fteqw/engine/common/gl_q2bsp.c

6349 lines
151 KiB
C
Raw Normal View History

#include "quakedef.h"
#ifndef SERVERONLY
#include "glquake.h"
#endif
#include "com_mesh.h"
#ifdef _WIN32
#include <malloc.h>
#else
#include <alloca.h>
#endif
#define MAX_Q3MAP_INDICES 0x8000000 //just a sanity limit
#define MAX_Q3MAP_VERTEXES 0x800000 //just a sanity limit
#define MAX_CM_PATCH_VERTS (4096)
#define MAX_CM_FACES (MAX_Q2MAP_FACES)
#define MAX_CM_PATCHES (0x10000)
#define MAX_CM_LEAFFACES (MAX_Q2MAP_LEAFFACES)
#define MAX_CM_AREAS MAX_Q2MAP_AREAS
//#define Q3SURF_NODAMAGE 0x00000001
//#define Q3SURF_SLICK 0x00000002
//#define Q3SURF_SKY 0x00000004
//#define Q3SURF_LADDER 0x00000008
//#define Q3SURF_NOIMPACT 0x00000010
//#define Q3SURF_NOMARKS 0x00000020
//#define Q3SURF_FLESH 0x00000040
#define Q3SURF_NODRAW 0x00000080 // don't generate a drawsurface at all
//#define Q3SURF_HINT 0x00000100
#define Q3SURF_SKIP 0x00000200 // completely ignore, allowing non-closed brushes
//#define Q3SURF_NOLIGHTMAP 0x00000400
//#define Q3SURF_POINTLIGHT 0x00000800
//#define Q3SURF_METALSTEPS 0x00001000
//#define Q3SURF_NOSTEPS 0x00002000
#define Q3SURF_NONSOLID 0x00004000 // don't collide against curves with this set
//#define Q3SURF_LIGHTFILTER 0x00008000
//#define Q3SURF_ALPHASHADOW 0x00010000
//#define Q3SURF_NODLIGHT 0x00020000
//#define Q3SURF_DUST 0x00040000
cvar_t q3bsp_surf_meshcollision_flag = CVARD("q3bsp_surf_meshcollision_flag", "0x80000000", "The surfaceparm flag(s) that enables q3bsp trisoup collision");
cvar_t q3bsp_surf_meshcollision_force = CVARD("q3bsp_surf_meshcollision_force", "0", "Force mesh-based collisions on all q3bsp trisoup surfaces.");
#if Q3SURF_NODRAW != TI_NODRAW
#error "nodraw isn't constant"
#endif
extern cvar_t r_shadow_bumpscale_basetexture;
//these are in model.c (or gl_model.c)
qboolean Mod_LoadVertexes (lump_t *l);
qboolean Mod_LoadEdges (lump_t *l, qboolean lm);
qboolean Mod_LoadMarksurfaces (lump_t *l, qboolean lm);
qboolean Mod_LoadSurfedges (lump_t *l);
void Mod_LoadLighting (lump_t *l);
static qboolean CM_NativeTrace(model_t *model, int forcehullnum, int frame, vec3_t axis[3], vec3_t start, vec3_t end, vec3_t mins, vec3_t maxs, unsigned int contents, trace_t *trace);
static unsigned int CM_NativeContents(struct model_s *model, int hulloverride, int frame, vec3_t axis[3], vec3_t p, vec3_t mins, vec3_t maxs);
static unsigned int Q2BSP_PointContents(model_t *mod, vec3_t axis[3], vec3_t p);
static int CM_PointCluster (model_t *mod, vec3_t p);
extern mplane_t *box_planes;
extern char loadname[32];
extern model_t *loadmodel;
void Mod_Batches_Build(mesh_t *meshlist, model_t *mod, void (*build)(model_t *mod, msurface_t *surf, void *cookie), void *buildcookie);
float RadiusFromBounds (vec3_t mins, vec3_t maxs)
{
int i;
vec3_t corner;
for (i=0 ; i<3 ; i++)
{
corner[i] = fabs(mins[i]) > fabs(maxs[i]) ? fabs(mins[i]) : fabs(maxs[i]);
}
return Length (corner);
}
void CalcSurfaceExtents (msurface_t *s)
{
float mins[2], maxs[2], val;
int i,j, e;
mvertex_t *v;
mtexinfo_t *tex;
int bmins[2], bmaxs[2];
mins[0] = mins[1] = 999999;
maxs[0] = maxs[1] = -99999;
tex = s->texinfo;
for (i=0 ; i<s->numedges ; i++)
{
e = loadmodel->surfedges[s->firstedge+i];
if (e >= 0)
v = &loadmodel->vertexes[loadmodel->edges[e].v[0]];
else
v = &loadmodel->vertexes[loadmodel->edges[-e].v[1]];
for (j=0 ; j<2 ; j++)
{
val = v->position[0] * tex->vecs[j][0] +
v->position[1] * tex->vecs[j][1] +
v->position[2] * tex->vecs[j][2] +
tex->vecs[j][3];
if (val < mins[j])
mins[j] = val;
if (val > maxs[j])
maxs[j] = val;
}
}
for (i=0 ; i<2 ; i++)
{
bmins[i] = floor(mins[i]/16);
bmaxs[i] = ceil(maxs[i]/16);
s->texturemins[i] = bmins[i] * 16;
s->extents[i] = (bmaxs[i] - bmins[i]) * 16;
// if ( !(tex->flags & TEX_SPECIAL) && s->extents[i] > 8176 ) //q2 uses 512. probably for skys.
// Con_Printf ("Bad surface extents (texture %s)\n", s->texinfo->texture->name);
}
}
void AddPointToBounds (vec3_t v, vec3_t mins, vec3_t maxs)
{
int i;
vec_t val;
for (i=0 ; i<3 ; i++)
{
val = v[i];
if (val < mins[i])
mins[i] = val;
if (val > maxs[i])
maxs[i] = val;
}
}
void ClearBounds (vec3_t mins, vec3_t maxs)
{
mins[0] = mins[1] = mins[2] = 999999999;
maxs[0] = maxs[1] = maxs[2] = -999999999;
}
void Mod_SortShaders(void)
{
//surely this isn't still needed?
texture_t *textemp;
int i, j;
//sort loadmodel->textures
for (i = 0; i < loadmodel->numtextures; i++)
{
for (j = i+1; j < loadmodel->numtextures; j++)
{
if ((loadmodel->textures[i]->shader && loadmodel->textures[j]->shader) && (loadmodel->textures[j]->shader->sort < loadmodel->textures[i]->shader->sort))
{
textemp = loadmodel->textures[j];
loadmodel->textures[j] = loadmodel->textures[i];
loadmodel->textures[i] = textemp;
}
}
}
}
#ifdef Q2BSPS
qbyte *ReadPCXPalette(qbyte *buf, int len, qbyte *out);
#ifdef SERVERONLY
#define Host_Error SV_Error
#endif
extern model_t *loadmodel;
extern qbyte *mod_base;
unsigned char d_q28to24table[1024];
/*
typedef struct q2csurface_s
{
char name[16];
int flags;
int value;
} q2csurface_t;
*/
typedef struct q2mapsurface_s // used internally due to name len probs //ZOID
{
q2csurface_t c;
char rname[32];
} q2mapsurface_t;
typedef struct {
char shader[64];
int brushNum;
int visibleSide; // the brush side that ray tests need to clip against (-1 == none)
} dfog_t;
typedef struct
{
mplane_t *plane;
q2mapsurface_t *surface;
} q2cbrushside_t;
typedef struct
{
int contents;
int numsides;
q2cbrushside_t *brushside;
int checkcount; // to avoid repeated testings
} q2cbrush_t;
typedef struct
{
int numareaportals;
int firstareaportal;
int floodnum; // if two areas have equal floodnums, they are connected
int floodvalid;
} q2carea_t;
typedef struct
{
int numareaportals[MAX_CM_AREAS];
} q3carea_t;
typedef struct
{
vec3_t absmins, absmaxs;
int numfacets;
q2cbrush_t *facets;
#define numbrushes numfacets
#define brushes facets
q2mapsurface_t *surface;
int checkcount; // to avoid repeated testings
} q3cpatch_t;
typedef struct
{
vec3_t absmins, absmaxs;
vecV_t *xyz_array;
size_t numverts;
index_t *indicies;
size_t numincidies;
q2mapsurface_t *surface;
int checkcount; // to avoid repeated testings
} q3cmesh_t;
typedef struct
{
int facetype;
int numverts;
int firstvert;
int shadernum;
union
{
struct
{
int cp[2];
} patch;
struct
{
int firstindex;
int numindicies;
} soup;
};
} q3cface_t;
typedef struct cmodel_s
{
vec3_t mins, maxs;
vec3_t origin; // for sounds or lights
mnode_t *headnode;
mleaf_t *headleaf;
int numsurfaces;
int firstsurface;
int firstbrush; //q3 submodels are considered small enough that you will never need to walk any sort of tree.
int num_brushes;//the brushes are checked instead.
} cmodel_t;
/*used to trace*/
static int checkcount;
static mfog_t *map_fogs;
static int map_numfogs;
static int numbrushsides;
static q2cbrushside_t *map_brushsides;
static int numtexinfo;
static q2mapsurface_t *map_surfaces;
static int numleafbrushes;
static q2cbrush_t *map_leafbrushes[MAX_Q2MAP_LEAFBRUSHES];
static int numcmodels;
static cmodel_t *map_cmodels;
static int numbrushes;
static q2cbrush_t *map_brushes;
static int numvisibility;
static q2dvis_t *map_q2vis;
static q3dvis_t *map_q3pvs;
static q3dvis_t *map_q3phs;
static int numareas = 1;
static q2carea_t map_q2areas[MAX_Q2MAP_AREAS];
static q3carea_t map_q3areas[MAX_CM_AREAS];
static int numareaportals;
static q2dareaportal_t map_areaportals[MAX_Q2MAP_AREAPORTALS];
//(deprecated) patch collisions
static q3cpatch_t map_patches[MAX_CM_PATCHES];
static int numpatches;
static int *map_leafpatches;
static int numleafpatches;
static int maxleafpatches;
//list of mesh surfaces within the leaf
static q3cmesh_t map_cmeshes[MAX_CM_PATCHES];
static int numcmeshes;
static int *map_leafcmeshes;
static int numleafcmeshes;
static int maxleafcmeshes;
static int numclusters = 1;
static q2mapsurface_t nullsurface;
static int floodvalid;
static qbyte portalopen[MAX_Q2MAP_AREAPORTALS]; //memset will work if it's a qbyte, really it should be a qboolean
static int mapisq3;
cvar_t map_noareas = SCVAR("map_noareas", "0"); //1 for lack of mod support.
cvar_t map_noCurves = SCVARF("map_noCurves", "0", CVAR_CHEAT);
cvar_t map_autoopenportals = SCVAR("map_autoopenportals", "1"); //1 for lack of mod support.
cvar_t r_subdivisions = SCVAR("r_subdivisions", "2");
int CM_NumInlineModels (model_t *model);
cmodel_t *CM_InlineModel (char *name);
void CM_InitBoxHull (void);
static void FloodAreaConnections (void);
static vecV_t *map_verts; //3points
static int numvertexes;
static vec2_t *map_vertstmexcoords;
static vec2_t *map_vertlstmexcoords[MAXRLIGHTMAPS];
static vec4_t *map_colors4f_array[MAXRLIGHTMAPS];
static vec3_t *map_normals_array;
//static vec3_t *map_svector_array;
//static vec3_t *map_tvector_array;
q3cface_t *map_faces;
static int numfaces;
static index_t *map_surfindexes;
static int map_numsurfindexes;
static int *map_leaffaces;
static int numleaffaces;
int PlaneTypeForNormal ( vec3_t normal )
{
vec_t ax, ay, az;
// NOTE: should these have an epsilon around 1.0?
if ( normal[0] >= 1.0)
return PLANE_X;
if ( normal[1] >= 1.0 )
return PLANE_Y;
if ( normal[2] >= 1.0 )
return PLANE_Z;
ax = fabs( normal[0] );
ay = fabs( normal[1] );
az = fabs( normal[2] );
if ( ax >= ay && ax >= az )
return PLANE_ANYX;
if ( ay >= ax && ay >= az )
return PLANE_ANYY;
return PLANE_ANYZ;
}
void CategorizePlane ( mplane_t *plane )
{
int i;
plane->signbits = 0;
plane->type = PLANE_ANYZ;
for (i = 0; i < 3; i++)
{
if (plane->normal[i] < 0)
plane->signbits |= 1<<i;
if (plane->normal[i] == 1.0f)
plane->type = i;
}
plane->type = PlaneTypeForNormal(plane->normal);
}
void PlaneFromPoints ( vec3_t verts[3], mplane_t *plane )
{
vec3_t v1, v2;
VectorSubtract( verts[1], verts[0], v1 );
VectorSubtract( verts[2], verts[0], v2 );
CrossProduct( v2, v1, plane->normal );
VectorNormalize( plane->normal );
plane->dist = DotProduct( verts[0], plane->normal );
}
qboolean BoundsIntersect (vec3_t mins1, vec3_t maxs1, vec3_t mins2, vec3_t maxs2)
{
return (mins1[0] <= maxs2[0] && mins1[1] <= maxs2[1] && mins1[2] <= maxs2[2] &&
maxs1[0] >= mins2[0] && maxs1[1] >= mins2[1] && maxs1[2] >= mins2[2]);
}
/*
===============
Patch_FlatnessTest
===============
*/
static int Patch_FlatnessTest( float maxflat2, const float *point0, const float *point1, const float *point2 )
{
float d;
int ft0, ft1;
vec3_t t, n;
vec3_t v1, v2, v3;
VectorSubtract( point2, point0, n );
if( !VectorNormalize( n ) )
return 0;
VectorSubtract( point1, point0, t );
d = -DotProduct( t, n );
VectorMA( t, d, n, t );
if( DotProduct( t, t ) < maxflat2 )
return 0;
VectorAvg( point1, point0, v1 );
VectorAvg( point2, point1, v2 );
VectorAvg( v1, v2, v3 );
ft0 = Patch_FlatnessTest( maxflat2, point0, v1, v3 );
ft1 = Patch_FlatnessTest( maxflat2, v3, v2, point2 );
return 1 + (int)( floor( max( ft0, ft1 ) ) + 0.5f );
}
/*
===============
Patch_GetFlatness
===============
*/
void Patch_GetFlatness( float maxflat, const float *points, int comp, const int *patch_cp, int *flat )
{
int i, p, u, v;
float maxflat2 = maxflat * maxflat;
flat[0] = flat[1] = 0;
for( v = 0; v < patch_cp[1] - 1; v += 2 )
{
for( u = 0; u < patch_cp[0] - 1; u += 2 )
{
p = v * patch_cp[0] + u;
i = Patch_FlatnessTest( maxflat2, &points[p*comp], &points[( p+1 )*comp], &points[( p+2 )*comp] );
flat[0] = max( flat[0], i );
i = Patch_FlatnessTest( maxflat2, &points[( p+patch_cp[0] )*comp], &points[( p+patch_cp[0]+1 )*comp], &points[( p+patch_cp[0]+2 )*comp] );
flat[0] = max( flat[0], i );
i = Patch_FlatnessTest( maxflat2, &points[( p+2*patch_cp[0] )*comp], &points[( p+2*patch_cp[0]+1 )*comp], &points[( p+2*patch_cp[0]+2 )*comp] );
flat[0] = max( flat[0], i );
i = Patch_FlatnessTest( maxflat2, &points[p*comp], &points[( p+patch_cp[0] )*comp], &points[( p+2*patch_cp[0] )*comp] );
flat[1] = max( flat[1], i );
i = Patch_FlatnessTest( maxflat2, &points[( p+1 )*comp], &points[( p+patch_cp[0]+1 )*comp], &points[( p+2*patch_cp[0]+1 )*comp] );
flat[1] = max( flat[1], i );
i = Patch_FlatnessTest( maxflat2, &points[( p+2 )*comp], &points[( p+patch_cp[0]+2 )*comp], &points[( p+2*patch_cp[0]+2 )*comp] );
flat[1] = max( flat[1], i );
}
}
}
/*
===============
Patch_Evaluate_QuadricBezier
===============
*/
static void Patch_Evaluate_QuadricBezier( float t, const vec_t *point0, const vec_t *point1, const vec_t *point2, vec_t *out, int comp )
{
int i;
vec_t qt = t * t;
vec_t dt = 2.0f * t, tt, tt2;
tt = 1.0f - dt + qt;
tt2 = dt - 2.0f * qt;
for( i = 0; i < comp; i++ )
out[i] = point0[i] * tt + point1[i] * tt2 + point2[i] * qt;
}
/*
===============
Patch_Evaluate
===============
*/
void Patch_Evaluate( const vec_t *p, const int *numcp, const int *tess, vec_t *dest, int comp )
{
int num_patches[2], num_tess[2];
int index[3], dstpitch, i, u, v, x, y;
float s, t, step[2];
vec_t *tvec, *tvec2;
const vec_t *pv[3][3];
vec4_t v1, v2, v3;
num_patches[0] = numcp[0] / 2;
num_patches[1] = numcp[1] / 2;
dstpitch = ( num_patches[0] * tess[0] + 1 ) * comp;
step[0] = 1.0f / (float)tess[0];
step[1] = 1.0f / (float)tess[1];
for( v = 0; v < num_patches[1]; v++ )
{
// last patch has one more row
if( v < num_patches[1] - 1 )
num_tess[1] = tess[1];
else
num_tess[1] = tess[1] + 1;
for( u = 0; u < num_patches[0]; u++ )
{
// last patch has one more column
if( u < num_patches[0] - 1 )
num_tess[0] = tess[0];
else
num_tess[0] = tess[0] + 1;
index[0] = ( v * numcp[0] + u ) * 2;
index[1] = index[0] + numcp[0];
index[2] = index[1] + numcp[0];
// current 3x3 patch control points
for( i = 0; i < 3; i++ )
{
pv[i][0] = &p[( index[0]+i ) * comp];
pv[i][1] = &p[( index[1]+i ) * comp];
pv[i][2] = &p[( index[2]+i ) * comp];
}
tvec = dest + v * tess[1] * dstpitch + u * tess[0] * comp;
for( y = 0, t = 0.0f; y < num_tess[1]; y++, t += step[1], tvec += dstpitch )
{
Patch_Evaluate_QuadricBezier( t, pv[0][0], pv[0][1], pv[0][2], v1, comp );
Patch_Evaluate_QuadricBezier( t, pv[1][0], pv[1][1], pv[1][2], v2, comp );
Patch_Evaluate_QuadricBezier( t, pv[2][0], pv[2][1], pv[2][2], v3, comp );
for( x = 0, tvec2 = tvec, s = 0.0f; x < num_tess[0]; x++, s += step[0], tvec2 += comp )
Patch_Evaluate_QuadricBezier( s, v1, v2, v3, tvec2, comp );
}
}
}
}
#define PLANE_NORMAL_EPSILON 0.00001
#define PLANE_DIST_EPSILON 0.01
static qboolean ComparePlanes( const vec3_t p1normal, vec_t p1dist, const vec3_t p2normal, vec_t p2dist )
{
if( fabs( p1normal[0] - p2normal[0] ) < PLANE_NORMAL_EPSILON
&& fabs( p1normal[1] - p2normal[1] ) < PLANE_NORMAL_EPSILON
&& fabs( p1normal[2] - p2normal[2] ) < PLANE_NORMAL_EPSILON
&& fabs( p1dist - p2dist ) < PLANE_DIST_EPSILON )
return true;
return false;
}
static void SnapVector( vec3_t normal )
{
int i;
for( i = 0; i < 3; i++ )
{
if( fabs( normal[i] - 1 ) < PLANE_NORMAL_EPSILON )
{
VectorClear( normal );
normal[i] = 1;
break;
}
if( fabs( normal[i] + 1 ) < PLANE_NORMAL_EPSILON )
{
VectorClear( normal );
normal[i] = -1;
break;
}
}
}
#define Q_rint( x ) ( ( x ) < 0 ? ( (int)( ( x )-0.5f ) ) : ( (int)( ( x )+0.5f ) ) )
static void SnapPlane( vec3_t normal, vec_t *dist )
{
SnapVector( normal );
if( fabs( *dist - Q_rint( *dist ) ) < PLANE_DIST_EPSILON )
{
*dist = Q_rint( *dist );
}
}
/*
===============================================================================
PATCH LOADING
===============================================================================
*/
#define MAX_FACET_PLANES 32
#define cm_subdivlevel 15
/*
* CM_CreateFacetFromPoints
*/
static int CM_CreateFacetFromPoints(q2cbrush_t *facet, vec3_t *verts, int numverts, q2mapsurface_t *shaderref, mplane_t *brushplanes )
{
int i, j;
int axis, dir;
vec3_t normal, mins, maxs;
float d, dist;
mplane_t mainplane;
vec3_t vec, vec2;
int numbrushplanes;
// set default values for brush
facet->numsides = 0;
facet->brushside = NULL;
facet->contents = shaderref->c.value;
// calculate plane for this triangle
PlaneFromPoints( verts, &mainplane );
if( ComparePlanes( mainplane.normal, mainplane.dist, vec3_origin, 0 ) )
return 0;
// test a quad case
if( numverts > 3 )
{
d = DotProduct( verts[3], mainplane.normal ) - mainplane.dist;
if( d < -0.1 || d > 0.1 )
return 0;
if( 0 )
{
vec3_t v[3];
mplane_t plane;
// try different combinations of planes
for( i = 1; i < 4; i++ )
{
VectorCopy( verts[i], v[0] );
VectorCopy( verts[( i+1 )%4], v[1] );
VectorCopy( verts[( i+2 )%4], v[2] );
PlaneFromPoints( v, &plane );
if( fabs( DotProduct( mainplane.normal, plane.normal ) ) < 0.9 )
return 0;
}
}
}
numbrushplanes = 0;
// add front plane
SnapPlane( mainplane.normal, &mainplane.dist );
VectorCopy( mainplane.normal, brushplanes[numbrushplanes].normal );
brushplanes[numbrushplanes].dist = mainplane.dist; numbrushplanes++;
// calculate mins & maxs
ClearBounds( mins, maxs );
for( i = 0; i < numverts; i++ )
AddPointToBounds( verts[i], mins, maxs );
// add the axial planes
for( axis = 0; axis < 3; axis++ )
{
for( dir = -1; dir <= 1; dir += 2 )
{
for( i = 0; i < numbrushplanes; i++ )
{
if( brushplanes[i].normal[axis] == dir )
break;
}
if( i == numbrushplanes )
{
VectorClear( normal );
normal[axis] = dir;
if( dir == 1 )
dist = maxs[axis];
else
dist = -mins[axis];
VectorCopy( normal, brushplanes[numbrushplanes].normal );
brushplanes[numbrushplanes].dist = dist; numbrushplanes++;
}
}
}
// add the edge bevels
for( i = 0; i < numverts; i++ )
{
j = ( i + 1 ) % numverts;
// k = ( i + 2 ) % numverts;
VectorSubtract( verts[i], verts[j], vec );
if( VectorNormalize( vec ) < 0.5 )
continue;
SnapVector( vec );
for( j = 0; j < 3; j++ )
{
if( vec[j] == 1 || vec[j] == -1 )
break; // axial
}
if( j != 3 )
continue; // only test non-axial edges
// try the six possible slanted axials from this edge
for( axis = 0; axis < 3; axis++ )
{
for( dir = -1; dir <= 1; dir += 2 )
{
// construct a plane
VectorClear( vec2 );
vec2[axis] = dir;
CrossProduct( vec, vec2, normal );
if( VectorNormalize( normal ) < 0.5 )
continue;
dist = DotProduct( verts[i], normal );
for( j = 0; j < numbrushplanes; j++ )
{
// if this plane has already been used, skip it
if( ComparePlanes( brushplanes[j].normal, brushplanes[j].dist, normal, dist ) )
break;
}
if( j != numbrushplanes )
continue;
// if all other points are behind this plane, it is a proper edge bevel
for( j = 0; j < numverts; j++ )
{
if( j != i )
{
d = DotProduct( verts[j], normal ) - dist;
if( d > 0.1 )
break; // point in front: this plane isn't part of the outer hull
}
}
if( j != numverts )
continue;
// add this plane
VectorCopy( normal, brushplanes[numbrushplanes].normal );
brushplanes[numbrushplanes].dist = dist; numbrushplanes++;
if( numbrushplanes == MAX_FACET_PLANES )
break;
}
}
}
return ( facet->numsides = numbrushplanes );
}
/*
* CM_CreatePatch
*/
static void CM_CreatePatch( q3cpatch_t *patch, q2mapsurface_t *shaderref, const vec_t *verts, const int *patch_cp )
{
int step[2], size[2], flat[2];
int i, j, k ,u, v;
int numsides, totalsides;
q2cbrush_t *facets, *facet;
vecV_t *points;
vec3_t tverts[4];
qbyte *data;
mplane_t *brushplanes;
patch->surface = shaderref;
// find the degree of subdivision in the u and v directions
Patch_GetFlatness( cm_subdivlevel, verts, sizeof(vecV_t)/sizeof(vec_t), patch_cp, flat );
step[0] = 1 << flat[0];
step[1] = 1 << flat[1];
size[0] = ( patch_cp[0] >> 1 ) * step[0] + 1;
size[1] = ( patch_cp[1] >> 1 ) * step[1] + 1;
if( size[0] <= 0 || size[1] <= 0 )
return;
data = BZ_Malloc( size[0] * size[1] * sizeof( vecV_t ) +
( size[0]-1 ) * ( size[1]-1 ) * 2 * ( sizeof( q2cbrush_t ) + 32 * sizeof( mplane_t ) ) );
points = ( vecV_t * )data; data += size[0] * size[1] * sizeof( vecV_t );
facets = ( q2cbrush_t * )data; data += ( size[0]-1 ) * ( size[1]-1 ) * 2 * sizeof( q2cbrush_t );
brushplanes = ( mplane_t * )data; data += ( size[0]-1 ) * ( size[1]-1 ) * 2 * MAX_FACET_PLANES * sizeof( mplane_t );
// fill in
Patch_Evaluate(verts, patch_cp, step, points[0], sizeof(vecV_t)/sizeof(vec_t));
totalsides = 0;
patch->numfacets = 0;
patch->facets = NULL;
ClearBounds( patch->absmins, patch->absmaxs );
// create a set of facets
for( v = 0; v < size[1]-1; v++ )
{
for( u = 0; u < size[0]-1; u++ )
{
i = v * size[0] + u;
VectorCopy( points[i], tverts[0] );
VectorCopy( points[i + size[0]], tverts[1] );
VectorCopy( points[i + size[0] + 1], tverts[2] );
VectorCopy( points[i + 1], tverts[3] );
for( i = 0; i < 4; i++ )
AddPointToBounds( tverts[i], patch->absmins, patch->absmaxs );
// try to create one facet from a quad
numsides = CM_CreateFacetFromPoints( &facets[patch->numfacets], tverts, 4, shaderref, brushplanes + totalsides );
if( !numsides )
{ // create two facets from triangles
VectorCopy( tverts[3], tverts[2] );
numsides = CM_CreateFacetFromPoints( &facets[patch->numfacets], tverts, 3, shaderref, brushplanes + totalsides );
if( numsides )
{
totalsides += numsides;
patch->numfacets++;
}
VectorCopy( tverts[2], tverts[0] );
VectorCopy( points[v *size[0] + u + size[0] + 1], tverts[2] );
numsides = CM_CreateFacetFromPoints( &facets[patch->numfacets], tverts, 3, shaderref, brushplanes + totalsides );
}
if( numsides )
{
totalsides += numsides;
patch->numfacets++;
}
}
}
if (patch->numfacets)
{
qbyte *data;
data = ZG_Malloc(&loadmodel->memgroup, patch->numfacets * sizeof( q2cbrush_t ) + totalsides * ( sizeof( q2cbrushside_t ) + sizeof( mplane_t ) ));
patch->facets = ( q2cbrush_t * )data; data += patch->numfacets * sizeof( q2cbrush_t );
memcpy( patch->facets, facets, patch->numfacets * sizeof( q2cbrush_t ) );
for( i = 0, k = 0, facet = patch->facets; i < patch->numfacets; i++, facet++ )
{
mplane_t *planes;
q2cbrushside_t *s;
facet->brushside = ( q2cbrushside_t * )data; data += facet->numsides * sizeof( q2cbrushside_t );
planes = ( mplane_t * )data; data += facet->numsides * sizeof( mplane_t );
for( j = 0, s = facet->brushside; j < facet->numsides; j++, s++ )
{
planes[j] = brushplanes[k++];
s->plane = &planes[j];
SnapPlane( s->plane->normal, &s->plane->dist );
CategorizePlane( s->plane );
s->surface = shaderref;
}
}
for( i = 0; i < 3; i++ )
{
// spread the mins / maxs by a pixel
patch->absmins[i] -= 1;
patch->absmaxs[i] += 1;
}
}
BZ_Free( points );
}
//======================================================
/*
=================
CM_CreatePatchesForLeafs
=================
*/
qboolean CM_CreatePatchesForLeafs (void)
{
int i, j, k;
mleaf_t *leaf;
q3cface_t *face;
q2mapsurface_t *surf;
q3cpatch_t *patch;
q3cmesh_t *cmesh;
int *checkout = alloca(sizeof(int)*numfaces);
if (map_noCurves.ival)
return true;
memset (checkout, -1, sizeof(int)*numfaces);
for (i = 0, leaf = loadmodel->leafs; i < loadmodel->numleafs; i++, leaf++)
{
leaf->numleafpatches = 0;
leaf->firstleafpatch = numleafpatches;
leaf->numleafcmeshes = 0;
leaf->firstleafcmesh = numleafcmeshes;
if (leaf->cluster == -1)
continue;
for (j=0 ; j<leaf->nummarksurfaces ; j++)
{
k = leaf->firstmarksurface[j] - loadmodel->surfaces;
if (k >= numfaces)
{
Con_Printf (CON_ERROR "CM_CreatePatchesForLeafs: corrupt map\n");
break;
}
face = &map_faces[k];
if (face->numverts <= 0)
continue;
if (face->shadernum < 0 || face->shadernum >= loadmodel->numtextures)
continue;
surf = &map_surfaces[face->shadernum];
if (!surf->c.value) //surface has no contents value, so can't ever block anything.
