mesa/src/gallium/drivers/r300/r300_state_derived.c

528 lines
18 KiB
C
Raw Normal View History

/*
* Copyright 2008 Corbin Simpson <MostAwesomeDude@gmail.com>
* Copyright 2009 Marek Olšák <maraeo@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE. */
2009-10-21 14:31:36 +01:00
#include "draw/draw_context.h"
#include "util/u_math.h"
#include "util/u_memory.h"
2009-10-21 14:31:36 +01:00
#include "r300_context.h"
#include "r300_fs.h"
2009-10-21 14:31:36 +01:00
#include "r300_screen.h"
#include "r300_shader_semantics.h"
2009-10-21 14:31:36 +01:00
#include "r300_state_derived.h"
#include "r300_state_inlines.h"
#include "r300_vs.h"
/* r300_state_derived: Various bits of state which are dependent upon
* currently bound CSO data. */
static void r300_draw_emit_attrib(struct r300_context* r300,
enum attrib_emit emit,
enum interp_mode interp,
int index)
{
struct tgsi_shader_info* info = &r300->vs->info;
int output;
output = draw_find_shader_output(r300->draw,
info->output_semantic_name[index],
info->output_semantic_index[index]);
draw_emit_vertex_attr(
(struct vertex_info*)r300->vertex_format_state.state,
emit, interp, output);
}
static void r300_draw_emit_all_attribs(struct r300_context* r300)
{
struct r300_shader_semantics* vs_outputs = &r300->vs->outputs;
int i, gen_count;
/* Position. */
if (vs_outputs->pos != ATTR_UNUSED) {
r300_draw_emit_attrib(r300, EMIT_4F, INTERP_PERSPECTIVE,
vs_outputs->pos);
} else {
assert(0);
}
/* Point size. */
if (vs_outputs->psize != ATTR_UNUSED) {
r300_draw_emit_attrib(r300, EMIT_1F_PSIZE, INTERP_POS,
vs_outputs->psize);
}
/* Colors. */
for (i = 0; i < ATTR_COLOR_COUNT; i++) {
if (vs_outputs->color[i] != ATTR_UNUSED) {
r300_draw_emit_attrib(r300, EMIT_4F, INTERP_LINEAR,
vs_outputs->color[i]);
}
}
/* XXX Back-face colors. */
/* Texture coordinates. */
gen_count = 0;
for (i = 0; i < ATTR_GENERIC_COUNT; i++) {
if (vs_outputs->generic[i] != ATTR_UNUSED) {
r300_draw_emit_attrib(r300, EMIT_4F, INTERP_PERSPECTIVE,
vs_outputs->generic[i]);
gen_count++;
}
}
/* Fog coordinates. */
if (vs_outputs->fog != ATTR_UNUSED) {
r300_draw_emit_attrib(r300, EMIT_4F, INTERP_PERSPECTIVE,
vs_outputs->fog);
gen_count++;
}
/* XXX magic */
assert(gen_count <= 8);
}
/* Update the PSC tables. */
static void r300_vertex_psc(struct r300_context* r300)
{
struct r300_vertex_info *vformat =
(struct r300_vertex_info*)r300->vertex_format_state.state;
uint16_t type, swizzle;
enum pipe_format format;
unsigned i;
int identity[16] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
int* stream_tab;
/* If TCL is bypassed, map vertex streams to equivalent VS output
* locations. */
if (r300->tcl_bypass) {
stream_tab = r300->vs->stream_loc_notcl;
} else {
stream_tab = identity;
}
/* Vertex shaders have no semantics on their inputs,
* so PSC should just route stuff based on the vertex elements,
* and not on attrib information. */
DBG(r300, DBG_DRAW, "r300: vs expects %d attribs, routing %d elements"
" in psc\n",
r300->vs->info.num_inputs,
