mesa/src/mesa/drivers/dri/i965/brw_vec4_visitor.cpp

3669 lines
110 KiB
C++
Raw Normal View History

/*
* Copyright © 2011 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "brw_vec4.h"
#include "brw_cfg.h"
#include "glsl/ir_uniform.h"
#include "program/sampler.h"
namespace brw {
vec4_instruction::vec4_instruction(enum opcode opcode, const dst_reg &dst,
const src_reg &src0, const src_reg &src1,
const src_reg &src2)
{
this->opcode = opcode;
this->dst = dst;
this->src[0] = src0;
this->src[1] = src1;
this->src[2] = src2;
this->saturate = false;
this->force_writemask_all = false;
this->no_dd_clear = false;
this->no_dd_check = false;
this->writes_accumulator = false;
this->conditional_mod = BRW_CONDITIONAL_NONE;
this->predicate = BRW_PREDICATE_NONE;
this->predicate_inverse = false;
this->target = 0;
this->regs_written = (dst.file == BAD_FILE ? 0 : 1);
this->shadow_compare = false;
this->ir = NULL;
this->urb_write_flags = BRW_URB_WRITE_NO_FLAGS;
this->header_present = false;
this->flag_subreg = 0;
this->mlen = 0;
this->base_mrf = 0;
this->offset = 0;
this->annotation = NULL;
}
vec4_instruction *
vec4_visitor::emit(vec4_instruction *inst)
{
inst->ir = this->base_ir;
inst->annotation = this->current_annotation;
this->instructions.push_tail(inst);
return inst;
}
vec4_instruction *
vec4_visitor::emit_before(bblock_t *block, vec4_instruction *inst,
vec4_instruction *new_inst)
{
new_inst->ir = inst->ir;
new_inst->annotation = inst->annotation;
inst->insert_before(block, new_inst);
return inst;
}
vec4_instruction *
vec4_visitor::emit(enum opcode opcode, const dst_reg &dst, const src_reg &src0,
const src_reg &src1, const src_reg &src2)
{
return emit(new(mem_ctx) vec4_instruction(opcode, dst, src0, src1, src2));
}
vec4_instruction *
vec4_visitor::emit(enum opcode opcode, const dst_reg &dst, const src_reg &src0,
const src_reg &src1)
{
return emit(new(mem_ctx) vec4_instruction(opcode, dst, src0, src1));
}
vec4_instruction *
vec4_visitor::emit(enum opcode opcode, const dst_reg &dst, const src_reg &src0)
{
return emit(new(mem_ctx) vec4_instruction(opcode, dst, src0));
}
vec4_instruction *
vec4_visitor::emit(enum opcode opcode, const dst_reg &dst)
{
return emit(new(mem_ctx) vec4_instruction(opcode, dst));
}
vec4_instruction *
vec4_visitor::emit(enum opcode opcode)
{
return emit(new(mem_ctx) vec4_instruction(opcode, dst_reg()));
}
#define ALU1(op) \
vec4_instruction * \
vec4_visitor::op(const dst_reg &dst, const src_reg &src0) \
{ \
return new(mem_ctx) vec4_instruction(BRW_OPCODE_##op, dst, src0); \
}
#define ALU2(op) \
vec4_instruction * \
vec4_visitor::op(const dst_reg &dst, const src_reg &src0, \
const src_reg &src1) \
{ \
return new(mem_ctx) vec4_instruction(BRW_OPCODE_##op, dst, \
src0, src1); \
}
#define ALU2_ACC(op) \
vec4_instruction * \
vec4_visitor::op(const dst_reg &dst, const src_reg &src0, \
const src_reg &src1) \
{ \
vec4_instruction *inst = new(mem_ctx) vec4_instruction( \
BRW_OPCODE_##op, dst, src0, src1); \
inst->writes_accumulator = true; \
return inst; \
}
#define ALU3(op) \
vec4_instruction * \
vec4_visitor::op(const dst_reg &dst, const src_reg &src0, \
const src_reg &src1, const src_reg &src2) \
{ \
assert(brw->gen >= 6); \
return new(mem_ctx) vec4_instruction(BRW_OPCODE_##op, dst, \
src0, src1, src2); \
}
ALU1(NOT)
ALU1(MOV)
ALU1(FRC)
ALU1(RNDD)
ALU1(RNDE)
ALU1(RNDZ)
ALU1(F32TO16)
ALU1(F16TO32)
ALU2(ADD)
ALU2(MUL)
ALU2_ACC(MACH)
ALU2(AND)
ALU2(OR)
ALU2(XOR)
ALU2(DP3)
ALU2(DP4)
ALU2(DPH)
ALU2(SHL)
ALU2(SHR)
ALU2(ASR)
ALU3(LRP)
ALU1(BFREV)
ALU3(BFE)
ALU2(BFI1)
ALU3(BFI2)
ALU1(FBH)
ALU1(FBL)
ALU1(CBIT)
ALU3(MAD)
ALU2_ACC(ADDC)
ALU2_ACC(SUBB)
ALU2(MAC)
/** Gen4 predicated IF. */
vec4_instruction *
vec4_visitor::IF(enum brw_predicate predicate)
{
vec4_instruction *inst;
inst = new(mem_ctx) vec4_instruction(BRW_OPCODE_IF);
inst->predicate = predicate;
return inst;
}
/** Gen6 IF with embedded comparison. */
vec4_instruction *
vec4_visitor::IF(src_reg src0, src_reg src1,
enum brw_conditional_mod condition)
{
assert(brw->gen == 6);
vec4_instruction *inst;
resolve_ud_negate(&src0);
resolve_ud_negate(&src1);
inst = new(mem_ctx) vec4_instruction(BRW_OPCODE_IF, dst_null_d(),
src0, src1);
inst->conditional_mod = condition;
return inst;
}
/**
* CMP: Sets the low bit of the destination channels with the result
* of the comparison, while the upper bits are undefined, and updates
* the flag register with the packed 16 bits of the result.
*/
vec4_instruction *
vec4_visitor::CMP(dst_reg dst, src_reg src0, src_reg src1,
enum brw_conditional_mod condition)
{
vec4_instruction *inst;
/* Take the instruction:
*
* CMP null<d> src0<f> src1<f>
*
* Original gen4 does type conversion to the destination type before
* comparison, producing garbage results for floating point comparisons.
*
* The destination type doesn't matter on newer generations, so we set the
* type to match src0 so we can compact the instruction.
*/
dst.type = src0.type;
if (dst.file == HW_REG)
dst.fixed_hw_reg.type = dst.type;
resolve_ud_negate(&src0);
resolve_ud_negate(&src1);
inst = new(mem_ctx) vec4_instruction(BRW_OPCODE_CMP, dst, src0, src1);
inst->conditional_mod = condition;
return inst;
}
vec4_instruction *
vec4_visitor::SCRATCH_READ(const dst_reg &dst, const src_reg &index)
{
vec4_instruction *inst;
inst = new(mem_ctx) vec4_instruction(SHADER_OPCODE_GEN4_SCRATCH_READ,
dst, index);
inst->base_mrf = 14;
inst->mlen = 2;
return inst;
}
vec4_instruction *
vec4_visitor::SCRATCH_WRITE(const dst_reg &dst, const src_reg &src,
const src_reg &index)
{
vec4_instruction *inst;
inst = new(mem_ctx) vec4_instruction(SHADER_OPCODE_GEN4_SCRATCH_WRITE,
dst, src, index);
inst->base_mrf = 13;
inst->mlen = 3;
return inst;
}
void
vec4_visitor::emit_dp(dst_reg dst, src_reg src0, src_reg src1, unsigned elements)
{
static enum opcode dot_opcodes[] = {
BRW_OPCODE_DP2, BRW_OPCODE_DP3, BRW_OPCODE_DP4
};
emit(dot_opcodes[elements - 2], dst, src0, src1);
}
src_reg
vec4_visitor::fix_3src_operand(src_reg src)
{
/* Using vec4 uniforms in SIMD4x2 programs is difficult. You'd like to be
* able to use vertical stride of zero to replicate the vec4 uniform, like
*
* g3<0;4,1>:f - [0, 4][1, 5][2, 6][3, 7]
*
* But you can't, since vertical stride is always four in three-source
* instructions. Instead, insert a MOV instruction to do the replication so
* that the three-source instruction can consume it.
*/
/* The MOV is only needed if the source is a uniform or immediate. */
if (src.file != UNIFORM && src.file != IMM)
return src;
if (src.file == UNIFORM && brw_is_single_value_swizzle(src.swizzle))
return src;
dst_reg expanded = dst_reg(this, glsl_type::vec4_type);
expanded.type = src.type;
emit(VEC4_OPCODE_UNPACK_UNIFORM, expanded, src);
return src_reg(expanded);
}
src_reg
vec4_visitor::fix_math_operand(src_reg src)
{
if (brw->gen < 6 || brw->gen >= 8 || src.file == BAD_FILE)
return src;
/* The gen6 math instruction ignores the source modifiers --
* swizzle, abs, negate, and at least some parts of the register
* region description.
*
* Rather than trying to enumerate all these cases, *always* expand the
* operand to a temp GRF for gen6.
*
* For gen7, keep the operand as-is, except if immediate, which gen7 still
* can't use.
*/
if (brw->gen == 7 && src.file != IMM)
return src;
dst_reg expanded = dst_reg(this, glsl_type::vec4_type);
expanded.type = src.type;
emit(MOV(expanded, src));
return src_reg(expanded);
}
void
vec4_visitor::emit_math(enum opcode opcode,
const dst_reg &dst,
const src_reg &src0, const src_reg &src1)
{
vec4_instruction *math =
emit(opcode, dst, fix_math_operand(src0), fix_math_operand(src1));
if (brw->gen == 6 && dst.writemask != WRITEMASK_XYZW) {
/* MATH on Gen6 must be align1, so we can't do writemasks. */
math->dst = dst_reg(this, glsl_type::vec4_type);
math->dst.type = dst.type;
emit(MOV(dst, src_reg(math->dst)));
} else if (brw->gen < 6) {
math->base_mrf = 1;
math->mlen = src1.file == BAD_FILE ? 1 : 2;
}
}
void
vec4_visitor::emit_pack_half_2x16(dst_reg dst, src_reg src0)
{
if (brw->gen < 7) {
unreachable("ir_unop_pack_half_2x16 should be lowered");
}
assert(dst.type == BRW_REGISTER_TYPE_UD);
assert(src0.type == BRW_REGISTER_TYPE_F);
/* From the Ivybridge PRM, Vol4, Part3, Section 6.27 f32to16:
*
* Because this instruction does not have a 16-bit floating-point type,
* the destination data type must be Word (W).
*
* The destination must be DWord-aligned and specify a horizontal stride
* (HorzStride) of 2. The 16-bit result is stored in the lower word of
* each destination channel and the upper word is not modified.
*
* The above restriction implies that the f32to16 instruction must use
* align1 mode, because only in align1 mode is it possible to specify
* horizontal stride. We choose here to defy the hardware docs and emit
* align16 instructions.
*
* (I [chadv] did attempt to emit align1 instructions for VS f32to16
* instructions. I was partially successful in that the code passed all
* tests. However, the code was dubiously correct and fragile, and the
* tests were not harsh enough to probe that frailty. Not trusting the
* code, I chose instead to remain in align16 mode in defiance of the hw
* docs).
*
* I've [chadv] experimentally confirmed that, on gen7 hardware and the
* simulator, emitting a f32to16 in align16 mode with UD as destination
* data type is safe. The behavior differs from that specified in the PRM
* in that the upper word of each destination channel is cleared to 0.
*/
dst_reg tmp_dst(this, glsl_type::uvec2_type);
src_reg tmp_src(tmp_dst);
#if 0
/* Verify the undocumented behavior on which the following instructions
* rely. If f32to16 fails to clear the upper word of the X and Y channels,
* then the result of the bit-or instruction below will be incorrect.
*
* You should inspect the disasm output in order to verify that the MOV is
* not optimized away.
*/
emit(MOV(tmp_dst, src_reg(0x12345678u)));
#endif
/* Give tmp the form below, where "." means untouched.
*
* w z y x w z y x
* |.|.|0x0000hhhh|0x0000llll|.|.|0x0000hhhh|0x0000llll|
*
* That the upper word of each write-channel be 0 is required for the
* following bit-shift and bit-or instructions to work. Note that this
* relies on the undocumented hardware behavior mentioned above.
*/
tmp_dst.writemask = WRITEMASK_XY;
emit(F32TO16(tmp_dst, src0));
/* Give the write-channels of dst the form:
* 0xhhhh0000
*/
tmp_src.swizzle = BRW_SWIZZLE_YYYY;
emit(SHL(dst, tmp_src, src_reg(16u)));
/* Finally, give the write-channels of dst the form of packHalf2x16's
* output:
* 0xhhhhllll
*/
tmp_src.swizzle = BRW_SWIZZLE_XXXX;
emit(OR(dst, src_reg(dst), tmp_src));
}
void
vec4_visitor::emit_unpack_half_2x16(dst_reg dst, src_reg src0)
{
if (brw->gen < 7) {
unreachable("ir_unop_unpack_half_2x16 should be lowered");
}
assert(dst.type == BRW_REGISTER_TYPE_F);
assert(src0.type == BRW_REGISTER_TYPE_UD);
/* From the Ivybridge PRM, Vol4, Part3, Section 6.26 f16to32:
*
* Because this instruction does not have a 16-bit floating-point type,
* the source data type must be Word (W). The destination type must be
* F (Float).
*
* To use W as the source data type, we must adjust horizontal strides,
* which is only possible in align1 mode. All my [chadv] attempts at
* emitting align1 instructions for unpackHalf2x16 failed to pass the
* Piglit tests, so I gave up.
*
* I've verified that, on gen7 hardware and the simulator, it is safe to
* emit f16to32 in align16 mode with UD as source data type.
*/
dst_reg tmp_dst(this, glsl_type::uvec2_type);
src_reg tmp_src(tmp_dst);
tmp_dst.writemask = WRITEMASK_X;
emit(AND(tmp_dst, src0, src_reg(0xffffu)));
tmp_dst.writemask = WRITEMASK_Y;
emit(SHR(tmp_dst, src0, src_reg(16u)));
dst.writemask = WRITEMASK_XY;
emit(F16TO32(dst, tmp_src));
}
void
vec4_visitor::emit_unpack_unorm_4x8(const dst_reg &dst, src_reg src0)
{
/* Instead of splitting the 32-bit integer, shifting, and ORing it back
* together, we can shift it by <0, 8, 16, 24>. The packed integer immediate
* is not suitable to generate the shift values, but we can use the packed
* vector float and a type-converting MOV.
