mesa/src/intel/compiler/brw_vec4_visitor.cpp

1411 lines
45 KiB
C++
Raw Normal View History

/*
* Copyright © 2011 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "brw_vec4.h"
#include "brw_cfg.h"
#include "brw_eu.h"
#include "util/u_math.h"
namespace brw {
vec4_instruction::vec4_instruction(enum opcode opcode, const dst_reg &dst,
const src_reg &src0, const src_reg &src1,
const src_reg &src2)
{
this->opcode = opcode;
this->dst = dst;
this->src[0] = src0;
this->src[1] = src1;
this->src[2] = src2;
this->saturate = false;
this->force_writemask_all = false;
this->no_dd_clear = false;
this->no_dd_check = false;
this->writes_accumulator = false;
this->conditional_mod = BRW_CONDITIONAL_NONE;
this->predicate = BRW_PREDICATE_NONE;
this->predicate_inverse = false;
this->target = 0;
this->shadow_compare = false;
this->eot = false;
this->ir = NULL;
this->urb_write_flags = BRW_URB_WRITE_NO_FLAGS;
this->header_size = 0;
this->flag_subreg = 0;
this->mlen = 0;
this->base_mrf = 0;
this->offset = 0;
this->exec_size = 8;
this->group = 0;
this->size_written = (dst.file == BAD_FILE ?
0 : this->exec_size * type_sz(dst.type));
this->annotation = NULL;
}
vec4_instruction *
vec4_visitor::emit(vec4_instruction *inst)
{
inst->ir = this->base_ir;
inst->annotation = this->current_annotation;
this->instructions.push_tail(inst);
return inst;
}
vec4_instruction *
vec4_visitor::emit_before(bblock_t *block, vec4_instruction *inst,
vec4_instruction *new_inst)
{
new_inst->ir = inst->ir;
new_inst->annotation = inst->annotation;
inst->insert_before(block, new_inst);
return inst;
}
vec4_instruction *
vec4_visitor::emit(enum opcode opcode, const dst_reg &dst, const src_reg &src0,
const src_reg &src1, const src_reg &src2)
{
return emit(new(mem_ctx) vec4_instruction(opcode, dst, src0, src1, src2));
}
vec4_instruction *
vec4_visitor::emit(enum opcode opcode, const dst_reg &dst, const src_reg &src0,
const src_reg &src1)
{
return emit(new(mem_ctx) vec4_instruction(opcode, dst, src0, src1));
}
vec4_instruction *
vec4_visitor::emit(enum opcode opcode, const dst_reg &dst, const src_reg &src0)
{
return emit(new(mem_ctx) vec4_instruction(opcode, dst, src0));
}
vec4_instruction *
vec4_visitor::emit(enum opcode opcode, const dst_reg &dst)
{
return emit(new(mem_ctx) vec4_instruction(opcode, dst));
}
vec4_instruction *
vec4_visitor::emit(enum opcode opcode)
{
return emit(new(mem_ctx) vec4_instruction(opcode, dst_reg()));
}
#define ALU1(op) \
vec4_instruction * \
vec4_visitor::op(const dst_reg &dst, const src_reg &src0) \
{ \
return new(mem_ctx) vec4_instruction(BRW_OPCODE_##op, dst, src0); \
}
#define ALU2(op) \
vec4_instruction * \
vec4_visitor::op(const dst_reg &dst, const src_reg &src0, \
const src_reg &src1) \
{ \
return new(mem_ctx) vec4_instruction(BRW_OPCODE_##op, dst, \
src0, src1); \
}
#define ALU2_ACC(op) \
vec4_instruction * \
vec4_visitor::op(const dst_reg &dst, const src_reg &src0, \
const src_reg &src1) \
{ \
vec4_instruction *inst = new(mem_ctx) vec4_instruction( \
BRW_OPCODE_##op, dst, src0, src1); \
inst->writes_accumulator = true; \
return inst; \
}
#define ALU3(op) \