r300->vertex_element_count);
for (i = 0; i < r300->vertex_element_count; i++) {
format = r300->vertex_element[i].src_format;
type = r300_translate_vertex_data_type(format) |
(stream_tab[i] << R300_DST_VEC_LOC_SHIFT);
swizzle = r300_translate_vertex_data_swizzle(format);
if (i & 1) {
vformat->vap_prog_stream_cntl[i >> 1] |= type << 16;
vformat->vap_prog_stream_cntl_ext[i >> 1] |= swizzle << 16;
} else {
vformat->vap_prog_stream_cntl[i >> 1] |= type;
vformat->vap_prog_stream_cntl_ext[i >> 1] |= swizzle;
}
}
assert(i <= 15);
/* Set the last vector in the PSC. */
if (i) {
i -= 1;
}
vformat->vap_prog_stream_cntl[i >> 1] |=
(R300_LAST_VEC << (i & 1 ? 16 : 0));
}
/* Update the PSC tables for SW TCL, using Draw. */
static void r300_swtcl_vertex_psc(struct r300_context* r300)
{
struct r300_vertex_info *vformat =
(struct r300_vertex_info*)r300->vertex_format_state.state;
struct vertex_info* vinfo = &vformat->vinfo;
uint16_t type, swizzle;
enum pipe_format format;
unsigned i, attrib_count;
int* vs_output_tab = r300->vs->stream_loc_notcl;
/* For each Draw attribute, route it to the fragment shader according
* to the vs_output_tab. */
attrib_count = vinfo->num_attribs;
DBG(r300, DBG_DRAW, "r300: attrib count: %d\n", attrib_count);
for (i = 0; i < attrib_count; i++) {
DBG(r300, DBG_DRAW, "r300: attrib: offset %d, interp %d, size %d,"
" vs_output_tab %d\n", vinfo->attrib[i].src_index,
vinfo->attrib[i].interp_mode, vinfo->attrib[i].emit,
vs_output_tab[i]);
}
for (i = 0; i < attrib_count; i++) {
/* Make sure we have a proper destination for our attribute. */
assert(vs_output_tab[i] != -1);
format = draw_translate_vinfo_format(vinfo->attrib[i].emit);
/* Obtain the type of data in this attribute. */
type = r300_translate_vertex_data_type(format) |
vs_output_tab[i] << R300_DST_VEC_LOC_SHIFT;
/* Obtain the swizzle for this attribute. Note that the default
* swizzle in the hardware is not XYZW! */
swizzle = r300_translate_vertex_data_swizzle(format);
/* Add the attribute to the PSC table. */
if (i & 1) {
vformat->vap_prog_stream_cntl[i >> 1] |= type << 16;
vformat->vap_prog_stream_cntl_ext[i >> 1] |= swizzle << 16;
} else {
vformat->vap_prog_stream_cntl[i >> 1] |= type;
vformat->vap_prog_stream_cntl_ext[i >> 1] |= swizzle;
}
}
/* Set the last vector in the PSC. */
2009-10-18 23:54:39 +01:00
if (i) {
i -= 1;
}
vformat->vap_prog_stream_cntl[i >> 1] |=
(R300_LAST_VEC << (i & 1 ? 16 : 0));
}
static void r300_rs_col(struct r300_rs_block* rs, int id, int ptr,
boolean swizzle_0001)
{
rs->ip[id] |= R300_RS_COL_PTR(ptr);
if (swizzle_0001) {
rs->ip[id] |= R300_RS_COL_FMT(R300_RS_COL_FMT_0001);
} else {
rs->ip[id] |= R300_RS_COL_FMT(R300_RS_COL_FMT_RGBA);
}
rs->inst[id] |= R300_RS_INST_COL_ID(id);
}
static void r300_rs_col_write(struct r300_rs_block* rs, int id, int fp_offset)
{
rs->inst[id] |= R300_RS_INST_COL_CN_WRITE |
R300_RS_INST_COL_ADDR(fp_offset);
}
static void r300_rs_tex(struct r300_rs_block* rs, int id, int ptr,
boolean swizzle_X001)
{
if (swizzle_X001) {