continue;
switch(face->facetype)
{
case MST_TRIANGLE_SOUP:
if (!face->soup.numindicies)
continue;
//only enable mesh collisions if its meant to be enabled.
//we haven't parsed any shaders, so we depend upon the stuff that the bsp compiler left lying around.
if (!(surf->c.flags & q3bsp_surf_meshcollision_flag.ival) && !q3bsp_surf_meshcollision_force.ival)
continue;
if (numleafcmeshes >= maxleafcmeshes)
{
maxleafcmeshes *= 2;
maxleafcmeshes += 16;
if (numleafcmeshes > maxleafcmeshes)
{ //detect overflow
Con_Printf (CON_ERROR "CM_CreateCMeshesForLeafs: map is insanely huge!\n");
return false;
}
map_leafcmeshes = realloc(map_leafcmeshes, sizeof(*map_leafcmeshes) * maxleafcmeshes);
}
// the patch was already built
if (checkout[k] != -1)
{
map_leafcmeshes[numleafcmeshes] = checkout[k];
cmesh = &map_cmeshes[checkout[k]];
}
else
{
if (numcmeshes >= MAX_CM_PATCHES)
{
Con_Printf (CON_ERROR "CM_CreatePatchesForLeafs: map has too many patches\n");
return false;
}
cmesh = &map_cmeshes[numcmeshes];
map_leafcmeshes[numleafcmeshes] = numcmeshes;
checkout[k] = numcmeshes++;
//gcc warns without this cast
cmesh->surface = surf;
cmesh->numverts = face->numverts;
cmesh->numincidies = face->soup.numindicies;
cmesh->xyz_array = ZG_Malloc(&loadmodel->memgroup, cmesh->numverts * sizeof(*cmesh->xyz_array) + cmesh->numincidies * sizeof(*cmesh->indicies));
cmesh->indicies = (index_t*)(cmesh->xyz_array + cmesh->numverts);
VectorCopy(map_verts[face->firstvert+0], cmesh->xyz_array[0]);
VectorCopy(cmesh->xyz_array[0], cmesh->absmaxs);
VectorCopy(cmesh->xyz_array[0], cmesh->absmins);
for (k = 1; k < cmesh->numverts; k++)
{
VectorCopy(map_verts[face->firstvert+k], cmesh->xyz_array[k]);
AddPointToBounds(cmesh->xyz_array[k], cmesh->absmins, cmesh->absmaxs);
}
for (k = 0; k < cmesh->numincidies; k++)
cmesh->indicies[k] = map_surfindexes[face->soup.firstindex+k];
}
leaf->contents |= surf->c.value;
leaf->numleafcmeshes++;
numleafcmeshes++;
break;
case MST_PATCH:
if (face->patch.cp[0] <= 0 || face->patch.cp[1] <= 0)
continue;
if ( !surf->c.value || (surf->c.flags & Q3SURF_NONSOLID) )
continue;
if (numleafpatches >= maxleafpatches)
{
maxleafpatches *= 2;
maxleafpatches += 16;
if (numleafpatches > maxleafpatches)
{ //detect overflow
Con_Printf (CON_ERROR "CM_CreatePatchesForLeafs: map is insanely huge!\n");
return false;
}
map_leafpatches = realloc(map_leafpatches, sizeof(*map_leafpatches) * maxleafpatches);
}
// the patch was already built
if (checkout[k] != -1)
{
map_leafpatches[numleafpatches] = checkout[k];
patch = &map_patches[checkout[k]];
}
else
{
if (numpatches >= MAX_CM_PATCHES)
{
Con_Printf (CON_ERROR "CM_CreatePatchesForLeafs: map has too many patches\n");
return false;
}
patch = &map_patches[numpatches];
map_leafpatches[numleafpatches] = numpatches;
checkout[k] = numpatches++;
//gcc warns without this cast
CM_CreatePatch ( patch, surf, (const vec_t *)(map_verts + face->firstvert), face->patch.cp );
}
leaf->contents |= patch->surface->c.value;
leaf->numleafpatches++;
numleafpatches++;
break;
}
}
}
return true;
}
/*
===============================================================================
MAP LOADING
===============================================================================
*/
qbyte *cmod_base;
/*
=================
CMod_LoadSubmodels
=================
*/
qboolean CModQ2_LoadSubmodels (lump_t *l)
{
q2dmodel_t *in;
cmodel_t *out;
int i, j, count;
in = (void *)(cmod_base + l->fileofs);
if (l->filelen % sizeof(*in))
{
Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n");
return false;
}
count = l->filelen / sizeof(*in);
if (count < 1)
{
Con_Printf (CON_ERROR "Map with no models\n");
return false;
}
if (count > SANITY_MAX_Q2MAP_MODELS)
{
Con_Printf (CON_ERROR "Map has too many models\n");
return false;
}
out = map_cmodels = ZG_Malloc(&loadmodel->memgroup, count * sizeof(*map_cmodels));
numcmodels = count;
for (i=0 ; i<count ; i++, in++, out++)
{
for (j=0 ; j<3 ; j++)
{ // spread the mins / maxs by a pixel
out->mins[j] = LittleFloat (in->mins[j]) - 1;
out->maxs[j] = LittleFloat (in->maxs[j]) + 1;
out->origin[j] = LittleFloat (in->origin[j]);
}
out->headnode = loadmodel->nodes + LittleLong (in->headnode);
out->firstsurface = LittleLong (in->firstface);
out->numsurfaces = LittleLong (in->numfaces);
}
AddPointToBounds(map_cmodels[0].mins, loadmodel->mins, loadmodel->maxs);
AddPointToBounds(map_cmodels[0].maxs, loadmodel->mins, loadmodel->maxs);
return true;
}
/*
=================
CMod_LoadSurfaces
=================
*/
qboolean CModQ2_LoadSurfaces (lump_t *l)
{
q2texinfo_t *in;
q2mapsurface_t *out;
int i, count;
in = (void *)(cmod_base + l->fileofs);
if (l->filelen % sizeof(*in))
{
Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n");
return false;
}
count = l->filelen / sizeof(*in);
if (count < 1)
{
Con_Printf (CON_ERROR "Map with no surfaces\n");
return false;
}
// if (count > MAX_Q2MAP_TEXINFO)
// Host_Error ("Map has too many surfaces");
numtexinfo = count;
out = map_surfaces = ZG_Malloc(&loadmodel->memgroup, count * sizeof(*map_surfaces));
for ( i=0 ; i<count ; i++, in++, out++)
{
Q_strncpyz (out->c.name, in->texture, sizeof(out->c.name));
Q_strncpyz (out->rname, in->texture, sizeof(out->rname));
out->c.flags = LittleLong (in->flags);
out->c.value = LittleLong (in->value);
}
return true;
}
#ifndef SERVERONLY
texture_t *Mod_LoadWall(char *name, char *sname, unsigned int imageflags)
{
q2miptex_t replacementwal;
qbyte *in, *oin;
texture_t *tex;
q2miptex_t *wal;
int j;
char ln[32];
texnums_t tn;
memset(&tn, 0, sizeof(tn));
COM_FileBase(name, ln, sizeof(ln));
wal = (void *)FS_LoadMallocFile (name);
if (!wal)
{
tn.base = R_LoadReplacementTexture(name, loadname, imageflags);
wal = &replacementwal;
memset(wal, 0, sizeof(*wal));
Q_strncpyz(wal->name, name, sizeof(wal->name));
wal->width = image_width;
wal->height = image_height;
}
else
tn.base = R_LoadReplacementTexture(wal->name, loadname, imageflags);
wal->width = LittleLong(wal->width);
wal->height = LittleLong(wal->height);
{
int i;
for (i = 0; i < MIPLEVELS; i++)
wal->offsets[i] = LittleLong(wal->offsets[i]);
}
wal->flags = LittleLong(wal->flags);
wal->contents = LittleLong(wal->contents);
wal->value = LittleLong(wal->value);
tex = ZG_Malloc(&loadmodel->memgroup, sizeof(texture_t));
tex->offsets[0] = wal->offsets[0];
tex->width = wal->width;
tex->height = wal->height;
if (!TEXVALID(tn.base))
{
tn.base = R_LoadReplacementTexture(wal->name, "bmodels", imageflags);
if (!TEXVALID(tn.base))
{
if (!wal->offsets[0])
{
//they will download eventually...
CL_CheckOrEnqueDownloadFile(name, NULL, 0);
return NULL;
}
tn.base = R_LoadTexture8Pal24 (wal->name, tex->width, tex->height, (qbyte *)wal+wal->offsets[0], d_q28to24table, imageflags);
}
}
if (wal->offsets[0])
{
in = Hunk_TempAllocMore(wal->width*wal->height);
oin = (qbyte *)wal+wal->offsets[0];
for (j = 0; j < wal->width*wal->height; j++)
in[j] = (d_q28to24table[oin[j]*3+0] + d_q28to24table[oin[j]*3+1] + d_q28to24table[oin[j]*3+2])/3;
tn.bump = R_LoadTexture8BumpPal (va("%s_bump", wal->name), tex->width, tex->height, in, true);
}
if (wal != &replacementwal)
BZ_Free(wal);
tex->shader = R_RegisterCustom (sname, SUF_LIGHTMAP, Shader_DefaultBSPQ2, NULL);
R_BuildDefaultTexnums(&tn, tex->shader);
return tex;
}
qboolean CModQ2_LoadTexInfo (lump_t *l) //yes I know these load from the same place
{
q2texinfo_t *in;
mtexinfo_t *out;
int i, j, count;
char name[MAX_QPATH], *lwr;
char sname[MAX_QPATH];
float len1, len2;
int texcount;
in = (void *)(cmod_base + l->fileofs);
if (l->filelen % sizeof(*in))
{
Con_Printf ("MOD_LoadBmodel: funny lump size in %s\n",loadmodel->name);
return false;
}
count = l->filelen / sizeof(*in);
out = ZG_Malloc(&loadmodel->memgroup, count*sizeof(*out));
loadmodel->textures = ZG_Malloc(&loadmodel->memgroup, sizeof(texture_t *)*count);
texcount = 0;
loadmodel->texinfo = out;
loadmodel->numtexinfo = count;
for ( i=0 ; i<count ; i++, in++, out++)
{
out->flags = LittleLong (in->flags);
for (j=0 ; j<4 ; j++)
out->vecs[0][j] = LittleFloat (in->vecs[0][j]);
for (j=0 ; j<4 ; j++)
out->vecs[1][j] = LittleFloat (in->vecs[1][j]);
len1 = Length (out->vecs[0]);
len2 = Length (out->vecs[1]);
len1 = (len1 + len2)/2;
if (len1 < 0.32)
out->mipadjust = 4;
else if (len1 < 0.49)
out->mipadjust = 3;
else if (len1 < 0.99)
out->mipadjust = 2;
else
out->mipadjust = 1;
if (out->flags & TI_SKY)
snprintf(sname, sizeof(sname), "sky/%s%s", in->texture, in->nexttexinfo==-1?"":"#ANIMLOOP");
else if (out->flags & (TI_WARP|TI_TRANS33|TI_TRANS66))
snprintf(sname, sizeof(sname), "%s/%s#ALPHA=%s%s", ((out->flags&TI_WARP)?"warp":"trans"), in->texture, ((out->flags&TI_TRANS66)?"0.66":(out->flags&TI_TRANS33?"0.33":"1")), in->nexttexinfo==-1?"":"#ANIMLOOP");
else
snprintf(sname, sizeof(sname), "wall/%s%s", in->texture, in->nexttexinfo==-1?"":"#ANIMLOOP");
//in q2, 'TEX_SPECIAL' is TI_LIGHT, and that conflicts.
out->flags &= ~TI_LIGHT;
if (out->flags & (TI_SKY|TI_TRANS33|TI_TRANS66|TI_WARP))
out->flags |= TEX_SPECIAL;
//compact the textures.
