fteqw/engine/gl/gl_rlight.c

1468 lines
34 KiB
C
Raw Normal View History

/*
Copyright (C) 1996-1997 Id Software, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
// r_light.c
#include "quakedef.h"
#if defined(GLQUAKE) || defined(D3DQUAKE)
#include "glquake.h"
#include "shader.h"
extern cvar_t r_shadow_realtime_world, r_shadow_realtime_world_lightmaps;
int r_dlightframecount;
int d_lightstylevalue[256]; // 8.8 fraction of base light value
/*
==================
R_AnimateLight
==================
*/
void R_AnimateLight (void)
{
int i,j;
float f;
//
// light animations
// 'm' is normal light, 'a' is no light, 'z' is double bright
f = (cl.time*r_lightstylespeed.value);
if (f < 0)
f = 0;
i = (int)f;
f -= i; //this can require updates at 1000 times a second.. Depends on your framerate of course
for (j=0 ; j<MAX_LIGHTSTYLES ; j++)
{
int v1, v2, vd;
if (!cl_lightstyle[j].length)
{
d_lightstylevalue[j] = 256;
cl_lightstyle[j].colour = 7;
continue;
}
v1 = i % cl_lightstyle[j].length;
v1 = cl_lightstyle[j].map[v1] - 'a';
v2 = (i+1) % cl_lightstyle[j].length;
v2 = cl_lightstyle[j].map[v2] - 'a';
vd = v1 - v2;
if (!r_lightstylesmooth.ival || vd < -r_lightstylesmooth_limit.ival || vd > r_lightstylesmooth_limit.ival)
d_lightstylevalue[j] = v1*22;
else
d_lightstylevalue[j] = (v1*(1-f) + v2*(f))*22;
}
}
/*
=============================================================================
DYNAMIC LIGHTS BLEND RENDERING
=============================================================================
*/
void AddLightBlend (float r, float g, float b, float a2)
{
float a;
r = bound(0, r, 1);
g = bound(0, g, 1);
b = bound(0, b, 1);
sw_blend[3] = a = sw_blend[3] + a2*(1-sw_blend[3]);
a2 = a2/a;
sw_blend[0] = sw_blend[0]*(1-a2) + r*a2;
sw_blend[1] = sw_blend[1]*(1-a2) + g*a2;
sw_blend[2] = sw_blend[2]*(1-a2) + b*a2;
//Con_Printf("AddLightBlend(): %4.2f %4.2f %4.2f %4.6f\n", v_blend[0], v_blend[1], v_blend[2], v_blend[3]);
}
#define FLASHBLEND_VERTS 16
static float bubble_sintable[FLASHBLEND_VERTS+1], bubble_costable[FLASHBLEND_VERTS+1];
static void R_InitBubble(void)
{
float a;
int i;
float *bub_sin, *bub_cos;
bub_sin = bubble_sintable;
bub_cos = bubble_costable;
for (i=FLASHBLEND_VERTS ; i>=0 ; i--)
{
a = i/(float)FLASHBLEND_VERTS * M_PI*2;
*bub_sin++ = sin(a);
*bub_cos++ = cos(a);
}
}
avec4_t flashblend_colours[FLASHBLEND_VERTS+1];
vecV_t flashblend_vcoords[FLASHBLEND_VERTS+1];
vec2_t flashblend_tccoords[FLASHBLEND_VERTS+1];
index_t flashblend_indexes[FLASHBLEND_VERTS*3];
index_t flashblend_fsindexes[6] = {0, 1, 2, 0, 2, 3};
mesh_t flashblend_mesh;
mesh_t flashblend_fsmesh;
shader_t *flashblend_shader;
shader_t *lpplight_shader;
void R_GenerateFlashblendTexture(void)
{
float dx, dy;
int x, y, a;
unsigned char pixels[32][32][4];
for (y = 0;y < 32;y++)
{
dy = (y - 15.5f) * (1.0f / 16.0f);
for (x = 0;x < 32;x++)
{
dx = (x - 15.5f) * (1.0f / 16.0f);
a = (int)(((1.0f / (dx * dx + dy * dy + 0.2f)) - (1.0f / (1.0f + 0.2))) * 32.0f / (1.0f / (1.0f + 0.2)));
a = bound(0, a, 255);
pixels[y][x][0] = a;
pixels[y][x][1] = a;
pixels[y][x][2] = a;
pixels[y][x][3] = 255;
}
}
R_LoadTexture32("***flashblend***", 32, 32, pixels, 0);
}
void R_InitFlashblends(void)
{
int i;
R_InitBubble();
for (i = 0; i < FLASHBLEND_VERTS; i++)
{
flashblend_indexes[i*3+0] = 0;
if (i+1 == FLASHBLEND_VERTS)
flashblend_indexes[i*3+1] = 1;
else
flashblend_indexes[i*3+1] = i+2;
flashblend_indexes[i*3+2] = i+1;
flashblend_tccoords[i+1][0] = 0.5 + bubble_sintable[i]*0.5;
flashblend_tccoords[i+1][1] = 0.5 + bubble_costable[i]*0.5;
}
flashblend_tccoords[0][0] = 0.5;
flashblend_tccoords[0][1] = 0.5;
flashblend_mesh.numvertexes = FLASHBLEND_VERTS+1;
flashblend_mesh.xyz_array = flashblend_vcoords;
flashblend_mesh.st_array = flashblend_tccoords;
flashblend_mesh.colors4f_array = flashblend_colours;
flashblend_mesh.indexes = flashblend_indexes;