*/
dst_reg shift(this, glsl_type::uvec4_type);
emit(MOV(shift, src_reg(0x00, 0x60, 0x70, 0x78)));
dst_reg shifted(this, glsl_type::uvec4_type);
src0.swizzle = BRW_SWIZZLE_XXXX;
emit(SHR(shifted, src0, src_reg(shift)));
shifted.type = BRW_REGISTER_TYPE_UB;
dst_reg f(this, glsl_type::vec4_type);
emit(MOV(f, src_reg(shifted)));
emit(MUL(dst, src_reg(f), src_reg(1.0f / 255.0f)));
}
void
vec4_visitor::emit_unpack_snorm_4x8(const dst_reg &dst, src_reg src0)
{
/* Instead of splitting the 32-bit integer, shifting, and ORing it back
* together, we can shift it by <0, 8, 16, 24>. The packed integer immediate
* is not suitable to generate the shift values, but we can use the packed
* vector float and a type-converting MOV.
*/
dst_reg shift(this, glsl_type::uvec4_type);
emit(MOV(shift, src_reg(0x00, 0x60, 0x70, 0x78)));
dst_reg shifted(this, glsl_type::uvec4_type);
src0.swizzle = BRW_SWIZZLE_XXXX;
emit(SHR(shifted, src0, src_reg(shift)));
shifted.type = BRW_REGISTER_TYPE_B;
dst_reg f(this, glsl_type::vec4_type);
emit(MOV(f, src_reg(shifted)));
dst_reg scaled(this, glsl_type::vec4_type);
emit(MUL(scaled, src_reg(f), src_reg(1.0f / 127.0f)));
dst_reg max(this, glsl_type::vec4_type);
emit_minmax(BRW_CONDITIONAL_G, max, src_reg(scaled), src_reg(-1.0f));
emit_minmax(BRW_CONDITIONAL_L, dst, src_reg(max), src_reg(1.0f));
}
void
vec4_visitor::emit_pack_unorm_4x8(const dst_reg &dst, const src_reg &src0)
{
dst_reg saturated(this, glsl_type::vec4_type);
vec4_instruction *inst = emit(MOV(saturated, src0));
inst->saturate = true;
dst_reg scaled(this, glsl_type::vec4_type);
emit(MUL(scaled, src_reg(saturated), src_reg(255.0f)));
dst_reg rounded(this, glsl_type::vec4_type);
emit(RNDE(rounded, src_reg(scaled)));
dst_reg u(this, glsl_type::uvec4_type);
emit(MOV(u, src_reg(rounded)));
src_reg bytes(u);
emit(VEC4_OPCODE_PACK_BYTES, dst, bytes);
}
void
vec4_visitor::emit_pack_snorm_4x8(const dst_reg &dst, const src_reg &src0)
{
dst_reg max(this, glsl_type::vec4_type);
emit_minmax(BRW_CONDITIONAL_G, max, src0, src_reg(-1.0f));
dst_reg min(this, glsl_type::vec4_type);
emit_minmax(BRW_CONDITIONAL_L, min, src_reg(max), src_reg(1.0f));
dst_reg scaled(this, glsl_type::vec4_type);
emit(MUL(scaled, src_reg(min), src_reg(127.0f)));
dst_reg rounded(this, glsl_type::vec4_type);
emit(RNDE(rounded, src_reg(scaled)));
dst_reg i(this, glsl_type::ivec4_type);
emit(MOV(i, src_reg(rounded)));
src_reg bytes(i);
emit(VEC4_OPCODE_PACK_BYTES, dst, bytes);
}
void
vec4_visitor::visit_instructions(const exec_list *list)
{
foreach_in_list(ir_instruction, ir, list) {
base_ir = ir;
ir->accept(this);
}
}
static int
type_size(const struct glsl_type *type)
{
unsigned int i;
int size;
switch (type->base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_BOOL:
if (type->is_matrix()) {
return type->matrix_columns;
} else {
/* Regardless of size of vector, it gets a vec4. This is bad
* packing for things like floats, but otherwise arrays become a
* mess. Hopefully a later pass over the code can pack scalars
* down if appropriate.
*/
return 1;
}
case GLSL_TYPE_ARRAY:
assert(type->length > 0);
return type_size(type->fields.array) * type->length;
case GLSL_TYPE_STRUCT:
size = 0;
for (i = 0; i < type->length; i++) {
size += type_size(type->fields.structure[i].type);
}
return size;
case GLSL_TYPE_SAMPLER:
/* Samplers take up no register space, since they're baked in at
* link time.
*/
return 0;
case GLSL_TYPE_ATOMIC_UINT:
return 0;
case GLSL_TYPE_IMAGE:
case GLSL_TYPE_VOID:
case GLSL_TYPE_ERROR:
case GLSL_TYPE_INTERFACE:
unreachable("not reached");
}
return 0;
}
src_reg::src_reg(class vec4_visitor *v, const struct glsl_type *type)
{
init();
this->file = GRF;
this->reg = v->alloc.allocate(type_size(type));
if (type->is_array() || type->is_record()) {
this->swizzle = BRW_SWIZZLE_NOOP;
} else {
this->swizzle = swizzle_for_size(type->vector_elements);
}
this->type = brw_type_for_base_type(type);
}
src_reg::src_reg(class vec4_visitor *v, const struct glsl_type *type, int size)
{
assert(size > 0);
init();
this->file = GRF;
this->reg = v->alloc.allocate(type_size(type) * size);
this->swizzle = BRW_SWIZZLE_NOOP;
this->type = brw_type_for_base_type(type);
}
dst_reg::dst_reg(class vec4_visitor *v, const struct glsl_type *type)
{
init();
this->file = GRF;
this->reg = v->alloc.allocate(type_size(type));
if (type->is_array() || type->is_record()) {
this->writemask = WRITEMASK_XYZW;
} else {
this->writemask = (1 << type->vector_elements) - 1;
}
this->type = brw_type_for_base_type(type);
}
/* Our support for uniforms is piggy-backed on the struct
* gl_fragment_program, because that's where the values actually
* get stored, rather than in some global gl_shader_program uniform
* store.
*/
void
vec4_visitor::setup_uniform_values(ir_variable *ir)
{
int namelen = strlen(ir->name);
/* The data for our (non-builtin) uniforms is stored in a series of
* gl_uniform_driver_storage structs for each subcomponent that
* glGetUniformLocation() could name. We know it's been set up in the same
* order we'd walk the type, so walk the list of storage and find anything
* with our name, or the prefix of a component that starts with our name.
*/
for (unsigned u = 0; u < shader_prog->NumUserUniformStorage; u++) {
struct gl_uniform_storage *storage = &shader_prog->UniformStorage[u];
if (strncmp(ir->name, storage->name, namelen) != 0 ||
(storage->name[namelen] != 0 &&
storage->name[namelen] != '.' &&
storage->name[namelen] != '[')) {
continue;
}
gl_constant_value *components = storage->storage;
unsigned vector_count = (MAX2(storage->array_elements, 1) *
storage->type->matrix_columns);
for (unsigned s = 0; s < vector_count; s++) {
assert(uniforms < uniform_array_size);
uniform_vector_size[uniforms] = storage->type->vector_elements;
int i;
for (i = 0; i < uniform_vector_size[uniforms]; i++) {
stage_prog_data->param[uniforms * 4 + i] = components;
components++;
}
for (; i < 4; i++) {
static gl_constant_value zero = { 0.0 };
stage_prog_data->param[uniforms * 4 + i] = &zero;
}
uniforms++;
}
}
}
void
vec4_visitor::setup_uniform_clipplane_values()
{
gl_clip_plane *clip_planes = brw_select_clip_planes(ctx);
for (int i = 0; i < key->nr_userclip_plane_consts; ++i) {
assert(this->uniforms < uniform_array_size);
this->uniform_vector_size[this->uniforms] = 4;
this->userplane[i] = dst_reg(UNIFORM, this->uniforms);
this->userplane[i].type = BRW_REGISTER_TYPE_F;
for (int j = 0; j < 4; ++j) {
stage_prog_data->param[this->uniforms * 4 + j] =
(gl_constant_value *) &clip_planes[i][j];
}
++this->uniforms;
}
}
/* Our support for builtin uniforms is even scarier than non-builtin.
* It sits on top of the PROG_STATE_VAR parameters that are
* automatically updated from GL context state.
*/
void
vec4_visitor::setup_builtin_uniform_values(ir_variable *ir)
{
const ir_state_slot *const slots = ir->get_state_slots();
assert(slots != NULL);
for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
/* This state reference has already been setup by ir_to_mesa,
* but we'll get the same index back here. We can reference
* ParameterValues directly, since unlike brw_fs.cpp, we never
* add new state references during compile.
*/
int index = _mesa_add_state_reference(this->prog->Parameters,
(gl_state_index *)slots[i].tokens);
gl_constant_value *values =
&this->prog->Parameters->ParameterValues[index][0];
assert(this->uniforms < uniform_array_size);
this->uniform_vector_size[this->uniforms] = 0;
/* Add each of the unique swizzled channels of the element.
* This will end up matching the size of the glsl_type of this field.
*/
int last_swiz = -1;
for (unsigned int j = 0; j < 4; j++) {
int swiz = GET_SWZ(slots[i].swizzle, j);
last_swiz = swiz;
stage_prog_data->param[this->uniforms * 4 + j] = &values[swiz];
assert(this->uniforms < uniform_array_size);
if (swiz <= last_swiz)
this->uniform_vector_size[this->uniforms]++;
}
this->uniforms++;
}
}
dst_reg *
vec4_visitor::variable_storage(ir_variable *var)
{
return (dst_reg *)hash_table_find(this->variable_ht, var);
}
void
vec4_visitor::emit_bool_to_cond_code(ir_rvalue *ir,
enum brw_predicate *predicate)
{
ir_expression *expr = ir->as_expression();
*predicate = BRW_PREDICATE_NORMAL;
if (expr && expr->operation != ir_binop_ubo_load) {
src_reg op[3];
vec4_instruction *inst;
assert(expr->get_num_operands() <= 3);
for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
expr->operands[i]->accept(this);
op[i] = this->result;
resolve_ud_negate(&op[i]);
}
switch (expr->operation) {
case ir_unop_logic_not:
inst = emit(AND(dst_null_d(), op[0], src_reg(1)));
inst->conditional_mod = BRW_CONDITIONAL_Z;
break;
case ir_binop_logic_xor:
if (brw->gen <= 5) {
src_reg temp = src_reg(this, ir->type);
emit(XOR(dst_reg(temp), op[0], op[1]));
inst = emit(AND(dst_null_d(), temp, src_reg(1)));
} else {
inst = emit(XOR(dst_null_d(), op[0], op[1]));
}
inst->conditional_mod = BRW_CONDITIONAL_NZ;
break;
case ir_binop_logic_or:
if (brw->gen <= 5) {
src_reg temp = src_reg(this, ir->type);
emit(OR(dst_reg(temp), op[0], op[1]));
inst = emit(AND(dst_null_d(), temp, src_reg(1)));
} else {
inst = emit(OR(dst_null_d(), op[0], op[1]));
}
inst->conditional_mod = BRW_CONDITIONAL_NZ;
break;
case ir_binop_logic_and:
if (brw->gen <= 5) {
src_reg temp = src_reg(this, ir->type);
emit(AND(dst_reg(temp), op[0], op[1]));
inst = emit(AND(dst_null_d(), temp, src_reg(1)));
} else {
inst = emit(AND(dst_null_d(), op[0], op[1]));
}
inst->conditional_mod = BRW_CONDITIONAL_NZ;
break;
case ir_unop_f2b:
if (brw->gen >= 6) {
emit(CMP(dst_null_d(), op[0], src_reg(0.0f), BRW_CONDITIONAL_NZ));
} else {
inst = emit(MOV(dst_null_f(), op[0]));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
}
break;
case ir_unop_i2b:
if (brw->gen >= 6) {
emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
} else {
inst = emit(MOV(dst_null_d(), op[0]));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
}
break;
case ir_binop_all_equal:
if (brw->gen <= 5) {
resolve_bool_comparison(expr->operands[0], &op[0]);
resolve_bool_comparison(expr->operands[1], &op[1]);
}
inst = emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z));
*predicate = BRW_PREDICATE_ALIGN16_ALL4H;
break;
case ir_binop_any_nequal:
if (brw->gen <= 5) {
resolve_bool_comparison(expr->operands[0], &op[0]);
resolve_bool_comparison(expr->operands[1], &op[1]);
}
inst = emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ));
*predicate = BRW_PREDICATE_ALIGN16_ANY4H;
break;
case ir_unop_any:
if (brw->gen <= 5) {
resolve_bool_comparison(expr->operands[0], &op[0]);
}
inst = emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
*predicate = BRW_PREDICATE_ALIGN16_ANY4H;
break;
case ir_binop_greater:
case ir_binop_gequal:
case ir_binop_less:
case ir_binop_lequal:
case ir_binop_equal:
case ir_binop_nequal:
if (brw->gen <= 5) {
resolve_bool_comparison(expr->operands[0], &op[0]);
resolve_bool_comparison(expr->operands[1], &op[1]);
}
emit(CMP(dst_null_d(), op[0], op[1],
brw_conditional_for_comparison(expr->operation)));
break;
case ir_triop_csel: {
/* Expand the boolean condition into the flag register. */
inst = emit(MOV(dst_null_d(), op[0]));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
/* Select which boolean to return. */
dst_reg temp(this, expr->operands[1]->type);
inst = emit(BRW_OPCODE_SEL, temp, op[1], op[2]);
inst->predicate = BRW_PREDICATE_NORMAL;
/* Expand the result to a condition code. */
inst = emit(MOV(dst_null_d(), src_reg(temp)));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
break;
}
default:
unreachable("not reached");
}
return;
}
ir->accept(this);
resolve_ud_negate(&this->result);
vec4_instruction *inst = emit(AND(dst_null_d(), this->result, src_reg(1)));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
}
/**
* Emit a gen6 IF statement with the comparison folded into the IF
* instruction.