for (j=0; j < texcount; j++)
{
if (!strcmp(sname, loadmodel->textures[j]->name))
{
out->texture = loadmodel->textures[j];
break;
}
}
if (j == texcount) //load a new one
{
for (lwr = in->texture; *lwr; lwr++)
{
if (*lwr >= 'A' && *lwr <= 'Z')
*lwr = *lwr - 'A' + 'a';
}
snprintf (name, sizeof(name), "textures/%s.wal", in->texture);
out->texture = Mod_LoadWall (name, sname, (out->flags&TEX_SPECIAL)?0:IF_NOALPHA);
if (!out->texture || !out->texture->width || !out->texture->height)
{
out->texture = ZG_Malloc(&loadmodel->memgroup, sizeof(texture_t) + 16*16+8*8+4*4+2*2);
Con_Printf (CON_WARNING "Couldn't load %s\n", name);
memcpy(out->texture, r_notexture_mip, sizeof(texture_t) + 16*16+8*8+4*4+2*2);
}
Q_strncpyz(out->texture->name, sname, sizeof(out->texture->name));
loadmodel->textures[texcount++] = out->texture;
}
if (in->nexttexinfo != -1)
{
Con_DPrintf("FIXME: %s should animate to %s\n", in->texture, (in->nexttexinfo+(q2texinfo_t *)(cmod_base + l->fileofs))->texture);
}
}
in = (void *)(cmod_base + l->fileofs);
out = loadmodel->texinfo;
for (i=0 ; i<count ; i++)
{
if (in[i].nexttexinfo >= 0 && in[i].nexttexinfo < count)
out[i].texture->anim_next = out[in[i].nexttexinfo].texture;
}
for (i=0 ; i<count ; i++)
{
texture_t *tex;
if (!out[i].texture->anim_next)
continue;
out[i].texture->anim_total = 1;
for (tex = out[i].texture->anim_next ; tex && tex != out[i].texture ; tex=tex->anim_next)
out[i].texture->anim_total++;
}
loadmodel->numtextures = texcount;
Mod_SortShaders();
return true;
}
#endif
/*
void CalcSurfaceExtents (msurface_t *s)
{
float mins[2], maxs[2], val;
int i,j, e;
mvertex_t *v;
mtexinfo_t *tex;
int bmins[2], bmaxs[2];
mins[0] = mins[1] = 999999;
maxs[0] = maxs[1] = -99999;
tex = s->texinfo;
for (i=0 ; i<s->numedges ; i++)
{
e = loadmodel->surfedges[s->firstedge+i];
if (e >= 0)
v = &loadmodel->vertexes[loadmodel->edges[e].v[0]];
else
v = &loadmodel->vertexes[loadmodel->edges[-e].v[1]];
for (j=0 ; j<2 ; j++)
{
val = v->position[0] * tex->vecs[j][0] +
v->position[1] * tex->vecs[j][1] +
v->position[2] * tex->vecs[j][2] +
tex->vecs[j][3];
if (val < mins[j])
mins[j] = val;
if (val > maxs[j])
maxs[j] = val;
}
}
for (i=0 ; i<2 ; i++)
{
bmins[i] = floor(mins[i]/16);
bmaxs[i] = ceil(maxs[i]/16);
s->texturemins[i] = bmins[i] * 16;
s->extents[i] = (bmaxs[i] - bmins[i]) * 16;
// if ( !(tex->flags & TEX_SPECIAL) && s->extents[i] > 512 )// 256 )
// Sys_Error ("Bad surface extents");
}
}*/
/*
=================
Mod_LoadFaces
=================
*/
#ifndef SERVERONLY
qboolean CModQ2_LoadFaces (lump_t *l)
{
dsface_t *in;
msurface_t *out;
int i, count, surfnum;
int planenum, side;
int ti;
in = (void *)(cmod_base + l->fileofs);
if (l->filelen % sizeof(*in))
{
Con_Printf ("MOD_LoadBmodel: funny lump size in %s\n",loadmodel->name);
return false;
}
count = l->filelen / sizeof(*in);
out = ZG_Malloc(&loadmodel->memgroup, (count+6)*sizeof(*out)); //spare for skybox
loadmodel->surfaces = out;
loadmodel->numsurfaces = count;
for ( surfnum=0 ; surfnum<count ; surfnum++, in++, out++)
{
out->firstedge = LittleLong(in->firstedge);
out->numedges = LittleShort(in->numedges);
out->flags = 0;
planenum = LittleShort(in->planenum);
side = LittleShort(in->side);
if (side)
out->flags |= SURF_PLANEBACK;
out->plane = loadmodel->planes + planenum;
ti = LittleShort (in->texinfo);
if (ti < 0 || ti >= loadmodel->numtexinfo)
{
Con_Printf (CON_ERROR "MOD_LoadBmodel: bad texinfo number\n");
return false;
}
out->texinfo = loadmodel->texinfo + ti;
#ifndef SERVERONLY
if (out->texinfo->flags & TI_SKY)
{
out->flags |= SURF_DRAWSKY;
}
if (out->texinfo->flags & TI_WARP)
{
out->flags |= SURF_DRAWTURB|SURF_DRAWTILED;
}
#endif
CalcSurfaceExtents (out);
// lighting info
for (i=0 ; i<MAXQ1LIGHTMAPS ; i++)
out->styles[i] = in->styles[i];
i = LittleLong(in->lightofs);
if (i == -1)
out->samples = NULL;
else
out->samples = loadmodel->lightdata + i;
// set the drawing flags
if (out->texinfo->flags & TI_WARP)
{
out->flags |= SURF_DRAWTURB;
for (i=0 ; i<2 ; i++)
{
out->extents[i] = 16384;
out->texturemins[i] = -8192;
}
}
}
return true;
}
#endif
void CMod_SetParent (mnode_t *node, mnode_t *parent)
{
node->parent = parent;
if (node->contents != -1)
return;
CMod_SetParent (node->children[0], node);
CMod_SetParent (node->children[1], node);
}
/*
=================
CMod_LoadNodes
=================
*/
qboolean CModQ2_LoadNodes (lump_t *l)
{
q2dnode_t *in;
int child;
mnode_t *out;
int i, j, count;
in = (void *)(cmod_base + l->fileofs);
if (l->filelen % sizeof(*in))
{
Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n");
return false;
}
count = l->filelen / sizeof(*in);
if (count < 1)
{
Con_Printf (CON_ERROR "Map has no nodes\n");
return false;
}
if (count > SANITY_MAX_MAP_NODES)
{
Con_Printf (CON_ERROR "Map has too many nodes\n");
return false;
}
out = ZG_Malloc(&loadmodel->memgroup, sizeof(mnode_t)*count);
loadmodel->nodes = out;
loadmodel->numnodes = count;
for (i=0 ; i<count ; i++, out++, in++)
{
memset(out, 0, sizeof(*out));
for (j=0 ; j<3 ; j++)
{
out->minmaxs[j] = LittleShort (in->mins[j]);
out->minmaxs[3+j] = LittleShort (in->maxs[j]);
}
out->plane = loadmodel->planes + LittleLong(in->planenum);
out->firstsurface = LittleShort (in->firstface);
out->numsurfaces = LittleShort (in->numfaces);
out->contents = -1; // differentiate from leafs
for (j=0 ; j<2 ; j++)
{
child = LittleLong (in->children[j]);
out->childnum[j] = child;
if (child < 0)
out->children[j] = (mnode_t *)(loadmodel->leafs + -1-child);
else
out->children[j] = loadmodel->nodes + child;
}
}
CMod_SetParent (loadmodel->nodes, NULL); // sets nodes and leafs
return true;
}
/*
=================
CMod_LoadBrushes
=================
*/
qboolean CModQ2_LoadBrushes (lump_t *l)
{
q2dbrush_t *in;
q2cbrush_t *out;
int i, count;
in = (void *)(cmod_base + l->fileofs);
if (l->filelen % sizeof(*in))
{
Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n");
return false;
}
count = l->filelen / sizeof(*in);
if (count > SANITY_MAX_MAP_BRUSHES)
{
Con_Printf (CON_ERROR "Map has too many brushes");
return false;
}
map_brushes = ZG_Malloc(&loadmodel->memgroup, sizeof(*out) * (count+1));
out = map_brushes;
numbrushes = count;
for (i=0 ; i<count ; i++, out++, in++)
{
//FIXME: missing bounds checks
out->brushside = &map_brushsides[LittleLong(in->firstside)];
out->numsides = LittleLong(in->numsides);
out->contents = LittleLong(in->contents);
}
return true;
}
/*
=================
CMod_LoadLeafs
=================
*/
qboolean CModQ2_LoadLeafs (lump_t *l)
{
int i, j;
mleaf_t *out;
q2dleaf_t *in;
int count;
in = (void *)(cmod_base + l->fileofs);
if (l->filelen % sizeof(*in))
{
Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n");
return false;
}
count = l->filelen / sizeof(*in);
if (count < 1)
{
Con_Printf (CON_ERROR "Map with no leafs\n");
return false;
}
// need to save space for box planes
if (count > MAX_MAP_LEAFS)
{
Con_Printf (CON_ERROR "Map has too many leafs\n");
return false;
}
out = ZG_Malloc(&loadmodel->memgroup, sizeof(*out) * (count+1));
numclusters = 0;
loadmodel->leafs = out;
loadmodel->numleafs = count;
for ( i=0 ; i<count ; i++, in++, out++)
{
memset(out, 0, sizeof(*out));
for (j=0 ; j<3 ; j++)
{
out->minmaxs[j] = LittleShort (in->mins[j]);
out->minmaxs[3+j] = LittleShort (in->maxs[j]);
}
out->contents = LittleLong (in->contents);
out->cluster = (unsigned short)LittleShort (in->cluster);
if (out->cluster == 0xffff)
out->cluster = -1;
out->area = LittleShort (in->area);
out->firstleafbrush = (unsigned short)LittleShort (in->firstleafbrush);
out->numleafbrushes = (unsigned short)LittleShort (in->numleafbrushes);
out->firstmarksurface = loadmodel->marksurfaces +
(unsigned short)LittleShort(in->firstleafface);
out->nummarksurfaces = (unsigned short)LittleShort(in->numleaffaces);
if (out->cluster >= numclusters)
numclusters = out->cluster + 1;
}
out = loadmodel->leafs;
if (out[0].contents != Q2CONTENTS_SOLID)
{
Con_Printf (CON_ERROR "Map leaf 0 is not CONTENTS_SOLID\n");
return false;
}
return true;
}
/*
=================
CMod_LoadPlanes
=================
*/
qboolean CModQ2_LoadPlanes (lump_t *l)
{
int i, j;
mplane_t *out;
dplane_t *in;
int count;
int bits;
in = (void *)(cmod_base + l->fileofs);
if (l->filelen % sizeof(*in))
{
Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n");
return false;
}
count = l->filelen / sizeof(*in);
if (count < 1)
{
Con_Printf (CON_ERROR "Map with no planes\n");
return false;
}
// need to save space for box planes
if (count >= SANITY_MAX_MAP_PLANES)
{
Con_Printf (CON_ERROR "Map has too many planes (%i)\n", count);
return false;
}
loadmodel->planes = out = ZG_Malloc(&loadmodel->memgroup, sizeof(*out) * count);
loadmodel->numplanes = count;
for ( i=0 ; i<count ; i++, in++, out++)
{
bits = 0;
for (j=0 ; j<3 ; j++)
{
out->normal[j] = LittleFloat (in->normal[j]);
if (out->normal[j] < 0)
bits |= 1<<j;
}
out->dist = LittleFloat (in->dist);
out->type = LittleLong (in->type);
out->signbits = bits;
}
return true;
}
/*
=================
CMod_LoadLeafBrushes
=================
*/
qboolean CModQ2_LoadLeafBrushes (lump_t *l)
{
int i;
q2cbrush_t **out;
unsigned short *in;
int count;
in = (void *)(cmod_base + l->fileofs);
if (l->filelen % sizeof(*in))
{
Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n");
return false;
}
count = l->filelen / sizeof(*in);
if (count < 1)
{
Con_Printf (CON_ERROR "Map with no planes\n");
return false;
}
// need to save space for box planes
if (count > MAX_Q2MAP_LEAFBRUSHES)
{
Con_Printf (CON_ERROR "Map has too many leafbrushes\n");
return false;
}
out = map_leafbrushes;
numleafbrushes = count;
for ( i=0 ; i<count ; i++, in++, out++)
*out = map_brushes + (unsigned short)(short)LittleShort (*in);
return true;
}
/*
=================
CMod_LoadBrushSides
=================
*/
qboolean CModQ2_LoadBrushSides (lump_t *l)
{
int i, j;
q2cbrushside_t *out;
q2dbrushside_t *in;
int count;
int num;
in = (void *)(cmod_base + l->fileofs);
if (l->filelen % sizeof(*in))
{
Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n");
return false;
}
count = l->filelen / sizeof(*in);
// need to save space for box planes
if (count > SANITY_MAX_MAP_BRUSHSIDES)
{
Con_Printf (CON_ERROR "Map has too many brushsides (%i)\n", count);
return false;
}
out = map_brushsides = ZG_Malloc(&loadmodel->memgroup, sizeof(*out) * count);
numbrushsides = count;
for ( i=0 ; i<count ; i++, in++, out++)
{
num = LittleShort (in->planenum);
out->plane = &loadmodel->planes[num];
j = LittleShort (in->texinfo);
if (j >= numtexinfo)
{
Con_Printf (CON_ERROR "Bad brushside texinfo\n");
return false;
}
out->surface = &map_surfaces[j];
}
return true;
}
/*
=================
CMod_LoadAreas
=================
*/
qboolean CModQ2_LoadAreas (lump_t *l)
{
int i;
q2carea_t *out;
q2darea_t *in;
int count;
in = (void *)(cmod_base + l->fileofs);
if (l->filelen % sizeof(*in))
{
Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n");
return false;
}
count = l->filelen / sizeof(*in);
if (count > MAX_Q2MAP_AREAS)
{
Con_Printf (CON_ERROR "Map has too many areas\n");
return false;
}
out = map_q2areas;
numareas = count;
for ( i=0 ; i<count ; i++, in++, out++)
{
out->numareaportals = LittleLong (in->numareaportals);
out->firstareaportal = LittleLong (in->firstareaportal);
out->floodvalid = 0;
out->floodnum = 0;
}
return true;
}
/*
=================
CMod_LoadAreaPortals
=================
*/
qboolean CModQ2_LoadAreaPortals (lump_t *l)
{
int i;
q2dareaportal_t *out;
q2dareaportal_t *in;
int count;
in = (void *)(cmod_base + l->fileofs);
if (l->filelen % sizeof(*in))
{
Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n");
return false;
}
count = l->filelen / sizeof(*in);
if (count > MAX_Q2MAP_AREAS)
{
Con_Printf (CON_ERROR "Map has too many areas\n");
return false;
}
out = map_areaportals;
numareaportals = count;
for ( i=0 ; i<count ; i++, in++, out++)
{
out->portalnum = LittleLong (in->portalnum);
out->otherarea = LittleLong (in->otherarea);
}
return true;
}
/*
=================
CMod_LoadVisibility
=================
*/
qboolean CModQ2_LoadVisibility (lump_t *l)
{
int i;
numvisibility = l->filelen;
// if (l->filelen > MAX_Q2MAP_VISIBILITY)
// {
// Con_Printf (CON_ERROR "Map has too large visibility lump\n");
// return false;
// }
map_q2vis = ZG_Malloc(&loadmodel->memgroup, l->filelen);
memcpy (map_q2vis, cmod_base + l->fileofs, l->filelen);
loadmodel->vis = map_q2vis;
map_q2vis->numclusters = LittleLong (map_q2vis->numclusters);
for (i=0 ; i<map_q2vis->numclusters ; i++)
{
map_q2vis->bitofs[i][0] = LittleLong (map_q2vis->bitofs[i][0]);
map_q2vis->bitofs[i][1] = LittleLong (map_q2vis->bitofs[i][1]);
}
loadmodel->numclusters = map_q2vis->numclusters;
return true;
}
/*
=================
CMod_LoadEntityString
=================
*/
void CMod_LoadEntityString (lump_t *l)
{
// if (l->filelen > MAX_Q2MAP_ENTSTRING)
// Host_Error ("Map has too large entity lump");
loadmodel->entities = ZG_Malloc(&loadmodel->memgroup, l->filelen+1);
memcpy (loadmodel->entities, cmod_base + l->fileofs, l->filelen);
}
qboolean CModQ3_LoadMarksurfaces (lump_t *l)
{
int i, j, count;
int *in;
msurface_t **out;
in = (void *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
{
Con_Printf (CON_ERROR "CModQ3_LoadMarksurfaces: funny lump size in %s\n",loadmodel->name);
return false;
}
count = l->filelen / sizeof(*in);
out = ZG_Malloc(&loadmodel->memgroup, count*sizeof(*out));
loadmodel->marksurfaces = out;
loadmodel->nummarksurfaces = count;
for ( i=0 ; i<count ; i++)
{
j = LittleLong(in[i]);
if (j < 0 || j >= loadmodel->numsurfaces)
{
Con_Printf (CON_ERROR "Mod_ParseMarksurfaces: bad surface number\n");
return false;
}
out[i] = loadmodel->surfaces + j;
}
return true;
}
qboolean CModQ3_LoadSubmodels (lump_t *l)
{
q3dmodel_t *in;
cmodel_t *out;
int i, j, count;
q2cbrush_t **leafbrush;
mleaf_t *bleaf;
in = (void *)(cmod_base + l->fileofs);
if (l->filelen % sizeof(*in))
{
Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n");
return false;
}
count = l->filelen / sizeof(*in);
if (count < 1)
{
Con_Printf (CON_ERROR "Map with no models\n");
return false;
}
if (count > SANITY_MAX_Q2MAP_MODELS)
{
Con_Printf (CON_ERROR "Map has too many models\n");
return false;
}
out = map_cmodels = ZG_Malloc(&loadmodel->memgroup, count * sizeof(*map_cmodels));
numcmodels = count;
if (count > 1)
bleaf = ZG_Malloc(&loadmodel->memgroup, (count-1) * sizeof(*bleaf));
else
bleaf = NULL;
mapisq3 = true;
for (i=0 ; i<count ; i++, in++, out++)
{
for (j=0 ; j<3 ; j++)
{ // spread the mins / maxs by a pixel
out->mins[j] = LittleFloat (in->mins[j]) - 1;
out->maxs[j] = LittleFloat (in->maxs[j]) + 1;
out->origin[j] = (out->maxs[j] + out->mins[j])/2;
}
out->firstsurface = LittleLong (in->firstsurface);
out->numsurfaces = LittleLong (in->num_surfaces);
if (!i)
{
out->headnode = loadmodel->nodes;
out->headleaf = NULL;
}
else
{
//create a new leaf to hold the brushes and be directly clipped
out->headleaf = bleaf;
out->headnode = NULL;
// out->firstbrush = LittleLong(in->firstbrush);
// out->num_brushes = LittleLong(in->num_brushes);
bleaf->numleafbrushes = LittleLong ( in->num_brushes );
bleaf->firstleafbrush = numleafbrushes;
bleaf->contents = 0;
leafbrush = &map_leafbrushes[numleafbrushes];
for ( j = 0; j < bleaf->numleafbrushes; j++, leafbrush++ )
{
*leafbrush = map_brushes + LittleLong ( in->firstbrush ) + j;
bleaf->contents |= (*leafbrush)->contents;
}
numleafbrushes += bleaf->numleafbrushes;
bleaf++;
}
//submodels
}
AddPointToBounds(map_cmodels[0].mins, loadmodel->mins, loadmodel->maxs);
AddPointToBounds(map_cmodels[0].maxs, loadmodel->mins, loadmodel->maxs);
return true;
}
qboolean CModQ3_LoadShaders (lump_t *l)
{
dq3shader_t *in;
q2mapsurface_t *out;
int i, count;
in = (void *)(cmod_base + l->fileofs);
if (l->filelen % sizeof(*in))
{
Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n");
return false;
}
count = l->filelen / sizeof(*in);
if (count < 1)
{
Con_Printf (CON_ERROR "Map with no shaders\n");
return false;
}
// else if (count > MAX_Q2MAP_TEXINFO)
// Host_Error ("Map has too many shaders");
numtexinfo = count;
out = map_surfaces = ZG_Malloc(&loadmodel->memgroup, count*sizeof(*out));
loadmodel->texinfo = ZG_Malloc(&loadmodel->memgroup, sizeof(mtexinfo_t)*count);
loadmodel->numtextures = count;
loadmodel->textures = ZG_Malloc(&loadmodel->memgroup, sizeof(texture_t*)*count);
for ( i=0 ; i<count ; i++, in++, out++ )
{
loadmodel->texinfo[i].texture = ZG_Malloc(&loadmodel->memgroup, sizeof(texture_t));
Q_strncpyz(loadmodel->texinfo[i].texture->name, in->shadername, sizeof(loadmodel->texinfo[i].texture->name));
loadmodel->textures[i] = loadmodel->texinfo[i].texture;
out->c.flags = LittleLong ( in->surfflags );
out->c.value = LittleLong ( in->contents );
}
return true;
}
qboolean CModQ3_LoadVertexes (lump_t *l)
{
q3dvertex_t *in;
vecV_t *out;
vec3_t *nout;
//, *sout, *tout;
int i, count, j;
vec2_t *lmout, *stout;
vec4_t *cout;
in = (void *)(cmod_base + l->fileofs);
if (l->filelen % sizeof(*in))
{
Con_Printf (CON_ERROR "CMOD_LoadVertexes: funny lump size\n");
return false;
}
count = l->filelen / sizeof(*in);
if (count > MAX_Q3MAP_VERTEXES)
{
Con_Printf (CON_ERROR "Map has too many vertexes\n");
return false;
}
out = ZG_Malloc(&loadmodel->memgroup, count*sizeof(*out));
stout = ZG_Malloc(&loadmodel->memgroup, count*sizeof(*stout));
lmout = ZG_Malloc(&loadmodel->memgroup, count*sizeof(*lmout));
cout = ZG_Malloc(&loadmodel->memgroup, count*sizeof(*cout));
nout = ZG_Malloc(&loadmodel->memgroup, count*sizeof(*nout));
// sout = ZG_Malloc(&loadmodel->memgroup, count*sizeof(*nout));
// tout = ZG_Malloc(&loadmodel->memgroup, count*sizeof(*nout));
map_verts = out;
map_vertstmexcoords = stout;
for (i = 0; i < MAXRLIGHTMAPS; i++)
{
map_vertlstmexcoords[i] = lmout;
map_colors4f_array[i] = cout;
}
map_normals_array = nout;
// map_svector_array = sout;
// map_tvector_array = tout;
numvertexes = count;
for ( i=0 ; i<count ; i++, in++)
{
for ( j=0 ; j < 3 ; j++)
{
out[i][j] = LittleFloat ( in->point[j] );
nout[i][j] = LittleFloat (in->normal[j]);
}
for ( j=0 ; j < 2 ; j++)
{
stout[i][j] = LittleFloat ( ((float *)in->texcoords)[j] );
lmout[i][j] = LittleFloat ( ((float *)in->texcoords)[j+2] );
}
for ( j=0 ; j < 4 ; j++)
{
cout[i][j] = in->color[j]/255.0f;
}
}
return true;
}
qboolean CModRBSP_LoadVertexes (lump_t *l)
{
rbspvertex_t *in;
vecV_t *out;
vec3_t *nout;
//, *sout, *tout;
int i, count, j;
vec2_t *lmout, *stout;
vec4_t *cout;
int sty;
in = (void *)(cmod_base + l->fileofs);
if (l->filelen % sizeof(*in))
{
Con_Printf (CON_ERROR "CMOD_LoadVertexes: funny lump size\n");
return false;
}
count = l->filelen / sizeof(*in);
if (count > MAX_Q3MAP_VERTEXES)
{
Con_Printf (CON_ERROR "Map has too many vertexes\n");
return false;
}
out = ZG_Malloc(&loadmodel->memgroup, count*sizeof(*out));
stout = ZG_Malloc(&loadmodel->memgroup, count*sizeof(*stout));
lmout = ZG_Malloc(&loadmodel->memgroup, MAXRLIGHTMAPS*count*sizeof(*lmout));
cout = ZG_Malloc(&loadmodel->memgroup, MAXRLIGHTMAPS*count*sizeof(*cout));
nout = ZG_Malloc(&loadmodel->memgroup, count*sizeof(*nout));
// sout = ZG_Malloc(&loadmodel->memgroup, count*sizeof(*sout));
// tout = ZG_Malloc(&loadmodel->memgroup, count*sizeof(*tout));
map_verts = out;
map_vertstmexcoords = stout;
for (sty = 0; sty < MAXRLIGHTMAPS; sty++)
{
map_vertlstmexcoords[sty] = lmout + sty*count;
map_colors4f_array[sty] = cout + sty*count;
}
map_normals_array = nout;
// map_svector_array = sout;
// map_tvector_array = tout;
numvertexes = count;
for ( i=0 ; i<count ; i++, in++)
{
for ( j=0 ; j < 3 ; j++)
{
out[i][j] = LittleFloat ( in->point[j] );
nout[i][j] = LittleFloat (in->normal[j]);
}
for ( j=0 ; j < 2 ; j++)
{
stout[i][j] = LittleFloat ( ((float *)in->texcoords)[j] );
for (sty = 0; sty < MAXRLIGHTMAPS; sty++)
map_vertlstmexcoords[sty][i][j] = LittleFloat ( ((float *)in->texcoords)[j+2*(sty+1)] );
}
for (sty = 0; sty < MAXRLIGHTMAPS; sty++)
{
for ( j=0 ; j < 4 ; j++)
{
map_colors4f_array[sty][i][j] = in->color[sty][j]/255.0f;
}
}
}
return true;
}
qboolean CModQ3_LoadIndexes (lump_t *l)
{
int i, count;
int *in;
index_t *out;
in = (void *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
{
Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size in %s\n", loadmodel->name);
return false;
}
count = l->filelen / sizeof(*in);
if (count < 1 || count >= MAX_Q3MAP_INDICES)
{
Con_Printf (CON_ERROR "MOD_LoadBmodel: too many indicies in %s: %i\n",
loadmodel->name, count);
return false;
}
out = ZG_Malloc(&loadmodel->memgroup, count*sizeof(*out));
map_surfindexes = out;
map_numsurfindexes = count;
for ( i=0 ; i<count ; i++)
out[i] = LittleLong (in[i]);
return true;
}
/*
=================
CMod_LoadFaces
=================
*/
qboolean CModQ3_LoadFaces (lump_t *l)
{
q3dface_t *in;
q3cface_t *out;
int i, count;
in = (void *)(cmod_base + l->fileofs);
if (l->filelen % sizeof(*in))
{
Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n");
return false;
}
count = l->filelen / sizeof(*in);
if (count > SANITY_MAX_MAP_FACES)
{
Con_Printf (CON_ERROR "Map has too many faces\n");
return false;
}
out = BZ_Malloc ( count*sizeof(*out) );
map_faces = out;
numfaces = count;
for ( i=0 ; i<count ; i++, in++, out++)
{
out->facetype = LittleLong ( in->facetype );
out->shadernum = LittleLong ( in->shadernum );
out->numverts = LittleLong ( in->num_vertices );
out->firstvert = LittleLong ( in->firstvertex );
if (out->facetype == MST_PATCH)
{
out->patch.cp[0] = LittleLong ( in->patchwidth );
out->patch.cp[1] = LittleLong ( in->patchheight );
}
else
{
out->soup.firstindex = LittleLong(in->firstindex);
out->soup.numindicies = LittleLong(in->num_indexes);
}
}
loadmodel->numsurfaces = i;
return true;
}
qboolean CModRBSP_LoadFaces (lump_t *l)
{
rbspface_t *in;
q3cface_t *out;
int i, count;
in = (void *)(cmod_base + l->fileofs);
if (l->filelen % sizeof(*in))
{
Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n");
return false;
}
count = l->filelen / sizeof(*in);
if (count > SANITY_MAX_MAP_FACES)
{
Con_Printf (CON_ERROR "Map has too many faces\n");
return false;
}
out = BZ_Malloc ( count*sizeof(*out) );
map_faces = out;
numfaces = count;
for ( i=0 ; i<count ; i++, in++, out++)
{
out->facetype = LittleLong ( in->facetype );
out->shadernum = LittleLong ( in->shadernum );
out->numverts = LittleLong ( in->num_vertices );
out->firstvert = LittleLong ( in->firstvertex );
if (out->facetype == MST_PATCH)
{
out->patch.cp[0] = LittleLong ( in->patchwidth );
out->patch.cp[1] = LittleLong ( in->patchheight );
}
else
{
out->soup.firstindex = LittleLong(in->firstindex);
out->soup.numindicies = LittleLong(in->num_indexes);
}
}
loadmodel->numsurfaces = i;
return true;
}
#ifndef SERVERONLY
/*
=================
Mod_LoadFogs
=================
*/
qboolean CModQ3_LoadFogs (lump_t *l)
{
dfog_t *in;
mfog_t *out;
q2cbrush_t *brush;
q2cbrushside_t *visibleside, *brushsides;
int i, j, count;
in = (void *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
{
Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size in %s\n",loadmodel->name);
return false;
}
count = l->filelen / sizeof(*in);
out = ZG_Malloc(&loadmodel->memgroup, count*sizeof(*out));
map_fogs = out;
map_numfogs = count;
for ( i=0 ; i<count ; i++, in++, out++)
{
if ( LittleLong ( in->visibleSide ) == -1 )
{
continue;
}
brush = map_brushes + LittleLong ( in->brushNum );
brushsides = brush->brushside;
visibleside = brushsides + LittleLong ( in->visibleSide );
out->visibleplane = visibleside->plane;
out->shader = R_RegisterShader_Lightmap ( in->shader );
R_BuildDefaultTexnums(&out->shader->defaulttextures, out->shader);
out->numplanes = brush->numsides;
out->planes = ZG_Malloc(&loadmodel->memgroup, out->numplanes*sizeof(cplane_t *));
for ( j = 0; j < out->numplanes; j++ )
{
out->planes[j] = brushsides[j].plane;
}
if (!out->shader->fog_dist)
{
//invalid fog shader, don't use.