flashblend_mesh.numindexes = FLASHBLEND_VERTS*3;
flashblend_mesh.istrifan = true;
flashblend_fsmesh.numvertexes = 4;
flashblend_fsmesh.xyz_array = flashblend_vcoords;
flashblend_fsmesh.st_array = flashblend_tccoords;
flashblend_fsmesh.colors4f_array = flashblend_colours;
flashblend_fsmesh.indexes = flashblend_fsindexes;
flashblend_fsmesh.numindexes = 6;
flashblend_fsmesh.istrifan = true;
R_GenerateFlashblendTexture();
flashblend_shader = R_RegisterShader("flashblend", SUF_NONE,
"{\n"
"program defaultadditivesprite\n"
"{\n"
"map ***flashblend***\n"
"blendfunc gl_one gl_one\n"
"rgbgen vertex\n"
"alphagen vertex\n"
"}\n"
"}\n"
);
lpplight_shader = NULL;
}
static qboolean R_BuildDlightMesh(dlight_t *light, float colscale, float radscale, qboolean expand)
{
int i, j;
// float a;
vec3_t v;
float rad;
float *bub_sin, *bub_cos;
vec3_t colour;
extern cvar_t gl_mindist;
bub_sin = bubble_sintable;
bub_cos = bubble_costable;
rad = light->radius * radscale;
VectorCopy(light->color, colour);
if (light->fov)
{
float a = -DotProduct(light->axis[0], vpn);
colour[0] *= a;
colour[1] *= a;
colour[2] *= a;
rad *= a;
rad *= 0.33;
}
if (light->style)
{
colscale *= d_lightstylevalue[light->style-1]/255.0f;
}
VectorSubtract (light->origin, r_origin, v);
if (Length (v) < rad + gl_mindist.value*2)
{ // view is inside the dlight
return false;
}
flashblend_colours[0][0] = colour[0]*colscale;
flashblend_colours[0][1] = colour[1]*colscale;
flashblend_colours[0][2] = colour[2]*colscale;
flashblend_colours[0][3] = 1;
VectorCopy(light->origin, flashblend_vcoords[0]);
for (i=FLASHBLEND_VERTS ; i>0 ; i--)
{
for (j=0 ; j<3 ; j++)
flashblend_vcoords[i][j] = light->origin[j] + (vright[j]*(*bub_cos) +
+ vup[j]*(*bub_sin)) * rad;
bub_sin++;
bub_cos++;
}
if (!expand)
VectorMA(flashblend_vcoords[0], -rad/1.5, vpn, flashblend_vcoords[0]);
else
{
vec3_t diff;
VectorSubtract(r_origin, light->origin, diff);
VectorNormalize(diff);
for (i=0 ; i<=FLASHBLEND_VERTS ; i++)
VectorMA(flashblend_vcoords[i], rad, diff, flashblend_vcoords[i]);
}
return true;
}
/*
=============
R_RenderDlights
=============
*/
void R_RenderDlights (void)
{
int i;
dlight_t *l;
vec3_t waste1, waste2;
unsigned int beflags = 0;
float intensity;
if (r_coronas.value)
beflags |= BEF_FORCENODEPTH;
// r_dlightframecount = r_framecount + 1; // because the count hasn't
// advanced yet for this frame
l = cl_dlights+rtlights_first;
for (i=rtlights_first; i<rtlights_max; i++, l++)
{
if (!l->radius)
continue;
if (l->corona <= 0)
continue;
if (l->flags & LFLAG_FLASHBLEND)
{
//dlights emitting from the local player are not visible as flashblends
if (l->key == r_refdef.playerview->viewentity)
continue; //was a glow
if (l->key == -(r_refdef.playerview->viewentity))
continue; //was a muzzleflash
}
intensity = l->corona * 0.25;
if (r_flashblend.value && (l->flags & LFLAG_FLASHBLEND))
intensity = l->corona; /*intensity is already in the corona value...*/
else
intensity = l->corona * r_coronas.value;
if (intensity <= 0)
continue;
/*coronas use depth testing to compute visibility*/
if (r_coronas.value)
{
if (TraceLineN(r_refdef.vieworg, l->origin, waste1, waste2))
continue;
}
if (!R_BuildDlightMesh (l, intensity, l->coronascale, false) && r_flashblend.value)
AddLightBlend (l->color[0], l->color[1], l->color[2], l->radius * 0.0003);
else
BE_DrawMesh_Single(flashblend_shader, &flashblend_mesh, NULL, &flashblend_shader->defaulttextures, beflags);
}
}
void R_GenDlightMesh(struct batch_s *batch)
{
static mesh_t *meshptr;
dlight_t *l = cl_dlights + batch->surf_first;
BE_SelectDLight(l, l->color);
if (!R_BuildDlightMesh (l, 2, 1, true))
{
int i;
static vec2_t s[4] = {{1, -1}, {-1, -1}, {-1, 1}, {1, 1}};
batch->flags |= BEF_FORCENODEPTH;
for (i = 0; i < 4; i++)
{
VectorMA(r_origin, 32, vpn, flashblend_vcoords[i]);
VectorMA(flashblend_vcoords[i], s[i][0]*320, vright, flashblend_vcoords[i]);
