; i++) {
VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
const void *data = spec_info->pData + entry.offset;
assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
spec_entries[i].id = spec_info->pMapEntries[i].constantID;
if (spec_info->dataSize == 8)
spec_entries[i].data64 = *(const uint64_t *)data;
else
spec_entries[i].data32 = *(const uint32_t *)data;
}
}
const struct spirv_to_nir_options spirv_options = {
.caps = {
.draw_parameters = true,
.float64 = true,
.image_read_without_format = true,
.image_write_without_format = true,
.tessellation = true,
.int64 = true,
.multiview = true,
.variable_pointers = true,
},
};
entry_point = spirv_to_nir(spirv, module->size / 4,
spec_entries, num_spec_entries,
stage, entrypoint_name,
&spirv_options, &nir_options);
nir = entry_point->shader;
assert(nir->info.stage == stage);
nir_validate_shader(nir);
free(spec_entries);
/* We have to lower away local constant initializers right before we
* inline functions. That way they get properly initialized at the top
* of the function and not at the top of its caller.
*/
NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_local);
NIR_PASS_V(nir, nir_lower_returns);
NIR_PASS_V(nir, nir_inline_functions);
/* Pick off the single entrypoint that we want */
foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
if (func != entry_point)
exec_node_remove(&func->node);
}
assert(exec_list_length(&nir->functions) == 1);
entry_point->name = ralloc_strdup(entry_point, "main");
NIR_PASS_V(nir, nir_remove_dead_variables,
nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
/* Now that we've deleted all but the main function, we can go ahead and
* lower the rest of the constant initializers.
*/
NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
NIR_PASS_V(nir, nir_lower_system_values);
NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays);
}
/* Vulkan uses the separate-shader linking model */
nir->info.separate_shader = true;
nir_shader_gather_info(nir, entry_point->impl);
/* While it would be nice not to have this flag, we are constrained
* by the reality that LLVM 5.0 doesn't have working VGPR indexing
* on GFX9.
*/
bool llvm_has_working_vgpr_indexing =
device->physical_device->rad_info.chip_class <= VI;
/* TODO: Indirect indexing of GS inputs is unimplemented.
*
* TCS and TES load inputs directly from LDS or offchip memory, so
* indirect indexing is trivial.
*/
nir_variable_mode indirect_mask = 0;
if (nir->info.stage == MESA_SHADER_GEOMETRY ||
(nir->info.stage != MESA_SHADER_TESS_CTRL &&
nir->info.stage != MESA_SHADER_TESS_EVAL &&
!llvm_has_working_vgpr_indexing)) {
indirect_mask |= nir_var_shader_in;
}
if (!llvm_has_working_vgpr_indexing &&
nir->info.stage != MESA_SHADER_TESS_CTRL)
indirect_mask |= nir_var_shader_out;
/* TODO: We shouldn't need to do this, however LLVM isn't currently
* smart enough to handle indirects without causing excess spilling
* causing the gpu to hang.
*
* See the following thread for more details of the problem:
* https://lists.freedesktop.org/archives/mesa-dev/2017-July/162106.html
*/
indirect_mask |= nir_var_local;
nir_lower_indirect_derefs(nir, indirect_mask);
static const nir_lower_tex_options tex_options = {
.lower_txp = ~0,
};
nir_lower_tex(nir, &tex_options);
nir_lower_vars_to_ssa(nir);
nir_lower_var_copies(nir);
nir_lower_global_vars_to_local(nir);
nir_remove_dead_variables(nir, nir_var_local);
radv_optimize_nir(nir);
return nir;
}
void *
radv_alloc_shader_memory(struct radv_device *device,
struct radv_shader_variant *shader)
{
mtx_lock(&device->shader_slab_mutex);
list_for_each_entry(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
uint64_t offset = 0;
list_for_each_entry(struct radv_shader_variant, s, &slab->shaders, slab_list) {
if (s->bo_offset - offset >= shader->code_size) {
shader->bo = slab->bo;
shader->bo_offset = offset;
list_addtail(&shader->slab_list, &s->slab_list);
mtx_unlock(&device->shader_slab_mutex);
return slab->ptr + offset;
}
offset = align_u64(s->bo_offset + s->code_size, 256);
}
if (slab->size - offset >= shader->code_size) {
shader->bo = slab->bo;
shader->bo_offset = offset;
list_addtail(&shader->slab_list, &slab->shaders);
mtx_unlock(&device->shader_slab_mutex);
return slab->ptr + offset;
}
}
mtx_unlock(&device->shader_slab_mutex);
struct radv_shader_slab *slab = calloc(1, sizeof(struct radv_shader_slab));
slab->size = 256 * 1024;
slab->bo = device->ws->buffer_create(device->ws, slab->size, 256,
RADEON_DOMAIN_VRAM,
RADEON_FLAG_NO_INTERPROCESS_SHARING |
device->physical_device->cpdma_prefetch_writes_memory ?