out->shader = NULL;
out->numplanes = 0;
}
}
return true;
}
mfog_t *CM_FogForOrigin(vec3_t org)
{
int i, j;
mfog_t *ret = map_fogs;
float dot;
if (!map_numfogs || !cl.worldmodel || cl.worldmodel->fromgame != fg_quake3)
return NULL;
for ( i=0 ; i<map_numfogs ; i++, ret++)
{
if (!ret->numplanes)
continue;
for (j = 0; j < ret->numplanes; j++)
{
dot = DotProduct(ret->planes[j]->normal, org);
if (dot - ret->planes[j]->dist > 0)
break;
}
if (j == ret->numplanes)
{
return ret;
}
}
return NULL;
}
//Convert a patch in to a list of glpolys
#define MAX_ARRAY_VERTS 65535
index_t tempIndexesArray[MAX_ARRAY_VERTS*6];
void GL_SizePatch(mesh_t *mesh, int patchwidth, int patchheight, int numverts, int firstvert)
{
int patch_cp[2], step[2], size[2], flat[2];
float subdivlevel;
patch_cp[0] = patchwidth;
patch_cp[1] = patchheight;
if (patch_cp[0] <= 0 || patch_cp[1] <= 0 )
{
mesh->numindexes = 0;
mesh->numvertexes = 0;
return;
}
subdivlevel = r_subdivisions.value;
if ( subdivlevel < 1 )
subdivlevel = 1;
// find the degree of subdivision in the u and v directions
Patch_GetFlatness ( subdivlevel, map_verts[firstvert], sizeof(vecV_t)/sizeof(vec_t), patch_cp, flat );
// allocate space for mesh
step[0] = (1 << flat[0]);
step[1] = (1 << flat[1]);
size[0] = (patch_cp[0] / 2) * step[0] + 1;
size[1] = (patch_cp[1] / 2) * step[1] + 1;
mesh->numvertexes = size[0] * size[1];
mesh->numindexes = (size[0]-1) * (size[1]-1) * 6;
}
//mesh_t *GL_CreateMeshForPatch ( model_t *mod, q3dface_t *surf )
void GL_CreateMeshForPatch (model_t *mod, mesh_t *mesh, int patchwidth, int patchheight, int numverts, int firstvert)
{
int numindexes, patch_cp[2], step[2], size[2], flat[2], i, u, v, p;
index_t *indexes;
float subdivlevel;
int sty;
patch_cp[0] = patchwidth;
patch_cp[1] = patchheight;
if (patch_cp[0] <= 0 || patch_cp[1] <= 0 )
{
mesh->numindexes = 0;
mesh->numvertexes = 0;
return;
}
subdivlevel = r_subdivisions.value;
if ( subdivlevel < 1 )
subdivlevel = 1;
// find the degree of subdivision in the u and v directions
Patch_GetFlatness ( subdivlevel, map_verts[firstvert], sizeof(vecV_t)/sizeof(vec_t), patch_cp, flat );
// allocate space for mesh
step[0] = (1 << flat[0]);
step[1] = (1 << flat[1]);
size[0] = (patch_cp[0] / 2) * step[0] + 1;
size[1] = (patch_cp[1] / 2) * step[1] + 1;
numverts = size[0] * size[1];
if ( numverts < 0 || numverts > MAX_ARRAY_VERTS )
{
mesh->numindexes = 0;
mesh->numvertexes = 0;
return;
}
if (mesh->numvertexes != numverts)
{
mesh->numindexes = 0;
mesh->numvertexes = 0;
return;
}
// fill in
Patch_Evaluate ( map_verts[firstvert], patch_cp, step, mesh->xyz_array[0], sizeof(vecV_t)/sizeof(vec_t));
for (sty = 0; sty < MAXRLIGHTMAPS; sty++)
{
if (mesh->colors4f_array[sty])
Patch_Evaluate ( map_colors4f_array[sty][firstvert], patch_cp, step, mesh->colors4f_array[sty][0], 4 );
}
Patch_Evaluate ( map_normals_array[firstvert], patch_cp, step, mesh->normals_array[0], 3 );
Patch_Evaluate ( map_vertstmexcoords[firstvert], patch_cp, step, mesh->st_array[0], 2 );
for (sty = 0; sty < MAXRLIGHTMAPS; sty++)
{
if (mesh->lmst_array[sty])
Patch_Evaluate ( map_vertlstmexcoords[sty][firstvert], patch_cp, step, mesh->lmst_array[sty][0], 2 );
}
// compute new indexes avoiding adding invalid triangles
numindexes = 0;
indexes = tempIndexesArray;
for (v = 0, i = 0; v < size[1]-1; v++)
{
for (u = 0; u < size[0]-1; u++, i += 6)
{
indexes[0] = p = v * size[0] + u;
indexes[1] = p + size[0];
indexes[2] = p + 1;
// if ( !VectorEquals(mesh->xyz_array[indexes[0]], mesh->xyz_array[indexes[1]]) &&
// !VectorEquals(mesh->xyz_array[indexes[0]], mesh->xyz_array[indexes[2]]) &&
// !VectorEquals(mesh->xyz_array[indexes[1]], mesh->xyz_array[indexes[2]]) )
{
indexes += 3;
numindexes += 3;
}
indexes[0] = p + 1;
indexes[1] = p + size[0];
indexes[2] = p + size[0] + 1;
// if ( !VectorEquals(mesh->xyz_array[indexes[0]], mesh->xyz_array[indexes[1]]) &&
// !VectorEquals(mesh->xyz_array[indexes[0]], mesh->xyz_array[indexes[2]]) &&
// !VectorEquals(mesh->xyz_array[indexes[1]], mesh->xyz_array[indexes[2]]) )
{
indexes += 3;
numindexes += 3;
}
}
}
// allocate and fill index table
mesh->numindexes = numindexes;
memcpy (mesh->indexes, tempIndexesArray, numindexes * sizeof(index_t) );
}
void CModRBSP_BuildSurfMesh(model_t *mod, msurface_t *out, void *cookie)
{
rbspface_t *in = cookie;
int idx = out - loadmodel->surfaces;
int sty;
in += idx;
if (LittleLong(in->facetype) == MST_PATCH)
{
GL_CreateMeshForPatch(loadmodel, out->mesh, LittleLong(in->patchwidth), LittleLong(in->patchheight), LittleLong(in->num_vertices), LittleLong(in->firstvertex));
}
else if (LittleLong(in->facetype) == MST_PLANAR || LittleLong(in->facetype) == MST_TRIANGLE_SOUP)
{
unsigned int fv = LittleLong(in->firstvertex), i;
for (i = 0; i < out->mesh->numvertexes; i++)
{
VectorCopy(map_verts[fv + i], out->mesh->xyz_array[i]);
Vector2Copy(map_vertstmexcoords[fv + i], out->mesh->st_array[i]);
for (sty = 0; sty < MAXRLIGHTMAPS; sty++)
{
Vector2Copy(map_vertlstmexcoords[sty][fv + i], out->mesh->lmst_array[sty][i]);
Vector4Copy(map_colors4f_array[sty][fv + i], out->mesh->colors4f_array[sty][i]);
}
VectorCopy(map_normals_array[fv + i], out->mesh->normals_array[i]);
}
fv = LittleLong(in->firstindex);
for (i = 0; i < out->mesh->numindexes; i++)
{
out->mesh->indexes[i] = map_surfindexes[fv + i];
}
}
else
{
/* //flare
int r, g, b;
extern index_t r_quad_indexes[6];
static vec2_t st[4] = {{0,0},{0,1},{1,1},{1,0}};
mesh = out->mesh = (mesh_t *)Hunk_Alloc(sizeof(mesh_t));
mesh->xyz_array = (vecV_t *)Hunk_Alloc(sizeof(vecV_t)*4);
mesh->colors4b_array = (byte_vec4_t *)Hunk_Alloc(sizeof(byte_vec4_t)*4);
mesh->numvertexes = 4;
mesh->indexes = r_quad_indexes;
mesh->st_array = st;
mesh->numindexes = 6;
VectorCopy (in->lightmap_origin, mesh->xyz_array[0]);
VectorCopy (in->lightmap_origin, mesh->xyz_array[1]);
VectorCopy (in->lightmap_origin, mesh->xyz_array[2]);
VectorCopy (in->lightmap_origin, mesh->xyz_array[3]);
r = LittleFloat(in->lightmap_vecs[0][0]) * 255.0f;
r = bound (0, r, 255);
g = LittleFloat(in->lightmap_vecs[0][1]) * 255.0f;
g = bound (0, g, 255);
b = LittleFloat(in->lightmap_vecs[0][2]) * 255.0f;
b = bound (0, b, 255);
mesh->colors4b_array[0][0] = r;
mesh->colors4b_array[0][1] = g;
mesh->colors4b_array[0][2] = b;
mesh->colors4b_array[0][3] = 255;
Vector4Copy(mesh->colors4b_array[0], mesh->colors4b_array[1]);
Vector4Copy(mesh->colors4b_array[0], mesh->colors4b_array[2]);
Vector4Copy(mesh->colors4b_array[0], mesh->colors4b_array[3]);
*/
}
Mod_AccumulateMeshTextureVectors(out->mesh);
Mod_NormaliseTextureVectors(out->mesh->normals_array, out->mesh->snormals_array, out->mesh->tnormals_array, out->mesh->numvertexes);
}
void CModQ3_BuildSurfMesh(model_t *mod, msurface_t *out, void *cookie)
{
q3dface_t *in = cookie;
int idx = out - loadmodel->surfaces;
in += idx;
if (LittleLong(in->facetype) == MST_PATCH)
{
GL_CreateMeshForPatch(loadmodel, out->mesh, LittleLong(in->patchwidth), LittleLong(in->patchheight), LittleLong(in->num_vertices), LittleLong(in->firstvertex));
}
else if (LittleLong(in->facetype) == MST_PLANAR || LittleLong(in->facetype) == MST_TRIANGLE_SOUP)
{
unsigned int fv = LittleLong(in->firstvertex), i;
for (i = 0; i < out->mesh->numvertexes; i++)
{
VectorCopy(map_verts[fv + i], out->mesh->xyz_array[i]);
Vector2Copy(map_vertstmexcoords[fv + i], out->mesh->st_array[i]);
Vector2Copy(map_vertlstmexcoords[0][fv + i], out->mesh->lmst_array[0][i]);
Vector4Copy(map_colors4f_array[0][fv + i], out->mesh->colors4f_array[0][i]);
VectorCopy(map_normals_array[fv + i], out->mesh->normals_array[i]);
}
fv = LittleLong(in->firstindex);
for (i = 0; i < out->mesh->numindexes; i++)
{
out->mesh->indexes[i] = map_surfindexes[fv + i];
}
}
else
{
/* //flare
int r, g, b;
extern index_t r_quad_indexes[6];
static vec2_t st[4] = {{0,0},{0,1},{1,1},{1,0}};
mesh = out->mesh = (mesh_t *)Hunk_Alloc(sizeof(mesh_t));
mesh->xyz_array = (vecV_t *)Hunk_Alloc(sizeof(vecV_t)*4);
mesh->colors4b_array = (byte_vec4_t *)Hunk_Alloc(sizeof(byte_vec4_t)*4);
mesh->numvertexes = 4;
mesh->indexes = r_quad_indexes;
mesh->st_array = st;
mesh->numindexes = 6;
VectorCopy (in->lightmap_origin, mesh->xyz_array[0]);
VectorCopy (in->lightmap_origin, mesh->xyz_array[1]);
VectorCopy (in->lightmap_origin, mesh->xyz_array[2]);
VectorCopy (in->lightmap_origin, mesh->xyz_array[3]);
r = LittleFloat(in->lightmap_vecs[0][0]) * 255.0f;
r = bound (0, r, 255);
g = LittleFloat(in->lightmap_vecs[0][1]) * 255.0f;
g = bound (0, g, 255);
b = LittleFloat(in->lightmap_vecs[0][2]) * 255.0f;
b = bound (0, b, 255);
mesh->colors4b_array[0][0] = r;
mesh->colors4b_array[0][1] = g;
mesh->colors4b_array[0][2] = b;
mesh->colors4b_array[0][3] = 255;
Vector4Copy(mesh->colors4b_array[0], mesh->colors4b_array[1]);
Vector4Copy(mesh->colors4b_array[0], mesh->colors4b_array[2]);
Vector4Copy(mesh->colors4b_array[0], mesh->colors4b_array[3]);
*/
}
Mod_AccumulateMeshTextureVectors(out->mesh);
Mod_NormaliseTextureVectors(out->mesh->normals_array, out->mesh->snormals_array, out->mesh->tnormals_array, out->mesh->numvertexes);
}
qboolean CModQ3_LoadRFaces (lump_t *l)
{
q3dface_t *in;
msurface_t *out;
mplane_t *pl;
int count;
int surfnum;
int fv;
int sty;
mesh_t *mesh;
in = (void *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
{
Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size in %s\n",loadmodel->name);
return false;
}
count = l->filelen / sizeof(*in);
out = ZG_Malloc(&loadmodel->memgroup, count*sizeof(*out));
pl = ZG_Malloc(&loadmodel->memgroup, count*sizeof(*pl));//create a new array of planes for speed.
mesh = ZG_Malloc(&loadmodel->memgroup, count*sizeof(*mesh));
loadmodel->surfaces = out;
loadmodel->numsurfaces = count;
for (surfnum = 0; surfnum < count; surfnum++, out++, in++, pl++)
{
out->plane = pl;
out->texinfo = loadmodel->texinfo + LittleLong(in->shadernum);
out->lightmaptexturenums[0] = LittleLong(in->lightmapnum);
out->light_s[0] = LittleLong(in->lightmap_x);
out->light_t[0] = LittleLong(in->lightmap_y);
out->styles[0] = 255;
for (sty = 1; sty < MAXRLIGHTMAPS; sty++)
{
out->styles[sty] = 255;
out->lightmaptexturenums[sty] = -1;
}
out->extents[0] = (LittleLong(in->lightmap_width)-1)<<4;
out->extents[1] = (LittleLong(in->lightmap_height)-1)<<4;
out->samples=NULL;
if (loadmodel->lightmaps.count < out->lightmaptexturenums[0]+1)
loadmodel->lightmaps.count = out->lightmaptexturenums[0]+1;
fv = LittleLong(in->firstvertex);
{
vec3_t v[3];
VectorCopy(map_verts[fv+0], v[0]);
VectorCopy(map_verts[fv+1], v[1]);
VectorCopy(map_verts[fv+2], v[2]);
PlaneFromPoints(v, pl);
CategorizePlane(pl);
}
if (map_surfaces[LittleLong(in->shadernum)].c.value == 0 || map_surfaces[LittleLong(in->shadernum)].c.value & Q3CONTENTS_TRANSLUCENT)
//q3dm10's thingie is 0
out->flags |= SURF_DRAWALPHA;
if (loadmodel->texinfo[LittleLong(in->shadernum)].flags & TI_SKY)
out->flags |= SURF_DRAWSKY;
if (!out->texinfo->texture->shader)
{
extern cvar_t r_vertexlight;
if (LittleLong(in->facetype) == MST_FLARE)
out->texinfo->texture->shader = R_RegisterShader_Flare (out->texinfo->texture->name);
else if (LittleLong(in->facetype) == MST_TRIANGLE_SOUP || r_vertexlight.value)
out->texinfo->texture->shader = R_RegisterShader_Vertex (out->texinfo->texture->name);
else
out->texinfo->texture->shader = R_RegisterShader_Lightmap(out->texinfo->texture->name);
R_BuildDefaultTexnums(&out->texinfo->texture->shader->defaulttextures, out->texinfo->texture->shader);
}
if (LittleLong(in->fognum) == -1 || !map_numfogs)
out->fog = NULL;
else
out->fog = map_fogs + LittleLong(in->fognum);
if (map_surfaces[LittleLong(in->shadernum)].c.flags & (Q3SURF_NODRAW | Q3SURF_SKIP))
{
out->mesh = &mesh[surfnum];
out->mesh->numindexes = 0;
out->mesh->numvertexes = 0;
}
else if (LittleLong(in->facetype) == MST_PATCH)
{
out->mesh = &mesh[surfnum];
GL_SizePatch(out->mesh, LittleLong(in->patchwidth), LittleLong(in->patchheight), LittleLong(in->num_vertices), LittleLong(in->firstvertex));
}
else if (LittleLong(in->facetype) == MST_PLANAR || LittleLong(in->facetype) == MST_TRIANGLE_SOUP)
{
out->mesh = &mesh[surfnum];
out->mesh->numindexes = LittleLong(in->num_indexes);
out->mesh->numvertexes = LittleLong(in->num_vertices);
/*
Mod_AccumulateMeshTextureVectors(out->mesh);
*/
}
else
{
out->mesh = &mesh[surfnum];
out->mesh->numindexes = 6;
out->mesh->numvertexes = 4;
}
}
Mod_SortShaders();
return true;
}
qboolean CModRBSP_LoadRFaces (lump_t *l)
{
rbspface_t *in;
msurface_t *out;
mplane_t *pl;
int count;
int surfnum;
int fv;
int j;
mesh_t *mesh;
in = (void *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
{
Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size in %s\n",loadmodel->name);
return false;
}
count = l->filelen / sizeof(*in);
out = ZG_Malloc(&loadmodel->memgroup, count*sizeof(*out));
pl = ZG_Malloc(&loadmodel->memgroup, count*sizeof(*pl));//create a new array of planes for speed.