rs->ip[id] |= R300_RS_TEX_PTR(ptr*4) |
R300_RS_SEL_S(R300_RS_SEL_C0) |
R300_RS_SEL_T(R300_RS_SEL_K0) |
R300_RS_SEL_R(R300_RS_SEL_K0) |
R300_RS_SEL_Q(R300_RS_SEL_K1);
} else {
rs->ip[id] |= R300_RS_TEX_PTR(ptr*4) |
R300_RS_SEL_S(R300_RS_SEL_C0) |
R300_RS_SEL_T(R300_RS_SEL_C1) |
R300_RS_SEL_R(R300_RS_SEL_C2) |
R300_RS_SEL_Q(R300_RS_SEL_C3);
}
rs->inst[id] |= R300_RS_INST_TEX_ID(id);
}
static void r300_rs_tex_write(struct r300_rs_block* rs, int id, int fp_offset)
{
rs->inst[id] |= R300_RS_INST_TEX_CN_WRITE |
R300_RS_INST_TEX_ADDR(fp_offset);
}
static void r500_rs_col(struct r300_rs_block* rs, int id, int ptr,
boolean swizzle_0001)
{
rs->ip[id] |= R500_RS_COL_PTR(ptr);
if (swizzle_0001) {
rs->ip[id] |= R500_RS_COL_FMT(R300_RS_COL_FMT_0001);
} else {
rs->ip[id] |= R500_RS_COL_FMT(R300_RS_COL_FMT_RGBA);
}
rs->inst[id] |= R500_RS_INST_COL_ID(id);
}
static void r500_rs_col_write(struct r300_rs_block* rs, int id, int fp_offset)
{
rs->inst[id] |= R500_RS_INST_COL_CN_WRITE |
R500_RS_INST_COL_ADDR(fp_offset);
}
static void r500_rs_tex(struct r300_rs_block* rs, int id, int ptr,
boolean swizzle_X001)
{
int rs_tex_comp = ptr*4;
if (swizzle_X001) {
rs->ip[id] |= R500_RS_SEL_S(rs_tex_comp) |
R500_RS_SEL_T(R500_RS_IP_PTR_K0) |
R500_RS_SEL_R(R500_RS_IP_PTR_K0) |
R500_RS_SEL_Q(R500_RS_IP_PTR_K1);
} else {
rs->ip[id] |= R500_RS_SEL_S(rs_tex_comp) |
R500_RS_SEL_T(rs_tex_comp + 1) |
R500_RS_SEL_R(rs_tex_comp + 2) |
R500_RS_SEL_Q(rs_tex_comp + 3);
}
rs->inst[id] |= R500_RS_INST_TEX_ID(id);
}
static void r500_rs_tex_write(struct r300_rs_block* rs, int id, int fp_offset)
{
rs->inst[id] |= R500_RS_INST_TEX_CN_WRITE |
R500_RS_INST_TEX_ADDR(fp_offset);
}
/* Set up the RS block.
*
* This is the part of the chipset that actually does the rasterization
* of vertices into fragments. This is also the part of the chipset that
* locks up if any part of it is even slightly wrong. */
static void r300_update_rs_block(struct r300_context* r300,
struct r300_shader_semantics* vs_outputs,
struct r300_shader_semantics* fs_inputs)
{
struct r300_rs_block rs = { { 0 } };
int i, col_count = 0, tex_count = 0, fp_offset = 0;
void (*rX00_rs_col)(struct r300_rs_block*, int, int, boolean);
void (*rX00_rs_col_write)(struct r300_rs_block*, int, int);
void (*rX00_rs_tex)(struct r300_rs_block*, int, int, boolean);
void (*rX00_rs_tex_write)(struct r300_rs_block*, int, int);
boolean any_bcolor_used = vs_outputs->bcolor[0] != ATTR_UNUSED ||
vs_outputs->bcolor[1] != ATTR_UNUSED;
if (r300_screen(r300->context.screen)->caps->is_r500) {
rX00_rs_col = r500_rs_col;
rX00_rs_col_write = r500_rs_col_write;
rX00_rs_tex = r500_rs_tex;
rX00_rs_tex_write = r500_rs_tex_write;
} else {
rX00_rs_col = r300_rs_col;
rX00_rs_col_write = r300_rs_col_write;
rX00_rs_tex = r300_rs_tex;
rX00_rs_tex_write = r300_rs_tex_write;
}
/* Rasterize colors. */
for (i = 0; i < ATTR_COLOR_COUNT; i++) {
if (vs_outputs->color[i] != ATTR_UNUSED || any_bcolor_used ||
vs_outputs->color[1] != ATTR_UNUSED) {