0 : RADEON_FLAG_READ_ONLY);
slab->ptr = (char*)device->ws->buffer_map(slab->bo);
list_inithead(&slab->shaders);
mtx_lock(&device->shader_slab_mutex);
list_add(&slab->slabs, &device->shader_slabs);
shader->bo = slab->bo;
shader->bo_offset = 0;
list_add(&shader->slab_list, &slab->shaders);
mtx_unlock(&device->shader_slab_mutex);
return slab->ptr;
}
void
radv_destroy_shader_slabs(struct radv_device *device)
{
list_for_each_entry_safe(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
device->ws->buffer_destroy(slab->bo);
free(slab);
}
mtx_destroy(&device->shader_slab_mutex);
}
static void
radv_fill_shader_variant(struct radv_device *device,
struct radv_shader_variant *variant,
struct ac_shader_binary *binary,
gl_shader_stage stage)
{
bool scratch_enabled = variant->config.scratch_bytes_per_wave > 0;
unsigned vgpr_comp_cnt = 0;
if (scratch_enabled && !device->llvm_supports_spill)
radv_finishme("shader scratch support only available with LLVM 4.0");
variant->code_size = binary->code_size;
variant->rsrc2 = S_00B12C_USER_SGPR(variant->info.num_user_sgprs) |
S_00B12C_SCRATCH_EN(scratch_enabled);
variant->rsrc1 = S_00B848_VGPRS((variant->config.num_vgprs - 1) / 4) |
S_00B848_SGPRS((variant->config.num_sgprs - 1) / 8) |
S_00B848_DX10_CLAMP(1) |
S_00B848_FLOAT_MODE(variant->config.float_mode);
switch (stage) {
case MESA_SHADER_TESS_EVAL:
vgpr_comp_cnt = 3;
variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
break;
case MESA_SHADER_TESS_CTRL:
if (device->physical_device->rad_info.chip_class >= GFX9)
vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
else
variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
break;
case MESA_SHADER_VERTEX:
case MESA_SHADER_GEOMETRY:
vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
break;
case MESA_SHADER_FRAGMENT:
break;
case MESA_SHADER_COMPUTE: {
struct ac_shader_info *info = &variant->info.info;
variant->rsrc2 |=
S_00B84C_TGID_X_EN(info->cs.uses_block_id[0]) |
S_00B84C_TGID_Y_EN(info->cs.uses_block_id[1]) |
S_00B84C_TGID_Z_EN(info->cs.uses_block_id[2]) |
S_00B84C_TIDIG_COMP_CNT(info->cs.uses_thread_id[2] ? 2 :
info->cs.uses_thread_id[1] ? 1 : 0) |
S_00B84C_TG_SIZE_EN(info->cs.uses_local_invocation_idx) |
S_00B84C_LDS_SIZE(variant->config.lds_size);
break;
}
default:
unreachable("unsupported shader type");
break;
}
if (device->physical_device->rad_info.chip_class >= GFX9 &&
stage == MESA_SHADER_GEOMETRY) {
struct ac_shader_info *info = &variant->info.info;
unsigned es_type = variant->info.gs.es_type;
unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt;
if (es_type == MESA_SHADER_VERTEX) {
es_vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
} else if (es_type == MESA_SHADER_TESS_EVAL) {
es_vgpr_comp_cnt = 3;
} else {
unreachable("invalid shader ES type");
}
/* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
* VGPR[0:4] are always loaded.