VectorMA(flashblend_vcoords[i], s[i][1]*320, vup, flashblend_vcoords[i]);
}
meshptr = &flashblend_fsmesh;
}
else
{
meshptr = &flashblend_mesh;
}
batch->mesh = &meshptr;
}
void R_GenDlightBatches(batch_t *batches[])
{
int i, sort;
dlight_t *l;
batch_t *b;
if (!lpplight_shader)
lpplight_shader = R_RegisterShader("lpp_light", SUF_NONE,
"{\n"
"program lpp_light\n"
"{\n"
"map $sourcecolour\n"
"blendfunc gl_one gl_one\n"
"}\n"
"surfaceparm nodlight\n"
"lpp_light\n"
"}\n"
);
l = cl_dlights+rtlights_first;
for (i=rtlights_first; i<rtlights_max; i++, l++)
{
if (!l->radius)
continue;
if (R_CullSphere(l->origin, l->radius))
continue;
b = BE_GetTempBatch();
if (!b)
return;
b->flags = 0;
sort = lpplight_shader->sort;
b->buildmeshes = R_GenDlightMesh;
b->ent = &r_worldentity;
b->mesh = NULL;
b->firstmesh = 0;
b->meshes = 1;
b->skin = &lpplight_shader->defaulttextures;
b->texture = NULL;
b->shader = lpplight_shader;
b->lightmap[0] = -1;
b->lightmap[1] = -1;
b->lightmap[2] = -1;
b->lightmap[3] = -1;
b->surf_first = i;
b->flags |= BEF_NOSHADOWS;
b->vbo = NULL;
b->next = batches[sort];
batches[sort] = b;
}
}
/*
=============================================================================
DYNAMIC LIGHTS
=============================================================================
*/
/*
=============
R_PushDlights
=============
*/
void R_PushDlights (void)
{
int i;
dlight_t *l;
r_dlightframecount = r_framecount + 1; // because the count hasn't
// advanced yet for this frame
#ifdef RTLIGHTS
/*if we're doing full rtlighting only, then don't bother calculating old-style dlights as they won't be visible anyway*/
if (r_shadow_realtime_world.ival && r_shadow_realtime_world_lightmaps.value < 0.1)
return;
#endif
if (!r_dynamic.ival || !cl.worldmodel)
return;
if (!cl.worldmodel->nodes)
return;
currentmodel = cl.worldmodel;
if (!currentmodel->funcs.MarkLights)
return;
l = cl_dlights+rtlights_first;
for (i=rtlights_first ; i <= DL_LAST ; i++, l++)
{
if (!l->radius || !(l->flags & LFLAG_LIGHTMAP))
continue;
currentmodel->funcs.MarkLights( l, 1<<i, currentmodel->nodes );
}
}
/////////////////////////////////////////////////////////////
//rtlight loading
#ifdef RTLIGHTS
void R_ImportRTLights(char *entlump)
{
typedef enum lighttype_e {LIGHTTYPE_MINUSX, LIGHTTYPE_RECIPX, LIGHTTYPE_RECIPXX, LIGHTTYPE_NONE, LIGHTTYPE_SUN, LIGHTTYPE_MINUSXX} lighttype_t;
/*I'm using the DP code so I know I'll get the DP results*/
int entnum, style, islight, skin, pflags, n;
lighttype_t type;
float origin[3], angles[3], radius, color[3], light[4], fadescale, lightscale, originhack[3], overridecolor[3], vec[4];
char key[256], value[8192];
int nest;
COM_Parse(entlump);
if (!strcmp(com_token, "Version"))
{
entlump = COM_Parse(entlump);
entlump = COM_Parse(entlump);
}
for (entnum = 0; ;entnum++)
{
entlump = COM_Parse(entlump);
if (com_token[0] != '{')
break;
type = LIGHTTYPE_MINUSX;
origin[0] = origin[1] = origin[2] = 0;
originhack[0] = originhack[1] = originhack[2] = 0;
angles[0] = angles[1] = angles[2] = 0;
color[0] = color[1] = color[2] = 1;
light[0] = light[1] = light[2] = 1;light[3] = 300;
overridecolor[0] = overridecolor[1] = overridecolor[2] = 1;
fadescale = 1;
lightscale = 1;
style = 0;
skin = 0;
pflags = 0;
//effects = 0;
islight = false;
nest = 1;
while (1)
{
entlump = COM_Parse(entlump);
if (!entlump)
break; // error
if (com_token[0] == '{')
{
nest++;
continue;
}
if (com_token[0] == '}')
{
nest--;
if (!nest)
break; // end of entity
continue;
}
if (nest!=1)
continue;
if (com_token[0] == '_')
Q_strncpyz(key, com_token + 1, sizeof(key));
else
Q_strncpyz(key, com_token, sizeof(key));
while (key[strlen(key)-1] == ' ') // remove trailing spaces
key[strlen(key)-1] = 0;
entlump = COM_Parse(entlump);
if (!entlump)
break; // error
Q_strncpyz(value, com_token, sizeof(value));
// now that we have the key pair worked out...