/* Always rasterize if it's written by the VS,
* otherwise it locks up. */
rX00_rs_col(&rs, col_count, i, FALSE);
/* Write it to the FS input register if it's used by the FS. */
if (fs_inputs->color[i] != ATTR_UNUSED) {
rX00_rs_col_write(&rs, col_count, fp_offset);
fp_offset++;
}
col_count++;
} else {
/* Skip the FS input register, leave it uninitialized. */
/* If we try to set it to (0,0,0,1), it will lock up. */
if (fs_inputs->color[i] != ATTR_UNUSED) {
fp_offset++;
}
}
}
/* Rasterize texture coordinates. */
for (i = 0; i < ATTR_GENERIC_COUNT; i++) {
if (vs_outputs->generic[i] != ATTR_UNUSED) {
/* Always rasterize if it's written by the VS,
* otherwise it locks up. */
rX00_rs_tex(&rs, tex_count, tex_count, FALSE);
/* Write it to the FS input register if it's used by the FS. */
if (fs_inputs->generic[i] != ATTR_UNUSED) {
rX00_rs_tex_write(&rs, tex_count, fp_offset);
fp_offset++;
}
tex_count++;
} else {
/* Skip the FS input register, leave it uninitialized. */
/* If we try to set it to (0,0,0,1), it will lock up. */
if (fs_inputs->generic[i] != ATTR_UNUSED) {
fp_offset++;
}
}
}
/* Rasterize fog coordinates. */
if (vs_outputs->fog != ATTR_UNUSED) {
/* Always rasterize if it's written by the VS,
* otherwise it locks up. */
rX00_rs_tex(&rs, tex_count, tex_count, TRUE);
/* Write it to the FS input register if it's used by the FS. */
if (fs_inputs->fog != ATTR_UNUSED) {
rX00_rs_tex_write(&rs, tex_count, fp_offset);
fp_offset++;
}
tex_count++;
} else {
/* Skip the FS input register, leave it uninitialized. */
/* If we try to set it to (0,0,0,1), it will lock up. */
if (fs_inputs->fog != ATTR_UNUSED) {
fp_offset++;
}
}
2009-12-24 02:10:33 +00:00
/* Rasterize WPOS. */
/* If the FS doesn't need it, it's not written by the VS. */
if (fs_inputs->wpos != ATTR_UNUSED) {
rX00_rs_tex(&rs, tex_count, tex_count, FALSE);
rX00_rs_tex_write(&rs, tex_count, fp_offset);
2009-12-24 02:10:33 +00:00
fp_offset++;
2009-12-24 02:10:33 +00:00
tex_count++;
}
/* Rasterize at least one color, or bad things happen. */
if (col_count == 0 && tex_count == 0) {
rX00_rs_col(&rs, 0, 0, TRUE);
col_count++;
}
rs.count = (tex_count*4) | (col_count << R300_IC_COUNT_SHIFT) |
R300_HIRES_EN;
rs.inst_count = MAX3(col_count - 1, tex_count - 1, 0);
/* Now, after all that, see if we actually need to update the state. */
if (memcmp(r300->rs_block_state.state, &rs, sizeof(struct r300_rs_block))) {
memcpy(r300->rs_block_state.state, &rs, sizeof(struct r300_rs_block));
r300->rs_block_state.dirty = TRUE;
}
}
/* Update the shader-dependant states. */
static void r300_update_derived_shader_state(struct r300_context* r300)
{
struct r300_screen* r300screen = r300_screen(r300->context.screen);
struct r300_vertex_info *vformat =
(struct r300_vertex_info*)r300->vertex_format_state.state;
struct vertex_info* vinfo = &vformat->vinfo;
/* Mmm, delicious hax */
memset(r300->vertex_format_state.state, 0, sizeof(struct r300_vertex_info));
memcpy(vinfo->hwfmt, r300->vs->hwfmt, sizeof(uint)*4);