*/
if (info->uses_invocation_id)
gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
else if (info->uses_prim_id)
gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
else if (variant->info.gs.vertices_in >= 3)
gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
else
gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
variant->rsrc1 |= S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt);
variant->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
S_00B22C_OC_LDS_EN(es_type == MESA_SHADER_TESS_EVAL);
} else if (device->physical_device->rad_info.chip_class >= GFX9 &&
stage == MESA_SHADER_TESS_CTRL)
variant->rsrc1 |= S_00B428_LS_VGPR_COMP_CNT(vgpr_comp_cnt);
else
variant->rsrc1 |= S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt);
void *ptr = radv_alloc_shader_memory(device, variant);
memcpy(ptr, binary->code, binary->code_size);
}
static struct radv_shader_variant *
shader_variant_create(struct radv_device *device,
struct radv_shader_module *module,
struct nir_shader * const *shaders,
int shader_count,
gl_shader_stage stage,
struct ac_nir_compiler_options *options,
bool gs_copy_shader,
void **code_out,
unsigned *code_size_out)
{
enum radeon_family chip_family = device->physical_device->rad_info.family;
bool dump_shaders = radv_can_dump_shader(device, module);
enum ac_target_machine_options tm_options = 0;
struct radv_shader_variant *variant;
struct ac_shader_binary binary;
LLVMTargetMachineRef tm;
variant = calloc(1, sizeof(struct radv_shader_variant));
if (!variant)
return NULL;
options->family = chip_family;
options->chip_class = device->physical_device->rad_info.chip_class;
if (options->supports_spill)
tm_options |= AC_TM_SUPPORTS_SPILL;
if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED)
tm_options |= AC_TM_SISCHED;
tm = ac_create_target_machine(chip_family, tm_options);
if (gs_copy_shader) {
assert(shader_count == 1);
ac_create_gs_copy_shader(tm, *shaders, &binary, &variant->config,
&variant->info, options, dump_shaders);
} else {
ac_compile_nir_shader(tm, &binary, &variant->config,
&variant->info, shaders, shader_count, options,
dump_shaders);
}
LLVMDisposeTargetMachine(tm);
radv_fill_shader_variant(device, variant, &binary, stage);
if (code_out) {
*code_out = binary.code;
*code_size_out = binary.code_size;
} else
free(binary.code);
free(binary.config);
free(binary.rodata);
free(binary.global_symbol_offsets);
free(binary.relocs);
variant->ref_count = 1;
if (device->keep_shader_info) {
variant->disasm_string = binary.disasm_string;
if (!gs_copy_shader && !module->nir) {
variant->nir = *shaders;
variant->spirv = (uint32_t *)module->data;
variant->spirv_size = module->size;
}
} else {
free(binary.disasm_string);
}
return variant;
}
struct radv_shader_variant *
radv_shader_variant_create(struct radv_device *device,
struct radv_shader_module *module,
struct nir_shader *const *shaders,
int shader_count,
struct radv_pipeline_layout *layout,