vec4_instruction * \
vec4_visitor::op(const dst_reg &dst, const src_reg &src0, \
const src_reg &src1, const src_reg &src2) \
{ \
assert(devinfo->ver >= 6); \
return new(mem_ctx) vec4_instruction(BRW_OPCODE_##op, dst, \
src0, src1, src2); \
}
ALU1(NOT)
ALU1(MOV)
ALU1(FRC)
ALU1(RNDD)
ALU1(RNDE)
ALU1(RNDZ)
ALU1(F32TO16)
ALU1(F16TO32)
ALU2(ADD)
ALU2(MUL)
ALU2_ACC(MACH)
ALU2(AND)
ALU2(OR)
ALU2(XOR)
ALU2(DP3)
ALU2(DP4)
ALU2(DPH)
ALU2(SHL)
ALU2(SHR)
ALU2(ASR)
ALU3(LRP)
ALU1(BFREV)
ALU3(BFE)
ALU2(BFI1)
ALU3(BFI2)
ALU1(FBH)
ALU1(FBL)
ALU1(CBIT)
ALU3(MAD)
ALU2_ACC(ADDC)
ALU2_ACC(SUBB)
ALU2(MAC)
ALU1(DIM)
/** Gfx4 predicated IF. */
vec4_instruction *
vec4_visitor::IF(enum brw_predicate predicate)
{
vec4_instruction *inst;
inst = new(mem_ctx) vec4_instruction(BRW_OPCODE_IF);
inst->predicate = predicate;
return inst;
}
/** Gfx6 IF with embedded comparison. */
vec4_instruction *
vec4_visitor::IF(src_reg src0, src_reg src1,
enum brw_conditional_mod condition)
{
assert(devinfo->ver == 6);
vec4_instruction *inst;
resolve_ud_negate(&src0);
resolve_ud_negate(&src1);
inst = new(mem_ctx) vec4_instruction(BRW_OPCODE_IF, dst_null_d(),
src0, src1);
inst->conditional_mod = condition;
return inst;
}
/**
* CMP: Sets the low bit of the destination channels with the result
* of the comparison, while the upper bits are undefined, and updates
* the flag register with the packed 16 bits of the result.
*/
vec4_instruction *
vec4_visitor::CMP(dst_reg dst, src_reg src0, src_reg src1,
enum brw_conditional_mod condition)
{
vec4_instruction *inst;
/* Take the instruction:
*
* CMP null<d> src0<f> src1<f>
*
* Original gfx4 does type conversion to the destination type before
* comparison, producing garbage results for floating point comparisons.
*
* The destination type doesn't matter on newer generations, so we set the
* type to match src0 so we can compact the instruction.
*/
dst.type = src0.type;
resolve_ud_negate(&src0);
resolve_ud_negate(&src1);
inst = new(mem_ctx) vec4_instruction(BRW_OPCODE_CMP, dst, src0, src1);
inst->conditional_mod = condition;
return inst;
}
vec4_instruction *
vec4_visitor::SCRATCH_READ(const dst_reg &dst, const src_reg &index)
{
vec4_instruction *inst;
inst = new(mem_ctx) vec4_instruction(SHADER_OPCODE_GFX4_SCRATCH_READ,
dst, index);
inst->base_mrf = FIRST_SPILL_MRF(devinfo->ver) + 1;
inst->mlen = 2;
return inst;
}
vec4_instruction *
vec4_visitor::SCRATCH_WRITE(const dst_reg &dst, const src_reg &src,
const src_reg &index)
{
vec4_instruction *inst;
inst = new(mem_ctx) vec4_instruction(SHADER_OPCODE_GFX4_SCRATCH_WRITE,
dst, src, index);
inst->base_mrf = FIRST_SPILL_MRF(devinfo->ver);
inst->mlen = 3;
return inst;
}
src_reg
vec4_visitor::fix_3src_operand(const src_reg &src)
{
/* Using vec4 uniforms in SIMD4x2 programs is difficult. You'd like to be
* able to use vertical stride of zero to replicate the vec4 uniform, like
*
* g3<0;4,1>:f - [0, 4][1, 5][2, 6][3, 7]
*
* But you can't, since vertical stride is always four in three-source
* instructions. Instead, insert a MOV instruction to do the replication so
* that the three-source instruction can consume it.