*/
void
vec4_visitor::emit_if_gen6(ir_if *ir)
{
ir_expression *expr = ir->condition->as_expression();
if (expr && expr->operation != ir_binop_ubo_load) {
src_reg op[3];
dst_reg temp;
assert(expr->get_num_operands() <= 3);
for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
expr->operands[i]->accept(this);
op[i] = this->result;
}
switch (expr->operation) {
case ir_unop_logic_not:
emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_Z));
return;
case ir_binop_logic_xor:
emit(IF(op[0], op[1], BRW_CONDITIONAL_NZ));
return;
case ir_binop_logic_or:
temp = dst_reg(this, glsl_type::bool_type);
emit(OR(temp, op[0], op[1]));
emit(IF(src_reg(temp), src_reg(0), BRW_CONDITIONAL_NZ));
return;
case ir_binop_logic_and:
temp = dst_reg(this, glsl_type::bool_type);
emit(AND(temp, op[0], op[1]));
emit(IF(src_reg(temp), src_reg(0), BRW_CONDITIONAL_NZ));
return;
case ir_unop_f2b:
emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_NZ));
return;
case ir_unop_i2b:
emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_NZ));
return;
case ir_binop_greater:
case ir_binop_gequal:
case ir_binop_less:
case ir_binop_lequal:
case ir_binop_equal:
case ir_binop_nequal:
emit(IF(op[0], op[1],
brw_conditional_for_comparison(expr->operation)));
return;
case ir_binop_all_equal:
emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z));
emit(IF(BRW_PREDICATE_ALIGN16_ALL4H));
return;
case ir_binop_any_nequal:
emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ));
emit(IF(BRW_PREDICATE_ALIGN16_ANY4H));
return;
case ir_unop_any:
emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
emit(IF(BRW_PREDICATE_ALIGN16_ANY4H));
return;
case ir_triop_csel: {
/* Expand the boolean condition into the flag register. */
vec4_instruction *inst = emit(MOV(dst_null_d(), op[0]));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
/* Select which boolean to return. */
dst_reg temp(this, expr->operands[1]->type);
inst = emit(BRW_OPCODE_SEL, temp, op[1], op[2]);
inst->predicate = BRW_PREDICATE_NORMAL;
emit(IF(src_reg(temp), src_reg(0), BRW_CONDITIONAL_NZ));
return;
}
default:
unreachable("not reached");
}
return;
}
ir->condition->accept(this);
emit(IF(this->result, src_reg(0), BRW_CONDITIONAL_NZ));
}
void
vec4_visitor::visit(ir_variable *ir)
{
dst_reg *reg = NULL;
if (variable_storage(ir))
return;
switch (ir->data.mode) {
case ir_var_shader_in:
assert(ir->data.location != -1);
reg = new(mem_ctx) dst_reg(ATTR, ir->data.location);
break;
case ir_var_shader_out:
assert(ir->data.location != -1);
reg = new(mem_ctx) dst_reg(this, ir->type);
for (int i = 0; i < type_size(ir->type); i++) {
output_reg[ir->data.location + i] = *reg;
output_reg[ir->data.location + i].reg_offset = i;
output_reg[ir->data.location + i].type =
brw_type_for_base_type(ir->type->get_scalar_type());
output_reg_annotation[ir->data.location + i] = ir->name;
}
break;
case ir_var_auto:
case ir_var_temporary:
reg = new(mem_ctx) dst_reg(this, ir->type);
break;
case ir_var_uniform:
reg = new(this->mem_ctx) dst_reg(UNIFORM, this->uniforms);
/* Thanks to the lower_ubo_reference pass, we will see only
* ir_binop_ubo_load expressions and not ir_dereference_variable for UBO
* variables, so no need for them to be in variable_ht.
*
* Some uniforms, such as samplers and atomic counters, have no actual
* storage, so we should ignore them.
*/
if (ir->is_in_uniform_block() || type_size(ir->type) == 0)
return;
/* Track how big the whole uniform variable is, in case we need to put a
* copy of its data into pull constants for array access.
*/
assert(this->uniforms < uniform_array_size);
this->uniform_size[this->uniforms] = type_size(ir->type);
if (!strncmp(ir->name, "gl_", 3)) {
setup_builtin_uniform_values(ir);
} else {
setup_uniform_values(ir);
}
break;
case ir_var_system_value:
reg = make_reg_for_system_value(ir);
break;
default:
unreachable("not reached");
}
reg->type = brw_type_for_base_type(ir->type);
hash_table_insert(this->variable_ht, reg, ir);
}
void
vec4_visitor::visit(ir_loop *ir)
{
/* We don't want debugging output to print the whole body of the
* loop as the annotation.
*/
this->base_ir = NULL;
emit(BRW_OPCODE_DO);
visit_instructions(&ir->body_instructions);
emit(BRW_OPCODE_WHILE);
}
void
vec4_visitor::visit(ir_loop_jump *ir)
{
switch (ir->mode) {
case ir_loop_jump::jump_break:
emit(BRW_OPCODE_BREAK);
break;
case ir_loop_jump::jump_continue:
emit(BRW_OPCODE_CONTINUE);
break;
}
}
void
vec4_visitor::visit(ir_function_signature *)
{
unreachable("not reached");
}
void
vec4_visitor::visit(ir_function *ir)
{
/* Ignore function bodies other than main() -- we shouldn't see calls to
* them since they should all be inlined.
*/
if (strcmp(ir->name, "main") == 0) {
const ir_function_signature *sig;
exec_list empty;
sig = ir->matching_signature(NULL, &empty, false);
assert(sig);
visit_instructions(&sig->body);
}
}
bool
vec4_visitor::try_emit_mad(ir_expression *ir)
{
/* 3-src instructions were introduced in gen6. */
if (brw->gen < 6)
return false;
/* MAD can only handle floating-point data. */
if (ir->type->base_type != GLSL_TYPE_FLOAT)
return false;
ir_rvalue *nonmul = ir->operands[1];
ir_expression *mul = ir->operands[0]->as_expression();
bool mul_negate = false, mul_abs = false;
if (mul && mul->operation == ir_unop_abs) {
mul = mul->operands[0]->as_expression();
mul_abs = true;
} else if (mul && mul->operation == ir_unop_neg) {
mul = mul->operands[0]->as_expression();
mul_negate = true;
}
if (!mul || mul->operation != ir_binop_mul) {
nonmul = ir->operands[0];
mul = ir->operands[1]->as_expression();
if (mul && mul->operation == ir_unop_abs) {
mul = mul->operands[0]->as_expression();
mul_abs = true;
} else if (mul && mul->operation == ir_unop_neg) {
mul = mul->operands[0]->as_expression();
mul_negate = true;
}
if (!mul || mul->operation != ir_binop_mul)
return false;
}
nonmul->accept(this);
src_reg src0 = fix_3src_operand(this->result);
mul->operands[0]->accept(this);
src_reg src1 = fix_3src_operand(this->result);
src1.negate ^= mul_negate;
src1.abs = mul_abs;
if (mul_abs)
src1.negate = false;
mul->operands[1]->accept(this);
src_reg src2 = fix_3src_operand(this->result);
src2.abs = mul_abs;
if (mul_abs)
src2.negate = false;
this->result = src_reg(this, ir->type);
emit(BRW_OPCODE_MAD, dst_reg(this->result), src0, src1, src2);
return true;
}
bool
vec4_visitor::try_emit_b2f_of_compare(ir_expression *ir)
{
/* This optimization relies on CMP setting the destination to 0 when
* false. Early hardware only sets the least significant bit, and
* leaves the other bits undefined. So we can't use it.
*/
if (brw->gen < 6)
return false;
ir_expression *const cmp = ir->operands[0]->as_expression();
if (cmp == NULL)
return false;
switch (cmp->operation) {
case ir_binop_less:
case ir_binop_greater:
case ir_binop_lequal:
case ir_binop_gequal:
case ir_binop_equal:
case ir_binop_nequal:
break;
default:
return false;
}
cmp->operands[0]->accept(this);
const src_reg cmp_src0 = this->result;
cmp->operands[1]->accept(this);
const src_reg cmp_src1 = this->result;
this->result = src_reg(this, ir->type);
emit(CMP(dst_reg(this->result), cmp_src0, cmp_src1,
brw_conditional_for_comparison(cmp->operation)));
/* If the comparison is false, this->result will just happen to be zero.
*/
vec4_instruction *const inst = emit(BRW_OPCODE_SEL, dst_reg(this->result),
this->result, src_reg(1.0f));
inst->predicate = BRW_PREDICATE_NORMAL;
inst->predicate_inverse = true;
return true;
}
void
vec4_visitor::emit_minmax(enum brw_conditional_mod conditionalmod, dst_reg dst,
src_reg src0, src_reg src1)
{
vec4_instruction *inst;
if (brw->gen >= 6) {
inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
inst->conditional_mod = conditionalmod;
} else {
emit(CMP(dst, src0, src1, conditionalmod));
inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
inst->predicate = BRW_PREDICATE_NORMAL;
}
}
void
vec4_visitor::emit_lrp(const dst_reg &dst,
const src_reg &x, const src_reg &y, const src_reg &a)
{
if (brw->gen >= 6) {
/* Note that the instruction's argument order is reversed from GLSL
* and the IR.
*/
emit(LRP(dst,
fix_3src_operand(a), fix_3src_operand(y), fix_3src_operand(x)));
} else {
/* Earlier generations don't support three source operations, so we
* need to emit x*(1-a) + y*a.
*/
dst_reg y_times_a = dst_reg(this, glsl_type::vec4_type);
dst_reg one_minus_a = dst_reg(this, glsl_type::vec4_type);
dst_reg x_times_one_minus_a = dst_reg(this, glsl_type::vec4_type);
y_times_a.writemask = dst.writemask;
one_minus_a.writemask = dst.writemask;
x_times_one_minus_a.writemask = dst.writemask;
emit(MUL(y_times_a, y, a));
emit(ADD(one_minus_a, negate(a), src_reg(1.0f)));
emit(MUL(x_times_one_minus_a, x, src_reg(one_minus_a)));
emit(ADD(dst, src_reg(x_times_one_minus_a), src_reg(y_times_a)));
}
}
void
vec4_visitor::visit(ir_expression *ir)
{
unsigned int operand;
src_reg op[Elements(ir->operands)];
vec4_instruction *inst;
if (ir->operation == ir_binop_add) {
if (try_emit_mad(ir))
return;
}
if (ir->operation == ir_unop_b2f) {
if (try_emit_b2f_of_compare(ir))
return;
}
/* Storage for our result. Ideally for an assignment we'd be using
* the actual storage for the result here, instead.
*/
dst_reg result_dst(this, ir->type);
src_reg result_src(result_dst);
if (ir->operation == ir_triop_csel) {
ir->operands[1]->accept(this);
op[1] = this->result;
ir->operands[2]->accept(this);
op[2] = this->result;
enum brw_predicate predicate;
emit_bool_to_cond_code(ir->operands[0], &predicate);
inst = emit(BRW_OPCODE_SEL, result_dst, op[1], op[2]);
inst->predicate = predicate;
this->result = result_src;
return;
}
for (operand = 0; operand < ir->get_num_operands(); operand++) {
this->result.file = BAD_FILE;
ir->operands[operand]->accept(this);
if (this->result.file == BAD_FILE) {
fprintf(stderr, "Failed to get tree for expression operand:\n");
ir->operands[operand]->fprint(stderr);
exit(1);
}
op[operand] = this->result;
/* Matrix expression operands should have been broken down to vector
* operations already.
*/
assert(!ir->operands[operand]->type->is_matrix());
}
/* If nothing special happens, this is the result. */
this->result = result_src;
switch (ir->operation) {
case ir_unop_logic_not:
emit(NOT(result_dst, op[0]));
break;
case ir_unop_neg:
op[0].negate = !op[0].negate;
emit(MOV(result_dst, op[0]));
break;
case ir_unop_abs:
op[0].abs = true;
op[0].negate = false;
emit(MOV(result_dst, op[0]));
break;
case ir_unop_sign:
if (ir->type->is_float()) {
/* AND(val, 0x80000000) gives the sign bit.
*
* Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
* zero.
*/
emit(CMP(dst_null_f(), op[0], src_reg(0.0f), BRW_CONDITIONAL_NZ));
op[0].type = BRW_REGISTER_TYPE_UD;
result_dst.type = BRW_REGISTER_TYPE_UD;
emit(AND(result_dst, op[0], src_reg(0x80000000u)));
inst = emit(OR(result_dst, src_reg(result_dst), src_reg(0x3f800000u)));
inst->predicate = BRW_PREDICATE_NORMAL;
this->result.type = BRW_REGISTER_TYPE_F;
} else {
/* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
* -> non-negative val generates 0x00000000.
* Predicated OR sets 1 if val is positive.
*/
emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_G));
emit(ASR(result_dst, op[0], src_reg(31)));
inst = emit(OR(result_dst, src_reg(result_dst), src_reg(1)));
inst->predicate = BRW_PREDICATE_NORMAL;
}
break;
case ir_unop_rcp:
emit_math(SHADER_OPCODE_RCP, result_dst, op[0]);
break;
case ir_unop_exp2:
emit_math(SHADER_OPCODE_EXP2, result_dst, op[0]);
break;
case ir_unop_log2:
emit_math(SHADER_OPCODE_LOG2, result_dst, op[0]);
break;
case ir_unop_exp:
case ir_unop_log:
unreachable("not reached: should be handled by ir_explog_to_explog2");
case ir_unop_sin:
case ir_unop_sin_reduced:
emit_math(SHADER_OPCODE_SIN, result_dst, op[0]);
break;
case ir_unop_cos:
case ir_unop_cos_reduced:
emit_math(SHADER_OPCODE_COS, result_dst, op[0]);
break;
case ir_unop_dFdx:
case ir_unop_dFdx_coarse:
case ir_unop_dFdx_fine:
case ir_unop_dFdy:
case ir_unop_dFdy_coarse:
case ir_unop_dFdy_fine:
unreachable("derivatives not valid in vertex shader");
case ir_unop_bitfield_reverse:
emit(BFREV(result_dst, op[0]));
break;
case ir_unop_bit_count:
emit(CBIT(result_dst, op[0]));
break;
case ir_unop_find_msb: {
src_reg temp = src_reg(this, glsl_type::uint_type);
inst = emit(FBH(dst_reg(temp), op[0]));
inst->dst.writemask = WRITEMASK_XYZW;
/* FBH counts from the MSB side, while GLSL's findMSB() wants the count
* from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
* subtract the result from 31 to convert the MSB count into an LSB count.
*/
/* FBH only supports UD type for dst, so use a MOV to convert UD to D. */
temp.swizzle = BRW_SWIZZLE_NOOP;
emit(MOV(result_dst, temp));
src_reg src_tmp = src_reg(result_dst);
emit(CMP(dst_null_d(), src_tmp, src_reg(-1), BRW_CONDITIONAL_NZ));
src_tmp.negate = true;
inst = emit(ADD(result_dst, src_tmp, src_reg(31)));
inst->predicate = BRW_PREDICATE_NORMAL;
break;
}
case ir_unop_find_lsb:
emit(FBL(result_dst, op[0]));
break;
case ir_unop_saturate:
inst = emit(MOV(result_dst, op[0]));
inst->saturate = true;
break;
case ir_unop_noise:
unreachable("not reached: should be handled by lower_noise");
case ir_binop_add:
emit(ADD(result_dst, op[0], op[1]));
break;
case ir_binop_sub:
unreachable("not reached: should be handled by ir_sub_to_add_neg");
case ir_binop_mul:
if (brw->gen < 8 && ir->type->is_integer()) {
/* For integer multiplication, the MUL uses the low 16 bits of one of
* the operands (src0 through SNB, src1 on IVB and later). The MACH
* accumulates in the contribution of the upper 16 bits of that
* operand. If we can determine that one of the args is in the low
* 16 bits, though, we can just emit a single MUL.