mesh = ZG_Malloc(&loadmodel->memgroup, count*sizeof(*mesh));
loadmodel->surfaces = out;
loadmodel->numsurfaces = count;
for (surfnum = 0; surfnum < count; surfnum++, out++, in++, pl++)
{
out->plane = pl;
out->texinfo = loadmodel->texinfo + LittleLong(in->shadernum);
in->facetype = LittleLong(in->facetype);
for (j = 0; j < 4 && j < MAXRLIGHTMAPS; j++)
{
out->lightmaptexturenums[j] = LittleLong(in->lightmapnum[j]);
out->light_s[j] = LittleLong(in->lightmap_offs[0][j]);
out->light_t[j] = LittleLong(in->lightmap_offs[1][j]);
out->styles[j] = in->lm_styles[j];
if (loadmodel->lightmaps.count < out->lightmaptexturenums[j]+1)
loadmodel->lightmaps.count = out->lightmaptexturenums[j]+1;
}
out->extents[0] = (LittleLong(in->lightmap_width)-1)<<4;
out->extents[1] = (LittleLong(in->lightmap_height)-1)<<4;
out->samples=NULL;
fv = LittleLong(in->firstvertex);
{
vec3_t v[3];
VectorCopy(map_verts[fv+0], v[0]);
VectorCopy(map_verts[fv+1], v[1]);
VectorCopy(map_verts[fv+2], v[2]);
PlaneFromPoints(v, pl);
CategorizePlane(pl);
}
if (map_surfaces[in->shadernum].c.value == 0 || map_surfaces[in->shadernum].c.value & Q3CONTENTS_TRANSLUCENT)
//q3dm10's thingie is 0
out->flags |= SURF_DRAWALPHA;
if (loadmodel->texinfo[in->shadernum].flags & TI_SKY)
out->flags |= SURF_DRAWSKY;
if (!out->texinfo->texture->shader)
{
extern cvar_t r_vertexlight;
if (in->facetype == MST_FLARE)
out->texinfo->texture->shader = R_RegisterShader_Flare (out->texinfo->texture->name);
else if (in->facetype == MST_TRIANGLE_SOUP || r_vertexlight.value)
out->texinfo->texture->shader = R_RegisterShader_Vertex (out->texinfo->texture->name);
else
out->texinfo->texture->shader = R_RegisterShader_Lightmap(out->texinfo->texture->name);
R_BuildDefaultTexnums(&out->texinfo->texture->shader->defaulttextures, out->texinfo->texture->shader);
}
if (in->fognum < 0 || in->fognum >= map_numfogs || !map_fogs[in->fognum].shader)
out->fog = NULL;
else
out->fog = map_fogs + in->fognum;
if (map_surfaces[LittleLong(in->shadernum)].c.flags & (Q3SURF_NODRAW | Q3SURF_SKIP))
{
out->mesh = &mesh[surfnum];
out->mesh->numindexes = 0;
out->mesh->numvertexes = 0;
}
else if (LittleLong(in->facetype) == MST_PATCH)
{
out->mesh = &mesh[surfnum];
GL_SizePatch(out->mesh, LittleLong(in->patchwidth), LittleLong(in->patchheight), LittleLong(in->num_vertices), LittleLong(in->firstvertex));
}
else if (LittleLong(in->facetype) == MST_PLANAR || LittleLong(in->facetype) == MST_TRIANGLE_SOUP)
{
out->mesh = &mesh[surfnum];
out->mesh->numindexes = LittleLong(in->num_indexes);
out->mesh->numvertexes = LittleLong(in->num_vertices);
/*
Mod_AccumulateMeshTextureVectors(out->mesh);
*/
}
else
{
out->mesh = &mesh[surfnum];
out->mesh->numindexes = 6;
out->mesh->numvertexes = 4;
}
}
Mod_SortShaders();
return true;
}
#endif
qboolean CModQ3_LoadLeafFaces (lump_t *l)
{
int i, j, count;
int *in;
int *out;
in = (void *)(cmod_base + l->fileofs);
if (l->filelen % sizeof(*in))
{
Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n");
return false;
}
count = l->filelen / sizeof(*in);
if (count > SANITY_MAX_MAP_LEAFFACES)
{
Con_Printf (CON_ERROR "Map has too many leaffaces\n");
return false;
}
out = BZ_Malloc ( count*sizeof(*out) );
map_leaffaces = out;
numleaffaces = count;
for ( i=0 ; i<count ; i++)
{
j = LittleLong ( in[i] );
if (j < 0 || j >= numfaces)
{
Con_Printf (CON_ERROR "CMod_LoadLeafFaces: bad surface number\n");
return false;
}
out[i] = j;
}
return true;
}
qboolean CModQ3_LoadNodes (lump_t *l)
{
int i, j, count, p;
q3dnode_t *in;
mnode_t *out;
//dnode_t
in = (void *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
{
Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size in %s\n",loadmodel->name);
return false;
}
count = l->filelen / sizeof(*in);
out = ZG_Malloc(&loadmodel->memgroup, count*sizeof(*out));
if (count > SANITY_MAX_MAP_NODES)
{
Con_Printf (CON_ERROR "Too many nodes on map\n");
return false;
}
loadmodel->nodes = out;
loadmodel->numnodes = count;
for ( i=0 ; i<count ; i++, in++, out++)
{
for (j=0 ; j<3 ; j++)
{
out->minmaxs[j] = LittleLong (in->mins[j]);
out->minmaxs[3+j] = LittleLong (in->maxs[j]);
}
AddPointToBounds(out->minmaxs, loadmodel->mins, loadmodel->maxs);
AddPointToBounds(out->minmaxs+3, loadmodel->mins, loadmodel->maxs);
p = LittleLong(in->plane);
out->plane = loadmodel->planes + p;
out->firstsurface = 0;//LittleShort (in->firstface);
out->numsurfaces = 0;//LittleShort (in->numfaces);
out->contents = -1;
for (j=0 ; j<2 ; j++)
{
p = LittleLong (in->children[j]);
out->childnum[j] = p;
if (p >= 0)
{
out->children[j] = loadmodel->nodes + p;
}
else
out->children[j] = (mnode_t *)(loadmodel->leafs + (-1 - p));
}
}
CMod_SetParent (loadmodel->nodes, NULL); // sets nodes and leafs
return true;
}
qboolean CModQ3_LoadBrushes (lump_t *l)
{
q3dbrush_t *in;
q2cbrush_t *out;
int i, count;
int shaderref;
in = (void *)(cmod_base + l->fileofs);
if (l->filelen % sizeof(*in))
{
Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n");
return false;
}
count = l->filelen / sizeof(*in);
if (count > SANITY_MAX_MAP_BRUSHES)
{
Con_Printf (CON_ERROR "Map has too many brushes");
return false;
}
map_brushes = ZG_Malloc(&loadmodel->memgroup, sizeof(*out) * (count+1));
out = map_brushes;
numbrushes = count;
for (i=0 ; i<count ; i++, out++, in++)
{
shaderref = LittleLong ( in->shadernum );
out->contents = map_surfaces[shaderref].c.value;
out->brushside = &map_brushsides[LittleLong ( in->firstside )];
out->numsides = LittleLong ( in->num_sides );
}
return true;
}
qboolean CModQ3_LoadLeafs (lump_t *l)
{
int i, j;
mleaf_t *out;
q3dleaf_t *in;
int count;
q2cbrush_t *brush;
in = (void *)(cmod_base + l->fileofs);
if (l->filelen % sizeof(*in))
{
Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n");
return false;
}
count = l->filelen / sizeof(*in);
if (count < 1)
{
Con_Printf (CON_ERROR "Map with no leafs\n");
return false;
}
// need to save space for box planes
if (count > MAX_MAP_LEAFS)
{
Con_Printf (CON_ERROR "Too many leaves on map");
return false;
}
out = ZG_Malloc(&loadmodel->memgroup, sizeof(*out) * (count+1));
numclusters = 0;
loadmodel->leafs = out;
loadmodel->numleafs = count;
for ( i=0 ; i<count ; i++, in++, out++)
{
for (j = 0; j < 3; j++)
{
out->minmaxs[0+j] = LittleLong(in->mins[j]);
out->minmaxs[3+j] = LittleLong(in->maxs[j]);
}
out->cluster = LittleLong(in->cluster);
out->area = LittleLong(in->area);
// out->firstleafface = LittleLong(in->firstleafsurface);
// out->numleaffaces = LittleLong(in->num_leafsurfaces);
out->contents = 0;
out->firstleafbrush = LittleLong(in->firstleafbrush);
out->numleafbrushes = LittleLong(in->num_leafbrushes);
out->firstmarksurface = loadmodel->marksurfaces + LittleLong(in->firstleafsurface);
out->nummarksurfaces = LittleLong(in->num_leafsurfaces);
if (out->minmaxs[0] > out->minmaxs[3+0] || out->minmaxs[1] > out->minmaxs[3+1] ||
out->minmaxs[2] > out->minmaxs[3+2])// || VectorEquals (out->minmaxs, out->minmaxs+3))
{
out->nummarksurfaces = 0;
}
for (j=0 ; j<out->numleafbrushes ; j++)
{
brush = map_leafbrushes[out->firstleafbrush + j];
out->contents |= brush->contents;
}
if (out->area >= numareas)
{
numareas = out->area + 1;
}
}
return true;
}
qboolean CModQ3_LoadPlanes (lump_t *l)
{
int i, j;
mplane_t *out;
Q3PLANE_t *in;
int count;
in = (void *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
{
Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size in %s\n",loadmodel->name);
return false;
}
count = l->filelen / sizeof(*in);
if (count > SANITY_MAX_MAP_PLANES)
{
Con_Printf (CON_ERROR "Too many planes on map (%i)\n", count);
return false;
}
loadmodel->planes = out = ZG_Malloc(&loadmodel->memgroup, sizeof(*out) * count);
loadmodel->numplanes = count;
for ( i=0 ; i<count ; i++, in++, out++)
{
for (j=0 ; j<3 ; j++)
{
out->normal[j] = LittleFloat (in->n[j]);
}
out->dist = LittleFloat (in->d);
CategorizePlane(out);
}
return true;
}
qboolean CModQ3_LoadLeafBrushes (lump_t *l)
{
int i;
q2cbrush_t **out;
int *in;
int count;
in = (void *)(cmod_base + l->fileofs);
if (l->filelen % sizeof(*in))
{
Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n");
return false;
}
count = l->filelen / sizeof(*in);
if (count < 1)
{
Con_Printf (CON_ERROR "Map with no leafbrushes\n");
return false;
}
// need to save space for box planes
if (count > MAX_Q2MAP_LEAFBRUSHES)
{
Con_Printf (CON_ERROR "Map has too many leafbrushes\n");
return false;
}
out = map_leafbrushes;
numleafbrushes = count;
for ( i=0 ; i<count ; i++, in++, out++)
*out = map_brushes + LittleLong (*in);
return true;
}
qboolean CModQ3_LoadBrushSides (lump_t *l)
{
int i, j;
q2cbrushside_t *out;
q3dbrushside_t *in;
int count;
int num;
in = (void *)(cmod_base + l->fileofs);
if (l->filelen % sizeof(*in))
{
Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n");
return false;
}
count = l->filelen / sizeof(*in);
// need to save space for box planes
if (count > SANITY_MAX_MAP_BRUSHSIDES)
{
Con_Printf (CON_ERROR "Map has too many brushsides (%i)\n", count);
return false;
}
out = map_brushsides = ZG_Malloc(&loadmodel->memgroup, sizeof(*out) * count);
numbrushsides = count;
for ( i=0 ; i<count ; i++, in++, out++)
{
num = LittleLong (in->planenum);
out->plane = &loadmodel->planes[num];
j = LittleLong (in->texinfo);
if (j >= numtexinfo)
{
Con_Printf (CON_ERROR "Bad brushside texinfo\n");
return false;
}
out->surface = &map_surfaces[j];
}
return true;
}
qboolean CModRBSP_LoadBrushSides (lump_t *l)
{
int i, j;
q2cbrushside_t *out;
rbspbrushside_t *in;
int count;
int num;
in = (void *)(cmod_base + l->fileofs);
if (l->filelen % sizeof(*in))
{
Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size\n");
return false;
}
count = l->filelen / sizeof(*in);
// need to save space for box planes
if (count > SANITY_MAX_MAP_BRUSHSIDES)
{
Con_Printf (CON_ERROR "Map has too many brushsides (%i)\n", count);
return false;
}
out = map_brushsides = ZG_Malloc(&loadmodel->memgroup, sizeof(*out) * count);
numbrushsides = count;
for ( i=0 ; i<count ; i++, in++, out++)
{
num = LittleLong (in->planenum);
out->plane = &loadmodel->planes[num];
j = LittleLong (in->texinfo);
if (j >= numtexinfo)
{
Con_Printf (CON_ERROR "Bad brushside texinfo\n");
return false;
}
out->surface = &map_surfaces[j];
}
return true;
}
qboolean CModQ3_LoadVisibility (lump_t *l)
{
if (l->filelen == 0)
{
int i;
numclusters = 0;
for (i = 0; i < loadmodel->numleafs; i++)
if (numclusters <= loadmodel->leafs[i].cluster)
numclusters = loadmodel->leafs[i].cluster+1;
numclusters++;
map_q3pvs = ZG_Malloc(&loadmodel->memgroup, sizeof(*map_q3pvs) + (numclusters+7)/8 * numclusters);
memset (map_q3pvs, 0xff, sizeof(*map_q3pvs) + (numclusters+7)/8 * numclusters);
map_q3pvs->numclusters = numclusters;
numvisibility = 0;
map_q3pvs->rowsize = (map_q3pvs->numclusters+7)/8;
}
else
{
numvisibility = l->filelen;
map_q3pvs = ZG_Malloc(&loadmodel->memgroup, l->filelen);
loadmodel->vis = (q2dvis_t *)map_q3pvs;
memcpy (map_q3pvs, cmod_base + l->fileofs, l->filelen);
numclusters = map_q3pvs->numclusters = LittleLong (map_q3pvs->numclusters);
map_q3pvs->rowsize = LittleLong (map_q3pvs->rowsize);
}
loadmodel->numclusters = numclusters;
return true;
}
#ifndef SERVERONLY
void CModQ3_LoadLighting (lump_t *l)
{
qbyte *in = mod_base + l->fileofs;
qbyte *out;
unsigned int samples = l->filelen;
int m, s;
int mapsize = loadmodel->lightmaps.width*loadmodel->lightmaps.height*3;
int maps;
extern cvar_t gl_overbright;
extern qbyte lmgamma[256];
extern void BuildLightMapGammaTable (float g, float c);
loadmodel->engineflags &= ~MDLF_RGBLIGHTING;
//round up the samples, in case the last one is partial.
maps = ((samples+mapsize-1)&~(mapsize-1)) / mapsize;
//q3 maps have built in 4-fold overbright.
//if we're not rendering with that, we need to brighten the lightmaps in order to keep the darker parts the same brightness. we loose the 2 upper bits. those bright areas become uniform and indistinct.
gl_overbright.flags |= CVAR_LATCH;
BuildLightMapGammaTable(1, (1<<(2-gl_overbright.ival)));
if (!samples)
return;
loadmodel->engineflags |= MDLF_RGBLIGHTING;
loadmodel->lightdata = out = ZG_Malloc(&loadmodel->memgroup, samples);
//be careful here, q3bsp deluxemapping is done using interleaving. we want to unoverbright ONLY lightmaps and not deluxemaps.
for (m = 0; m < maps; m++)
{
if (loadmodel->lightmaps.deluxemapping && (m & 1))
{
//no gamma for deluxemap
for(s = 0; s < mapsize; s+=3)
{
*out++ = in[0];
*out++ = in[1];
*out++ = in[2];
in += 3;
}
}
else
{
for(s = 0; s < mapsize; s++)
{
*out++ = lmgamma[*in++];
}
if (r_lightmap_saturation.value != 1.0f)
SaturateR8G8B8(out - mapsize, mapsize, r_lightmap_saturation.value);
}
}
}
qboolean CModQ3_LoadLightgrid (lump_t *l)
{
dq3gridlight_t *in;
dq3gridlight_t *out;
q3lightgridinfo_t *grid;
int count;
in = (void *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
{
Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size in %s\n",loadmodel->name);
return false;
}
count = l->filelen / sizeof(*in);
grid = ZG_Malloc(&loadmodel->memgroup, sizeof(q3lightgridinfo_t) + count*sizeof(*out));
grid->lightgrid = (dq3gridlight_t*)(grid+1);
out = grid->lightgrid;
loadmodel->lightgrid = grid;
grid->numlightgridelems = count;
// lightgrid is all 8 bit
memcpy ( out, in, count*sizeof(*out) );
return true;
}
qboolean CModRBSP_LoadLightgrid (lump_t *elements, lump_t *indexes)
{
unsigned short *iin;
rbspgridlight_t *ein;
unsigned short *iout;
rbspgridlight_t *eout;
q3lightgridinfo_t *grid;
int ecount;
int icount;
int i;
ein = (void *)(mod_base + elements->fileofs);
iin = (void *)(mod_base + indexes->fileofs);
if (indexes->filelen % sizeof(*iin) || elements->filelen % sizeof(*ein))
{
Con_Printf (CON_ERROR "MOD_LoadBmodel: funny lump size in %s\n",loadmodel->name);
return false;
}
icount = indexes->filelen / sizeof(*iin);
ecount = elements->filelen / sizeof(*ein);
grid = ZG_Malloc(&loadmodel->memgroup, sizeof(q3lightgridinfo_t) + ecount*sizeof(*eout) + icount*sizeof(*iout));
grid->rbspelements = (rbspgridlight_t*)((char *)grid + sizeof(q3lightgridinfo_t));
grid->rbspindexes = (unsigned short*)((char *)grid + sizeof(q3lightgridinfo_t) + ecount*sizeof(*eout));
eout = grid->rbspelements;
iout = grid->rbspindexes;
loadmodel->lightgrid = grid;
grid->numlightgridelems = icount;
// elements are all 8 bit
memcpy ( eout, ein, ecount*sizeof(*eout) );
for (i = 0; i < icount; i++)
iout[i] = LittleShort(iin[i]);
return true;
}
#endif
#ifndef SERVERONLY
qbyte *ReadPCXPalette(qbyte *buf, int len, qbyte *out);
int CM_GetQ2Palette (void)
{
char *f;
FS_LoadFile("pics/colormap.pcx", (void**)&f);
if (!f)
{
Con_Printf (CON_WARNING "Couldn't find pics/colormap.pcx\n");
return -1;
}
if (!ReadPCXPalette(f, com_filesize, d_q28to24table))
{
Con_Printf (CON_WARNING "Couldn't read pics/colormap.pcx\n");
FS_FreeFile(f);
return -1;
}
FS_FreeFile(f);
#if 1
{
float inf;
qbyte palette[768];
qbyte *pal;
int i;
pal = d_q28to24table;
for (i=0 ; i<768 ; i++)
{
inf = ((pal[i]+1)/256.0)*255 + 0.5;
if (inf < 0)
inf = 0;
if (inf > 255)
inf = 255;
palette[i] = inf;
}
memcpy (d_q28to24table, palette, sizeof(palette));
}
#endif
return 0;
}
#endif
void CM_OpenAllPortals(char *ents) //this is a compleate hack. About as compleate as possible.
{ //q2 levels contain a thingie called area portals. Basically, doors can seperate two areas and
//the engine knows when this portal is open, and weather to send ents from both sides of the door
//or not. It's not just ents, but also walls. We want to just open them by default and hope the
//progs knows how to close them.
char style[8];
char name[64];
if (!map_autoopenportals.value)
return;
while(*ents)
{
if (*ents == '{') //an entity
{
ents++;
*style = '\0';
*name = '\0';
while (*ents)
{
ents = COM_Parse(ents);
if (!strcmp(com_token, "classname"))
{
ents = COM_ParseOut(ents, name, sizeof(name));
}
else if (!strcmp(com_token, "style"))
{
ents = COM_ParseOut(ents, style, sizeof(style));
}
else if (*com_token == '}')
break;
else
ents = COM_Parse(ents); //other field
ents++;
}
if (!strcmp(name, "func_areaportal"))
{
CMQ2_SetAreaPortalState(atoi(style), true);
}
}
ents++;
}
}
#ifndef CLIENTONLY
void CMQ3_CalcPHS (void)
{
int rowbytes, rowwords;
int i, j, k, l, index;
int bitbyte;
unsigned int *dest, *src;
qbyte *scan;
int count, vcount;
int numclusters;
qboolean buggytools = false;
Con_DPrintf ("Building PHS...\n");
map_q3phs = ZG_Malloc(&loadmodel->memgroup, sizeof(*map_q3phs) + map_q3pvs->rowsize * map_q3pvs->numclusters);
rowwords = map_q3pvs->rowsize / sizeof(int);
rowbytes = map_q3pvs->rowsize;
memset ( map_q3phs, 0, sizeof(*map_q3phs) + map_q3pvs->rowsize * map_q3pvs->numclusters );
map_q3phs->rowsize = map_q3pvs->rowsize;
map_q3phs->numclusters = numclusters = map_q3pvs->numclusters;
if (!numclusters)
return;
vcount = 0;
for (i=0 ; i<numclusters ; i++)
{
scan = CM_ClusterPVS (sv.world.worldmodel, i, NULL, 0);
for (j=0 ; j<numclusters ; j++)
{
if ( scan[j>>3] & (1<<(j&7)) )
{
vcount++;
}
}
}
count = 0;
scan = (qbyte *)map_q3pvs->data;
dest = (unsigned int *)(map_q3phs->data);
for (i=0 ; i<numclusters ; i++, dest += rowwords, scan += rowbytes)
{
memcpy (dest, scan, rowbytes);
for (j=0 ; j<rowbytes ; j++)
{
bitbyte = scan[j];
if (!bitbyte)
continue;
for (k=0 ; k<8 ; k++)
{
if (! (bitbyte & (1<<k)) )
continue;
// OR this pvs row into the phs
index = (j<<3) + k;
if (index >= numclusters)
{
if (!buggytools)
Con_Printf ("CM_CalcPHS: Bad bit(s) in PVS (%i >= %i)\n", index, numclusters); // pad bits should be 0
buggytools = true;
}
else
{
src = (unsigned int *)(map_q3pvs->data) + index*rowwords;
for (l=0 ; l<rowwords ; l++)
dest[l] |= src[l];
}
}
}
for (j=0 ; j<numclusters ; j++)
if ( ((qbyte *)dest)[j>>3] & (1<<(j&7)) )
count++;
}
Con_DPrintf ("Average clusters visible / hearable / total: %i / %i / %i\n"
, vcount/numclusters, count/numclusters, numclusters);
}
#endif
/*
static qbyte *CM_LeafnumPVS (model_t *model, int leafnum, qbyte *buffer, unsigned int buffersize)
{
return CM_ClusterPVS(model, CM_LeafCluster(model, leafnum), buffer, buffersize);
}
*/
#ifndef SERVERONLY
#define GLQ2BSP_LightPointValues GLQ1BSP_LightPointValues
extern int r_dlightframecount;
static void Q2BSP_MarkLights (dlight_t *light, int bit, mnode_t *node)
{
mplane_t *splitplane;
float dist;
msurface_t *surf;
int i;
if (node->contents != -1)
{
mleaf_t *leaf = (mleaf_t *)node;
msurface_t **mark;
i = leaf->nummarksurfaces;
mark = leaf->firstmarksurface;
while(i--!=0)
{
surf = *mark++;
if (surf->dlightframe != r_dlightframecount)
{
surf->dlightbits = 0;
surf->dlightframe = r_dlightframecount;
}
surf->dlightbits |= bit;
}
return;
}
splitplane = node->plane;
dist = DotProduct (light->origin, splitplane->normal) - splitplane->dist;
if (dist > light->radius)
{
Q2BSP_MarkLights (light, bit, node->children[0]);
return;
}
if (dist < -light->radius)
{
Q2BSP_MarkLights (light, bit, node->children[1]);
return;
}
// mark the polygons
surf = cl.worldmodel->surfaces + node->firstsurface;
for (i=0 ; i<node->numsurfaces ; i++, surf++)
{
if (surf->dlightframe != r_dlightframecount)
{
surf->dlightbits = 0;
surf->dlightframe = r_dlightframecount;
}
surf->dlightbits |= bit;
}
Q2BSP_MarkLights (light, bit, node->children[0]);
Q2BSP_MarkLights (light, bit, node->children[1]);
}
#ifndef SERVERONLY
static void GLR_Q2BSP_StainNode (mnode_t *node, float *parms)
{
mplane_t *splitplane;
float dist;
msurface_t *surf;
int i;
if (node->contents != -1)
return;
splitplane = node->plane;
dist = DotProduct ((parms+1), splitplane->normal) - splitplane->dist;
if (dist > (*parms))
{
GLR_Q2BSP_StainNode (node->children[0], parms);
return;
}
if (dist < (-*parms))
{
GLR_Q2BSP_StainNode (node->children[1], parms);
return;
}
// mark the polygons
surf = cl.worldmodel->surfaces + node->firstsurface;
for (i=0 ; i<node->numsurfaces ; i++, surf++)
{
if (surf->flags&~(SURF_DONTWARP|SURF_PLANEBACK))
continue;
Surf_StainSurf(surf, parms);
}
GLR_Q2BSP_StainNode (node->children[0], parms);
GLR_Q2BSP_StainNode (node->children[1], parms);
}
#endif
#endif
void GLQ2BSP_LightPointValues(model_t *mod, vec3_t point, vec3_t res_diffuse, vec3_t res_ambient, vec3_t res_dir);
/*
==================
CM_LoadMap
Loads in the map and all submodels
==================
*/
cmodel_t *CM_LoadMap (char *name, char *filein, qboolean clientload, unsigned *checksum)
{
unsigned *buf;
int i;
q2dheader_t header;
int length;
static unsigned last_checksum;
qboolean noerrors = true;
model_t *im = loadmodel;
void (*buildmeshes)(model_t *mod, msurface_t *surf, void *cookie) = NULL;
void *buildcookie = NULL;
// free old stuff
numcmodels = 0;
numvisibility = 0;
box_planes = NULL; //so its rebuilt
loadmodel->type = mod_brush;
if (!name || !name[0])
{
map_cmodels = ZG_Malloc(&loadmodel->memgroup, 1 * sizeof(*map_cmodels));
loadmodel->leafs = ZG_Malloc(&loadmodel->memgroup, 1 * sizeof(*loadmodel->leafs));
numcmodels = 1;
numclusters = 1;
numareas = 1;
*checksum = 0;
map_cmodels[0].headnode = (mnode_t*)loadmodel->leafs; //directly start with the empty leaf
return &map_cmodels[0]; // cinematic servers won't have anything at all
}
//
// load the file
//
buf = (unsigned *)filein;
length = com_filesize;
if (!buf)
{
Con_Printf (CON_ERROR "Couldn't load %s\n", name);
return NULL;
}
last_checksum = LittleLong (Com_BlockChecksum (buf, length));
*checksum = last_checksum;
header = *(q2dheader_t *)(buf);
header.ident = LittleLong(header.ident);
header.version = LittleLong(header.version);
cmod_base = mod_base = (qbyte *)buf;
if (header.ident == (('F'<<0)+('B'<<8)+('S'<<16)+('P'<<24)))
{
loadmodel->lightmaps.width = 512;
loadmodel->lightmaps.height = 512;
}
else
{
loadmodel->lightmaps.width = 128;
loadmodel->lightmaps.height = 128;
}
ClearBounds(loadmodel->mins, loadmodel->maxs);
switch(header.version)
{
default:
Con_Printf (CON_ERROR "Quake 2 or Quake 3 based BSP with unknown header (%s: %i should be %i or %i)\n"
, name, header.version, Q2BSPVERSION, Q3BSPVERSION);
return NULL;
break;
#ifdef Q3BSPS
case 1: //rbsp/fbsp
case Q3BSPVERSION+1: //rtcw
case Q3BSPVERSION:
mapisq3 = true;
loadmodel->fromgame = fg_quake3;
for (i=0 ; i<Q3LUMPS_TOTAL ; i++)
{
if (i == RBSPLUMP_LIGHTINDEXES && header.version != 1)
{
header.lumps[i].filelen = 0;
header.lumps[i].fileofs = 0;
}
else
{
header.lumps[i].filelen = LittleLong (header.lumps[i].filelen);
header.lumps[i].fileofs = LittleLong (header.lumps[i].fileofs);
if (header.lumps[i].filelen && header.lumps[i].fileofs + header.lumps[i].filelen > com_filesize)
{
Con_Printf (CON_ERROR "WARNING: q3bsp %s truncated (lump %i, %i+%i > %i)\n", name, i, header.lumps[i].fileofs, header.lumps[i].filelen, com_filesize);
header.lumps[i].filelen = com_filesize - header.lumps[i].fileofs;
if (header.lumps[i].filelen < 0)
header.lumps[i].filelen = 0;
}
}
}
/*
#ifndef SERVERONLY
GLMod_LoadVertexes (&header.lumps[Q3LUMP_DRAWVERTS]);
// GLMod_LoadEdges (&header.lumps[Q3LUMP_EDGES]);
// GLMod_LoadSurfedges (&header.lumps[Q3LUMP_SURFEDGES]);
GLMod_LoadLighting (&header.lumps[Q3LUMP_LIGHTMAPS]);
#endif
CModQ3_LoadShaders (&header.lumps[Q3LUMP_SHADERS]);
CModQ3_LoadPlanes (&header.lumps[Q3LUMP_PLANES]);
CModQ3_LoadLeafBrushes (&header.lumps[Q3LUMP_LEAFBRUSHES]);
CModQ3_LoadBrushes (&header.lumps[Q3LUMP_BRUSHES]);
CModQ3_LoadBrushSides (&header.lumps[Q3LUMP_BRUSHSIDES]);
#ifndef SERVERONLY
CMod_LoadTexInfo (&header.lumps[Q3LUMP_SHADERS]);
CMod_LoadFaces (&header.lumps[Q3LUMP_SURFACES]);
// GLMod_LoadMarksurfaces (&header.lumps[Q3LUMP_LEAFFACES]);
#endif
CMod_LoadVisibility (&header.lumps[Q3LUMP_VISIBILITY]);
CModQ3_LoadSubmodels (&header.lumps[Q3LUMP_MODELS]);
CModQ3_LoadLeafs (&header.lumps[Q3LUMP_LEAFS]);
CModQ3_LoadNodes (&header.lumps[Q3LUMP_NODES]);
// CMod_LoadAreas (&header.lumps[Q3LUMP_AREAS]);
// CMod_LoadAreaPortals (&header.lumps[Q3LUMP_AREAPORTALS]);
CMod_LoadEntityString (&header.lumps[Q3LUMP_ENTITIES]);
*/
map_faces = NULL;
map_leaffaces = NULL;
Q1BSPX_Setup(loadmodel, mod_base, com_filesize, header.lumps, Q3LUMPS_TOTAL);
mapisq3 = true;
noerrors = noerrors && CModQ3_LoadShaders (&header.lumps[Q3LUMP_SHADERS]);
noerrors = noerrors && CModQ3_LoadPlanes (&header.lumps[Q3LUMP_PLANES]);
if (header.version == 1)
{
noerrors = noerrors && CModRBSP_LoadBrushSides (&header.lumps[Q3LUMP_BRUSHSIDES]);
noerrors = noerrors && CModRBSP_LoadVertexes (&header.lumps[Q3LUMP_DRAWVERTS]);
}
else
{
noerrors = noerrors && CModQ3_LoadBrushSides (&header.lumps[Q3LUMP_BRUSHSIDES]);
noerrors = noerrors && CModQ3_LoadVertexes (&header.lumps[Q3LUMP_DRAWVERTS]);
}
noerrors = noerrors && CModQ3_LoadBrushes (&header.lumps[Q3LUMP_BRUSHES]);
noerrors = noerrors && CModQ3_LoadLeafBrushes (&header.lumps[Q3LUMP_LEAFBRUSHES]);
if (header.version == 1)
noerrors = noerrors && CModRBSP_LoadFaces (&header.lumps[Q3LUMP_SURFACES]);
else
noerrors = noerrors && CModQ3_LoadFaces (&header.lumps[Q3LUMP_SURFACES]);
#ifndef SERVERONLY
if (qrenderer != QR_NONE)
{
if (header.version == 1)
noerrors = noerrors && CModRBSP_LoadLightgrid (&header.lumps[Q3LUMP_LIGHTGRID], &header.lumps[RBSPLUMP_LIGHTINDEXES]);
else
noerrors = noerrors && CModQ3_LoadLightgrid (&header.lumps[Q3LUMP_LIGHTGRID]);
noerrors = noerrors && CModQ3_LoadIndexes (&header.lumps[Q3LUMP_DRAWINDEXES]);
if (header.version != Q3BSPVERSION+1)
noerrors = noerrors && CModQ3_LoadFogs (&header.lumps[Q3LUMP_FOGS]);
else
map_numfogs = 0;
buildcookie = (void *)(mod_base + header.lumps[Q3LUMP_SURFACES].fileofs);
if (header.version == 1)
{
noerrors = noerrors && CModRBSP_LoadRFaces (&header.lumps[Q3LUMP_SURFACES]);
buildmeshes = CModRBSP_BuildSurfMesh;
loadmodel->lightmaps.surfstyles = 4;
}
else
{
noerrors = noerrors && CModQ3_LoadRFaces (&header.lumps[Q3LUMP_SURFACES]);
buildmeshes = CModQ3_BuildSurfMesh;
loadmodel->lightmaps.surfstyles = 1;
}
noerrors = noerrors && CModQ3_LoadMarksurfaces (&header.lumps[Q3LUMP_LEAFSURFACES]); //fixme: duplicated loading.