*/
/* The MOV is only needed if the source is a uniform or immediate. */
if (src.file != UNIFORM && src.file != IMM)
return src;
if (src.file == UNIFORM && brw_is_single_value_swizzle(src.swizzle))
return src;
dst_reg expanded = dst_reg(this, glsl_type::vec4_type);
expanded.type = src.type;
emit(VEC4_OPCODE_UNPACK_UNIFORM, expanded, src);
return src_reg(expanded);
}
src_reg
vec4_visitor::fix_math_operand(const src_reg &src)
{
if (devinfo->ver < 6 || src.file == BAD_FILE)
return src;
/* The gfx6 math instruction ignores the source modifiers --
* swizzle, abs, negate, and at least some parts of the register
* region description.
*
* Rather than trying to enumerate all these cases, *always* expand the
* operand to a temp GRF for gfx6.
*
* For gfx7, keep the operand as-is, except if immediate, which gfx7 still
* can't use.
*/
if (devinfo->ver == 7 && src.file != IMM)
return src;
dst_reg expanded = dst_reg(this, glsl_type::vec4_type);
expanded.type = src.type;
emit(MOV(expanded, src));
return src_reg(expanded);
}
vec4_instruction *
vec4_visitor::emit_math(enum opcode opcode,
const dst_reg &dst,
const src_reg &src0, const src_reg &src1)
{
vec4_instruction *math =
emit(opcode, dst, fix_math_operand(src0), fix_math_operand(src1));
if (devinfo->ver == 6 && dst.writemask != WRITEMASK_XYZW) {
/* MATH on Gfx6 must be align1, so we can't do writemasks. */
math->dst = dst_reg(this, glsl_type::vec4_type);
math->dst.type = dst.type;
math = emit(MOV(dst, src_reg(math->dst)));
} else if (devinfo->ver < 6) {
math->base_mrf = 1;
math->mlen = src1.file == BAD_FILE ? 1 : 2;
}
return math;
}
void
vec4_visitor::emit_pack_half_2x16(dst_reg dst, src_reg src0)
{
if (devinfo->ver < 7) {
unreachable("ir_unop_pack_half_2x16 should be lowered");
}
assert(dst.type == BRW_REGISTER_TYPE_UD);
assert(src0.type == BRW_REGISTER_TYPE_F);
/* From the Ivybridge PRM, Vol4, Part3, Section 6.27 f32to16:
*
* Because this instruction does not have a 16-bit floating-point type,
* the destination data type must be Word (W).
*
* The destination must be DWord-aligned and specify a horizontal stride
* (HorzStride) of 2. The 16-bit result is stored in the lower word of
* each destination channel and the upper word is not modified.
*
* The above restriction implies that the f32to16 instruction must use
* align1 mode, because only in align1 mode is it possible to specify
* horizontal stride. We choose here to defy the hardware docs and emit
* align16 instructions.
*
* (I [chadv] did attempt to emit align1 instructions for VS f32to16
* instructions. I was partially successful in that the code passed all
* tests. However, the code was dubiously correct and fragile, and the
* tests were not harsh enough to probe that frailty. Not trusting the
* code, I chose instead to remain in align16 mode in defiance of the hw
* docs).
*
* I've [chadv] experimentally confirmed that, on gfx7 hardware and the
* simulator, emitting a f32to16 in align16 mode with UD as destination
* data type is safe. The behavior differs from that specified in the PRM
* in that the upper word of each destination channel is cleared to 0.
*/
dst_reg tmp_dst(this, glsl_type::uvec2_type);
src_reg tmp_src(tmp_dst);
#if 0
/* Verify the undocumented behavior on which the following instructions
* rely. If f32to16 fails to clear the upper word of the X and Y channels,
* then the result of the bit-or instruction below will be incorrect.
*
* You should inspect the disasm output in order to verify that the MOV is
* not optimized away.
*/
emit(MOV(tmp_dst, brw_imm_ud(0x12345678u)));
#endif
/* Give tmp the form below, where "." means untouched.
*
* w z y x w z y x
* |.|.|0x0000hhhh|0x0000llll|.|.|0x0000hhhh|0x0000llll|
*
* That the upper word of each write-channel be 0 is required for the
* following bit-shift and bit-or instructions to work. Note that this
* relies on the undocumented hardware behavior mentioned above.