*/
if (ir->operands[0]->is_uint16_constant()) {
if (brw->gen < 7)
emit(MUL(result_dst, op[0], op[1]));
else
emit(MUL(result_dst, op[1], op[0]));
} else if (ir->operands[1]->is_uint16_constant()) {
if (brw->gen < 7)
emit(MUL(result_dst, op[1], op[0]));
else
emit(MUL(result_dst, op[0], op[1]));
} else {
struct brw_reg acc = retype(brw_acc_reg(8), result_dst.type);
emit(MUL(acc, op[0], op[1]));
emit(MACH(dst_null_d(), op[0], op[1]));
emit(MOV(result_dst, src_reg(acc)));
}
} else {
emit(MUL(result_dst, op[0], op[1]));
}
break;
case ir_binop_imul_high: {
struct brw_reg acc = retype(brw_acc_reg(8), result_dst.type);
emit(MUL(acc, op[0], op[1]));
emit(MACH(result_dst, op[0], op[1]));
break;
}
case ir_binop_div:
/* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
assert(ir->type->is_integer());
emit_math(SHADER_OPCODE_INT_QUOTIENT, result_dst, op[0], op[1]);
break;
case ir_binop_carry: {
struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
emit(ADDC(dst_null_ud(), op[0], op[1]));
emit(MOV(result_dst, src_reg(acc)));
break;
}
case ir_binop_borrow: {
struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
emit(SUBB(dst_null_ud(), op[0], op[1]));
emit(MOV(result_dst, src_reg(acc)));
break;
}
case ir_binop_mod:
glsl: Improve precision of mod(x,y) Currently, Mesa uses the lowering pass MOD_TO_FRACT to implement mod(x,y) as y * fract(x/y). This implementation has a down side though: it introduces precision errors due to the fract() operation. Even worse, since the result of fract() is multiplied by y, the larger y gets the larger the precision error we produce, so for large enough numbers the precision loss is significant. Some examples on i965: Operation Precision error ----------------------------------------------------- mod(-1.951171875, 1.9980468750) 0.0000000447 mod(121.57, 13.29) 0.0000023842 mod(3769.12, 321.99) 0.0000762939 mod(3769.12, 1321.99) 0.0001220703 mod(-987654.125, 123456.984375) 0.0160663128 mod( 987654.125, 123456.984375) 0.0312500000 This patch replaces the current lowering pass with a different one (MOD_TO_FLOOR) that follows the recommended implementation in the GLSL man pages: mod(x,y) = x - y * floor(x/y) This implementation eliminates the precision errors at the expense of an additional add instruction on some systems. On systems that can do negate with multiply-add in a single operation this new implementation would come at no additional cost. v2 (Ian Romanick) - Do not clone operands because when they are expressions we would be duplicating them and that can lead to suboptimal code. Fixes the following 16 dEQP tests: dEQP-GLES3.functional.shaders.builtin_functions.precision.mod.mediump_* dEQP-GLES3.functional.shaders.builtin_functions.precision.mod.highp_* Reviewed-by: Ian Romanick <ian.d.romanick@intel.com>
2015-01-20 16:09:59 +00:00
/* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
assert(ir->type->is_integer());
emit_math(SHADER_OPCODE_INT_REMAINDER, result_dst, op[0], op[1]);
break;
case ir_binop_less:
case ir_binop_greater:
case ir_binop_lequal:
case ir_binop_gequal:
case ir_binop_equal:
case ir_binop_nequal: {
if (brw->gen <= 5) {
resolve_bool_comparison(ir->operands[0], &op[0]);
resolve_bool_comparison(ir->operands[1], &op[1]);
}
emit(CMP(result_dst, op[0], op[1],
brw_conditional_for_comparison(ir->operation)));
break;
}
case ir_binop_all_equal:
/* "==" operator producing a scalar boolean. */
if (ir->operands[0]->type->is_vector() ||
ir->operands[1]->type->is_vector()) {
emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z));
emit(MOV(result_dst, src_reg(0)));
inst = emit(MOV(result_dst, src_reg((int)ctx->Const.UniformBooleanTrue)));
inst->predicate = BRW_PREDICATE_ALIGN16_ALL4H;
} else {
emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_Z));
}
break;
case ir_binop_any_nequal:
/* "!=" operator producing a scalar boolean. */
if (ir->operands[0]->type->is_vector() ||
ir->operands[1]->type->is_vector()) {
emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ));
emit(MOV(result_dst, src_reg(0)));
inst = emit(MOV(result_dst, src_reg((int)ctx->Const.UniformBooleanTrue)));
inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
} else {
emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_NZ));
}
break;
case ir_unop_any:
emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
emit(MOV(result_dst, src_reg(0)));
inst = emit(MOV(result_dst, src_reg((int)ctx->Const.UniformBooleanTrue)));
inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
break;
case ir_binop_logic_xor:
emit(XOR(result_dst, op[0], op[1]));
break;
case ir_binop_logic_or:
emit(OR(result_dst, op[0], op[1]));
break;
case ir_binop_logic_and:
emit(AND(result_dst, op[0], op[1]));
break;
case ir_binop_dot:
assert(ir->operands[0]->type->is_vector());
assert(ir->operands[0]->type == ir->operands[1]->type);
emit_dp(result_dst, op[0], op[1], ir->operands[0]->type->vector_elements);
break;
case ir_unop_sqrt:
emit_math(SHADER_OPCODE_SQRT, result_dst, op[0]);
break;
case ir_unop_rsq:
emit_math(SHADER_OPCODE_RSQ, result_dst, op[0]);
break;
case ir_unop_bitcast_i2f:
case ir_unop_bitcast_u2f:
this->result = op[0];
this->result.type = BRW_REGISTER_TYPE_F;
break;
case ir_unop_bitcast_f2i:
this->result = op[0];
this->result.type = BRW_REGISTER_TYPE_D;
break;
case ir_unop_bitcast_f2u:
this->result = op[0];
this->result.type = BRW_REGISTER_TYPE_UD;
break;
case ir_unop_i2f:
case ir_unop_i2u:
case ir_unop_u2i:
case ir_unop_u2f:
case ir_unop_f2i:
case ir_unop_f2u:
emit(MOV(result_dst, op[0]));
break;
case ir_unop_b2i:
emit(AND(result_dst, op[0], src_reg(1)));
break;
case ir_unop_b2f:
if (brw->gen <= 5) {
resolve_bool_comparison(ir->operands[0], &op[0]);
}
op[0].type = BRW_REGISTER_TYPE_D;
result_dst.type = BRW_REGISTER_TYPE_D;
emit(AND(result_dst, op[0], src_reg(0x3f800000u)));
result_dst.type = BRW_REGISTER_TYPE_F;
break;
case ir_unop_f2b:
emit(CMP(result_dst, op[0], src_reg(0.0f), BRW_CONDITIONAL_NZ));
break;
case ir_unop_i2b:
emit(AND(result_dst, op[0], src_reg(1)));
break;
case ir_unop_trunc:
emit(RNDZ(result_dst, op[0]));
break;
case ir_unop_ceil: {
src_reg tmp = src_reg(this, ir->type);
op[0].negate = !op[0].negate;
emit(RNDD(dst_reg(tmp), op[0]));
tmp.negate = true;
emit(MOV(result_dst, tmp));
}
break;
case ir_unop_floor:
inst = emit(RNDD(result_dst, op[0]));
break;
case ir_unop_fract:
inst = emit(FRC(result_dst, op[0]));
break;
case ir_unop_round_even:
emit(RNDE(result_dst, op[0]));
break;
case ir_binop_min:
emit_minmax(BRW_CONDITIONAL_L, result_dst, op[0], op[1]);
break;
case ir_binop_max:
emit_minmax(BRW_CONDITIONAL_G, result_dst, op[0], op[1]);
break;
case ir_binop_pow:
emit_math(SHADER_OPCODE_POW, result_dst, op[0], op[1]);
break;
case ir_unop_bit_not:
inst = emit(NOT(result_dst, op[0]));
break;
case ir_binop_bit_and:
inst = emit(AND(result_dst, op[0], op[1]));
break;
case ir_binop_bit_xor:
inst = emit(XOR(result_dst, op[0], op[1]));
break;
case ir_binop_bit_or:
inst = emit(OR(result_dst, op[0], op[1]));
break;
case ir_binop_lshift:
inst = emit(SHL(result_dst, op[0], op[1]));
break;
case ir_binop_rshift:
if (ir->type->base_type == GLSL_TYPE_INT)
inst = emit(ASR(result_dst, op[0], op[1]));
else
inst = emit(SHR(result_dst, op[0], op[1]));
break;
case ir_binop_bfm:
emit(BFI1(result_dst, op[0], op[1]));
break;
case ir_binop_ubo_load: {
ir_constant *const_uniform_block = ir->operands[0]->as_constant();
ir_constant *const_offset_ir = ir->operands[1]->as_constant();
unsigned const_offset = const_offset_ir ? const_offset_ir->value.u[0] : 0;
src_reg offset;
/* Now, load the vector from that offset. */
assert(ir->type->is_vector() || ir->type->is_scalar());
src_reg packed_consts = src_reg(this, glsl_type::vec4_type);
packed_consts.type = result.type;
src_reg surf_index;
if (const_uniform_block) {
/* The block index is a constant, so just emit the binding table entry
* as an immediate.
*/
surf_index = src_reg(prog_data->base.binding_table.ubo_start +
const_uniform_block->value.u[0]);
} else {
/* The block index is not a constant. Evaluate the index expression
* per-channel and add the base UBO index; the generator will select
* a value from any live channel.
*/
surf_index = src_reg(this, glsl_type::uint_type);
emit(ADD(dst_reg(surf_index), op[0],
src_reg(prog_data->base.binding_table.ubo_start)));
/* Assume this may touch any UBO. It would be nice to provide
* a tighter bound, but the array information is already lowered away.
*/
brw_mark_surface_used(&prog_data->base,
prog_data->base.binding_table.ubo_start +
shader_prog->NumUniformBlocks - 1);
}
if (const_offset_ir) {
if (brw->gen >= 8) {
/* Store the offset in a GRF so we can send-from-GRF. */
offset = src_reg(this, glsl_type::int_type);
emit(MOV(dst_reg(offset), src_reg(const_offset / 16)));
} else {
/* Immediates are fine on older generations since they'll be moved
* to a (potentially fake) MRF at the generator level.
*/
offset = src_reg(const_offset / 16);
}
} else {
offset = src_reg(this, glsl_type::uint_type);
emit(SHR(dst_reg(offset), op[1], src_reg(4)));
}
if (brw->gen >= 7) {
dst_reg grf_offset = dst_reg(this, glsl_type::int_type);
grf_offset.type = offset.type;
emit(MOV(grf_offset, offset));
vec4_instruction *pull =
emit(new(mem_ctx) vec4_instruction(VS_OPCODE_PULL_CONSTANT_LOAD_GEN7,
dst_reg(packed_consts),
surf_index,
src_reg(grf_offset)));
pull->mlen = 1;
} else {
vec4_instruction *pull =
emit(new(mem_ctx) vec4_instruction(VS_OPCODE_PULL_CONSTANT_LOAD,
dst_reg(packed_consts),
surf_index,
offset));
pull->base_mrf = 14;
pull->mlen = 1;
}
packed_consts.swizzle = swizzle_for_size(ir->type->vector_elements);
packed_consts.swizzle += BRW_SWIZZLE4(const_offset % 16 / 4,
const_offset % 16 / 4,
const_offset % 16 / 4,
const_offset % 16 / 4);
/* UBO bools are any nonzero int. We need to convert them to use the
* value of true stored in ctx->Const.UniformBooleanTrue.
*/
if (ir->type->base_type == GLSL_TYPE_BOOL) {
emit(CMP(result_dst, packed_consts, src_reg(0u),
BRW_CONDITIONAL_NZ));
} else {
emit(MOV(result_dst, packed_consts));
}
break;
}
case ir_binop_vector_extract:
unreachable("should have been lowered by vec_index_to_cond_assign");
case ir_triop_fma:
op[0] = fix_3src_operand(op[0]);
op[1] = fix_3src_operand(op[1]);
op[2] = fix_3src_operand(op[2]);
/* Note that the instruction's argument order is reversed from GLSL
* and the IR.
*/
emit(MAD(result_dst, op[2], op[1], op[0]));
break;
case ir_triop_lrp:
emit_lrp(result_dst, op[0], op[1], op[2]);
break;
case ir_triop_csel:
unreachable("already handled above");
break;
case ir_triop_bfi:
op[0] = fix_3src_operand(op[0]);
op[1] = fix_3src_operand(op[1]);
op[2] = fix_3src_operand(op[2]);
emit(BFI2(result_dst, op[0], op[1], op[2]));
break;
case ir_triop_bitfield_extract:
op[0] = fix_3src_operand(op[0]);
op[1] = fix_3src_operand(op[1]);
op[2] = fix_3src_operand(op[2]);
/* Note that the instruction's argument order is reversed from GLSL
* and the IR.
*/
emit(BFE(result_dst, op[2], op[1], op[0]));
break;
case ir_triop_vector_insert:
unreachable("should have been lowered by lower_vector_insert");
case ir_quadop_bitfield_insert:
unreachable("not reached: should be handled by "
"bitfield_insert_to_bfm_bfi\n");
case ir_quadop_vector:
unreachable("not reached: should be handled by lower_quadop_vector");
case ir_unop_pack_half_2x16:
emit_pack_half_2x16(result_dst, op[0]);
break;
case ir_unop_unpack_half_2x16:
emit_unpack_half_2x16(result_dst, op[0]);
break;
case ir_unop_unpack_unorm_4x8:
emit_unpack_unorm_4x8(result_dst, op[0]);
break;
case ir_unop_unpack_snorm_4x8:
emit_unpack_snorm_4x8(result_dst, op[0]);
break;
case ir_unop_pack_unorm_4x8:
emit_pack_unorm_4x8(result_dst, op[0]);
break;
case ir_unop_pack_snorm_4x8:
emit_pack_snorm_4x8(result_dst, op[0]);
break;
case ir_unop_pack_snorm_2x16:
case ir_unop_pack_unorm_2x16:
case ir_unop_unpack_snorm_2x16:
case ir_unop_unpack_unorm_2x16:
unreachable("not reached: should be handled by lower_packing_builtins");
case ir_unop_unpack_half_2x16_split_x:
case ir_unop_unpack_half_2x16_split_y:
case ir_binop_pack_half_2x16_split:
case ir_unop_interpolate_at_centroid:
case ir_binop_interpolate_at_sample:
case ir_binop_interpolate_at_offset:
unreachable("not reached: should not occur in vertex shader");
case ir_binop_ldexp:
unreachable("not reached: should be handled by ldexp_to_arith()");
}
}
void
vec4_visitor::visit(ir_swizzle *ir)
{
src_reg src;
int i = 0;
int swizzle[4];
/* Note that this is only swizzles in expressions, not those on the left
* hand side of an assignment, which do write masking. See ir_assignment
* for that.