/*make sure all textures have a shader*/
for (i=0; i<loadmodel->numtextures; i++)
{
if (!loadmodel->textures[i]->shader)
loadmodel->textures[i]->shader = R_RegisterShader_Lightmap(loadmodel->textures[i]->name);
}
if (noerrors && loadmodel->fromgame == fg_quake3)
{
i = header.lumps[Q3LUMP_LIGHTMAPS].filelen / (loadmodel->lightmaps.width*loadmodel->lightmaps.height*3);
loadmodel->lightmaps.deluxemapping = !(i&1);
loadmodel->lightmaps.count = max(loadmodel->lightmaps.count, i);
for (i = 0; i < loadmodel->numsurfaces && loadmodel->lightmaps.deluxemapping; i++)
{
if (loadmodel->surfaces[i].lightmaptexturenums[0] >= 0 && (loadmodel->surfaces[i].lightmaptexturenums[0] & 1))
loadmodel->lightmaps.deluxemapping = false;
}
}
if (noerrors)
CModQ3_LoadLighting (&header.lumps[Q3LUMP_LIGHTMAPS]); //fixme: duplicated loading.
}
#endif
noerrors = noerrors && CModQ3_LoadLeafFaces (&header.lumps[Q3LUMP_LEAFSURFACES]);
noerrors = noerrors && CModQ3_LoadLeafs (&header.lumps[Q3LUMP_LEAFS]);
noerrors = noerrors && CModQ3_LoadNodes (&header.lumps[Q3LUMP_NODES]);
noerrors = noerrors && CModQ3_LoadSubmodels (&header.lumps[Q3LUMP_MODELS]);
noerrors = noerrors && CModQ3_LoadVisibility (&header.lumps[Q3LUMP_VISIBILITY]);
if (noerrors)
CMod_LoadEntityString (&header.lumps[Q3LUMP_ENTITIES]);
if (!noerrors)
{
if (map_faces)
BZ_Free(map_faces);
if (map_leaffaces)
BZ_Free(map_leaffaces);
return NULL;
}
#ifndef CLIENTONLY
loadmodel->funcs.FatPVS = Q2BSP_FatPVS;
loadmodel->funcs.EdictInFatPVS = Q2BSP_EdictInFatPVS;
loadmodel->funcs.FindTouchedLeafs = Q2BSP_FindTouchedLeafs;
#endif
loadmodel->funcs.ClusterPVS = CM_ClusterPVS;
loadmodel->funcs.ClusterForPoint = CM_PointCluster;
#ifndef SERVERONLY
loadmodel->funcs.LightPointValues = GLQ3_LightGrid;
loadmodel->funcs.StainNode = GLR_Q2BSP_StainNode;
loadmodel->funcs.MarkLights = Q2BSP_MarkLights;
#endif
loadmodel->funcs.PointContents = Q2BSP_PointContents;
loadmodel->funcs.NativeTrace = CM_NativeTrace;
loadmodel->funcs.NativeContents = CM_NativeContents;
#ifndef SERVERONLY
//light grid info
if (loadmodel->lightgrid)
{
float maxs;
q3lightgridinfo_t *lg = loadmodel->lightgrid;
if ( lg->gridSize[0] < 1 || lg->gridSize[1] < 1 || lg->gridSize[2] < 1 )
{
lg->gridSize[0] = 64;
lg->gridSize[1] = 64;
lg->gridSize[2] = 128;
}
for ( i = 0; i < 3; i++ )
{
lg->gridMins[i] = lg->gridSize[i] * ceil( (map_cmodels->mins[i] + 1) / lg->gridSize[i] );
maxs = lg->gridSize[i] * floor( (map_cmodels->maxs[i] - 1) / lg->gridSize[i] );
lg->gridBounds[i] = (maxs - lg->gridMins[i])/lg->gridSize[i] + 1;
}
lg->gridBounds[3] = lg->gridBounds[1] * lg->gridBounds[0];
}
#endif
if (!CM_CreatePatchesForLeafs ()) //for clipping
{
BZ_Free(map_faces);
BZ_Free(map_leaffaces);
return NULL;
}
#ifndef CLIENTONLY
CMQ3_CalcPHS();
#endif
// BZ_Free(map_verts);
BZ_Free(map_faces);
BZ_Free(map_leaffaces);
break;
#endif
case Q2BSPVERSION:
mapisq3 = false;
loadmodel->engineflags |= MDLF_NEEDOVERBRIGHT;
for (i=0 ; i<Q2HEADER_LUMPS ; i++)
{
header.lumps[i].filelen = LittleLong (header.lumps[i].filelen);
header.lumps[i].fileofs = LittleLong (header.lumps[i].fileofs);
}
Q1BSPX_Setup(loadmodel, mod_base, com_filesize, header.lumps, Q2HEADER_LUMPS);
#ifndef SERVERONLY
if (CM_GetQ2Palette())
memcpy(d_q28to24table, host_basepal, 768);
#endif
switch(qrenderer)
{
case QR_NONE: //dedicated only
noerrors = noerrors && CModQ2_LoadSurfaces (&header.lumps[Q2LUMP_TEXINFO]);
noerrors = noerrors && CModQ2_LoadPlanes (&header.lumps[Q2LUMP_PLANES]);
noerrors = noerrors && CModQ2_LoadVisibility (&header.lumps[Q2LUMP_VISIBILITY]);
noerrors = noerrors && CModQ2_LoadBrushSides (&header.lumps[Q2LUMP_BRUSHSIDES]);
noerrors = noerrors && CModQ2_LoadBrushes (&header.lumps[Q2LUMP_BRUSHES]);
noerrors = noerrors && CModQ2_LoadLeafBrushes (&header.lumps[Q2LUMP_LEAFBRUSHES]);
noerrors = noerrors && CModQ2_LoadLeafs (&header.lumps[Q2LUMP_LEAFS]);
noerrors = noerrors && CModQ2_LoadNodes (&header.lumps[Q2LUMP_NODES]);
noerrors = noerrors && CModQ2_LoadSubmodels (&header.lumps[Q2LUMP_MODELS]);
noerrors = noerrors && CModQ2_LoadAreas (&header.lumps[Q2LUMP_AREAS]);
noerrors = noerrors && CModQ2_LoadAreaPortals (&header.lumps[Q2LUMP_AREAPORTALS]);
if (noerrors)
CMod_LoadEntityString (&header.lumps[Q2LUMP_ENTITIES]);
#ifndef CLIENTONLY
loadmodel->funcs.FatPVS = Q2BSP_FatPVS;
loadmodel->funcs.EdictInFatPVS = Q2BSP_EdictInFatPVS;
loadmodel->funcs.FindTouchedLeafs = Q2BSP_FindTouchedLeafs;
#endif
loadmodel->funcs.LightPointValues = NULL;
loadmodel->funcs.StainNode = NULL;
loadmodel->funcs.MarkLights = NULL;
loadmodel->funcs.ClusterPVS = CM_ClusterPVS;
loadmodel->funcs.ClusterForPoint = CM_PointCluster;
loadmodel->funcs.PointContents = Q2BSP_PointContents;
loadmodel->funcs.NativeTrace = CM_NativeTrace;
loadmodel->funcs.NativeContents = CM_NativeContents;
break;
#if defined(GLQUAKE) || defined(D3DQUAKE)
case QR_DIRECT3D9:
case QR_DIRECT3D11:
case QR_OPENGL:
// load into heap
#ifndef SERVERONLY
noerrors = noerrors && Mod_LoadVertexes (&header.lumps[Q2LUMP_VERTEXES]);
noerrors = noerrors && Mod_LoadEdges (&header.lumps[Q2LUMP_EDGES], false);
noerrors = noerrors && Mod_LoadSurfedges (&header.lumps[Q2LUMP_SURFEDGES]);
if (noerrors)
Mod_LoadLighting (&header.lumps[Q2LUMP_LIGHTING]);
#endif
noerrors = noerrors && CModQ2_LoadSurfaces (&header.lumps[Q2LUMP_TEXINFO]);
noerrors = noerrors && CModQ2_LoadPlanes (&header.lumps[Q2LUMP_PLANES]);
#ifndef SERVERONLY
noerrors = noerrors && CModQ2_LoadTexInfo (&header.lumps[Q2LUMP_TEXINFO]);
noerrors = noerrors && CModQ2_LoadFaces (&header.lumps[Q2LUMP_FACES]);
noerrors = noerrors && Mod_LoadMarksurfaces (&header.lumps[Q2LUMP_LEAFFACES], false);
#endif
noerrors = noerrors && CModQ2_LoadVisibility (&header.lumps[Q2LUMP_VISIBILITY]);
noerrors = noerrors && CModQ2_LoadBrushSides (&header.lumps[Q2LUMP_BRUSHSIDES]);
noerrors = noerrors && CModQ2_LoadBrushes (&header.lumps[Q2LUMP_BRUSHES]);
noerrors = noerrors && CModQ2_LoadLeafBrushes (&header.lumps[Q2LUMP_LEAFBRUSHES]);
noerrors = noerrors && CModQ2_LoadLeafs (&header.lumps[Q2LUMP_LEAFS]);
noerrors = noerrors && CModQ2_LoadNodes (&header.lumps[Q2LUMP_NODES]);
noerrors = noerrors && CModQ2_LoadSubmodels (&header.lumps[Q2LUMP_MODELS]);
noerrors = noerrors && CModQ2_LoadAreas (&header.lumps[Q2LUMP_AREAS]);
noerrors = noerrors && CModQ2_LoadAreaPortals (&header.lumps[Q2LUMP_AREAPORTALS]);
if (noerrors)
CMod_LoadEntityString (&header.lumps[Q2LUMP_ENTITIES]);
if (!noerrors)
{
return NULL;
}
#ifndef CLIENTONLY
loadmodel->funcs.FatPVS = Q2BSP_FatPVS;
loadmodel->funcs.EdictInFatPVS = Q2BSP_EdictInFatPVS;
loadmodel->funcs.FindTouchedLeafs = Q2BSP_FindTouchedLeafs;
#endif
loadmodel->funcs.LightPointValues = GLQ2BSP_LightPointValues;
loadmodel->funcs.StainNode = GLR_Q2BSP_StainNode;
loadmodel->funcs.MarkLights = Q2BSP_MarkLights;
loadmodel->funcs.ClusterPVS = CM_ClusterPVS;
loadmodel->funcs.ClusterForPoint = CM_PointCluster;
loadmodel->funcs.PointContents = Q2BSP_PointContents;
loadmodel->funcs.NativeTrace = CM_NativeTrace;
loadmodel->funcs.NativeContents = CM_NativeContents;
break;
#endif
default:
return NULL;
Sys_Error("Bad internal renderer on q2 map load\n");
}
}
#ifndef SERVERONLY
Mod_ParseInfoFromEntityLump(loadmodel, loadmodel->entities, loadname); //only done for client's world model (or server if the server is loading it for client)
#endif
CM_InitBoxHull ();
if (map_autoopenportals.value)
memset (portalopen, 1, sizeof(portalopen)); //open them all. Used for progs that havn't got a clue.
else
memset (portalopen, 0, sizeof(portalopen)); //make them start closed.
FloodAreaConnections ();
loadmodel->checksum = loadmodel->checksum2 = *checksum;
loadmodel->nummodelsurfaces = loadmodel->numsurfaces;
memset(&loadmodel->batches, 0, sizeof(loadmodel->batches));
loadmodel->vbos = NULL;
#ifndef SERVERONLY
if (qrenderer != QR_NONE)
Mod_Batches_Build(NULL, loadmodel, buildmeshes, buildcookie);
#endif
loadmodel->numsubmodels = CM_NumInlineModels(loadmodel);
{
model_t *wmod = loadmodel;
model_t *mod = loadmodel;
mod->hulls[0].firstclipnode = map_cmodels[0].headnode-mod->nodes;
mod->rootnode = map_cmodels[0].headnode;
mod->nummodelsurfaces = map_cmodels[0].numsurfaces;
for (i=1 ; i< loadmodel->numsubmodels ; i++)
{
cmodel_t *bm;
char name[10];
sprintf (name, "*%i", i);
loadmodel = Mod_FindName (name);
*loadmodel = *mod;
strcpy (loadmodel->name, name);
mod = loadmodel;
memset(&mod->memgroup, 0, sizeof(mod->memgroup));
bm = CM_InlineModel (name);
mod->hulls[0].firstclipnode = -1; //no nodes,
if (bm->headleaf)
{
mod->leafs = bm->headleaf;
mod->nodes = NULL;
mod->hulls[0].firstclipnode = -1; //make it refer directly to the first leaf, for things that still use numbers.
mod->rootnode = (mnode_t*)bm->headleaf;
}
else
{
mod->leafs = wmod->leafs;
mod->nodes = wmod->nodes;
mod->hulls[0].firstclipnode = bm->headnode - mod->nodes; //determine the correct node index
mod->rootnode = bm->headnode;
}
mod->nummodelsurfaces = bm->numsurfaces;
mod->firstmodelsurface = bm->firstsurface;
memset(&mod->batches, 0, sizeof(mod->batches));
mod->vbos = NULL;
#ifndef SERVERONLY
if (qrenderer != QR_NONE)
Mod_Batches_Build(NULL, mod, buildmeshes, buildcookie);
#endif
VectorCopy (bm->maxs, mod->maxs);
VectorCopy (bm->mins, mod->mins);
#ifndef SERVERONLY
mod->radius = RadiusFromBounds (mod->mins, mod->maxs);
P_DefaultTrail(mod);
#endif
}
}
#ifdef TERRAIN
im->terrain = Mod_LoadTerrainInfo(im, loadname, false);
#endif
return &map_cmodels[0];
}
/*
==================
CM_InlineModel
==================
*/
cmodel_t *CM_InlineModel (char *name)
{
int num;
if (!name)
Host_Error("Bad model\n");
else if (name[0] != '*')
Host_Error("Bad model\n");
num = atoi (name+1);
if (num < 1 || num >= numcmodels)
Host_Error ("CM_InlineModel: bad number");
return &map_cmodels[num];
}
int CM_NumClusters (model_t *model)
{
return numclusters;
}
int CM_ClusterSize (model_t *model)
{
return map_q3pvs->rowsize ? map_q3pvs->rowsize : MAX_MAP_LEAFS / 8;
}
int CM_NumInlineModels (model_t *model)
{
return numcmodels;
}
int CM_LeafContents (model_t *model, int leafnum)
{
if (leafnum < 0 || leafnum >= model->numleafs)
Host_Error ("CM_LeafContents: bad number");
return model->leafs[leafnum].contents;
}
int CM_LeafCluster (model_t *model, int leafnum)
{
if (leafnum < 0 || leafnum >= model->numleafs)
Host_Error ("CM_LeafCluster: bad number");
return model->leafs[leafnum].cluster;
}
int CM_LeafArea (model_t *model, int leafnum)
{
if (leafnum < 0 || leafnum >= model->numleafs)
Host_Error ("CM_LeafArea: bad number");
return model->leafs[leafnum].area;
}
//=======================================================================
mplane_t *box_planes;
int box_headnode;
q2cbrush_t *box_brush;
mleaf_t box_leaf[2]; //solid, empty
model_t box_model;
/*
===================
CM_InitBoxHull
Set up the planes and nodes so that the six floats of a bounding box
can just be stored out and get a proper clipping hull structure.
===================
*/
void CM_InitBoxHull (void)
{
int i;
int side;
mnode_t *c;
mplane_t *p;
q2cbrushside_t *s;
#ifndef CLIENTONLY
box_model.funcs.FatPVS = Q2BSP_FatPVS;
box_model.funcs.EdictInFatPVS = Q2BSP_EdictInFatPVS;
box_model.funcs.FindTouchedLeafs = Q2BSP_FindTouchedLeafs;
#endif
#ifndef SERVERONLY
box_model.funcs.MarkLights = Q2BSP_MarkLights;
#endif
box_model.funcs.ClusterPVS = CM_ClusterPVS;
box_model.funcs.ClusterForPoint = CM_PointCluster;
box_model.funcs.NativeContents = CM_NativeContents;
box_model.funcs.NativeTrace = CM_NativeTrace;
box_model.nodes = ZG_Malloc(&box_model.memgroup, sizeof(mnode_t)*6);
box_planes = ZG_Malloc(&box_model.memgroup, sizeof(mplane_t)*12);
if (numbrushes+1 > SANITY_MAX_MAP_BRUSHES
|| numleafbrushes+1 > MAX_Q2MAP_LEAFBRUSHES)
Host_Error ("Not enough room for box tree");
box_brush = &map_brushes[numbrushes];
box_brush->numsides = 6;
box_brush->brushside = ZG_Malloc(&box_model.memgroup, sizeof(q2cbrushside_t)*6);
box_brush->contents = Q2CONTENTS_MONSTER;
box_leaf[0].contents = Q2CONTENTS_MONSTER;
box_leaf[0].firstleafbrush = numleafbrushes;
box_leaf[0].numleafbrushes = 1;
box_leaf[1].contents = 0;
box_leaf[1].firstleafbrush = numleafbrushes;
box_leaf[1].numleafbrushes = 1;
box_model.leafs = box_leaf;
box_model.rootnode = box_model.nodes;
map_leafbrushes[numleafbrushes] = box_brush;
for (i=0 ; i<6 ; i++)
{
side = i&1;
// brush sides
s = &box_brush->brushside[i];
s->plane = box_planes + (i*2+side);
s->surface = &nullsurface;
// nodes
c = &box_model.nodes[i];
c->plane = box_planes + (i*2);
c->childnum[side] = -1 - 1; //empty leaf
if (i != 5)
c->childnum[side^1] = box_headnode+i + 1;
else
c->childnum[side^1] = -1 - 0; //solid leaf
// planes
p = &box_planes[i*2];
p->type = i>>1;
p->signbits = 0;
VectorClear (p->normal);
p->normal[i>>1] = 1;
p = &box_planes[i*2+1];
p->type = 3 + (i>>1);
p->signbits = 0;
VectorClear (p->normal);
p->normal[i>>1] = -1;
}
}
/*
===================
CM_HeadnodeForBox
To keep everything totally uniform, bounding boxes are turned into small
BSP trees instead of being compared directly.