*/
tmp_dst.writemask = WRITEMASK_XY;
emit(F32TO16(tmp_dst, src0));
/* Give the write-channels of dst the form:
* 0xhhhh0000
*/
tmp_src.swizzle = BRW_SWIZZLE_YYYY;
emit(SHL(dst, tmp_src, brw_imm_ud(16u)));
/* Finally, give the write-channels of dst the form of packHalf2x16's
* output:
* 0xhhhhllll
*/
tmp_src.swizzle = BRW_SWIZZLE_XXXX;
emit(OR(dst, src_reg(dst), tmp_src));
}
void
vec4_visitor::emit_unpack_half_2x16(dst_reg dst, src_reg src0)
{
if (devinfo->ver < 7) {
unreachable("ir_unop_unpack_half_2x16 should be lowered");
}
assert(dst.type == BRW_REGISTER_TYPE_F);
assert(src0.type == BRW_REGISTER_TYPE_UD);
/* From the Ivybridge PRM, Vol4, Part3, Section 6.26 f16to32:
*
* Because this instruction does not have a 16-bit floating-point type,
* the source data type must be Word (W). The destination type must be
* F (Float).
*
* To use W as the source data type, we must adjust horizontal strides,
* which is only possible in align1 mode. All my [chadv] attempts at
* emitting align1 instructions for unpackHalf2x16 failed to pass the
* Piglit tests, so I gave up.
*
* I've verified that, on gfx7 hardware and the simulator, it is safe to
* emit f16to32 in align16 mode with UD as source data type.
*/
dst_reg tmp_dst(this, glsl_type::uvec2_type);
src_reg tmp_src(tmp_dst);
tmp_dst.writemask = WRITEMASK_X;
emit(AND(tmp_dst, src0, brw_imm_ud(0xffffu)));
tmp_dst.writemask = WRITEMASK_Y;
emit(SHR(tmp_dst, src0, brw_imm_ud(16u)));
dst.writemask = WRITEMASK_XY;
emit(F16TO32(dst, tmp_src));
}
void
vec4_visitor::emit_unpack_unorm_4x8(const dst_reg &dst, src_reg src0)
{
/* Instead of splitting the 32-bit integer, shifting, and ORing it back
* together, we can shift it by <0, 8, 16, 24>. The packed integer immediate
* is not suitable to generate the shift values, but we can use the packed
* vector float and a type-converting MOV.
*/
dst_reg shift(this, glsl_type::uvec4_type);
emit(MOV(shift, brw_imm_vf4(0x00, 0x60, 0x70, 0x78)));
dst_reg shifted(this, glsl_type::uvec4_type);
src0.swizzle = BRW_SWIZZLE_XXXX;
emit(SHR(shifted, src0, src_reg(shift)));
shifted.type = BRW_REGISTER_TYPE_UB;
dst_reg f(this, glsl_type::vec4_type);
emit(VEC4_OPCODE_MOV_BYTES, f, src_reg(shifted));
emit(MUL(dst, src_reg(f), brw_imm_f(1.0f / 255.0f)));
}
void
vec4_visitor::emit_unpack_snorm_4x8(const dst_reg &dst, src_reg src0)
{
/* Instead of splitting the 32-bit integer, shifting, and ORing it back
* together, we can shift it by <0, 8, 16, 24>. The packed integer immediate
* is not suitable to generate the shift values, but we can use the packed
* vector float and a type-converting MOV.