*/
ir->val->accept(this);
src = this->result;
assert(src.file != BAD_FILE);
for (i = 0; i < ir->type->vector_elements; i++) {
switch (i) {
case 0:
swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.x);
break;
case 1:
swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.y);
break;
case 2:
swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.z);
break;
case 3:
swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.w);
break;
}
}
for (; i < 4; i++) {
/* Replicate the last channel out. */
swizzle[i] = swizzle[ir->type->vector_elements - 1];
}
src.swizzle = BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
this->result = src;
}
void
vec4_visitor::visit(ir_dereference_variable *ir)
{
const struct glsl_type *type = ir->type;
dst_reg *reg = variable_storage(ir->var);
if (!reg) {
fail("Failed to find variable storage for %s\n", ir->var->name);
this->result = src_reg(brw_null_reg());
return;
}
this->result = src_reg(*reg);
/* System values get their swizzle from the dst_reg writemask */
if (ir->var->data.mode == ir_var_system_value)
return;
if (type->is_scalar() || type->is_vector() || type->is_matrix())
this->result.swizzle = swizzle_for_size(type->vector_elements);
}
int
vec4_visitor::compute_array_stride(ir_dereference_array *ir)
{
/* Under normal circumstances array elements are stored consecutively, so
* the stride is equal to the size of the array element.
*/
return type_size(ir->type);
}
void
vec4_visitor::visit(ir_dereference_array *ir)
{
ir_constant *constant_index;
src_reg src;
int array_stride = compute_array_stride(ir);
constant_index = ir->array_index->constant_expression_value();
ir->array->accept(this);
src = this->result;
if (constant_index) {
src.reg_offset += constant_index->value.i[0] * array_stride;
} else {
/* Variable index array dereference. It eats the "vec4" of the
* base of the array and an index that offsets the Mesa register
* index.
*/
ir->array_index->accept(this);
src_reg index_reg;
if (array_stride == 1) {
index_reg = this->result;
} else {
index_reg = src_reg(this, glsl_type::int_type);
emit(MUL(dst_reg(index_reg), this->result, src_reg(array_stride)));
}
if (src.reladdr) {
src_reg temp = src_reg(this, glsl_type::int_type);
emit(ADD(dst_reg(temp), *src.reladdr, index_reg));
index_reg = temp;
}
src.reladdr = ralloc(mem_ctx, src_reg);
memcpy(src.reladdr, &index_reg, sizeof(index_reg));
}
/* If the type is smaller than a vec4, replicate the last channel out. */
if (ir->type->is_scalar() || ir->type->is_vector() || ir->type->is_matrix())
src.swizzle = swizzle_for_size(ir->type->vector_elements);
else
src.swizzle = BRW_SWIZZLE_NOOP;
src.type = brw_type_for_base_type(ir->type);
this->result = src;
}
void
vec4_visitor::visit(ir_dereference_record *ir)
{
unsigned int i;
const glsl_type *struct_type = ir->record->type;
int offset = 0;
ir->record->accept(this);
for (i = 0; i < struct_type->length; i++) {
if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
break;
offset += type_size(struct_type->fields.structure[i].type);
}
/* If the type is smaller than a vec4, replicate the last channel out. */
if (ir->type->is_scalar() || ir->type->is_vector() || ir->type->is_matrix())
this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
else
this->result.swizzle = BRW_SWIZZLE_NOOP;
this->result.type = brw_type_for_base_type(ir->type);
this->result.reg_offset += offset;
}
/**
* We want to be careful in assignment setup to hit the actual storage
* instead of potentially using a temporary like we might with the
* ir_dereference handler.
*/
static dst_reg
get_assignment_lhs(ir_dereference *ir, vec4_visitor *v)
{
/* The LHS must be a dereference. If the LHS is a variable indexed array
* access of a vector, it must be separated into a series conditional moves
* before reaching this point (see ir_vec_index_to_cond_assign).
*/
assert(ir->as_dereference());
ir_dereference_array *deref_array = ir->as_dereference_array();
if (deref_array) {
assert(!deref_array->array->type->is_vector());
}
/* Use the rvalue deref handler for the most part. We'll ignore
* swizzles in it and write swizzles using writemask, though.
*/
ir->accept(v);
return dst_reg(v->result);
}
void
vec4_visitor::emit_block_move(dst_reg *dst, src_reg *src,
const struct glsl_type *type,
enum brw_predicate predicate)
{
if (type->base_type == GLSL_TYPE_STRUCT) {
for (unsigned int i = 0; i < type->length; i++) {
emit_block_move(dst, src, type->fields.structure[i].type, predicate);
}
return;
}
if (type->is_array()) {
for (unsigned int i = 0; i < type->length; i++) {
emit_block_move(dst, src, type->fields.array, predicate);
}
return;
}
if (type->is_matrix()) {
const struct glsl_type *vec_type;
vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
type->vector_elements, 1);
for (int i = 0; i < type->matrix_columns; i++) {
emit_block_move(dst, src, vec_type, predicate);
}
return;
}
assert(type->is_scalar() || type->is_vector());
dst->type = brw_type_for_base_type(type);
src->type = dst->type;
dst->writemask = (1 << type->vector_elements) - 1;
src->swizzle = swizzle_for_size(type->vector_elements);
vec4_instruction *inst = emit(MOV(*dst, *src));
inst->predicate = predicate;
dst->reg_offset++;
src->reg_offset++;
}
/* If the RHS processing resulted in an instruction generating a
* temporary value, and it would be easy to rewrite the instruction to
* generate its result right into the LHS instead, do so. This ends
* up reliably removing instructions where it can be tricky to do so
* later without real UD chain information.
*/
bool
vec4_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
dst_reg dst,
src_reg src,
vec4_instruction *pre_rhs_inst,
vec4_instruction *last_rhs_inst)
{
/* This could be supported, but it would take more smarts. */
if (ir->condition)
return false;
if (pre_rhs_inst == last_rhs_inst)
return false; /* No instructions generated to work with. */
/* Make sure the last instruction generated our source reg. */
if (src.file != GRF ||
src.file != last_rhs_inst->dst.file ||
src.reg != last_rhs_inst->dst.reg ||
src.reg_offset != last_rhs_inst->dst.reg_offset ||
src.reladdr ||
src.abs ||
src.negate ||
last_rhs_inst->predicate != BRW_PREDICATE_NONE)
return false;
/* Check that that last instruction fully initialized the channels
* we want to use, in the order we want to use them. We could
* potentially reswizzle the operands of many instructions so that
* we could handle out of order channels, but don't yet.
*/
for (unsigned i = 0; i < 4; i++) {
if (dst.writemask & (1 << i)) {
if (!(last_rhs_inst->dst.writemask & (1 << i)))
return false;
if (BRW_GET_SWZ(src.swizzle, i) != i)
return false;
}
}
/* Success! Rewrite the instruction. */
last_rhs_inst->dst.file = dst.file;
last_rhs_inst->dst.reg = dst.reg;
last_rhs_inst->dst.reg_offset = dst.reg_offset;
last_rhs_inst->dst.reladdr = dst.reladdr;
last_rhs_inst->dst.writemask &= dst.writemask;
return true;
}
void
vec4_visitor::visit(ir_assignment *ir)
{
dst_reg dst = get_assignment_lhs(ir->lhs, this);
enum brw_predicate predicate = BRW_PREDICATE_NONE;
if (!ir->lhs->type->is_scalar() &&
!ir->lhs->type->is_vector()) {
ir->rhs->accept(this);
src_reg src = this->result;
if (ir->condition) {
emit_bool_to_cond_code(ir->condition, &predicate);
}
i965/vs: Fix bogus assertion in emit_block_move() i965 processes assignments of whole structures using vec4_visitor::emit_block_move, a recursive function which visits each element of a structure or array (to arbitrary nesting depth) and copies it from the source to the destination. Then it increments the source and destination register numbers so that further recursive invocations will copy the rest of the structure. In addition, it sets the swizzle field for the source register to an appropriate value of swizzle_for_size(...) for the size of each element being copied, so that later optimization passes won't be fooled into thinking that unused vector elements are live. This all works fine. However, emit_block_move also contains an assertion to verify, before setting the swizzle field for the source register, that the source register doesn't already contain a nontrivial swizzle. The intention is to make sure that the caller of emit_block_move hasn't already done some swizzling of the data before the call, which emit_block_move would then counteract when it overwrites the swizzle field. But the assertion is at the lowest level of nesting of emit_block_move, which means that after the first element is copied, instead of checking the swizzle field set by the caller, it checks the swizzle field used when moving the previous element. That means that if the structure contains elements of different vector sizes (which therefore require different swizzles), the assertion will erroneously fire. This patch moves the assertion from emit_block_move to the calling function, vec4_visitor::visit(ir_assignment *). Since the caller is non-recursive, the assertion will only happen once, and won't be fooled by emit_block_move's modification of the swizzle field. This patch also reverts commit fe006a7 (i965/vs: Fix swizzle related assertion), which attempted to fix the bug by making the assertion more lenient, but only worked properly for structures, arrays, and matrices in which each constituent vector is the same size. This fixes the problem described in comment 9 of https://bugs.freedesktop.org/show_bug.cgi?id=40865. Unfortunately, it doesn't fix the whole bug, since the test in question is also failing due to lack of register spilling support in the VS. Fixes piglit test vs-assign-varied-struct. No piglit regressions on Sandy Bridge. This is a candidate for the 8.0 release branch. Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=40865#c9 Reviewed-by: Eric Anholt <eric@anholt.net> Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
2012-01-19 23:49:43 +00:00
/* emit_block_move doesn't account for swizzles in the source register.
* This should be ok, since the source register is a structure or an
* array, and those can't be swizzled. But double-check to be sure.
*/
assert(src.swizzle ==
(ir->rhs->type->is_matrix()
? swizzle_for_size(ir->rhs->type->vector_elements)
: BRW_SWIZZLE_NOOP));
emit_block_move(&dst, &src, ir->rhs->type, predicate);
return;
}
/* Now we're down to just a scalar/vector with writemasks. */
int i;
vec4_instruction *pre_rhs_inst, *last_rhs_inst;
pre_rhs_inst = (vec4_instruction *)this->instructions.get_tail();
ir->rhs->accept(this);
last_rhs_inst = (vec4_instruction *)this->instructions.get_tail();
src_reg src = this->result;
int swizzles[4];
int first_enabled_chan = 0;
int src_chan = 0;
assert(ir->lhs->type->is_vector() ||
ir->lhs->type->is_scalar());
dst.writemask = ir->write_mask;
for (int i = 0; i < 4; i++) {
if (dst.writemask & (1 << i)) {
first_enabled_chan = BRW_GET_SWZ(src.swizzle, i);
break;
}
}
/* Swizzle a small RHS vector into the channels being written.
*
* glsl ir treats write_mask as dictating how many channels are
* present on the RHS while in our instructions we need to make
* those channels appear in the slots of the vec4 they're written to.
*/
for (int i = 0; i < 4; i++) {
if (dst.writemask & (1 << i))
swizzles[i] = BRW_GET_SWZ(src.swizzle, src_chan++);
else
swizzles[i] = first_enabled_chan;
}
src.swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
swizzles[2], swizzles[3]);
if (try_rewrite_rhs_to_dst(ir, dst, src, pre_rhs_inst, last_rhs_inst)) {
return;
}
if (ir->condition) {
emit_bool_to_cond_code(ir->condition, &predicate);
}
for (i = 0; i < type_size(ir->lhs->type); i++) {
vec4_instruction *inst = emit(MOV(dst, src));
inst->predicate = predicate;
dst.reg_offset++;
src.reg_offset++;
}
}
void
vec4_visitor::emit_constant_values(dst_reg *dst, ir_constant *ir)
{
if (ir->type->base_type == GLSL_TYPE_STRUCT) {
foreach_in_list(ir_constant, field_value, &ir->components) {
emit_constant_values(dst, field_value);
}
return;
}
if (ir->type->is_array()) {
for (unsigned int i = 0; i < ir->type->length; i++) {
emit_constant_values(dst, ir->array_elements[i]);
}
return;
}
if (ir->type->is_matrix()) {
for (int i = 0; i < ir->type->matrix_columns; i++) {
float *vec = &ir->value.f[i * ir->type->vector_elements];
for (int j = 0; j < ir->type->vector_elements; j++) {
dst->writemask = 1 << j;
dst->type = BRW_REGISTER_TYPE_F;
emit(MOV(*dst, src_reg(vec[j])));
}
dst->reg_offset++;
}
return;
}
int remaining_writemask = (1 << ir->type->vector_elements) - 1;
for (int i = 0; i < ir->type->vector_elements; i++) {
if (!(remaining_writemask & (1 << i)))
continue;
dst->writemask = 1 << i;
dst->type = brw_type_for_base_type(ir->type);
/* Find other components that match the one we're about to
* write. Emits fewer instructions for things like vec4(0.5,
* 1.5, 1.5, 1.5).
*/
for (int j = i + 1; j < ir->type->vector_elements; j++) {
if (ir->type->base_type == GLSL_TYPE_BOOL) {
if (ir->value.b[i] == ir->value.b[j])
dst->writemask |= (1 << j);
} else {
/* u, i, and f storage all line up, so no need for a
* switch case for comparing each type.