const struct ac_shader_variant_key *key,
void **code_out,
unsigned *code_size_out)
{
struct ac_nir_compiler_options options = {0};
options.layout = layout;
if (key)
options.key = *key;
options.unsafe_math = !!(device->instance->debug_flags & RADV_DEBUG_UNSAFE_MATH);
options.supports_spill = device->llvm_supports_spill;
return shader_variant_create(device, module, shaders, shader_count, shaders[shader_count - 1]->info.stage,
&options, false, code_out, code_size_out);
}
struct radv_shader_variant *
radv_create_gs_copy_shader(struct radv_device *device,
struct nir_shader *shader,
void **code_out,
unsigned *code_size_out,
bool multiview)
{
struct ac_nir_compiler_options options = {0};
options.key.has_multiview_view_index = multiview;
return shader_variant_create(device, NULL, &shader, 1, MESA_SHADER_VERTEX,
&options, true, code_out, code_size_out);
}
void
radv_shader_variant_destroy(struct radv_device *device,
struct radv_shader_variant *variant)
{
if (!p_atomic_dec_zero(&variant->ref_count))
return;
mtx_lock(&device->shader_slab_mutex);
list_del(&variant->slab_list);
mtx_unlock(&device->shader_slab_mutex);
ralloc_free(variant->nir);
free(variant->disasm_string);
free(variant);
}
const char *
radv_get_shader_name(struct radv_shader_variant *var, gl_shader_stage stage)
{
switch (stage) {
case MESA_SHADER_VERTEX: return var->info.vs.as_ls ? "Vertex Shader as LS" : var->info.vs.as_es ? "Vertex Shader as ES" : "Vertex Shader as VS";
case MESA_SHADER_GEOMETRY: return "Geometry Shader";
case MESA_SHADER_FRAGMENT: return "Pixel Shader";
case MESA_SHADER_COMPUTE: return "Compute Shader";
case MESA_SHADER_TESS_CTRL: return "Tessellation Control Shader";
case MESA_SHADER_TESS_EVAL: return var->info.tes.as_es ? "Tessellation Evaluation Shader as ES" : "Tessellation Evaluation Shader as VS";
default:
return "Unknown shader";
};
}
static uint32_t
get_total_sgprs(struct radv_device *device)
{
if (device->physical_device->rad_info.chip_class >= VI)
return 800;
else
return 512;
}
static void
generate_shader_stats(struct radv_device *device,
struct radv_shader_variant *variant,
gl_shader_stage stage,
struct _mesa_string_buffer *buf)
{
unsigned lds_increment = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
struct ac_shader_config *conf;
unsigned max_simd_waves;
unsigned lds_per_wave = 0;
switch (device->physical_device->rad_info.family) {
/* These always have 8 waves: */
case CHIP_POLARIS10:
case CHIP_POLARIS11:
case CHIP_POLARIS12:
max_simd_waves = 8;
break;
default:
max_simd_waves = 10;
}
conf = &variant->config;
if (stage == MESA_SHADER_FRAGMENT) {
lds_per_wave = conf->lds_size * lds_increment +
align(variant->info.fs.num_interp * 48,
lds_increment);
}
if (conf->num_sgprs)
max_simd_waves = MIN2(max_simd_waves, get_total_sgprs(device) / conf->num_sgprs);
if (conf->num_vgprs)
max_simd_waves = MIN2(max_simd_waves, 256 / conf->num_vgprs);
/* LDS is 64KB per CU (4 SIMDs), divided into 16KB blocks per SIMD
* that PS can use.