*/
dst_reg shift(this, glsl_type::uvec4_type);
emit(MOV(shift, brw_imm_vf4(0x00, 0x60, 0x70, 0x78)));
dst_reg shifted(this, glsl_type::uvec4_type);
src0.swizzle = BRW_SWIZZLE_XXXX;
emit(SHR(shifted, src0, src_reg(shift)));
shifted.type = BRW_REGISTER_TYPE_B;
dst_reg f(this, glsl_type::vec4_type);
emit(VEC4_OPCODE_MOV_BYTES, f, src_reg(shifted));
dst_reg scaled(this, glsl_type::vec4_type);
emit(MUL(scaled, src_reg(f), brw_imm_f(1.0f / 127.0f)));
dst_reg max(this, glsl_type::vec4_type);
emit_minmax(BRW_CONDITIONAL_GE, max, src_reg(scaled), brw_imm_f(-1.0f));
emit_minmax(BRW_CONDITIONAL_L, dst, src_reg(max), brw_imm_f(1.0f));
}
void
vec4_visitor::emit_pack_unorm_4x8(const dst_reg &dst, const src_reg &src0)
{
dst_reg saturated(this, glsl_type::vec4_type);
vec4_instruction *inst = emit(MOV(saturated, src0));
inst->saturate = true;
dst_reg scaled(this, glsl_type::vec4_type);
emit(MUL(scaled, src_reg(saturated), brw_imm_f(255.0f)));
dst_reg rounded(this, glsl_type::vec4_type);
emit(RNDE(rounded, src_reg(scaled)));
dst_reg u(this, glsl_type::uvec4_type);
emit(MOV(u, src_reg(rounded)));
src_reg bytes(u);
emit(VEC4_OPCODE_PACK_BYTES, dst, bytes);
}
void
vec4_visitor::emit_pack_snorm_4x8(const dst_reg &dst, const src_reg &src0)
{
dst_reg max(this, glsl_type::vec4_type);
emit_minmax(BRW_CONDITIONAL_GE, max, src0, brw_imm_f(-1.0f));
dst_reg min(this, glsl_type::vec4_type);
emit_minmax(BRW_CONDITIONAL_L, min, src_reg(max), brw_imm_f(1.0f));
dst_reg scaled(this, glsl_type::vec4_type);
emit(MUL(scaled, src_reg(min), brw_imm_f(127.0f)));
dst_reg rounded(this, glsl_type::vec4_type);
emit(RNDE(rounded, src_reg(scaled)));
dst_reg i(this, glsl_type::ivec4_type);
emit(MOV(i, src_reg(rounded)));
src_reg bytes(i);
emit(VEC4_OPCODE_PACK_BYTES, dst, bytes);
}
/*
* Returns the minimum number of vec4 (as_vec4 == true) or dvec4 (as_vec4 ==
* false) elements needed to pack a type.
*/
static int
type_size_xvec4(const struct glsl_type *type, bool as_vec4, bool bindless)
{
unsigned int i;
int size;
switch (type->base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_FLOAT16:
case GLSL_TYPE_BOOL:
case GLSL_TYPE_DOUBLE:
case GLSL_TYPE_UINT16:
case GLSL_TYPE_INT16:
case GLSL_TYPE_UINT8:
case GLSL_TYPE_INT8:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_INT64:
if (type->is_matrix()) {
const glsl_type *col_type = type->column_type();
unsigned col_slots =
(as_vec4 && col_type->is_dual_slot()) ? 2 : 1;
return type->matrix_columns * col_slots;
} else {
/* Regardless of size of vector, it gets a vec4. This is bad
* packing for things like floats, but otherwise arrays become a
* mess. Hopefully a later pass over the code can pack scalars
* down if appropriate.
*/
return (as_vec4 && type->is_dual_slot()) ? 2 : 1;
}
case GLSL_TYPE_ARRAY:
assert(type->length > 0);
return type_size_xvec4(type->fields.array, as_vec4, bindless) *
type->length;
case GLSL_TYPE_STRUCT:
case GLSL_TYPE_INTERFACE:
size = 0;
for (i = 0; i < type->length; i++) {
size += type_size_xvec4(type->fields.structure[i].type, as_vec4,
bindless);
}
return size;
case GLSL_TYPE_SUBROUTINE:
return 1;
case GLSL_TYPE_SAMPLER:
case GLSL_TYPE_TEXTURE:
/* Samplers and textures take up no register space, since they're baked
* in at link time.
*/
return bindless ? 1 : 0;
case GLSL_TYPE_ATOMIC_UINT:
return 0;
case GLSL_TYPE_IMAGE:
return bindless ? 1 : DIV_ROUND_UP(BRW_IMAGE_PARAM_SIZE, 4);
case GLSL_TYPE_VOID:
case GLSL_TYPE_ERROR:
case GLSL_TYPE_FUNCTION:
unreachable("not reached");
}
return 0;
}
/**
* Returns the minimum number of vec4 elements needed to pack a type.
*
* For simple types, it will return 1 (a single vec4); for matrices, the
* number of columns; for array and struct, the sum of the vec4_size of
* each of its elements; and for sampler and atomic, zero.