*/
if (ir->value.u[i] == ir->value.u[j])
dst->writemask |= (1 << j);
}
}
switch (ir->type->base_type) {
case GLSL_TYPE_FLOAT:
emit(MOV(*dst, src_reg(ir->value.f[i])));
break;
case GLSL_TYPE_INT:
emit(MOV(*dst, src_reg(ir->value.i[i])));
break;
case GLSL_TYPE_UINT:
emit(MOV(*dst, src_reg(ir->value.u[i])));
break;
case GLSL_TYPE_BOOL:
emit(MOV(*dst,
src_reg(ir->value.b[i] != 0 ? (int)ctx->Const.UniformBooleanTrue
: 0)));
break;
default:
unreachable("Non-float/uint/int/bool constant");
}
remaining_writemask &= ~dst->writemask;
}
dst->reg_offset++;
}
void
vec4_visitor::visit(ir_constant *ir)
{
dst_reg dst = dst_reg(this, ir->type);
this->result = src_reg(dst);
emit_constant_values(&dst, ir);
}
void
vec4_visitor::visit_atomic_counter_intrinsic(ir_call *ir)
{
ir_dereference *deref = static_cast<ir_dereference *>(
ir->actual_parameters.get_head());
ir_variable *location = deref->variable_referenced();
unsigned surf_index = (prog_data->base.binding_table.abo_start +
location->data.binding);
/* Calculate the surface offset */
src_reg offset(this, glsl_type::uint_type);
ir_dereference_array *deref_array = deref->as_dereference_array();
if (deref_array) {
deref_array->array_index->accept(this);
src_reg tmp(this, glsl_type::uint_type);
emit(MUL(dst_reg(tmp), this->result, ATOMIC_COUNTER_SIZE));
emit(ADD(dst_reg(offset), tmp, location->data.atomic.offset));
} else {
offset = location->data.atomic.offset;
}
/* Emit the appropriate machine instruction */
const char *callee = ir->callee->function_name();
dst_reg dst = get_assignment_lhs(ir->return_deref, this);
if (!strcmp("__intrinsic_atomic_read", callee)) {
emit_untyped_surface_read(surf_index, dst, offset);
} else if (!strcmp("__intrinsic_atomic_increment", callee)) {
emit_untyped_atomic(BRW_AOP_INC, surf_index, dst, offset,
src_reg(), src_reg());
} else if (!strcmp("__intrinsic_atomic_predecrement", callee)) {
emit_untyped_atomic(BRW_AOP_PREDEC, surf_index, dst, offset,
src_reg(), src_reg());
}
}
void
vec4_visitor::visit(ir_call *ir)
{
const char *callee = ir->callee->function_name();
if (!strcmp("__intrinsic_atomic_read", callee) ||
!strcmp("__intrinsic_atomic_increment", callee) ||
!strcmp("__intrinsic_atomic_predecrement", callee)) {
visit_atomic_counter_intrinsic(ir);
} else {
unreachable("Unsupported intrinsic.");
}
}
src_reg
vec4_visitor::emit_mcs_fetch(ir_texture *ir, src_reg coordinate, src_reg sampler)
{
vec4_instruction *inst =
new(mem_ctx) vec4_instruction(SHADER_OPCODE_TXF_MCS,
dst_reg(this, glsl_type::uvec4_type));
inst->base_mrf = 2;
inst->mlen = 1;
inst->src[1] = sampler;
/* parameters are: u, v, r, lod; lod will always be zero due to api restrictions */
int param_base = inst->base_mrf;
int coord_mask = (1 << ir->coordinate->type->vector_elements) - 1;
int zero_mask = 0xf & ~coord_mask;
emit(MOV(dst_reg(MRF, param_base, ir->coordinate->type, coord_mask),
coordinate));
emit(MOV(dst_reg(MRF, param_base, ir->coordinate->type, zero_mask),
src_reg(0)));
emit(inst);
return src_reg(inst->dst);
}
static bool
is_high_sampler(struct brw_context *brw, src_reg sampler)
{
if (brw->gen < 8 && !brw->is_haswell)
return false;
return sampler.file != IMM || sampler.fixed_hw_reg.dw1.ud >= 16;
}
void
vec4_visitor::visit(ir_texture *ir)
{
uint32_t sampler =
_mesa_get_sampler_uniform_value(ir->sampler, shader_prog, prog);
ir_rvalue *nonconst_sampler_index =
_mesa_get_sampler_array_nonconst_index(ir->sampler);
/* Handle non-constant sampler array indexing */
src_reg sampler_reg;
if (nonconst_sampler_index) {
/* The highest sampler which may be used by this operation is
* the last element of the array. Mark it here, because the generator
* doesn't have enough information to determine the bound.
*/
uint32_t array_size = ir->sampler->as_dereference_array()
->array->type->array_size();
uint32_t max_used = sampler + array_size - 1;
if (ir->op == ir_tg4 && brw->gen < 8) {
max_used += prog_data->base.binding_table.gather_texture_start;
} else {
max_used += prog_data->base.binding_table.texture_start;
}
brw_mark_surface_used(&prog_data->base, max_used);
/* Emit code to evaluate the actual indexing expression */
nonconst_sampler_index->accept(this);
dst_reg temp(this, glsl_type::uint_type);
emit(ADD(temp, this->result, src_reg(sampler)))
->force_writemask_all = true;
sampler_reg = src_reg(temp);
} else {
/* Single sampler, or constant array index; the indexing expression
* is just an immediate.
*/
sampler_reg = src_reg(sampler);
}
/* When tg4 is used with the degenerate ZERO/ONE swizzles, don't bother
* emitting anything other than setting up the constant result.
*/
if (ir->op == ir_tg4) {
ir_constant *chan = ir->lod_info.component->as_constant();
int swiz = GET_SWZ(key->tex.swizzles[sampler], chan->value.i[0]);
if (swiz == SWIZZLE_ZERO || swiz == SWIZZLE_ONE) {
dst_reg result(this, ir->type);
this->result = src_reg(result);
emit(MOV(result, src_reg(swiz == SWIZZLE_ONE ? 1.0f : 0.0f)));
return;
}
}
/* Should be lowered by do_lower_texture_projection */
assert(!ir->projector);
/* Should be lowered */
assert(!ir->offset || !ir->offset->type->is_array());
/* Generate code to compute all the subexpression trees. This has to be
* done before loading any values into MRFs for the sampler message since
* generating these values may involve SEND messages that need the MRFs.
*/
src_reg coordinate;
if (ir->coordinate) {
ir->coordinate->accept(this);
coordinate = this->result;
}
src_reg shadow_comparitor;
if (ir->shadow_comparitor) {
ir->shadow_comparitor->accept(this);
shadow_comparitor = this->result;
}
bool has_nonconstant_offset = ir->offset && !ir->offset->as_constant();
src_reg offset_value;
if (has_nonconstant_offset) {
ir->offset->accept(this);
offset_value = src_reg(this->result);
}
const glsl_type *lod_type = NULL, *sample_index_type = NULL;
src_reg lod, dPdx, dPdy, sample_index, mcs;
switch (ir->op) {
case ir_tex:
lod = src_reg(0.0f);
lod_type = glsl_type::float_type;
break;
case ir_txf:
case ir_txl:
case ir_txs:
ir->lod_info.lod->accept(this);
lod = this->result;
lod_type = ir->lod_info.lod->type;
break;
case ir_query_levels:
lod = src_reg(0);
lod_type = glsl_type::int_type;
break;
case ir_txf_ms:
ir->lod_info.sample_index->accept(this);
sample_index = this->result;
sample_index_type = ir->lod_info.sample_index->type;
if (brw->gen >= 7 && key->tex.compressed_multisample_layout_mask & (1<<sampler))
mcs = emit_mcs_fetch(ir, coordinate, sampler_reg);
else
mcs = src_reg(0u);
break;
case ir_txd:
ir->lod_info.grad.dPdx->accept(this);
dPdx = this->result;
ir->lod_info.grad.dPdy->accept(this);
dPdy = this->result;
lod_type = ir->lod_info.grad.dPdx->type;
break;
case ir_txb:
case ir_lod:
case ir_tg4:
break;
}
enum opcode opcode;
switch (ir->op) {
case ir_tex: opcode = SHADER_OPCODE_TXL; break;
case ir_txl: opcode = SHADER_OPCODE_TXL; break;
case ir_txd: opcode = SHADER_OPCODE_TXD; break;
case ir_txf: opcode = SHADER_OPCODE_TXF; break;
case ir_txf_ms: opcode = SHADER_OPCODE_TXF_CMS; break;
case ir_txs: opcode = SHADER_OPCODE_TXS; break;
case ir_tg4: opcode = has_nonconstant_offset
? SHADER_OPCODE_TG4_OFFSET : SHADER_OPCODE_TG4; break;
case ir_query_levels: opcode = SHADER_OPCODE_TXS; break;
case ir_txb:
unreachable("TXB is not valid for vertex shaders.");
case ir_lod:
unreachable("LOD is not valid for vertex shaders.");
default:
unreachable("Unrecognized tex op");
}
vec4_instruction *inst = new(mem_ctx) vec4_instruction(
opcode, dst_reg(this, ir->type));
if (ir->offset != NULL && !has_nonconstant_offset) {
inst->offset =
brw_texture_offset(ctx, ir->offset->as_constant()->value.i,
ir->offset->type->vector_elements);
}
/* Stuff the channel select bits in the top of the texture offset */
if (ir->op == ir_tg4)
inst->offset |= gather_channel(ir, sampler) << 16;
/* The message header is necessary for:
* - Gen4 (always)
* - Gen9+ for selecting SIMD4x2
* - Texel offsets
* - Gather channel selection
* - Sampler indices too large to fit in a 4-bit value.
*/
inst->header_present =
brw->gen < 5 || brw->gen >= 9 ||
inst->offset != 0 || ir->op == ir_tg4 ||
is_high_sampler(brw, sampler_reg);
inst->base_mrf = 2;
inst->mlen = inst->header_present + 1; /* always at least one */
inst->dst.writemask = WRITEMASK_XYZW;
inst->shadow_compare = ir->shadow_comparitor != NULL;
inst->src[1] = sampler_reg;
/* MRF for the first parameter */
int param_base = inst->base_mrf + inst->header_present;
if (ir->op == ir_txs || ir->op == ir_query_levels) {
int writemask = brw->gen == 4 ? WRITEMASK_W : WRITEMASK_X;
emit(MOV(dst_reg(MRF, param_base, lod_type, writemask), lod));
} else {
/* Load the coordinate */
/* FINISHME: gl_clamp_mask and saturate */
int coord_mask = (1 << ir->coordinate->type->vector_elements) - 1;
int zero_mask = 0xf & ~coord_mask;
emit(MOV(dst_reg(MRF, param_base, ir->coordinate->type, coord_mask),
coordinate));
if (zero_mask != 0) {
emit(MOV(dst_reg(MRF, param_base, ir->coordinate->type, zero_mask),
src_reg(0)));
}
/* Load the shadow comparitor */
if (ir->shadow_comparitor && ir->op != ir_txd && (ir->op != ir_tg4 || !has_nonconstant_offset)) {
emit(MOV(dst_reg(MRF, param_base + 1, ir->shadow_comparitor->type,
WRITEMASK_X),
shadow_comparitor));
inst->mlen++;
}
/* Load the LOD info */
if (ir->op == ir_tex || ir->op == ir_txl) {
int mrf, writemask;
if (brw->gen >= 5) {
mrf = param_base + 1;
if (ir->shadow_comparitor) {
writemask = WRITEMASK_Y;
/* mlen already incremented */
} else {
writemask = WRITEMASK_X;
inst->mlen++;
}
} else /* brw->gen == 4 */ {
mrf = param_base;
writemask = WRITEMASK_W;
}
emit(MOV(dst_reg(MRF, mrf, lod_type, writemask), lod));
} else if (ir->op == ir_txf) {
emit(MOV(dst_reg(MRF, param_base, lod_type, WRITEMASK_W), lod));
} else if (ir->op == ir_txf_ms) {
emit(MOV(dst_reg(MRF, param_base + 1, sample_index_type, WRITEMASK_X),
sample_index));
if (brw->gen >= 7) {
/* MCS data is in the first channel of `mcs`, but we need to get it into
* the .y channel of the second vec4 of params, so replicate .x across
* the whole vec4 and then mask off everything except .y
*/
mcs.swizzle = BRW_SWIZZLE_XXXX;
emit(MOV(dst_reg(MRF, param_base + 1, glsl_type::uint_type, WRITEMASK_Y),
mcs));
}
inst->mlen++;
} else if (ir->op == ir_txd) {
const glsl_type *type = lod_type;
if (brw->gen >= 5) {
dPdx.swizzle = BRW_SWIZZLE4(SWIZZLE_X,SWIZZLE_X,SWIZZLE_Y,SWIZZLE_Y);
dPdy.swizzle = BRW_SWIZZLE4(SWIZZLE_X,SWIZZLE_X,SWIZZLE_Y,SWIZZLE_Y);
emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_XZ), dPdx));
emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_YW), dPdy));
inst->mlen++;
if (ir->type->vector_elements == 3 || ir->shadow_comparitor) {
dPdx.swizzle = BRW_SWIZZLE_ZZZZ;
dPdy.swizzle = BRW_SWIZZLE_ZZZZ;
emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_X), dPdx));
emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_Y), dPdy));
inst->mlen++;
if (ir->shadow_comparitor) {
emit(MOV(dst_reg(MRF, param_base + 2,
ir->shadow_comparitor->type, WRITEMASK_Z),
shadow_comparitor));
}
}
} else /* brw->gen == 4 */ {
emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_XYZ), dPdx));
emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_XYZ), dPdy));
inst->mlen += 2;
}
} else if (ir->op == ir_tg4 && has_nonconstant_offset) {
if (ir->shadow_comparitor) {
emit(MOV(dst_reg(MRF, param_base, ir->shadow_comparitor->type, WRITEMASK_W),
shadow_comparitor));
}
emit(MOV(dst_reg(MRF, param_base + 1, glsl_type::ivec2_type, WRITEMASK_XY),
offset_value));
inst->mlen++;
}
}
emit(inst);
/* fixup num layers (z) for cube arrays: hardware returns faces * layers;
* spec requires layers.
*/
if (ir->op == ir_txs) {
glsl_type const *type = ir->sampler->type;
if (type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
type->sampler_array) {
emit_math(SHADER_OPCODE_INT_QUOTIENT,
writemask(inst->dst, WRITEMASK_Z),
src_reg(inst->dst), src_reg(6));
}
}
if (brw->gen == 6 && ir->op == ir_tg4) {
emit_gen6_gather_wa(key->tex.gen6_gather_wa[sampler], inst->dst);
}
swizzle_result(ir, src_reg(inst->dst), sampler);
}
/**
* Apply workarounds for Gen6 gather with UINT/SINT
*/
void
vec4_visitor::emit_gen6_gather_wa(uint8_t wa, dst_reg dst)
{
if (!wa)
return;
int width = (wa & WA_8BIT) ? 8 : 16;
dst_reg dst_f = dst;
dst_f.type = BRW_REGISTER_TYPE_F;
/* Convert from UNORM to UINT */
emit(MUL(dst_f, src_reg(dst_f), src_reg((float)((1 << width) - 1))));
emit(MOV(dst, src_reg(dst_f)));
if (wa & WA_SIGN) {
/* Reinterpret the UINT value as a signed INT value by
* shifting the sign bit into place, then shifting back
* preserving sign.