*/
if (lds_per_wave)
max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
if (stage == MESA_SHADER_FRAGMENT) {
_mesa_string_buffer_printf(buf, "*** SHADER CONFIG ***\n"
"SPI_PS_INPUT_ADDR = 0x%04x\n"
"SPI_PS_INPUT_ENA = 0x%04x\n",
conf->spi_ps_input_addr, conf->spi_ps_input_ena);
}
_mesa_string_buffer_printf(buf, "*** SHADER STATS ***\n"
"SGPRS: %d\n"
"VGPRS: %d\n"
"Spilled SGPRs: %d\n"
"Spilled VGPRs: %d\n"
"Code Size: %d bytes\n"
"LDS: %d blocks\n"
"Scratch: %d bytes per wave\n"
"Max Waves: %d\n"
"********************\n\n\n",
conf->num_sgprs, conf->num_vgprs,
conf->spilled_sgprs, conf->spilled_vgprs, variant->code_size,
conf->lds_size, conf->scratch_bytes_per_wave,
max_simd_waves);
}
void
radv_shader_dump_stats(struct radv_device *device,
struct radv_shader_variant *variant,
gl_shader_stage stage,
FILE *file)
{
struct _mesa_string_buffer *buf = _mesa_string_buffer_create(NULL, 256);
generate_shader_stats(device, variant, stage, buf);
fprintf(file, "\n%s:\n", radv_get_shader_name(variant, stage));
fprintf(file, "%s", buf->buf);
_mesa_string_buffer_destroy(buf);
}
VkResult
radv_GetShaderInfoAMD(VkDevice _device,
VkPipeline _pipeline,
VkShaderStageFlagBits shaderStage,
VkShaderInfoTypeAMD infoType,
size_t* pInfoSize,
void* pInfo)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
gl_shader_stage stage = vk_to_mesa_shader_stage(shaderStage);
struct radv_shader_variant *variant = pipeline->shaders[stage];
struct _mesa_string_buffer *buf;
VkResult result = VK_SUCCESS;
/* Spec doesn't indicate what to do if the stage is invalid, so just
* return no info for this. */
if (!variant)
return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
switch (infoType) {
case VK_SHADER_INFO_TYPE_STATISTICS_AMD:
if (!pInfo) {
*pInfoSize = sizeof(VkShaderStatisticsInfoAMD);
} else {
unsigned lds_multiplier = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
struct ac_shader_config *conf = &variant->config;
VkShaderStatisticsInfoAMD statistics = {};
statistics.shaderStageMask = shaderStage;
statistics.numPhysicalVgprs = 256;
statistics.numPhysicalSgprs = get_total_sgprs(device);
statistics.numAvailableSgprs = statistics.numPhysicalSgprs;
if (stage == MESA_SHADER_COMPUTE) {
unsigned *local_size = variant->nir->info.cs.local_size;
unsigned workgroup_size = local_size[0] * local_size[1] * local_size[2];
statistics.numAvailableVgprs = statistics.numPhysicalVgprs /
ceil(workgroup_size / statistics.numPhysicalVgprs);
statistics.computeWorkGroupSize[0] = local_size[0];
statistics.computeWorkGroupSize[1] = local_size[1];
statistics.computeWorkGroupSize[2] = local_size[2];
} else {
statistics.numAvailableVgprs = statistics.numPhysicalVgprs;
}
statistics.resourceUsage.numUsedVgprs = conf->num_vgprs;
statistics.resourceUsage.numUsedSgprs = conf->num_sgprs;
statistics.resourceUsage.ldsSizePerLocalWorkGroup = 32768;
statistics.resourceUsage.ldsUsageSizeInBytes = conf->lds_size * lds_multiplier;
statistics.resourceUsage.scratchMemUsageInBytes = conf->scratch_bytes_per_wave;
size_t size = *pInfoSize;
*pInfoSize = sizeof(statistics);
memcpy(pInfo, &statistics, MIN2(size, *pInfoSize));
if (size < *pInfoSize)
result = VK_INCOMPLETE;
}
break;
case VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD:
buf = _mesa_string_buffer_create(NULL, 1024);
_mesa_string_buffer_printf(buf, "%s:\n", radv_get_shader_name(variant, stage));
_mesa_string_buffer_printf(buf, "%s\n\n", variant->disasm_string);
generate_shader_stats(device, variant, stage, buf);
/* Need to include the null terminator. */
size_t length = buf->length + 1;
if (!pInfo) {
*pInfoSize = length;
} else {
size_t size = *pInfoSize;
*pInfoSize = length;
memcpy(pInfo, buf->buf, MIN2(size, length));
if (size < length)
result = VK_INCOMPLETE;
}
_mesa_string_buffer_destroy(buf);
break;
default:
/* VK_SHADER_INFO_TYPE_BINARY_AMD unimplemented for now. */
result = VK_ERROR_FEATURE_NOT_PRESENT;
break;
}
return result;
}