*
* This method is useful to calculate how much register space is needed to
* store a particular type.
*/
extern "C" int
type_size_vec4(const struct glsl_type *type, bool bindless)
{
return type_size_xvec4(type, true, bindless);
}
/**
* Returns the minimum number of dvec4 elements needed to pack a type.
*
* For simple types, it will return 1 (a single dvec4); for matrices, the
* number of columns; for array and struct, the sum of the dvec4_size of
* each of its elements; and for sampler and atomic, zero.
*
* This method is useful to calculate how much register space is needed to
* store a particular type.
*
* Measuring double-precision vertex inputs as dvec4 is required because
* ARB_vertex_attrib_64bit states that these uses the same number of locations
* than the single-precision version. That is, two consecutives dvec4 would be
* located in location "x" and location "x+1", not "x+2".
*
* In order to map vec4/dvec4 vertex inputs in the proper ATTRs,
* remap_vs_attrs() will take in account both the location and also if the
* type fits in one or two vec4 slots.
*/
extern "C" int
type_size_dvec4(const struct glsl_type *type, bool bindless)
{
return type_size_xvec4(type, false, bindless);
}
src_reg::src_reg(class vec4_visitor *v, const struct glsl_type *type)
{
init();
this->file = VGRF;
this->nr = v->alloc.allocate(type_size_vec4(type, false));
if (type->is_array() || type->is_struct()) {
this->swizzle = BRW_SWIZZLE_NOOP;
} else {
this->swizzle = brw_swizzle_for_size(type->vector_elements);
}
this->type = brw_type_for_base_type(type);
}
src_reg::src_reg(class vec4_visitor *v, const struct glsl_type *type, int size)
{
assert(size > 0);
init();
this->file = VGRF;
this->nr = v->alloc.allocate(type_size_vec4(type, false) * size);
this->swizzle = BRW_SWIZZLE_NOOP;
this->type = brw_type_for_base_type(type);
}
dst_reg::dst_reg(class vec4_visitor *v, const struct glsl_type *type)
{
init();
this->file = VGRF;
this->nr = v->alloc.allocate(type_size_vec4(type, false));
if (type->is_array() || type->is_struct()) {
this->writemask = WRITEMASK_XYZW;
} else {
this->writemask = (1 << type->vector_elements) - 1;
}
this->type = brw_type_for_base_type(type);
}
vec4_instruction *
vec4_visitor::emit_minmax(enum brw_conditional_mod conditionalmod, dst_reg dst,
src_reg src0, src_reg src1)
{
vec4_instruction *inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
inst->conditional_mod = conditionalmod;
return inst;
}
/**
* Emits the instructions needed to perform a pull constant load. before_block
* and before_inst can be NULL in which case the instruction will be appended
* to the end of the instruction list.
*/
void
vec4_visitor::emit_pull_constant_load_reg(dst_reg dst,
src_reg surf_index,
src_reg offset_reg,
bblock_t *before_block,
vec4_instruction *before_inst)
{
assert((before_inst == NULL && before_block == NULL) ||
(before_inst && before_block));
vec4_instruction *pull;
if (devinfo->ver >= 7) {
dst_reg grf_offset = dst_reg(this, glsl_type::uint_type);
grf_offset.type = offset_reg.type;
pull = MOV(grf_offset, offset_reg);
if (before_inst)
emit_before(before_block, before_inst, pull);
else
emit(pull);
pull = new(mem_ctx) vec4_instruction(VS_OPCODE_PULL_CONSTANT_LOAD_GFX7,
dst,
surf_index,
src_reg(grf_offset));
pull->mlen = 1;
} else {
pull = new(mem_ctx) vec4_instruction(VS_OPCODE_PULL_CONSTANT_LOAD,