r300_update_rs_block(r300, &r300->vs->outputs, &r300->fs->inputs);
if (r300screen->caps->has_tcl) {
r300_vertex_psc(r300);
} else {
r300_draw_emit_all_attribs(r300);
draw_compute_vertex_size(
(struct vertex_info*)r300->vertex_format_state.state);
r300_swtcl_vertex_psc(r300);
}
}
2009-12-05 00:27:59 +00:00
static boolean r300_dsa_writes_depth_stencil(struct r300_dsa_state* dsa)
{
/* We are interested only in the cases when a new depth or stencil value
* can be written and changed. */
/* We might optionally check for [Z func: never] and inspect the stencil
* state in a similar fashion, but it's not terribly important. */
return (dsa->z_buffer_control & R300_Z_WRITE_ENABLE) ||
(dsa->stencil_ref_mask & R300_STENCILWRITEMASK_MASK) ||
2009-12-05 00:27:59 +00:00
((dsa->z_buffer_control & R500_STENCIL_REFMASK_FRONT_BACK) &&
(dsa->stencil_ref_bf & R300_STENCILWRITEMASK_MASK));
}
static boolean r300_dsa_alpha_test_enabled(struct r300_dsa_state* dsa)
{
/* We are interested only in the cases when alpha testing can kill
* a fragment. */
uint32_t af = dsa->alpha_function;
return (af & R300_FG_ALPHA_FUNC_ENABLE) &&
(af & R300_FG_ALPHA_FUNC_ALWAYS) != R300_FG_ALPHA_FUNC_ALWAYS;
}
static void r300_update_ztop(struct r300_context* r300)
{
struct r300_ztop_state* ztop_state =
(struct r300_ztop_state*)r300->ztop_state.state;
/* This is important enough that I felt it warranted a comment.
*
* According to the docs, these are the conditions where ZTOP must be
* disabled:
* 1) Alpha testing enabled
* 2) Texture kill instructions in fragment shader
* 3) Chroma key culling enabled
* 4) W-buffering enabled
*
* The docs claim that for the first three cases, if no ZS writes happen,
* then ZTOP can be used.
*
* (3) will never apply since we do not support chroma-keyed operations.
* (4) will need to be re-examined (and this comment updated) if/when
* Hyper-Z becomes supported.
*
* Additionally, the following conditions require disabled ZTOP:
* 5) Depth writes in fragment shader
* 6) Outstanding occlusion queries
*
* This register causes stalls all the way from SC to CB when changed,
* but it is buffered on-chip so it does not hurt to write it if it has
* not changed.
*
* ~C.
*/
2009-12-05 00:27:59 +00:00
/* ZS writes */
if (r300_dsa_writes_depth_stencil(r300->dsa_state.state) &&
(r300_dsa_alpha_test_enabled(r300->dsa_state.state) ||/* (1) */
r300->fs->info.uses_kill)) { /* (2) */
ztop_state->z_buffer_top = R300_ZTOP_DISABLE;
} else if (r300_fragment_shader_writes_depth(r300->fs)) { /* (5) */
ztop_state->z_buffer_top = R300_ZTOP_DISABLE;
} else if (r300->query_current) { /* (6) */
ztop_state->z_buffer_top = R300_ZTOP_DISABLE;
} else {
ztop_state->z_buffer_top = R300_ZTOP_ENABLE;
}
r300->ztop_state.dirty = TRUE;
}
void r300_update_derived_state(struct r300_context* r300)
{
/* XXX */
if (r300->dirty_state &
(R300_NEW_FRAGMENT_SHADER | R300_NEW_VERTEX_SHADER) ||
r300->vertex_format_state.dirty || r300->rs_state.dirty) {
r300_update_derived_shader_state(r300);
}
r300_update_ztop(r300);
}