*/
emit(SHL(dst, src_reg(dst), src_reg(32 - width)));
emit(ASR(dst, src_reg(dst), src_reg(32 - width)));
}
}
/**
* Set up the gather channel based on the swizzle, for gather4.
*/
uint32_t
vec4_visitor::gather_channel(ir_texture *ir, uint32_t sampler)
{
ir_constant *chan = ir->lod_info.component->as_constant();
int swiz = GET_SWZ(key->tex.swizzles[sampler], chan->value.i[0]);
switch (swiz) {
case SWIZZLE_X: return 0;
case SWIZZLE_Y:
/* gather4 sampler is broken for green channel on RG32F --
* we must ask for blue instead.
*/
if (key->tex.gather_channel_quirk_mask & (1<<sampler))
return 2;
return 1;
case SWIZZLE_Z: return 2;
case SWIZZLE_W: return 3;
default:
unreachable("Not reached"); /* zero, one swizzles handled already */
}
}
void
vec4_visitor::swizzle_result(ir_texture *ir, src_reg orig_val, uint32_t sampler)
{
int s = key->tex.swizzles[sampler];
this->result = src_reg(this, ir->type);
dst_reg swizzled_result(this->result);
if (ir->op == ir_query_levels) {
/* # levels is in .w */
orig_val.swizzle = BRW_SWIZZLE4(SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W);
emit(MOV(swizzled_result, orig_val));
return;
}
if (ir->op == ir_txs || ir->type == glsl_type::float_type
|| s == SWIZZLE_NOOP || ir->op == ir_tg4) {
emit(MOV(swizzled_result, orig_val));
return;
}
int zero_mask = 0, one_mask = 0, copy_mask = 0;
int swizzle[4] = {0};
for (int i = 0; i < 4; i++) {
switch (GET_SWZ(s, i)) {
case SWIZZLE_ZERO:
zero_mask |= (1 << i);
break;
case SWIZZLE_ONE:
one_mask |= (1 << i);
break;
default:
copy_mask |= (1 << i);
swizzle[i] = GET_SWZ(s, i);
break;
}
}
if (copy_mask) {
orig_val.swizzle = BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
swizzled_result.writemask = copy_mask;
emit(MOV(swizzled_result, orig_val));
}
if (zero_mask) {
swizzled_result.writemask = zero_mask;
emit(MOV(swizzled_result, src_reg(0.0f)));
}
if (one_mask) {
swizzled_result.writemask = one_mask;
emit(MOV(swizzled_result, src_reg(1.0f)));
}
}
void
vec4_visitor::visit(ir_return *)
{
unreachable("not reached");
}
void
vec4_visitor::visit(ir_discard *)
{
unreachable("not reached");
}
void
vec4_visitor::visit(ir_if *ir)
{
/* Don't point the annotation at the if statement, because then it plus
* the then and else blocks get printed.
*/
this->base_ir = ir->condition;
if (brw->gen == 6) {
emit_if_gen6(ir);
} else {
enum brw_predicate predicate;
emit_bool_to_cond_code(ir->condition, &predicate);
emit(IF(predicate));
}
visit_instructions(&ir->then_instructions);
if (!ir->else_instructions.is_empty()) {
this->base_ir = ir->condition;
emit(BRW_OPCODE_ELSE);
visit_instructions(&ir->else_instructions);
}
this->base_ir = ir->condition;
emit(BRW_OPCODE_ENDIF);
}
void
vec4_visitor::visit(ir_emit_vertex *)
{
unreachable("not reached");
}
void
vec4_visitor::visit(ir_end_primitive *)
{
unreachable("not reached");
}
void
vec4_visitor::emit_untyped_atomic(unsigned atomic_op, unsigned surf_index,
dst_reg dst, src_reg offset,
src_reg src0, src_reg src1)
{
unsigned mlen = 0;
/* Set the atomic operation offset. */
emit(MOV(brw_writemask(brw_uvec_mrf(8, mlen, 0), WRITEMASK_X), offset));
mlen++;
/* Set the atomic operation arguments. */
if (src0.file != BAD_FILE) {
emit(MOV(brw_writemask(brw_uvec_mrf(8, mlen, 0), WRITEMASK_X), src0));
mlen++;
}
if (src1.file != BAD_FILE) {
emit(MOV(brw_writemask(brw_uvec_mrf(8, mlen, 0), WRITEMASK_X), src1));
mlen++;
}
/* Emit the instruction. Note that this maps to the normal SIMD8
* untyped atomic message on Ivy Bridge, but that's OK because
* unused channels will be masked out.
*/
vec4_instruction *inst = emit(SHADER_OPCODE_UNTYPED_ATOMIC, dst,
src_reg(atomic_op), src_reg(surf_index));
inst->base_mrf = 0;
inst->mlen = mlen;
}
void
vec4_visitor::emit_untyped_surface_read(unsigned surf_index, dst_reg dst,
src_reg offset)
{
/* Set the surface read offset. */
emit(MOV(brw_writemask(brw_uvec_mrf(8, 0, 0), WRITEMASK_X), offset));
/* Emit the instruction. Note that this maps to the normal SIMD8
* untyped surface read message, but that's OK because unused
* channels will be masked out.
*/
vec4_instruction *inst = emit(SHADER_OPCODE_UNTYPED_SURFACE_READ,
dst, src_reg(surf_index));
inst->base_mrf = 0;
inst->mlen = 1;
}
void
vec4_visitor::emit_ndc_computation()
{
/* Get the position */
src_reg pos = src_reg(output_reg[VARYING_SLOT_POS]);
/* Build ndc coords, which are (x/w, y/w, z/w, 1/w) */
dst_reg ndc = dst_reg(this, glsl_type::vec4_type);
output_reg[BRW_VARYING_SLOT_NDC] = ndc;
current_annotation = "NDC";
dst_reg ndc_w = ndc;
ndc_w.writemask = WRITEMASK_W;
src_reg pos_w = pos;
pos_w.swizzle = BRW_SWIZZLE4(SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W);
emit_math(SHADER_OPCODE_RCP, ndc_w, pos_w);
dst_reg ndc_xyz = ndc;
ndc_xyz.writemask = WRITEMASK_XYZ;
emit(MUL(ndc_xyz, pos, src_reg(ndc_w)));
}
void
vec4_visitor::emit_psiz_and_flags(dst_reg reg)
{
if (brw->gen < 6 &&
((prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ) ||
key->userclip_active || brw->has_negative_rhw_bug)) {
dst_reg header1 = dst_reg(this, glsl_type::uvec4_type);
dst_reg header1_w = header1;
header1_w.writemask = WRITEMASK_W;
emit(MOV(header1, 0u));
if (prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ) {
src_reg psiz = src_reg(output_reg[VARYING_SLOT_PSIZ]);
current_annotation = "Point size";
emit(MUL(header1_w, psiz, src_reg((float)(1 << 11))));
emit(AND(header1_w, src_reg(header1_w), 0x7ff << 8));
}
if (key->userclip_active) {
current_annotation = "Clipping flags";
dst_reg flags0 = dst_reg(this, glsl_type::uint_type);
dst_reg flags1 = dst_reg(this, glsl_type::uint_type);
emit(CMP(dst_null_f(), src_reg(output_reg[VARYING_SLOT_CLIP_DIST0]), src_reg(0.0f), BRW_CONDITIONAL_L));
emit(VS_OPCODE_UNPACK_FLAGS_SIMD4X2, flags0, src_reg(0));
emit(OR(header1_w, src_reg(header1_w), src_reg(flags0)));
emit(CMP(dst_null_f(), src_reg(output_reg[VARYING_SLOT_CLIP_DIST1]), src_reg(0.0f), BRW_CONDITIONAL_L));
emit(VS_OPCODE_UNPACK_FLAGS_SIMD4X2, flags1, src_reg(0));
emit(SHL(flags1, src_reg(flags1), src_reg(4)));
emit(OR(header1_w, src_reg(header1_w), src_reg(flags1)));
}
/* i965 clipping workaround:
* 1) Test for -ve rhw
* 2) If set,
* set ndc = (0,0,0,0)
* set ucp[6] = 1
*
* Later, clipping will detect ucp[6] and ensure the primitive is
* clipped against all fixed planes.
*/
if (brw->has_negative_rhw_bug) {
src_reg ndc_w = src_reg(output_reg[BRW_VARYING_SLOT_NDC]);
ndc_w.swizzle = BRW_SWIZZLE_WWWW;
emit(CMP(dst_null_f(), ndc_w, src_reg(0.0f), BRW_CONDITIONAL_L));
vec4_instruction *inst;
inst = emit(OR(header1_w, src_reg(header1_w), src_reg(1u << 6)));
inst->predicate = BRW_PREDICATE_NORMAL;
inst = emit(MOV(output_reg[BRW_VARYING_SLOT_NDC], src_reg(0.0f)));
inst->predicate = BRW_PREDICATE_NORMAL;
}
emit(MOV(retype(reg, BRW_REGISTER_TYPE_UD), src_reg(header1)));
} else if (brw->gen < 6) {
emit(MOV(retype(reg, BRW_REGISTER_TYPE_UD), 0u));
} else {
emit(MOV(retype(reg, BRW_REGISTER_TYPE_D), src_reg(0)));
if (prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ) {
dst_reg reg_w = reg;
reg_w.writemask = WRITEMASK_W;
emit(MOV(reg_w, src_reg(output_reg[VARYING_SLOT_PSIZ])));
}
if (prog_data->vue_map.slots_valid & VARYING_BIT_LAYER) {
dst_reg reg_y = reg;
reg_y.writemask = WRITEMASK_Y;
reg_y.type = BRW_REGISTER_TYPE_D;
emit(MOV(reg_y, src_reg(output_reg[VARYING_SLOT_LAYER])));
}
if (prog_data->vue_map.slots_valid & VARYING_BIT_VIEWPORT) {
dst_reg reg_z = reg;
reg_z.writemask = WRITEMASK_Z;
reg_z.type = BRW_REGISTER_TYPE_D;
emit(MOV(reg_z, src_reg(output_reg[VARYING_SLOT_VIEWPORT])));
}
}
}
void
vec4_visitor::emit_clip_distances(dst_reg reg, int offset)
{
/* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
*
* "If a linked set of shaders forming the vertex stage contains no
* static write to gl_ClipVertex or gl_ClipDistance, but the
* application has requested clipping against user clip planes through
* the API, then the coordinate written to gl_Position is used for
* comparison against the user clip planes."
*
* This function is only called if the shader didn't write to
* gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping
* if the user wrote to it; otherwise we use gl_Position.
*/
gl_varying_slot clip_vertex = VARYING_SLOT_CLIP_VERTEX;
if (!(prog_data->vue_map.slots_valid & VARYING_BIT_CLIP_VERTEX)) {
clip_vertex = VARYING_SLOT_POS;
}
for (int i = 0; i + offset < key->nr_userclip_plane_consts && i < 4;
++i) {
reg.writemask = 1 << i;
emit(DP4(reg,
src_reg(output_reg[clip_vertex]),
src_reg(this->userplane[i + offset])));
}
}
vec4_instruction *
vec4_visitor::emit_generic_urb_slot(dst_reg reg, int varying)
{
assert (varying < VARYING_SLOT_MAX);
reg.type = output_reg[varying].type;
current_annotation = output_reg_annotation[varying];
/* Copy the register, saturating if necessary */
return emit(MOV(reg, src_reg(output_reg[varying])));
}
void
vec4_visitor::emit_urb_slot(dst_reg reg, int varying)
{
reg.type = BRW_REGISTER_TYPE_F;
switch (varying) {
case VARYING_SLOT_PSIZ:
{
/* PSIZ is always in slot 0, and is coupled with other flags. */
current_annotation = "indices, point width, clip flags";
emit_psiz_and_flags(reg);
break;
}
case BRW_VARYING_SLOT_NDC:
current_annotation = "NDC";
emit(MOV(reg, src_reg(output_reg[BRW_VARYING_SLOT_NDC])));
break;
case VARYING_SLOT_POS:
current_annotation = "gl_Position";
emit(MOV(reg, src_reg(output_reg[VARYING_SLOT_POS])));
break;
case VARYING_SLOT_EDGE:
/* This is present when doing unfilled polygons. We're supposed to copy
* the edge flag from the user-provided vertex array
* (glEdgeFlagPointer), or otherwise we'll copy from the current value
* of that attribute (starts as 1.0f). This is then used in clipping to
* determine which edges should be drawn as wireframe.
*/
current_annotation = "edge flag";
emit(MOV(reg, src_reg(dst_reg(ATTR, VERT_ATTRIB_EDGEFLAG,
glsl_type::float_type, WRITEMASK_XYZW))));
break;
case BRW_VARYING_SLOT_PAD:
/* No need to write to this slot */
break;
case VARYING_SLOT_COL0:
case VARYING_SLOT_COL1:
case VARYING_SLOT_BFC0:
case VARYING_SLOT_BFC1: {
/* These built-in varyings are only supported in compatibility mode,
* and we only support GS in core profile. So, this must be a vertex
* shader.
*/
assert(stage == MESA_SHADER_VERTEX);
vec4_instruction *inst = emit_generic_urb_slot(reg, varying);
if (((struct brw_vs_prog_key *) key)->clamp_vertex_color)
inst->saturate = true;
break;
}
default:
emit_generic_urb_slot(reg, varying);
break;
}
}
static int
align_interleaved_urb_mlen(struct brw_context *brw, int mlen)
{
if (brw->gen >= 6) {
/* URB data written (does not include the message header reg) must
* be a multiple of 256 bits, or 2 VS registers. See vol5c.5,
* section 5.4.3.2.2: URB_INTERLEAVED.
*
* URB entries are allocated on a multiple of 1024 bits, so an
* extra 128 bits written here to make the end align to 256 is
* no problem.
*/
if ((mlen % 2) != 1)
mlen++;
}
return mlen;
}
/**
* Generates the VUE payload plus the necessary URB write instructions to
* output it.
*
* The VUE layout is documented in Volume 2a.
*/
void
vec4_visitor::emit_vertex()
{
/* MRF 0 is reserved for the debugger, so start with message header
* in MRF 1.
*/
int base_mrf = 1;
int mrf = base_mrf;
/* In the process of generating our URB write message contents, we
* may need to unspill a register or load from an array. Those
* reads would use MRFs 14-15.
*/
int max_usable_mrf = 13;
/* The following assertion verifies that max_usable_mrf causes an
* even-numbered amount of URB write data, which will meet gen6's
* requirements for length alignment.
*/
assert ((max_usable_mrf - base_mrf) % 2 == 0);
/* First mrf is the g0-based message header containing URB handles and
* such.