if (!strcmp("light", key))
{
n = sscanf(value, "%f %f %f %f", &vec[0], &vec[1], &vec[2], &vec[3]);
if (n == 1)
{
// quake
light[0] = vec[0] * (1.0f / 256.0f);
light[1] = vec[0] * (1.0f / 256.0f);
light[2] = vec[0] * (1.0f / 256.0f);
light[3] = vec[0];
}
else if (n == 4)
{
// halflife
light[0] = vec[0] * (1.0f / 255.0f);
light[1] = vec[1] * (1.0f / 255.0f);
light[2] = vec[2] * (1.0f / 255.0f);
light[3] = vec[3];
}
}
else if (!strcmp("delay", key))
type = atoi(value);
else if (!strcmp("origin", key))
sscanf(value, "%f %f %f", &origin[0], &origin[1], &origin[2]);
else if (!strcmp("angle", key))
angles[0] = 0, angles[1] = atof(value), angles[2] = 0;
else if (!strcmp("angles", key))
sscanf(value, "%f %f %f", &angles[0], &angles[1], &angles[2]);
else if (!strcmp("color", key))
sscanf(value, "%f %f %f", &color[0], &color[1], &color[2]);
else if (!strcmp("wait", key))
fadescale = atof(value);
else if (!strcmp("classname", key))
{
if (!strncmp(value, "light", 5))
{
islight = true;
if (!strcmp(value, "light_fluoro"))
{
originhack[0] = 0;
originhack[1] = 0;
originhack[2] = 0;
overridecolor[0] = 1;
overridecolor[1] = 1;
overridecolor[2] = 1;
}
if (!strcmp(value, "light_fluorospark"))
{
originhack[0] = 0;
originhack[1] = 0;
originhack[2] = 0;
overridecolor[0] = 1;
overridecolor[1] = 1;
overridecolor[2] = 1;
}
if (!strcmp(value, "light_globe"))
{
originhack[0] = 0;
originhack[1] = 0;
originhack[2] = 0;
overridecolor[0] = 1;
overridecolor[1] = 0.8;
overridecolor[2] = 0.4;
}
if (!strcmp(value, "light_flame_large_yellow"))
{
originhack[0] = 0;
originhack[1] = 0;
originhack[2] = 0;
overridecolor[0] = 1;
overridecolor[1] = 0.5;
overridecolor[2] = 0.1;
}
if (!strcmp(value, "light_flame_small_yellow"))
{
originhack[0] = 0;
originhack[1] = 0;
originhack[2] = 0;
overridecolor[0] = 1;
overridecolor[1] = 0.5;
overridecolor[2] = 0.1;
}
if (!strcmp(value, "light_torch_small_white"))
{
originhack[0] = 0;
originhack[1] = 0;
originhack[2] = 0;
overridecolor[0] = 1;
overridecolor[1] = 0.5;
overridecolor[2] = 0.1;
}
if (!strcmp(value, "light_torch_small_walltorch"))
{
originhack[0] = 0;
originhack[1] = 0;
originhack[2] = 0;
overridecolor[0] = 1;
overridecolor[1] = 0.5;
overridecolor[2] = 0.1;
}
}
}
else if (!strcmp("style", key))
style = atoi(value);
else if (!strcmp("skin", key))
skin = (int)atof(value);
else if (!strcmp("pflags", key))
pflags = (int)atof(value);
//else if (!strcmp("effects", key))
//effects = (int)atof(value);
else if (!strcmp("scale", key))
lightscale = atof(value);
else if (!strcmp("fade", key))
fadescale = atof(value);
else if (!strcmp("light_radius", key))
{
light[0] = 1;
light[1] = 1;
light[2] = 1;
light[3] = atof(value);
}
}
if (!islight)
continue;
if (lightscale <= 0)
lightscale = 1;
if (fadescale <= 0)
fadescale = 1;
if (color[0] == color[1] && color[0] == color[2])
{
color[0] *= overridecolor[0];
color[1] *= overridecolor[1];
color[2] *= overridecolor[2];
}
radius = light[3] * r_editlights_import_radius.value * lightscale / fadescale;
color[0] = color[0] * light[0];
color[1] = color[1] * light[1];
color[2] = color[2] * light[2];
switch (type)
{
case LIGHTTYPE_MINUSX:
break;
case LIGHTTYPE_RECIPX:
radius *= 2;
VectorScale(color, (1.0f / 16.0f), color);
break;
case LIGHTTYPE_RECIPXX:
radius *= 2;
VectorScale(color, (1.0f / 16.0f), color);
break;
default:
case LIGHTTYPE_NONE:
break;
case LIGHTTYPE_SUN:
break;
case LIGHTTYPE_MINUSXX:
break;
}
VectorAdd(origin, originhack, origin);
if (radius >= 1)
{
dlight_t *dl = CL_AllocSlight();
if (!dl)
break;
VectorCopy(origin, dl->origin);
AngleVectors(angles, dl->axis[0], dl->axis[1], dl->axis[2]);
dl->radius = radius;
VectorCopy(color, dl->color);
dl->flags = 0;
dl->flags |= LFLAG_REALTIMEMODE;
dl->flags |= (pflags & PFLAGS_CORONA)?LFLAG_FLASHBLEND:0;
dl->flags |= (pflags & PFLAGS_NOSHADOW)?LFLAG_NOSHADOWS:0;
dl->style = style+1;
dl->lightcolourscales[0] = r_editlights_import_ambient.value;
dl->lightcolourscales[1] = r_editlights_import_diffuse.value;
dl->lightcolourscales[2] = r_editlights_import_specular.value;
if (skin >= 16)
snprintf(dl->cubemapname, sizeof(dl->cubemapname), "cubemaps/%i", skin);
}
}
}
void R_LoadRTLights(void)
{
dlight_t *dl;
char fname[MAX_QPATH];
char cubename[MAX_QPATH];
char *file;
char *end;
int style;
vec3_t org;
float radius;
vec3_t rgb;
unsigned int flags;
float coronascale;
float corona;
float ambientscale, diffusescale, specularscale;
vec3_t angles;
//delete all old lights, even dynamic ones
rtlights_first = RTL_FIRST;
rtlights_max = RTL_FIRST;
COM_StripExtension(cl.worldmodel->name, fname, sizeof(fname));
strncat(fname, ".rtlights", MAX_QPATH-1);
file = COM_LoadTempFile(fname);
if (file)
while(1)
{
end = strchr(file, '\n');
if (!end)
end = file + strlen(file);
if (end == file)
break;
*end = '\0';
while(*file == ' ' || *file == '\t')
file++;
if (*file == '!')