===================
*/
void CM_SetTempboxSize (vec3_t mins, vec3_t maxs)
{
box_planes[0].dist = maxs[0];
box_planes[1].dist = -maxs[0];
box_planes[2].dist = mins[0];
box_planes[3].dist = -mins[0];
box_planes[4].dist = maxs[1];
box_planes[5].dist = -maxs[1];
box_planes[6].dist = mins[1];
box_planes[7].dist = -mins[1];
box_planes[8].dist = maxs[2];
box_planes[9].dist = -maxs[2];
box_planes[10].dist = mins[2];
box_planes[11].dist = -mins[2];
}
model_t *CM_TempBoxModel(vec3_t mins, vec3_t maxs)
{
if (box_planes == NULL)
CM_InitBoxHull();
CM_SetTempboxSize(mins, maxs);
return &box_model;
}
/*
==================
CM_PointLeafnum_r
==================
*/
static int CM_PointLeafnum_r (model_t *mod, vec3_t p, int num)
{
float d;
mnode_t *node;
mplane_t *plane;
while (num >= 0)
{
node = mod->nodes + num;
plane = node->plane;
if (plane->type < 3)
d = p[plane->type] - plane->dist;
else
d = DotProduct (plane->normal, p) - plane->dist;
if (d < 0)
num = node->childnum[1];
else
num = node->childnum[0];
}
return -1 - num;
}
int CM_PointLeafnum (model_t *mod, vec3_t p)
{
if (!mod || mod->needload)
return 0; // sound may call this without map loaded
return CM_PointLeafnum_r (mod, p, 0);
}
static int CM_PointCluster (model_t *mod, vec3_t p)
{
if (!mod || mod->needload)
return 0; // sound may call this without map loaded
return CM_LeafCluster(mod, CM_PointLeafnum_r (mod, p, 0));
}
/*
=============
CM_BoxLeafnums
Fills in a list of all the leafs touched
=============
*/
int leaf_count, leaf_maxcount;
int *leaf_list;
float *leaf_mins, *leaf_maxs;
int leaf_topnode;
void CM_BoxLeafnums_r (model_t *mod, int nodenum)
{
mplane_t *plane;
mnode_t *node;
int s;
while (1)
{
if (nodenum < 0)
{
if (leaf_count >= leaf_maxcount)
{
// Com_Printf ("CM_BoxLeafnums_r: overflow\n");
return;
}
leaf_list[leaf_count++] = -1 - nodenum;
return;
}
node = &mod->nodes[nodenum];
plane = node->plane;
// s = BoxOnPlaneSide (leaf_mins, leaf_maxs, plane);
s = BOX_ON_PLANE_SIDE(leaf_mins, leaf_maxs, plane);
if (s == 1)
nodenum = node->childnum[0];
else if (s == 2)
nodenum = node->childnum[1];
else
{ // go down both
if (leaf_topnode == -1)
leaf_topnode = nodenum;
CM_BoxLeafnums_r (mod, node->childnum[0]);
nodenum = node->childnum[1];
}
}
}
int CM_BoxLeafnums_headnode (model_t *mod, vec3_t mins, vec3_t maxs, int *list, int listsize, int headnode, int *topnode)
{
leaf_list = list;
leaf_count = 0;
leaf_maxcount = listsize;
leaf_mins = mins;
leaf_maxs = maxs;
leaf_topnode = -1;
CM_BoxLeafnums_r (mod, headnode);
if (topnode)
*topnode = leaf_topnode;
return leaf_count;
}
int CM_BoxLeafnums (model_t *mod, vec3_t mins, vec3_t maxs, int *list, int listsize, int *topnode)
{
return CM_BoxLeafnums_headnode (mod, mins, maxs, list,
listsize, mod->hulls[0].firstclipnode, topnode);
}
/*
==================
CM_PointContents
==================
*/
#define PlaneDiff(point,plane) (((plane)->type < 3 ? (point)[(plane)->type] : DotProduct((point), (plane)->normal)) - (plane)->dist)
int CM_PointContents (model_t *mod, vec3_t p)
{
int i, j, contents;
mleaf_t *leaf;
q2cbrush_t *brush;
q2cbrushside_t *brushside;
if (!mod) // map not loaded
return 0;
i = CM_PointLeafnum_r (mod, p, mod->hulls[0].firstclipnode);
if (!mapisq3)
contents = mod->leafs[i].contents; //q2 is simple.
else
{
leaf = &mod->leafs[i];
// if ( leaf->contents & CONTENTS_NODROP ) {
// contents = CONTENTS_NODROP;
// } else {
contents = 0;
// }
for (i = 0; i < leaf->numleafbrushes; i++)
{
brush = map_leafbrushes[leaf->firstleafbrush + i];
// check if brush actually adds something to contents
if ( (contents & brush->contents) == brush->contents ) {
continue;
}
brushside = brush->brushside;
for ( j = 0; j < brush->numsides; j++, brushside++ )
{
if ( PlaneDiff (p, brushside->plane) > 0 )
break;
}
if (j == brush->numsides)
contents |= brush->contents;
}
}
#ifdef TERRAIN
if (mod->terrain)
contents |= Heightmap_PointContents(mod, NULL, p);
#endif
return contents;
}
unsigned int CM_NativeContents(struct model_s *model, int hulloverride, int frame, vec3_t axis[3], vec3_t p, vec3_t mins, vec3_t maxs)
{
int contents;
if (!DotProduct(mins, mins) && !DotProduct(maxs, maxs))
return CM_PointContents(model, p);
if (!model) // map not loaded
return 0;
{
int i, j, k;
mleaf_t *leaf;
q2cbrush_t *brush;
q2cbrushside_t *brushside;
vec3_t absmin, absmax;
int leaflist[64];
k = CM_BoxLeafnums (model, absmin, absmax, leaflist, 64, NULL);
contents = 0;
for (k--; k >= 0; k--)
{
leaf = &model->leafs[leaflist[k]];
if (mapisq3)
{
for (i = 0; i < leaf->numleafbrushes; i++)
{
brush = map_leafbrushes[leaf->firstleafbrush + i];
// check if brush actually adds something to contents
if ( (contents & brush->contents) == brush->contents ) {
continue;
}
brushside = brush->brushside;
for ( j = 0; j < brush->numsides; j++, brushside++ )
{
if ( PlaneDiff (p, brushside->plane) > 0 )
break;
}
if (j == brush->numsides)
contents |= brush->contents;
}
}
else
contents |= leaf->contents;
}
}
return contents;
}
/*
==================
CM_TransformedPointContents
Handles offseting and rotation of the end points for moving and
rotating entities
==================
*/
int CM_TransformedPointContents (model_t *mod, vec3_t p, int headnode, vec3_t origin, vec3_t angles)
{
vec3_t p_l;
vec3_t temp;
vec3_t forward, right, up;
// subtract origin offset
VectorSubtract (p, origin, p_l);
// rotate start and end into the models frame of reference
if (headnode != box_headnode &&
(angles[0] || angles[1] || angles[2]) )
{
AngleVectors (angles, forward, right, up);
VectorCopy (p_l, temp);
p_l[0] = DotProduct (temp, forward);
p_l[1] = -DotProduct (temp, right);
p_l[2] = DotProduct (temp, up);
}
return CM_PointContents(mod, p);
}
/*
===============================================================================
BOX TRACING
===============================================================================
*/
// 1/32 epsilon to keep floating point happy
#define DIST_EPSILON (0.03125)
static vec3_t trace_start, trace_end;
static vec3_t trace_mins, trace_maxs;
static vec3_t trace_extents;
static vec3_t trace_absmins, trace_absmaxs;
static float trace_truefraction;
static float trace_nearfraction;
static trace_t trace_trace;
static int trace_contents;
static qboolean trace_ispoint; // optimized case
/*
================
CM_ClipBoxToBrush
================
*/
static void CM_ClipBoxToBrush (vec3_t mins, vec3_t maxs, vec3_t p1, vec3_t p2,
trace_t *trace, q2cbrush_t *brush)
{
int i, j;
mplane_t *plane, *clipplane;
float dist;
float enterfrac, leavefrac;
vec3_t ofs;
float d1, d2;
qboolean getout, startout;
float f;
q2cbrushside_t *side, *leadside;
float nearfrac=0;
enterfrac = -1;
leavefrac = 2;
clipplane = NULL;
if (!brush->numsides)
return;
getout = false;
startout = false;
leadside = NULL;
for (i=0 ; i<brush->numsides ; i++)
{
side = brush->brushside+i;
plane = side->plane;
// FIXME: special case for axial
if (!trace_ispoint)
{ // general box case
// push the plane out apropriately for mins/maxs
// FIXME: use signbits into 8 way lookup for each mins/maxs
for (j=0 ; j<3 ; j++)
{
if (plane->normal[j] < 0)
ofs[j] = maxs[j];
else
ofs[j] = mins[j];
}
dist = DotProduct (ofs, plane->normal);
dist = plane->dist - dist;
}
else
{ // special point case
dist = plane->dist;
}
d1 = DotProduct (p1, plane->normal) - dist;
d2 = DotProduct (p2, plane->normal) - dist;
if (d2 > 0)
getout = true; // endpoint is not in solid
if (d1 > 0)
startout = true;
// if completely in front of face, no intersection
if (d1 > 0 && d2 >= d1)
return;
if (d1 <= 0 && d2 <= 0)
continue;
// crosses face
if (d1 > d2)
{ // enter
f = (d1) / (d1-d2);
if (f > enterfrac)
{
enterfrac = f;
nearfrac = (d1-DIST_EPSILON) / (d1-d2);
clipplane = plane;
leadside = side;
}
}
else
{ // leave
f = (d1) / (d1-d2);
if (f < leavefrac)
leavefrac = f;
}
}
if (!startout)
{ // original point was inside brush
trace->startsolid = true;
if (!getout)
trace->allsolid = true;
return;
}
if (enterfrac <= leavefrac)
{
if (enterfrac > -1 && enterfrac <= trace_truefraction)
{
if (enterfrac < 0)
enterfrac = 0;
trace_nearfraction = nearfrac;
trace_truefraction = enterfrac;
trace->plane.dist = clipplane->dist;
VectorCopy(clipplane->normal, trace->plane.normal);
trace->surface = &(leadside->surface->c);
trace->contents = brush->contents;
}
}
}
static void CM_ClipBoxToPlanes (vec3_t trmins, vec3_t trmaxs, vec3_t p1, vec3_t p2, trace_t *trace, vec3_t plmins, vec3_t plmaxs, mplane_t *plane, int numplanes, q2csurface_t *surf)
{
int i, j;
mplane_t *clipplane;
float dist;
float enterfrac, leavefrac;
vec3_t ofs;
float d1, d2;
qboolean getout, startout;
float f;
// q2cbrushside_t *side, *leadside;
static mplane_t bboxplanes[6] = //we change the dist, but nothing else
{
{1, 0, 0},
{0, 1, 0},
{0, 0, 1},
{-1, 0, 0},
{0, -1, 0},
{0, 0, -1},
};
float nearfrac=0;
enterfrac = -1;
leavefrac = 2;
clipplane = NULL;
getout = false;
startout = false;
// leadside = NULL;
for (i=0 ; i<numplanes ; i++, plane++)
{
// FIXME: special case for axial
if (!trace_ispoint)
{ // general box case
// push the plane out apropriately for mins/maxs
// FIXME: use signbits into 8 way lookup for each mins/maxs
for (j=0 ; j<3 ; j++)
{
if (plane->normal[j] < 0)
ofs[j] = trmaxs[j];
else
ofs[j] = trmins[j];
}
dist = DotProduct (ofs, plane->normal);
dist = plane->dist - dist;
}
else
{ // special point case
dist = plane->dist;
}
d1 = DotProduct (p1, plane->normal) - dist;
d2 = DotProduct (p2, plane->normal) - dist;
if (d2 > 0)
getout = true; // endpoint is not in solid
if (d1 > 0)
startout = true;
// if completely in front of face, no intersection
if (d1 > 0 && d2 >= d1)
return;
if (d1 <= 0 && d2 <= 0)
continue;
// crosses face
if (d1 > d2)
{ // enter
f = (d1) / (d1-d2);
if (f > enterfrac)
{
enterfrac = f;
nearfrac = (d1-DIST_EPSILON) / (d1-d2);
clipplane = plane;
// leadside = side;
}
}
else
{ // leave
f = (d1) / (d1-d2);
if (f < leavefrac)
leavefrac = f;
}
}
//bevel the brush axially (to match the player's bbox), in case that wasn't already done
for (i=0, plane = bboxplanes; i<6 ; i++, plane++)
{
if (i < 3)
{ //positive normal
dist = trmins[i];
plane->dist = plmaxs[i];
dist = plane->dist - dist;
d1 = p1[i] - dist;
d2 = p2[i] - dist;
}
else
{ //negative normal
j = i-3;
dist = -trmaxs[j];
plane->dist = -plmins[j];
dist = plane->dist - dist;
d1 = -p1[j] - dist;
d2 = -p2[j] - dist;
}
if (d2 > 0)
getout = true; // endpoint is not in solid
if (d1 > 0)
startout = true;
// if completely in front of face, no intersection
if (d1 > 0 && d2 >= d1)
return;
if (d1 <= 0 && d2 <= 0)
continue;
// crosses face
if (d1 > d2)
{ // enter
f = (d1) / (d1-d2);
if (f > enterfrac)
{
enterfrac = f;
nearfrac = (d1-DIST_EPSILON) / (d1-d2);
clipplane = plane;
// leadside = side;
}
}
else
{ // leave
f = (d1) / (d1-d2);
if (f < leavefrac)
leavefrac = f;
}
}
if (!startout)
{ // original point was inside brush
trace->startsolid = true;
if (!getout)
trace->allsolid = true;
return;
}
if (enterfrac <= leavefrac)
{
if (enterfrac > -1 && enterfrac <= trace_truefraction)
{
if (enterfrac < 0)
enterfrac = 0;
trace_nearfraction = nearfrac;
trace_truefraction = enterfrac;
trace->plane.dist = clipplane->dist;
VectorCopy(clipplane->normal, trace->plane.normal);
trace->surface = surf;
trace->contents = surf->value;
}
}
}
static void Mod_Trace_Trisoup_(vecV_t *posedata, index_t *indexes, size_t numindexes, vec3_t start, vec3_t end, vec3_t mins, vec3_t maxs, trace_t *trace, q2csurface_t *surf)
{
size_t i;
int j;
float *p1, *p2, *p3;
vec3_t edge1, edge2, edge3;
mplane_t planes[5];
vec3_t tmins, tmaxs;
for (i = 0; i < numindexes; i+=3)
{
p1 = posedata[indexes[i+0]];
p2 = posedata[indexes[i+1]];
p3 = posedata[indexes[i+2]];
//determine the triangle extents, and skip the triangle if we're completely out of bounds
for (j = 0; j < 3; j++)
{
tmins[j] = p1[j];
if (tmins[j] > p2[j])
tmins[j] = p2[j];
if (tmins[j] > p3[j])
tmins[j] = p3[j];
if (trace_absmaxs[j]+(1/8.f) < tmins[j])
break;
tmaxs[j] = p1[j];
if (tmaxs[j] < p2[j])
tmaxs[j] = p2[j];
if (tmaxs[j] < p3[j])
tmaxs[j] = p3[j];
if (trace_absmins[j]-(1/8.f) > tmaxs[j])
break;
}
//skip any triangles which are completely outside the trace bounds
if (j < 3)
continue;
VectorSubtract(p1, p2, edge1);
VectorSubtract(p3, p2, edge2);
VectorSubtract(p1, p3, edge3);
CrossProduct(edge1, edge2, planes[0].normal);
VectorNormalize(planes[0].normal);
planes[0].dist = DotProduct(p1, planes[0].normal);
VectorNegate(planes[0].normal, planes[1].normal);
planes[1].dist = -planes[0].dist + 4;
//determine edges
//FIXME: use adjacency info
CrossProduct(edge1, planes[0].normal, planes[2].normal);
VectorNormalize(planes[2].normal);
planes[2].dist = DotProduct(p2, planes[2].normal);
CrossProduct(planes[0].normal, edge2, planes[3].normal);
VectorNormalize(planes[3].normal);
planes[3].dist = DotProduct(p3, planes[3].normal);
CrossProduct(planes[0].normal, edge3, planes[4].normal);
VectorNormalize(planes[4].normal);
planes[4].dist = DotProduct(p1, planes[4].normal);
CM_ClipBoxToPlanes(mins, maxs, start, end, trace, tmins, tmaxs, planes, 5, surf);
}
}
static void CM_ClipBoxToMesh (vec3_t mins, vec3_t maxs, vec3_t p1, vec3_t p2, trace_t *trace, mesh_t *mesh)
{
trace_truefraction = trace->truefraction;
trace_nearfraction = trace->fraction;
Mod_Trace_Trisoup_(mesh->xyz_array, mesh->indexes, mesh->numindexes, p1, p2, mins, maxs, trace, &nullsurface.c);
trace->truefraction = trace_truefraction;
trace->fraction = trace_nearfraction;
}
static void CM_ClipBoxToPatch (vec3_t mins, vec3_t maxs, vec3_t p1, vec3_t p2,
trace_t *trace, q2cbrush_t *brush)
{
int i, j;
mplane_t *plane, *clipplane;
float enterfrac, leavefrac, nearfrac = 0;
vec3_t ofs;
float d1, d2;
float dist;
qboolean startout;
float f;
q2cbrushside_t *side, *leadside;
if (!brush->numsides)
return;
enterfrac = -1;
leavefrac = 2;
clipplane = NULL;
startout = false;
leadside = NULL;
for (i=0 ; i<brush->numsides ; i++)
{
side = brush->brushside+i;
plane = side->plane;
if (!trace_ispoint)
{ // general box case
// push the plane out apropriately for mins/maxs
// FIXME: use signbits into 8 way lookup for each mins/maxs
for (j=0 ; j<3 ; j++)
{
if (plane->normal[j] < 0)
ofs[j] = maxs[j];
else
ofs[j] = mins[j];
}
dist = DotProduct (ofs, plane->normal);
dist = plane->dist - dist;
}
else
{ // special point case
dist = plane->dist;
}
d1 = DotProduct (p1, plane->normal) - dist;
d2 = DotProduct (p2, plane->normal) - dist;
// if completely in front of face, no intersection
if (d1 > 0 && d2 >= d1)
return;
if (d1 > 0)
startout = true;
if (d1 <= 0 && d2 <= 0)
continue;
// crosses face
if (d1 > d2)
{ // enter
f = (d1) / (d1-d2);
if (f > enterfrac)
{
enterfrac = f;
nearfrac = (d1-DIST_EPSILON) / (d1-d2);
clipplane = plane;
leadside = side;
}
}
else
{ // leave
f = (d1) / (d1-d2);
if (f < leavefrac)
leavefrac = f;
}
}
if (!startout)
{
trace->startsolid = true;
return; // original point is inside the patch
}
if (nearfrac <= leavefrac)
{
if (leadside && leadside->surface
&& enterfrac <= trace_truefraction)
{
if (enterfrac < 0)
enterfrac = 0;
trace_truefraction = enterfrac;
trace_nearfraction = nearfrac;
trace->plane.dist = clipplane->dist;
VectorCopy(clipplane->normal, trace->plane.normal);
trace->surface = &leadside->surface->c;
trace->contents = brush->contents;
}
else if (enterfrac < trace_truefraction)
leavefrac=0;
}
}
/*
================
CM_TestBoxInBrush
================
*/
static void CM_TestBoxInBrush (vec3_t mins, vec3_t maxs, vec3_t p1,
trace_t *trace, q2cbrush_t *brush)
{
int i, j;
mplane_t *plane;
float dist;
vec3_t ofs;
float d1;
q2cbrushside_t *side;
if (!brush->numsides)
return;
for (i=0 ; i<brush->numsides ; i++)
{
side = brush->brushside+i;
plane = side->plane;
// FIXME: special case for axial
// general box case
// push the plane out apropriately for mins/maxs
// FIXME: use signbits into 8 way lookup for each mins/maxs
for (j=0 ; j<3 ; j++)
{
if (plane->normal[j] < 0)
ofs[j] = maxs[j];
else
ofs[j] = mins[j];
}
dist = DotProduct (ofs, plane->normal);
dist = plane->dist - dist;
d1 = DotProduct (p1, plane->normal) - dist;
// if completely in front of face, no intersection
if (d1 > 0)
return;
}
// inside this brush
trace->startsolid = trace->allsolid = true;
trace->contents |= brush->contents;
}
static void CM_TestBoxInPatch (vec3_t mins, vec3_t maxs, vec3_t p1,
trace_t *trace, q2cbrush_t *brush)
{
int i, j;
mplane_t *plane;
vec3_t ofs;
float dist;
float d1, maxdist;
q2cbrushside_t *side;
if (!brush->numsides)
return;
maxdist = -9999;
for (i=0 ; i<brush->numsides ; i++)
{
side = brush->brushside+i;
plane = side->plane;
// general box case
// push the plane out apropriately for mins/maxs
// FIXME: use signbits into 8 way lookup for each mins/maxs
for (j=0 ; j<3 ; j++)
{
if (plane->normal[j] < 0)
ofs[j] = maxs[j];
else
ofs[j] = mins[j];
}
dist = DotProduct (ofs, plane->normal);
dist = plane->dist - dist;
d1 = DotProduct (p1, plane->normal) - dist;
// if completely in front of face, no intersection
if (d1 > 0)
return;
if (side->surface && d1 > maxdist)
maxdist = d1;
}
// FIXME
if (maxdist < -0.25)
return; // deep inside the patch
// inside this patch
trace->startsolid = trace->allsolid = true;
trace->contents = brush->contents;
}
/*
================
CM_TraceToLeaf
================
*/
static void CM_TraceToLeaf (mleaf_t *leaf)
{
int k, j;
q2cbrush_t *b;
int patchnum;
q3cpatch_t *patch;
q3cmesh_t *cmesh;
if ( !(leaf->contents & trace_contents))
return;
// trace line against all brushes in the leaf
for (k=0 ; k<leaf->numleafbrushes ; k++)
{
b = map_leafbrushes[leaf->firstleafbrush+k];
if (b->checkcount == checkcount)
continue; // already checked this brush in another leaf
b->checkcount = checkcount;
if ( !(b->contents & trace_contents))
continue;
CM_ClipBoxToBrush (trace_mins, trace_maxs, trace_start, trace_end, &trace_trace, b);
if (trace_nearfraction <= 0)
return;
}
if (!mapisq3 || map_noCurves.value)
return;
// trace line against all patches in the leaf
for (k = 0; k < leaf->numleafpatches; k++)
{
patchnum = map_leafpatches[leaf->firstleafpatch+k];
patch = &map_patches[patchnum];
if (patch->checkcount == checkcount)
continue; // already checked this patch in another leaf
patch->checkcount = checkcount;
if ( !(patch->surface->c.value & trace_contents) )
continue;
if ( !BoundsIntersect(patch->absmins, patch->absmaxs, trace_absmins, trace_absmaxs) )
continue;
for (j = 0; j < patch->numbrushes; j++)
{
CM_ClipBoxToPatch (trace_mins, trace_maxs, trace_start, trace_end, &trace_trace, &patch->brushes[j]);
if (trace_nearfraction<=0)
return;
}
}
for (k = 0; k < leaf->numleafcmeshes; k++)
{
patchnum = map_leafcmeshes[leaf->firstleafcmesh+k];
cmesh = &map_cmeshes[patchnum];
if (cmesh->checkcount == checkcount)
continue; // already checked this patch in another leaf
cmesh->checkcount = checkcount;
if ( !(cmesh->surface->c.value & trace_contents) )
continue;
if ( !BoundsIntersect(cmesh->absmins, cmesh->absmaxs, trace_absmins, trace_absmaxs) )
continue;
Mod_Trace_Trisoup_(cmesh->xyz_array, cmesh->indicies, cmesh->numincidies, trace_start, trace_end, trace_mins, trace_maxs, &trace_trace, &cmesh->surface->c);
if (trace_nearfraction<=0)
return;
}
}
/*
================
CM_TestInLeaf
================
*/
static void CM_TestInLeaf (mleaf_t *leaf)
{
int k, j;
int patchnum;
q2cbrush_t *b;
q3cmesh_t *cmesh;
q3cpatch_t *patch;
if ( !(leaf->contents & trace_contents))
return;
// trace line against all brushes in the leaf
for (k=0 ; k<leaf->numleafbrushes ; k++)
{
b = map_leafbrushes[leaf->firstleafbrush+k];
if (b->checkcount == checkcount)
continue; // already checked this brush in another leaf
b->checkcount = checkcount;
if ( !(b->contents & trace_contents))
continue;
CM_TestBoxInBrush (trace_mins, trace_maxs, trace_start, &trace_trace, b);
if (!trace_trace.fraction)
return;
}
if (!mapisq3 || map_noCurves.value)
return;
// trace line against all patches in the leaf
for (k = 0; k < leaf->numleafpatches; k++)
{
patchnum = map_leafpatches[leaf->firstleafpatch+k];
patch = &map_patches[patchnum];
if (patch->checkcount == checkcount)
continue; // already checked this patch in another leaf
patch->checkcount = checkcount;
if ( !(patch->surface->c.value & trace_contents) )
continue;
if ( !BoundsIntersect(patch->absmins, patch->absmaxs, trace_absmins, trace_absmaxs) )
continue;
for (j = 0; j < patch->numbrushes; j++)
{
CM_TestBoxInPatch (trace_mins, trace_maxs, trace_start, &trace_trace, &patch->brushes[j]);
if (!trace_trace.fraction)
return;
}
}
for (k = 0; k < leaf->numleafcmeshes; k++)
{
patchnum = map_leafcmeshes[leaf->firstleafcmesh+k];
cmesh = &map_cmeshes[patchnum];
if (cmesh->checkcount == checkcount)
continue; // already checked this patch in another leaf
cmesh->checkcount = checkcount;
if ( !(cmesh->surface->c.value & trace_contents) )
continue;
if ( !BoundsIntersect(cmesh->absmins, cmesh->absmaxs, trace_absmins, trace_absmaxs) )
continue;
Mod_Trace_Trisoup_(cmesh->xyz_array, cmesh->indicies, cmesh->numincidies, trace_start, trace_end, trace_mins, trace_maxs, &trace_trace, &cmesh->surface->c);
if (trace_nearfraction<=0)
return;
}
}
/*
==================
CM_RecursiveHullCheck
==================
*/
static void CM_RecursiveHullCheck (model_t *mod, int num, float p1f, float p2f, vec3_t p1, vec3_t p2)
{
mnode_t *node;
mplane_t *plane;
float t1, t2, offset;
float frac, frac2;
float idist;
int i;
vec3_t mid;
int side;
float midf;
if (trace_truefraction <= p1f)
return; // already hit something nearer
// if < 0, we are in a leaf node
if (num < 0)
{
CM_TraceToLeaf (&mod->leafs[-1-num]);
return;
}
//
// find the point distances to the seperating plane
// and the offset for the size of the box
//
node = mod->nodes + num;
plane = node->plane;
if (plane->type < 3)
{
t1 = p1[plane->type] - plane->dist;
t2 = p2[plane->type] - plane->dist;
offset = trace_extents[plane->type];
}
else
{
t1 = DotProduct (plane->normal, p1) - plane->dist;
t2 = DotProduct (plane->normal, p2) - plane->dist;
if (trace_ispoint)
offset = 0;
else
offset = fabs(trace_extents[0]*plane->normal[0]) +
fabs(trace_extents[1]*plane->normal[1]) +
fabs(trace_extents[2]*plane->normal[2]);
}
#if 0
CM_RecursiveHullCheck (node->childnum[0], p1f, p2f, p1, p2);
CM_RecursiveHullCheck (node->childnum[1], p1f, p2f, p1, p2);
return;
#endif
// see which sides we need to consider
if (t1 >= offset && t2 >= offset)
{
CM_RecursiveHullCheck (mod, node->childnum[0], p1f, p2f, p1, p2);
return;
}
if (t1 < -offset && t2 < -offset)
{
CM_RecursiveHullCheck (mod, node->childnum[1], p1f, p2f, p1, p2);
return;
}
// put the crosspoint DIST_EPSILON pixels on the near side
if (t1 < t2)
{
idist = 1.0/(t1-t2);
side = 1;
frac2 = (t1 + offset + DIST_EPSILON)*idist;
frac = (t1 - offset + DIST_EPSILON)*idist;
}
else if (t1 > t2)
{
idist = 1.0/(t1-t2);
side = 0;
frac2 = (t1 - offset - DIST_EPSILON)*idist;
frac = (t1 + offset + DIST_EPSILON)*idist;
}
else
{
side = 0;
frac = 1;
frac2 = 0;
}
// move up to the node
if (frac < 0)
frac = 0;
if (frac > 1)
frac = 1;
midf = p1f + (p2f - p1f)*frac;
for (i=0 ; i<3 ; i++)
mid[i] = p1[i] + frac*(p2[i] - p1[i]);
CM_RecursiveHullCheck (mod, node->childnum[side], p1f, midf, p1, mid);
// go past the node
if (frac2 < 0)
frac2 = 0;
if (frac2 > 1)
frac2 = 1;
midf = p1f + (p2f - p1f)*frac2;
for (i=0 ; i<3 ; i++)
mid[i] = p1[i] + frac2*(p2[i] - p1[i]);
CM_RecursiveHullCheck (mod, node->childnum[side^1], midf, p2f, mid, p2);
}
//======================================================================
/*
==================
CM_BoxTrace
==================
*/
static trace_t CM_BoxTrace (model_t *mod, vec3_t start, vec3_t end,
vec3_t mins, vec3_t maxs,
int brushmask)
{
int i;
vec3_t point;
checkcount++; // for multi-check avoidance
// fill in a default trace
memset (&trace_trace, 0, sizeof(trace_trace));
trace_truefraction = 1;
trace_nearfraction = 1;
trace_trace.fraction = 1;
trace_trace.truefraction = 1;
trace_trace.surface = &(nullsurface.c);
if (!mod) // map not loaded
return trace_trace;
trace_contents = brushmask;
VectorCopy (start, trace_start);
VectorCopy (end, trace_end);
VectorCopy (mins, trace_mins);
VectorCopy (maxs, trace_maxs);
// build a bounding box of the entire move (for patches)
ClearBounds (trace_absmins, trace_absmaxs);
VectorAdd (start, trace_mins, point);
AddPointToBounds (point, trace_absmins, trace_absmaxs);
VectorAdd (start, trace_maxs, point);
AddPointToBounds (point, trace_absmins, trace_absmaxs);
VectorAdd (end, trace_mins, point);
AddPointToBounds (point, trace_absmins, trace_absmaxs);
VectorAdd (end, trace_maxs, point);
AddPointToBounds (point, trace_absmins, trace_absmaxs);
if (0)
{ //treat *ALL* tests against the actual geometry instead of using any brushes.