*/
emit_urb_write_header(mrf++);
if (brw->gen < 6) {
emit_ndc_computation();
}
/* Lower legacy ff and ClipVertex clipping to clip distances */
if (key->userclip_active && !prog->UsesClipDistanceOut) {
current_annotation = "user clip distances";
output_reg[VARYING_SLOT_CLIP_DIST0] = dst_reg(this, glsl_type::vec4_type);
output_reg[VARYING_SLOT_CLIP_DIST1] = dst_reg(this, glsl_type::vec4_type);
emit_clip_distances(output_reg[VARYING_SLOT_CLIP_DIST0], 0);
emit_clip_distances(output_reg[VARYING_SLOT_CLIP_DIST1], 4);
}
/* We may need to split this up into several URB writes, so do them in a
* loop.
*/
int slot = 0;
bool complete = false;
do {
/* URB offset is in URB row increments, and each of our MRFs is half of
* one of those, since we're doing interleaved writes.
*/
int offset = slot / 2;
mrf = base_mrf + 1;
for (; slot < prog_data->vue_map.num_slots; ++slot) {
emit_urb_slot(dst_reg(MRF, mrf++),
prog_data->vue_map.slot_to_varying[slot]);
/* If this was max_usable_mrf, we can't fit anything more into this
* URB WRITE.
*/
if (mrf > max_usable_mrf) {
slot++;
break;
}
}
complete = slot >= prog_data->vue_map.num_slots;
current_annotation = "URB write";
vec4_instruction *inst = emit_urb_write_opcode(complete);
inst->base_mrf = base_mrf;
inst->mlen = align_interleaved_urb_mlen(brw, mrf - base_mrf);
inst->offset += offset;
} while(!complete);
}
src_reg
vec4_visitor::get_scratch_offset(bblock_t *block, vec4_instruction *inst,
src_reg *reladdr, int reg_offset)
{
/* Because we store the values to scratch interleaved like our
* vertex data, we need to scale the vec4 index by 2.
*/
int message_header_scale = 2;
/* Pre-gen6, the message header uses byte offsets instead of vec4
* (16-byte) offset units.
*/
if (brw->gen < 6)
message_header_scale *= 16;
if (reladdr) {
src_reg index = src_reg(this, glsl_type::int_type);
emit_before(block, inst, ADD(dst_reg(index), *reladdr,
src_reg(reg_offset)));
emit_before(block, inst, MUL(dst_reg(index), index,
src_reg(message_header_scale)));
return index;
} else {
return src_reg(reg_offset * message_header_scale);
}
}
src_reg
vec4_visitor::get_pull_constant_offset(bblock_t * block, vec4_instruction *inst,
src_reg *reladdr, int reg_offset)
{
if (reladdr) {
src_reg index = src_reg(this, glsl_type::int_type);
emit_before(block, inst, ADD(dst_reg(index), *reladdr,
src_reg(reg_offset)));
/* Pre-gen6, the message header uses byte offsets instead of vec4
* (16-byte) offset units.
*/
if (brw->gen < 6) {
emit_before(block, inst, MUL(dst_reg(index), index, src_reg(16)));
}
return index;
} else if (brw->gen >= 8) {
/* Store the offset in a GRF so we can send-from-GRF. */
src_reg offset = src_reg(this, glsl_type::int_type);
emit_before(block, inst, MOV(dst_reg(offset), src_reg(reg_offset)));
return offset;
} else {
int message_header_scale = brw->gen < 6 ? 16 : 1;
return src_reg(reg_offset * message_header_scale);
}
}
/**
* Emits an instruction before @inst to load the value named by @orig_src
* from scratch space at @base_offset to @temp.
*
* @base_offset is measured in 32-byte units (the size of a register).
*/
void
vec4_visitor::emit_scratch_read(bblock_t *block, vec4_instruction *inst,
dst_reg temp, src_reg orig_src,
int base_offset)
{
int reg_offset = base_offset + orig_src.reg_offset;
src_reg index = get_scratch_offset(block, inst, orig_src.reladdr,
reg_offset);
emit_before(block, inst, SCRATCH_READ(temp, index));
}
/**
* Emits an instruction after @inst to store the value to be written
* to @orig_dst to scratch space at @base_offset, from @temp.
*
* @base_offset is measured in 32-byte units (the size of a register).
*/
void
vec4_visitor::emit_scratch_write(bblock_t *block, vec4_instruction *inst,
int base_offset)
{
int reg_offset = base_offset + inst->dst.reg_offset;
src_reg index = get_scratch_offset(block, inst, inst->dst.reladdr,
reg_offset);
/* Create a temporary register to store *inst's result in.
*
* We have to be careful in MOVing from our temporary result register in
* the scratch write. If we swizzle from channels of the temporary that
* weren't initialized, it will confuse live interval analysis, which will
* make spilling fail to make progress.
*/
src_reg temp = src_reg(this, glsl_type::vec4_type);
temp.type = inst->dst.type;
int first_writemask_chan = ffs(inst->dst.writemask) - 1;
int swizzles[4];
for (int i = 0; i < 4; i++)
if (inst->dst.writemask & (1 << i))
swizzles[i] = i;
else
swizzles[i] = first_writemask_chan;
temp.swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
swizzles[2], swizzles[3]);
dst_reg dst = dst_reg(brw_writemask(brw_vec8_grf(0, 0),
inst->dst.writemask));
vec4_instruction *write = SCRATCH_WRITE(dst, temp, index);
write->predicate = inst->predicate;
write->ir = inst->ir;
write->annotation = inst->annotation;
inst->insert_after(block, write);
inst->dst.file = temp.file;
inst->dst.reg = temp.reg;
inst->dst.reg_offset = temp.reg_offset;
inst->dst.reladdr = NULL;
}
/**
* We can't generally support array access in GRF space, because a
* single instruction's destination can only span 2 contiguous
* registers. So, we send all GRF arrays that get variable index
* access to scratch space.
*/
void
vec4_visitor::move_grf_array_access_to_scratch()
{
int scratch_loc[this->alloc.count];
memset(scratch_loc, -1, sizeof(scratch_loc));
/* First, calculate the set of virtual GRFs that need to be punted
* to scratch due to having any array access on them, and where in
* scratch.
*/
foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
if (inst->dst.file == GRF && inst->dst.reladdr &&
scratch_loc[inst->dst.reg] == -1) {
scratch_loc[inst->dst.reg] = c->last_scratch;
c->last_scratch += this->alloc.sizes[inst->dst.reg];
}
for (int i = 0 ; i < 3; i++) {
src_reg *src = &inst->src[i];
if (src->file == GRF && src->reladdr &&
scratch_loc[src->reg] == -1) {
scratch_loc[src->reg] = c->last_scratch;
c->last_scratch += this->alloc.sizes[src->reg];
}
}
}
/* Now, for anything that will be accessed through scratch, rewrite
* it to load/store. Note that this is a _safe list walk, because
* we may generate a new scratch_write instruction after the one
* we're processing.
*/
foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
/* Set up the annotation tracking for new generated instructions. */
base_ir = inst->ir;
current_annotation = inst->annotation;
if (inst->dst.file == GRF && scratch_loc[inst->dst.reg] != -1) {
emit_scratch_write(block, inst, scratch_loc[inst->dst.reg]);
}
for (int i = 0 ; i < 3; i++) {
if (inst->src[i].file != GRF || scratch_loc[inst->src[i].reg] == -1)
continue;
dst_reg temp = dst_reg(this, glsl_type::vec4_type);
emit_scratch_read(block, inst, temp, inst->src[i],
scratch_loc[inst->src[i].reg]);
inst->src[i].file = temp.file;
inst->src[i].reg = temp.reg;
inst->src[i].reg_offset = temp.reg_offset;
inst->src[i].reladdr = NULL;
}
}
}
/**
* Emits an instruction before @inst to load the value named by @orig_src
* from the pull constant buffer (surface) at @base_offset to @temp.
*/
void
vec4_visitor::emit_pull_constant_load(bblock_t *block, vec4_instruction *inst,
dst_reg temp, src_reg orig_src,
int base_offset)
{
int reg_offset = base_offset + orig_src.reg_offset;
src_reg index = src_reg(prog_data->base.binding_table.pull_constants_start);
src_reg offset = get_pull_constant_offset(block, inst, orig_src.reladdr,
reg_offset);
vec4_instruction *load;
if (brw->gen >= 7) {
dst_reg grf_offset = dst_reg(this, glsl_type::int_type);
grf_offset.type = offset.type;
emit_before(block, inst, MOV(grf_offset, offset));
load = new(mem_ctx) vec4_instruction(VS_OPCODE_PULL_CONSTANT_LOAD_GEN7,
temp, index, src_reg(grf_offset));
load->mlen = 1;
} else {
load = new(mem_ctx) vec4_instruction(VS_OPCODE_PULL_CONSTANT_LOAD,
temp, index, offset);
load->base_mrf = 14;
load->mlen = 1;
}
emit_before(block, inst, load);
}
/**
* Implements array access of uniforms by inserting a
* PULL_CONSTANT_LOAD instruction.
*
* Unlike temporary GRF array access (where we don't support it due to
* the difficulty of doing relative addressing on instruction
* destinations), we could potentially do array access of uniforms
* that were loaded in GRF space as push constants. In real-world
* usage we've seen, though, the arrays being used are always larger
* than we could load as push constants, so just always move all
* uniform array access out to a pull constant buffer.
*/
void
vec4_visitor::move_uniform_array_access_to_pull_constants()
{
int pull_constant_loc[this->uniforms];
memset(pull_constant_loc, -1, sizeof(pull_constant_loc));
bool nested_reladdr;
/* Walk through and find array access of uniforms. Put a copy of that
* uniform in the pull constant buffer.
*
* Note that we don't move constant-indexed accesses to arrays. No
* testing has been done of the performance impact of this choice.
*/
do {
nested_reladdr = false;
foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
for (int i = 0 ; i < 3; i++) {
if (inst->src[i].file != UNIFORM || !inst->src[i].reladdr)
continue;
int uniform = inst->src[i].reg;
if (inst->src[i].reladdr->reladdr)
nested_reladdr = true; /* will need another pass */
/* If this array isn't already present in the pull constant buffer,
* add it.
*/
if (pull_constant_loc[uniform] == -1) {
const gl_constant_value **values =
&stage_prog_data->param[uniform * 4];
pull_constant_loc[uniform] = stage_prog_data->nr_pull_params / 4;
assert(uniform < uniform_array_size);
for (int j = 0; j < uniform_size[uniform] * 4; j++) {
stage_prog_data->pull_param[stage_prog_data->nr_pull_params++]
= values[j];
}
}
/* Set up the annotation tracking for new generated instructions. */
base_ir = inst->ir;
current_annotation = inst->annotation;
dst_reg temp = dst_reg(this, glsl_type::vec4_type);
emit_pull_constant_load(block, inst, temp, inst->src[i],
pull_constant_loc[uniform]);
inst->src[i].file = temp.file;
inst->src[i].reg = temp.reg;
inst->src[i].reg_offset = temp.reg_offset;
inst->src[i].reladdr = NULL;
}
}
} while (nested_reladdr);
/* Now there are no accesses of the UNIFORM file with a reladdr, so
* no need to track them as larger-than-vec4 objects. This will be
* relied on in cutting out unused uniform vectors from push
* constants.
*/
split_uniform_registers();
}
void
vec4_visitor::resolve_ud_negate(src_reg *reg)
{
if (reg->type != BRW_REGISTER_TYPE_UD ||
!reg->negate)
return;
src_reg temp = src_reg(this, glsl_type::uvec4_type);
emit(BRW_OPCODE_MOV, dst_reg(temp), *reg);
*reg = temp;
}
/**
* Resolve the result of a Gen4-5 CMP instruction to a proper boolean.
*
* CMP on Gen4-5 only sets the LSB of the result; the rest are undefined.
* If we need a proper boolean value, we have to fix it up to be 0 or ~0.
*/
void
vec4_visitor::resolve_bool_comparison(ir_rvalue *rvalue, src_reg *reg)
{
assert(brw->gen <= 5);
if (!rvalue->type->is_boolean())
return;
src_reg and_result = src_reg(this, rvalue->type);
src_reg neg_result = src_reg(this, rvalue->type);
emit(AND(dst_reg(and_result), *reg, src_reg(1)));
emit(MOV(dst_reg(neg_result), negate(and_result)));
*reg = neg_result;
}
vec4_visitor::vec4_visitor(struct brw_context *brw,
struct brw_vec4_compile *c,
struct gl_program *prog,
const struct brw_vue_prog_key *key,
struct brw_vue_prog_data *prog_data,
struct gl_shader_program *shader_prog,
gl_shader_stage stage,
void *mem_ctx,
bool no_spills,
shader_time_shader_type st_base,
shader_time_shader_type st_written,
shader_time_shader_type st_reset)
: backend_visitor(brw, shader_prog, prog, &prog_data->base, stage),
c(c),
key(key),
prog_data(prog_data),
sanity_param_count(0),
fail_msg(NULL),
first_non_payload_grf(0),
need_all_constants_in_pull_buffer(false),
no_spills(no_spills),
st_base(st_base),
st_written(st_written),
st_reset(st_reset)
{
this->mem_ctx = mem_ctx;
this->failed = false;
this->base_ir = NULL;
this->current_annotation = NULL;
memset(this->output_reg_annotation, 0, sizeof(this->output_reg_annotation));
this->variable_ht = hash_table_ctor(0,
hash_table_pointer_hash,
hash_table_pointer_compare);
this->virtual_grf_start = NULL;
this->virtual_grf_end = NULL;
this->live_intervals = NULL;
this->max_grf = brw->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
this->uniforms = 0;
/* Initialize uniform_array_size to at least 1 because pre-gen6 VS requires
* at least one. See setup_uniforms() in brw_vec4.cpp.
*/
this->uniform_array_size = 1;
if (prog_data) {
this->uniform_array_size = MAX2(stage_prog_data->nr_params, 1);
}
this->uniform_size = rzalloc_array(mem_ctx, int, this->uniform_array_size);
this->uniform_vector_size = rzalloc_array(mem_ctx, int, this->uniform_array_size);
}
vec4_visitor::~vec4_visitor()
{
hash_table_dtor(this->variable_ht);
}
void
vec4_visitor::fail(const char *format, ...)
{
va_list va;
char *msg;
if (failed)
return;
failed = true;
va_start(va, format);
msg = ralloc_vasprintf(mem_ctx, format, va);
va_end(va);
msg = ralloc_asprintf(mem_ctx, "vec4 compile failed: %s\n", msg);
this->fail_msg = msg;
if (debug_enabled) {
fprintf(stderr, "%s", msg);
}
}
} /* namespace brw */