{
flags = LFLAG_NOSHADOWS;
file++;
}
else
flags = 0;
file = COM_Parse(file);
org[0] = atof(com_token);
file = COM_Parse(file);
org[1] = atof(com_token);
file = COM_Parse(file);
org[2] = atof(com_token);
file = COM_Parse(file);
radius = atof(com_token);
file = COM_Parse(file);
rgb[0] = file?atof(com_token):1;
file = COM_Parse(file);
rgb[1] = file?atof(com_token):1;
file = COM_Parse(file);
rgb[2] = file?atof(com_token):1;
file = COM_Parse(file);
style = file?atof(com_token):0;
file = COM_Parse(file);
//cubemap
Q_strncpyz(cubename, com_token, sizeof(cubename));
file = COM_Parse(file);
//corona
corona = file?atof(com_token):0;
file = COM_Parse(file);
angles[0] = file?atof(com_token):0;
file = COM_Parse(file);
angles[1] = file?atof(com_token):0;
file = COM_Parse(file);
angles[2] = file?atof(com_token):0;
file = COM_Parse(file);
//corrona scale
coronascale = file?atof(com_token):0.25;
file = COM_Parse(file);
//ambient
ambientscale = file?atof(com_token):0;
file = COM_Parse(file);
//diffuse
diffusescale = file?atof(com_token):1;
file = COM_Parse(file);
//specular
specularscale = file?atof(com_token):1;
file = COM_Parse(file);
flags |= file?atoi(com_token):LFLAG_REALTIMEMODE;
if (radius)
{
dl = CL_AllocSlight();
if (!dl)
break;
VectorCopy(org, dl->origin);
dl->radius = radius;
VectorCopy(rgb, dl->color);
dl->corona = corona;
dl->coronascale = coronascale;
dl->die = 0;
dl->flags = flags;
dl->lightcolourscales[0] = ambientscale;
dl->lightcolourscales[1] = diffusescale;
dl->lightcolourscales[2] = specularscale;
AngleVectors(angles, dl->axis[0], dl->axis[1], dl->axis[2]);
Q_strncpyz(dl->cubemapname, cubename, sizeof(dl->cubemapname));
if (*dl->cubemapname)
dl->cubetexture = R_LoadReplacementTexture(dl->cubemapname, "", IF_CUBEMAP);
else
dl->cubetexture = r_nulltex;
dl->style = style+1;
}
file = end+1;
}
}
void R_SaveRTLights_f(void)
{
dlight_t *light;
vfsfile_t *f;
unsigned int i;
char fname[MAX_QPATH];
vec3_t ang;
COM_StripExtension(cl.worldmodel->name, fname, sizeof(fname));
strncat(fname, ".rtlights", MAX_QPATH-1);
FS_CreatePath(fname, FS_GAMEONLY);
f = FS_OpenVFS(fname, "wb", FS_GAMEONLY);
if (!f)
{
Con_Printf("couldn't open %s\n", fname);
return;
}
for (light = cl_dlights+rtlights_first, i=rtlights_first; i<rtlights_max; i++, light++)
{
if (light->die)
continue;
if (!light->radius)
continue;
VectorAngles(light->axis[0], light->axis[2], ang);
VFS_PUTS(f, va(
"%s%f %f %f "
"%f %f %f %f "
"%i "
"\"%s\" %f "
"%f %f %f "
"%f %f %f %f %i "
"\n"
,
(light->flags & LFLAG_NOSHADOWS)?"!":"", light->origin[0], light->origin[1], light->origin[2],
light->radius, light->color[0], light->color[1], light->color[2],
light->style-1,
light->cubemapname, light->corona,
ang[0], ang[1], ang[2],
light->coronascale, light->lightcolourscales[0], light->lightcolourscales[1], light->lightcolourscales[2], light->flags&(LFLAG_NORMALMODE|LFLAG_REALTIMEMODE|LFLAG_CREPUSCULAR)
));
}
VFS_CLOSE(f);
Con_Printf("rtlights saved to %s\n", fname);
}
void R_ReloadRTLights_f(void)
{
if (!cl.worldmodel)
{
Con_Printf("Cannot reload lights at this time\n");
return;
}
rtlights_first = RTL_FIRST;
rtlights_max = RTL_FIRST;
if (!strcmp(Cmd_Argv(1), "bsp"))
R_ImportRTLights(cl.worldmodel->entities);
else if (!strcmp(Cmd_Argv(1), "rtlights"))
R_LoadRTLights();
else if (strcmp(Cmd_Argv(1), "none"))
{
R_LoadRTLights();
if (rtlights_first == rtlights_max)
R_ImportRTLights(cl.worldmodel->entities);
}
}
#endif
/*
=============================================================================
LIGHT SAMPLING
=============================================================================
*/
mplane_t *lightplane;
vec3_t lightspot;
void GLQ3_LightGrid(model_t *mod, vec3_t point, vec3_t res_diffuse, vec3_t res_ambient, vec3_t res_dir)
{
q3lightgridinfo_t *lg = (q3lightgridinfo_t *)cl.worldmodel->lightgrid;
int index[8];
int vi[3];
int i, j;
float t[8], direction_uv[3];
vec3_t vf, vf2;
vec3_t ambient, diffuse;
if (res_dir)
{
res_dir[0] = 1;
res_dir[1] = 1;
res_dir[2] = 0.1;
}
if (!lg || !lg->lightgrid)
{
if(res_ambient)
{
res_ambient[0] = 64;
res_ambient[1] = 64;
res_ambient[2] = 64;
}
if (res_diffuse)
{
res_diffuse[0] = 192;
res_diffuse[1] = 192;
res_diffuse[2] = 192;
}
return;
}
//If in doubt, steal someone else's code...