//also ignores the bsp etc. not fast. testing only.
trace_ispoint = trace_mins[0] == 0 && trace_mins[1] == 0 && trace_mins[2] == 0
&& trace_maxs[0] == 0 && trace_maxs[1] == 0 && trace_maxs[2] == 0;
for (i = 0; i < mod->numsurfaces; i++)
{
CM_ClipBoxToMesh(trace_mins, trace_maxs, trace_start, trace_end, &trace_trace, mod->surfaces[i].mesh);
}
}
else
if (0)
{
trace_ispoint = trace_mins[0] == 0 && trace_mins[1] == 0 && trace_mins[2] == 0
&& trace_maxs[0] == 0 && trace_maxs[1] == 0 && trace_maxs[2] == 0;
for (i = 0; i < mod->numleafs; i++)
CM_TraceToLeaf(&mod->leafs[i]);
}
else
//
// check for position test special case
//
if (start[0] == end[0] && start[1] == end[1] && start[2] == end[2])
{
int leafs[1024];
int i, numleafs;
vec3_t c1, c2;
int topnode;
VectorAdd (start, mins, c1);
VectorAdd (start, maxs, c2);
for (i=0 ; i<3 ; i++)
{
c1[i] -= 1;
c2[i] += 1;
}
numleafs = CM_BoxLeafnums_headnode (mod, c1, c2, leafs, sizeof(leafs)/sizeof(leafs[0]), mod->hulls[0].firstclipnode, &topnode);
for (i=0 ; i<numleafs ; i++)
{
CM_TestInLeaf (&mod->leafs[leafs[i]]);
if (trace_trace.allsolid)
break;
}
VectorCopy (start, trace_trace.endpos);
return trace_trace;
}
//
// check for point special case
//
else if (trace_mins[0] == 0 && trace_mins[1] == 0 && trace_mins[2] == 0
&& trace_maxs[0] == 0 && trace_maxs[1] == 0 && trace_maxs[2] == 0)
{
trace_ispoint = true;
VectorClear (trace_extents);
CM_RecursiveHullCheck (mod, mod->hulls[0].firstclipnode, 0, 1, trace_start, trace_end);
}
//
// general aabb trace
//
else
{
trace_ispoint = false;
trace_extents[0] = ((-trace_mins[0] > trace_maxs[0]) ? -trace_mins[0] : trace_maxs[0])+1;
trace_extents[1] = ((-trace_mins[1] > trace_maxs[1]) ? -trace_mins[1] : trace_maxs[1])+1;
trace_extents[2] = ((-trace_mins[2] > trace_maxs[2]) ? -trace_mins[2] : trace_maxs[2])+1;
CM_RecursiveHullCheck (mod, mod->hulls[0].firstclipnode, 0, 1, trace_start, trace_end);
}
if (trace_nearfraction == 1)
{
trace_trace.fraction = 1;
VectorCopy (trace_end, trace_trace.endpos);
}
else
{
if (trace_nearfraction<0)
trace_nearfraction=0;
trace_trace.fraction = trace_nearfraction;
for (i=0 ; i<3 ; i++)
trace_trace.endpos[i] = trace_start[i] + trace_trace.fraction * (trace_end[i] - trace_start[i]);
}
return trace_trace;
}
static qboolean CM_NativeTrace(model_t *model, int forcehullnum, int frame, vec3_t axis[3], vec3_t start, vec3_t end, vec3_t mins, vec3_t maxs, unsigned int contents, trace_t *trace)
{
if (axis)
{
vec3_t start_l;
vec3_t end_l;
start_l[0] = DotProduct(start, axis[0]);
start_l[1] = DotProduct(start, axis[1]);
start_l[2] = DotProduct(start, axis[2]);
end_l[0] = DotProduct(end, axis[0]);
end_l[1] = DotProduct(end, axis[1]);
end_l[2] = DotProduct(end, axis[2]);
*trace = CM_BoxTrace(model, start_l, end_l, mins, maxs, contents);
#ifdef TERRAIN
if (model->terrain)
{
trace_t hmt;
Heightmap_Trace(model, forcehullnum, frame, NULL, start, end, mins, maxs, contents, &hmt);
if (hmt.fraction < trace->fraction)
*trace = hmt;
}
#endif
if (trace->fraction == 1)
{
VectorCopy (end, trace->endpos);
}
else
{
vec3_t iaxis[3];
vec3_t norm;
Matrix3x3_RM_Invert_Simple((void *)axis, iaxis);
VectorCopy(trace->plane.normal, norm);
trace->plane.normal[0] = DotProduct(norm, iaxis[0]);
trace->plane.normal[1] = DotProduct(norm, iaxis[1]);
trace->plane.normal[2] = DotProduct(norm, iaxis[2]);
/*just interpolate it, its easier than inverse matrix rotations*/
VectorInterpolate(start, trace->fraction, end, trace->endpos);
}
}
else
{
*trace = CM_BoxTrace(model, start, end, mins, maxs, contents);
#ifdef TERRAIN
if (model->terrain)
{
trace_t hmt;
Heightmap_Trace(model, forcehullnum, frame, NULL, start, end, mins, maxs, contents, &hmt);
if (hmt.fraction < trace->fraction)
*trace = hmt;
}
#endif
}
return trace->fraction != 1;
}
/*
==================
CM_TransformedBoxTrace
Handles offseting and rotation of the end points for moving and
rotating entities
==================
*/
#ifdef _MSC_VER
#pragma warning(disable : 4748)
#pragma optimize( "", off )
#endif
trace_t CM_TransformedBoxTrace (model_t *mod, vec3_t start, vec3_t end,
vec3_t mins, vec3_t maxs,
int brushmask,
vec3_t origin, vec3_t angles)
{
#ifdef _MSC_VER
#pragma warning(default : 4748)
#endif
trace_t trace;
vec3_t start_l, end_l;
vec3_t a;
vec3_t forward, right, up;
vec3_t temp;
qboolean rotated;
// subtract origin offset
VectorSubtract (start, origin, start_l);
VectorSubtract (end, origin, end_l);
// rotate start and end into the models frame of reference
if (mod != &box_model &&
(angles[0] || angles[1] || angles[2]) )
rotated = true;
else
rotated = false;
if (rotated)
{
AngleVectors (angles, forward, right, up);
VectorCopy (start_l, temp);
start_l[0] = DotProduct (temp, forward);
start_l[1] = -DotProduct (temp, right);
start_l[2] = DotProduct (temp, up);
VectorCopy (end_l, temp);
end_l[0] = DotProduct (temp, forward);
end_l[1] = -DotProduct (temp, right);
end_l[2] = DotProduct (temp, up);
}
// sweep the box through the model
trace = CM_BoxTrace (mod, start_l, end_l, mins, maxs, brushmask);
if (rotated && trace.fraction != 1.0)
{
// FIXME: figure out how to do this with existing angles
VectorNegate (angles, a);
AngleVectors (a, forward, right, up);
VectorCopy (trace.plane.normal, temp);
trace.plane.normal[0] = DotProduct (temp, forward);
trace.plane.normal[1] = -DotProduct (temp, right);
trace.plane.normal[2] = DotProduct (temp, up);
}
if (trace.fraction == 1)
{
VectorCopy(end, trace.endpos);
}
else
{
trace.endpos[0] = start[0] + trace.fraction * (end[0] - start[0]);
trace.endpos[1] = start[1] + trace.fraction * (end[1] - start[1]);
trace.endpos[2] = start[2] + trace.fraction * (end[2] - start[2]);
}
return trace;
}
#ifdef _MSC_VER
#pragma optimize( "", on )
#endif
/*
===============================================================================
PVS / PHS
===============================================================================
*/
/*
===================
CM_DecompressVis
===================
*/
/*
qbyte *Mod_Q2DecompressVis (qbyte *in, model_t *model)
{
static qbyte decompressed[MAX_MAP_LEAFS/8];
int c;
qbyte *out;
int row;
row = (model->vis->numclusters+7)>>3;
out = decompressed;
if (!in)
{ // no vis info, so make all visible
while (row)
{
*out++ = 0xff;
row--;
}
return decompressed;
}
do
{
if (*in)
{
*out++ = *in++;
continue;
}
c = in[1];
in += 2;
while (c)
{
*out++ = 0;
c--;
}
} while (out - decompressed < row);
return decompressed;
}
#define DVIS_PVS 0
#define DVIS_PHS 1
qbyte *Mod_ClusterPVS (int cluster, model_t *model)
{
if (cluster == -1 || !model->vis)
return mod_novis;
return Mod_Q2DecompressVis ( (qbyte *)model->vis + model->vis->bitofs[cluster][DVIS_PVS],
model);
}
*/
static void CM_DecompressVis (qbyte *in, qbyte *out)
{
int c;
qbyte *out_p;
int row;
row = (numclusters+7)>>3;
out_p = out;
if (!in || !numvisibility)
{ // no vis info, so make all visible
while (row)
{
*out_p++ = 0xff;
row--;
}
return;
}
do
{
if (*in)
{
*out_p++ = *in++;
continue;
}
c = in[1];
in += 2;
if ((out_p - out) + c > row)
{
c = row - (out_p - out);
Con_DPrintf ("warning: Vis decompression overrun\n");
}
while (c)
{
*out_p++ = 0;
c--;
}
} while (out_p - out < row);
}
static qbyte pvsrow[MAX_MAP_LEAFS/8];
static qbyte phsrow[MAX_MAP_LEAFS/8];
qbyte *CM_ClusterPVS (model_t *mod, int cluster, qbyte *buffer, unsigned int buffersize)
{
if (!buffer)
{
buffer = pvsrow;
buffersize = sizeof(pvsrow);
}
if (buffersize < (numclusters+7)>>3)
Sys_Error("CM_ClusterPVS with too small a buffer\n");
if (mapisq3)
{
if (cluster != -1 && map_q3pvs->numclusters)
{
return (qbyte *)map_q3pvs->data + cluster * map_q3pvs->rowsize;
}
else
{
memset (buffer, 0, (numclusters+7)>>3);
return buffer;
}
}
if (cluster == -1)
memset (buffer, 0, (numclusters+7)>>3);
else
CM_DecompressVis (((qbyte*)map_q2vis) + map_q2vis->bitofs[cluster][DVIS_PVS], buffer);
return buffer;
}
qbyte *CM_ClusterPHS (model_t *mod, int cluster)
{
if (mapisq3) //phs not working yet.
{
if (cluster != -1 && map_q3phs->numclusters)
{
return (qbyte *)map_q3phs->data + cluster * map_q3phs->rowsize;
}
else
{
memset (phsrow, 0, (numclusters+7)>>3);
return phsrow;
}
}
if (cluster == -1)
memset (phsrow, 0, (numclusters+7)>>3);
else
CM_DecompressVis (((qbyte*)map_q2vis) + map_q2vis->bitofs[cluster][DVIS_PHS], phsrow);
return phsrow;
}
/*
===============================================================================
AREAPORTALS
===============================================================================
*/
static void FloodArea_r (q2carea_t *area, int floodnum)
{
int i;
if (area->floodvalid == floodvalid)
{
if (area->floodnum == floodnum)
return;
Host_Error ("FloodArea_r: reflooded");
}
area->floodnum = floodnum;
area->floodvalid = floodvalid;
if (mapisq3)
{
for (i=0 ; i<numareas ; i++)
{
if (map_q3areas[area - map_q2areas].numareaportals[i]>0)
FloodArea_r (&map_q2areas[i], floodnum);
}
}
else
{
q2dareaportal_t *p = &map_areaportals[area->firstareaportal];
for (i=0 ; i<area->numareaportals ; i++, p++)
{
if (portalopen[p->portalnum])
FloodArea_r (&map_q2areas[p->otherarea], floodnum);
}
}
}
/*
====================
FloodAreaConnections
====================
*/
static void FloodAreaConnections (void)
{
int i;
q2carea_t *area;
int floodnum;
// all current floods are now invalid
floodvalid++;
floodnum = 0;
// area 0 is not used
for (i=0 ; i<numareas ; i++)
{
area = &map_q2areas[i];
if (area->floodvalid == floodvalid)
continue; // already flooded into
floodnum++;
FloodArea_r (area, floodnum);
}
}
void VARGS CMQ2_SetAreaPortalState (unsigned int portalnum, qboolean open)
{
if (mapisq3)
return;
if (portalnum > numareaportals)
Host_Error ("areaportal > numareaportals");
if (portalopen[portalnum] == open)
return;
portalopen[portalnum] = open;
FloodAreaConnections ();
return;
}
void CMQ3_SetAreaPortalState (unsigned int area1, unsigned int area2, qboolean open)
{
if (!mapisq3)
return;
// Host_Error ("CMQ3_SetAreaPortalState on non-q3 map");
if (area1 >= numareas || area2 >= numareas)
Host_Error ("CMQ3_SetAreaPortalState: area > numareas");
if (open)
{
map_q3areas[area1].numareaportals[area2]++;
map_q3areas[area2].numareaportals[area1]++;
}
else
{
map_q3areas[area1].numareaportals[area2]--;
map_q3areas[area2].numareaportals[area1]--;
}
FloodAreaConnections();
}
qboolean VARGS CM_AreasConnected (model_t *mod, unsigned int area1, unsigned int area2)
{
if (map_noareas.value)
return true;
if (area1 == ~0 || area2 == ~0)
return area1 == area2;
if (area1 > numareas || area2 > numareas)
Host_Error ("area > numareas");
if (map_q2areas[area1].floodnum == map_q2areas[area2].floodnum)
return true;
return false;
}
/*
=================
CM_WriteAreaBits
Writes a length qbyte followed by a bit vector of all the areas
that area in the same flood as the area parameter
This is used by the client refreshes to cull visibility
=================
*/
int CM_WriteAreaBits (model_t *mod, qbyte *buffer, int area)
{
int i;
int floodnum;
int bytes;
bytes = (numareas+7)>>3;
if (map_noareas.value)
{ // for debugging, send everything
memset (buffer, 255, bytes);
}
else
{
memset (buffer, 0, bytes);
floodnum = map_q2areas[area].floodnum;
for (i=0 ; i<numareas ; i++)
{
if (map_q2areas[i].floodnum == floodnum || !area)
buffer[i>>3] |= 1<<(i&7);
}
}
return bytes;
}
/*
===================
CM_WritePortalState
Writes the portal state to a savegame file
===================
*/
void CM_WritePortalState (FILE *f)
{
fwrite (portalopen, sizeof(portalopen), 1, f);
}
/*
===================
CM_ReadPortalState
Reads the portal state from a savegame file
and recalculates the area connections
===================
*/
void CM_ReadPortalState (FILE *f)
{
size_t result;
result = fread (portalopen, 1, sizeof(portalopen), f); // do something with result
if (result != sizeof(portalopen))
Con_Printf("CM_ReadPortalState() fread: expected %lu, result was %u\n",(long unsigned int)sizeof(portalopen),(unsigned int)result);
FloodAreaConnections ();
}
/*
=============
CM_HeadnodeVisible
Returns true if any leaf under headnode has a cluster that
is potentially visible
=============
*/
qboolean CM_HeadnodeVisible (model_t *mod, int nodenum, qbyte *visbits)
{
int leafnum;
int cluster;
mnode_t *node;
if (nodenum < 0)
{
leafnum = -1-nodenum;
cluster = mod->leafs[leafnum].cluster;
if (cluster == -1)
return false;
if (visbits[cluster>>3] & (1<<(cluster&7)))
return true;
return false;
}
node = &mod->nodes[nodenum];
if (CM_HeadnodeVisible(mod, node->childnum[0], visbits))
return true;
return CM_HeadnodeVisible(mod, node->childnum[1], visbits);
}
unsigned int Q2BSP_PointContents(model_t *mod, vec3_t axis[3], vec3_t p)
{
int pc;
pc = CM_PointContents (mod, p);
return pc;
}
int map_checksum;
qboolean QDECL Mod_LoadQ2BrushModel (model_t *mod, void *buffer)
{
mod->fromgame = fg_quake2;
return CM_LoadMap(mod->name, buffer, true, &map_checksum) != NULL;
}
void CM_Init(void) //register cvars.
{
#define MAPOPTIONS "Map Cvar Options"
Cvar_Register(&map_noareas, MAPOPTIONS);
Cvar_Register(&map_noCurves, MAPOPTIONS);
Cvar_Register(&map_autoopenportals, MAPOPTIONS);
Cvar_Register(&q3bsp_surf_meshcollision_flag, MAPOPTIONS);
Cvar_Register(&q3bsp_surf_meshcollision_force, MAPOPTIONS);
Cvar_Register(&r_subdivisions, MAPOPTIONS);
}
rewrote ban code, merging bans+nonbans+cuffs+mute+cripple+deaf+lagged+vip. added timeouts. new penalties have no dedicated command. use the addip command for it. maplist command now generates links. implemented skin objects for q3. added a csqc builtin for it. also supports compositing skins. playing demos inside zips/pk3s/paks should now work. bumped default rate cvar. added cl_transfer to attempt to connect to a new server without disconnecting first. rewrote fog command. alpha and mindist arguments are now supported. fog change also happens over a short time period. added new args to the showpic console command. can now create clickable items for touchscreen/absmouse users. fixed menus to properly support right-aligned text. this finally fixes variable-width fonts. rewrote console tab completion suggestions display. now clickable links. strings obtained from qc are now marked as const. this has required quite a few added consts all over the place. probably crappy attempt at adding joypad support to the sdl port. no idea if it works. changed key bind event code. buttons now track which event they should trigger when released, instead of being the same one the whole time. this allows +forward etc clickable buttons on screen. Also simplified modifier keys - they no longer trigger random events when pressing the modifier key itself. Right modifiers can now be bound separately from left modifiers. Right will use left's binding if not otherwise bound. Bind assumes left if there's no prefix. multiplayer->setup->network menu no longer crashes. added rgb colours to the translation view (but not to the colour-changing keys). added modelviewer command to view models. added menu_mods menu to switch mods in a more friendly way. will be shown by default if multiple manifests exist in the binarydir. clamped classic tracer density. scrag particles no longer look quite so buggy. added ifdefs to facilitate a potential winrt port. the engine should now have no extra dependencies, but still needs system code+audio drivers to be written. if it can't set a renderer, it'll now try to use *every* renderer until it finds one that works. added experimental mapcluster server mode (that console command). New maps will be started up as required. rewrote skeletal blending code a bit. added cylinder geomtypes. fix cfg_save writing to the wrong path bug. VFS_CLOSE now returns a boolean. false means there was some sort of fatal error (either crc when reading was bad, or the write got corrupted or something). Typically ignorable, depends how robust you want to be. win32 tls code now supports running as a server. added connect tls://address support, as well as equivalent sv_addport support. exposed basic model loading api to plugins. d3d11 backend now optionally supports tessellation hlsl. no suitable hlsl provided by default. !!tess to enable. attempted to add gamma ramp support for d3d11. added support for shader blobs to speed up load times. r_shaderblobs 1 to enable. almost vital for d3d11. added vid_srgb cvar. shadowless lights are no longer disabled if shadows are not supported. attempt to add support for touchscreens in win7/8. Wrote gimmicky lua support, using lua instead of ssqc. define VM_LUA to enable. updated saved game code. can again load saved games from vanilla-like engines. changed scale clamping. 0.0001 should no longer appear as 1. changed default mintic from 0.03 to 0.013 to match vanilla qw. I don't know why it was at 0.03. probably a typo. git-svn-id: https://svn.code.sf.net/p/fteqw/code/trunk@4623 fc73d0e0-1445-4013-8a0c-d673dee63da5
2014-03-30 09:55:06 +01:00
void CM_Shutdown(void)
{
ZG_FreeGroup(&box_model.memgroup);
box_planes = NULL;
}
#endif