//Thanks QFusion.
for ( i = 0; i < 3; i++ )
{
vf[i] = (point[i] - lg->gridMins[i]) / lg->gridSize[i];
vi[i] = (int)(vf[i]);
vf[i] = vf[i] - floor(vf[i]);
vf2[i] = 1.0f - vf[i];
}
index[0] = vi[2]*lg->gridBounds[3] + vi[1]*lg->gridBounds[0] + vi[0];
index[1] = index[0] + lg->gridBounds[0];
index[2] = index[0] + lg->gridBounds[3];
index[3] = index[2] + lg->gridBounds[0];
index[4] = index[0]+(index[0]<(lg->numlightgridelems-1));
index[5] = index[1]+(index[1]<(lg->numlightgridelems-1));
index[6] = index[2]+(index[2]<(lg->numlightgridelems-1));
index[7] = index[3]+(index[3]<(lg->numlightgridelems-1));
for ( i = 0; i < 8; i++ )
{
if ( index[i] < 0 || index[i] >= (lg->numlightgridelems) )
{
res_ambient[0] = 255; //out of the map
res_ambient[1] = 255;
res_ambient[2] = 255;
return;
}
}
t[0] = vf2[0] * vf2[1] * vf2[2];
t[1] = vf[0] * vf2[1] * vf2[2];
t[2] = vf2[0] * vf[1] * vf2[2];
t[3] = vf[0] * vf[1] * vf2[2];
t[4] = vf2[0] * vf2[1] * vf[2];
t[5] = vf[0] * vf2[1] * vf[2];
t[6] = vf2[0] * vf[1] * vf[2];
t[7] = vf[0] * vf[1] * vf[2];
for ( j = 0; j < 3; j++ )
{
ambient[j] = 0;
diffuse[j] = 0;
for ( i = 0; i < 4; i++ )
{
ambient[j] += t[i*2] * lg->lightgrid[ index[i]].ambient[j];
ambient[j] += t[i*2+1] * lg->lightgrid[ index[i+4]].ambient[j];
diffuse[j] += t[i*2] * lg->lightgrid[ index[i]].diffuse[j];
diffuse[j] += t[i*2+1] * lg->lightgrid[ index[i+4]].diffuse[j];
}
}
for ( j = 0; j < 2; j++ )
{
direction_uv[j] = 0;
for ( i = 0; i < 4; i++ )
{
direction_uv[j] += t[i*2] * lg->lightgrid[ index[i]].direction[j];
direction_uv[j] += t[i*2+1] * lg->lightgrid[ index[i+4]].direction[j];
}
direction_uv[j] = anglemod ( direction_uv[j] );
}
VectorScale(ambient, 4, ambient);
VectorScale(diffuse, 4, diffuse);
/*ambient is the min level*/
/*diffuse is the max level*/
VectorCopy(ambient, res_ambient);
if (res_diffuse)
VectorAdd(diffuse, ambient, res_diffuse);
if (res_dir)
{
vec3_t right, left;
direction_uv[2] = 0;
AngleVectors(direction_uv, res_dir, right, left);
}
}
int GLRecursiveLightPoint (mnode_t *node, vec3_t start, vec3_t end)
{
int r;
float front, back, frac;
int side;
mplane_t *plane;
vec3_t mid;
msurface_t *surf;
int s, t, ds, dt;
int i;
mtexinfo_t *tex;
qbyte *lightmap;
unsigned scale;
int maps;
if (cl.worldmodel->fromgame == fg_quake2)
{
if (node->contents != -1)
return -1; // solid
}
else if (node->contents < 0)
return -1; // didn't hit anything
// calculate mid point
// FIXME: optimize for axial
plane = node->plane;
front = DotProduct (start, plane->normal) - plane->dist;
back = DotProduct (end, plane->normal) - plane->dist;
side = front < 0;
if ( (back < 0) == side)
return GLRecursiveLightPoint (node->children[side], start, end);
frac = front / (front-back);
mid[0] = start[0] + (end[0] - start[0])*frac;
mid[1] = start[1] + (end[1] - start[1])*frac;
mid[2] = start[2] + (end[2] - start[2])*frac;
// go down front side
r = GLRecursiveLightPoint (node->children[side], start, mid);
if (r >= 0)
return r; // hit something
if ( (back < 0) == side )
return -1; // didn't hit anuthing
// check for impact on this node
VectorCopy (mid, lightspot);
lightplane = plane;
surf = cl.worldmodel->surfaces + node->firstsurface;
for (i=0 ; i<node->numsurfaces ; i++, surf++)
{
if (surf->flags & SURF_DRAWTILED)
continue; // no lightmaps
tex = surf->texinfo;
s = DotProduct (mid, tex->vecs[0]) + tex->vecs[0][3];
t = DotProduct (mid, tex->vecs[1]) + tex->vecs[1][3];;
if (s < surf->texturemins[0] || t < surf->texturemins[1])
continue;
ds = s - surf->texturemins[0];
dt = t - surf->texturemins[1];
if ( ds > surf->extents[0] || dt > surf->extents[1] )
continue;
if (!surf->samples)
return 0;
ds >>= 4;
dt >>= 4;
lightmap = surf->samples;
r = 0;
if (lightmap)
{
if (cl.worldmodel->engineflags & MDLF_RGBLIGHTING)
{
lightmap += (dt * ((surf->extents[0]>>4)+1) + ds)*3;
for (maps = 0 ; maps < MAXLIGHTMAPS && surf->styles[maps] != 255 ;
maps++)
{
scale = d_lightstylevalue[surf->styles[maps]];
r += (lightmap[0]+lightmap[1]+lightmap[2]) * scale / 3;
lightmap += ((surf->extents[0]>>4)+1) *
((surf->extents[1]>>4)+1)*3;
}
}
else
{
lightmap += dt * ((surf->extents[0]>>4)+1) + ds;
for (maps = 0 ; maps < MAXLIGHTMAPS && surf->styles[maps] != 255 ;
maps++)
{
scale = d_lightstylevalue[surf->styles[maps]];
r += *lightmap * scale;
lightmap += ((surf->extents[0]>>4)+1) *
((surf->extents[1]>>4)+1);
}
}
r >>= 8;
}
return r;
}
// go down back side
return GLRecursiveLightPoint (node->children[!side], mid, end);
}
int R_LightPoint (vec3_t p)
{
vec3_t end;
int r;
if (r_refdef.flags & 1)
return 255;
if (!cl.worldmodel || !cl.worldmodel->lightdata)
return 255;
if (cl.worldmodel->fromgame == fg_quake3)
{
GLQ3_LightGrid(cl.worldmodel, p, NULL, end, NULL);
return (end[0] + end[1] + end[2])/3;
}
end[0] = p[0];
end[1] = p[1];
end[2] = p[2] - 2048;
r = GLRecursiveLightPoint (cl.worldmodel->nodes, p, end);
if (r == -1)
r = 0;
return r;
}
#ifdef PEXT_LIGHTSTYLECOL
float *GLRecursiveLightPoint3C (mnode_t *node, vec3_t start, vec3_t end)
{
static float l[6];
float *r;
float front, back, frac;
int side;
mplane_t *plane;
vec3_t mid;
msurface_t *surf;
int s, t, ds, dt;
int i;
mtexinfo_t *tex;
qbyte *lightmap, *deluxmap;
float scale;
int maps;
if (cl.worldmodel->fromgame == fg_quake2)
{
if (node->contents != -1)
return NULL; // solid
}
else if (node->contents < 0)
return NULL; // didn't hit anything
// calculate mid point
// FIXME: optimize for axial
plane = node->plane;
front = DotProduct (start, plane->normal) - plane->dist;
back = DotProduct (end, plane->normal) - plane->dist;
side = front < 0;
if ( (back < 0) == side)
return GLRecursiveLightPoint3C (node->children[side], start, end);
frac = front / (front-back);
mid[0] = start[0] + (end[0] - start[0])*frac;
mid[1] = start[1] + (end[1] - start[1])*frac;
mid[2] = start[2] + (end[2] - start[2])*frac;
// go down front side
r = GLRecursiveLightPoint3C (node->children[side], start, mid);
if (r && r[0]+r[1]+r[2] >= 0)
return r; // hit something
if ( (back < 0) == side )
return NULL; // didn't hit anuthing
// check for impact on this node
VectorCopy (mid, lightspot);
lightplane = plane;
surf = cl.worldmodel->surfaces + node->firstsurface;
for (i=0 ; i<node->numsurfaces ; i++, surf++)
{
if (surf->flags & SURF_DRAWTILED)
continue; // no lightmaps
tex = surf->texinfo;
s = DotProduct (mid, tex->vecs[0]) + tex->vecs[0][3];
t = DotProduct (mid, tex->vecs[1]) + tex->vecs[1][3];
if (s < surf->texturemins[0] ||
t < surf->texturemins[1])
continue;
ds = s - surf->texturemins[0];
dt = t - surf->texturemins[1];
if ( ds > surf->extents[0] || dt > surf->extents[1] )
continue;
if (!surf->samples)
{
l[0]=0;l[1]=0;l[2]=0;
l[3]=0;l[4]=1;l[5]=1;
return l;
}
ds >>= 4;
dt >>= 4;
lightmap = surf->samples;
l[0]=0;l[1]=0;l[2]=0;
l[3]=0;l[4]=0;l[5]=0;
if (lightmap)
{
if (cl.worldmodel->deluxdata)
{
if (cl.worldmodel->engineflags & MDLF_RGBLIGHTING)
{
deluxmap = surf->samples - cl.worldmodel->lightdata + cl.worldmodel->deluxdata;
lightmap += (dt * ((surf->extents[0]>>4)+1) + ds)*3;
deluxmap += (dt * ((surf->extents[0]>>4)+1) + ds)*3;
for (maps = 0 ; maps < MAXLIGHTMAPS && surf->styles[maps] != 255 ;
maps++)
{
scale = d_lightstylevalue[surf->styles[maps]]/256.0f;
if (cl_lightstyle[surf->styles[maps]].colour & 1)
l[0] += lightmap[0] * scale;
if (cl_lightstyle[surf->styles[maps]].colour & 2)
l[1] += lightmap[1] * scale;
if (cl_lightstyle[surf->styles[maps]].colour & 4)
l[2] += lightmap[2] * scale;
l[3] += (deluxmap[0]-127)*scale;
l[4] += (deluxmap[1]-127)*scale;
l[5] += (deluxmap[2]-127)*scale;
lightmap += ((surf->extents[0]>>4)+1) *
((surf->extents[1]>>4)+1) * 3;
deluxmap += ((surf->extents[0]>>4)+1) *
((surf->extents[1]>>4)+1) * 3;
}
}
else
{
deluxmap = (surf->samples - cl.worldmodel->lightdata)*3 + cl.worldmodel->deluxdata;
lightmap += (dt * ((surf->extents[0]>>4)+1) + ds);
deluxmap += (dt * ((surf->extents[0]>>4)+1) + ds)*3;
for (maps = 0 ; maps < MAXLIGHTMAPS && surf->styles[maps] != 255 ;
maps++)
{
scale = d_lightstylevalue[surf->styles[maps]]/256.0f;
if (cl_lightstyle[surf->styles[maps]].colour & 1)
l[0] += *lightmap * scale;
if (cl_lightstyle[surf->styles[maps]].colour & 2)
l[1] += *lightmap * scale;
if (cl_lightstyle[surf->styles[maps]].colour & 4)
l[2] += *lightmap * scale;
l[3] += deluxmap[0]*scale;
l[4] += deluxmap[1]*scale;
l[5] += deluxmap[2]*scale;
lightmap += ((surf->extents[0]>>4)+1) *
((surf->extents[1]>>4)+1);
deluxmap += ((surf->extents[0]>>4)+1) *
((surf->extents[1]>>4)+1) * 3;
}
}
}
else
{
if (cl.worldmodel->engineflags & MDLF_RGBLIGHTING)
{
lightmap += (dt * ((surf->extents[0]>>4)+1) + ds)*3;
for (maps = 0 ; maps < MAXLIGHTMAPS && surf->styles[maps] != 255 ;
maps++)
{
scale = d_lightstylevalue[surf->styles[maps]]/256.0f;
if (cl_lightstyle[surf->styles[maps]].colour & 1)
l[0] += lightmap[0] * scale;
if (cl_lightstyle[surf->styles[maps]].colour & 2)
l[1] += lightmap[1] * scale;
if (cl_lightstyle[surf->styles[maps]].colour & 4)
l[2] += lightmap[2] * scale;
lightmap += ((surf->extents[0]>>4)+1) *
((surf->extents[1]>>4)+1) * 3;
}
}
else
{
lightmap += (dt * ((surf->extents[0]>>4)+1) + ds);
for (maps = 0 ; maps < MAXLIGHTMAPS && surf->styles[maps] != 255 ;
maps++)
{
scale = d_lightstylevalue[surf->styles[maps]]/256.0f;
if (cl_lightstyle[surf->styles[maps]].colour & 1)
l[0] += *lightmap * scale;
if (cl_lightstyle[surf->styles[maps]].colour & 2)
l[1] += *lightmap * scale;
if (cl_lightstyle[surf->styles[maps]].colour & 4)
l[2] += *lightmap * scale;
lightmap += ((surf->extents[0]>>4)+1) *
((surf->extents[1]>>4)+1);
}
}
}
}
return l;
}
// go down back side
return GLRecursiveLightPoint3C (node->children[!side], mid, end);
}
#endif
void GLQ1BSP_LightPointValues(model_t *model, vec3_t point, vec3_t res_diffuse, vec3_t res_ambient, vec3_t res_dir)
{
vec3_t end;
float *r;
extern cvar_t r_shadow_realtime_world, r_shadow_realtime_world_lightmaps;
if (!cl.worldmodel->lightdata || r_fullbright.ival)
{
res_diffuse[0] = 0;
res_diffuse[1] = 0;
res_diffuse[2] = 0;
res_ambient[0] = 255;
res_ambient[1] = 255;
res_ambient[2] = 255;
res_dir[0] = 1;
res_dir[1] = 1;
res_dir[2] = 0.1;
VectorNormalize(res_dir);
return;
}
end[0] = point[0];
end[1] = point[1];
end[2] = point[2] - 2048;
r = GLRecursiveLightPoint3C(model->nodes, point, end);
if (r == NULL)
{
res_diffuse[0] = 0;
res_diffuse[1] = 0;
res_diffuse[2] = 0;
res_ambient[0] = 0;
res_ambient[1] = 0;
res_ambient[2] = 0;
res_dir[0] = 0;
res_dir[1] = 1;
res_dir[2] = 1;
}
else
{
res_diffuse[0] = r[0];
res_diffuse[1] = r[1];
res_diffuse[2] = r[2];
/*bright on one side, dark on the other, but not too dark*/
res_ambient[0] = r[0]/3;
res_ambient[1] = r[1]/3;
res_ambient[2] = r[2]/3;
res_dir[0] = r[3];
res_dir[1] = r[4];
res_dir[2] = -r[5];
if (!res_dir[0] && !res_dir[1] && !res_dir[2])
res_dir[1] = res_dir[2] = 1;
VectorNormalize(res_dir);
}
#ifdef RTLIGHTS
if (r_shadow_realtime_world.ival)
{
VectorScale(res_diffuse, r_shadow_realtime_world_lightmaps.value, res_diffuse);
VectorScale(res_ambient, r_shadow_realtime_world_lightmaps.value, res_ambient);
}
#endif
}
#endif