dst,
surf_index,
offset_reg);
pull->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->ver) + 1;
pull->mlen = 1;
}
if (before_inst)
emit_before(before_block, before_inst, pull);
else
emit(pull);
}
src_reg
vec4_visitor::emit_uniformize(const src_reg &src)
{
const src_reg chan_index(this, glsl_type::uint_type);
const dst_reg dst = retype(dst_reg(this, glsl_type::uint_type),
src.type);
emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, dst_reg(chan_index))
->force_writemask_all = true;
emit(SHADER_OPCODE_BROADCAST, dst, src, chan_index)
->force_writemask_all = true;
return src_reg(dst);
}
void
vec4_visitor::gs_emit_vertex(int /* stream_id */)
{
unreachable("not reached");
}
void
vec4_visitor::gs_end_primitive()
{
unreachable("not reached");
}
void
vec4_visitor::emit_ndc_computation()
{
if (output_reg[VARYING_SLOT_POS][0].file == BAD_FILE)
return;
/* Get the position */
src_reg pos = src_reg(output_reg[VARYING_SLOT_POS][0]);
/* Build ndc coords, which are (x/w, y/w, z/w, 1/w) */
dst_reg ndc = dst_reg(this, glsl_type::vec4_type);
output_reg[BRW_VARYING_SLOT_NDC][0] = ndc;
output_num_components[BRW_VARYING_SLOT_NDC][0] = 4;
current_annotation = "NDC";
dst_reg ndc_w = ndc;
ndc_w.writemask = WRITEMASK_W;
src_reg pos_w = pos;
pos_w.swizzle = BRW_SWIZZLE4(SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W);
emit_math(SHADER_OPCODE_RCP, ndc_w, pos_w);
dst_reg ndc_xyz = ndc;
ndc_xyz.writemask = WRITEMASK_XYZ;
emit(MUL(ndc_xyz, pos, src_reg(ndc_w)));
}
void
vec4_visitor::emit_psiz_and_flags(dst_reg reg)
{
if (devinfo->ver < 6 &&
((prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ) ||
output_reg[VARYING_SLOT_CLIP_DIST0][0].file != BAD_FILE ||
devinfo->has_negative_rhw_bug)) {
dst_reg header1 = dst_reg(this, glsl_type::uvec4_type);
dst_reg header1_w = header1;
header1_w.writemask = WRITEMASK_W;
emit(MOV(header1, brw_imm_ud(0u)));
if (prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ) {
src_reg psiz = src_reg(output_reg[VARYING_SLOT_PSIZ][0]);
current_annotation = "Point size";
emit(MUL(header1_w, psiz, brw_imm_f((float)(1 << 11))));
emit(AND(header1_w, src_reg(header1_w), brw_imm_d(0x7ff << 8)));
}
if (output_reg[VARYING_SLOT_CLIP_DIST0][0].file != BAD_FILE) {
current_annotation = "Clipping flags";
dst_reg flags0 = dst_reg(this, glsl_type::uint_type);
emit(CMP(dst_null_f(), src_reg(output_reg[VARYING_SLOT_CLIP_DIST0][0]), brw_imm_f(0.0f), BRW_CONDITIONAL_L));
emit(VS_OPCODE_UNPACK_FLAGS_SIMD4X2, flags0, brw_imm_d(0));
emit(OR(header1_w, src_reg(header1_w), src_reg(flags0)));
}
if (output_reg[VARYING_SLOT_CLIP_DIST1][0].file != BAD_FILE) {
dst_reg flags1 = dst_reg(this, glsl_type::uint_type);
emit(CMP(dst_null_f(), src_reg(output_reg[VARYING_SLOT_CLIP_DIST1][0]), brw_imm_f(0.0f), BRW_CONDITIONAL_L));
emit(VS_OPCODE_UNPACK_FLAGS_SIMD4X2, flags1, brw_imm_d(0));
emit(SHL(flags1, src_reg(flags1), brw_imm_d(4)));
emit(OR(header1_w, src_reg(header1_w), src_reg(flags1)));
}
/* i965 clipping workaround:
* 1) Test for -ve rhw
* 2) If set,
* set ndc = (0,0,0,0)
* set ucp[6] = 1
*
* Later, clipping will detect ucp[6] and ensure the primitive is
* clipped against all fixed planes.
*/
if (devinfo->has_negative_rhw_bug &&
output_reg[BRW_VARYING_SLOT_NDC][0].file != BAD_FILE) {
src_reg ndc_w = src_reg(output_reg[BRW_VARYING_SLOT_NDC][0]);
ndc_w.swizzle = BRW_SWIZZLE_WWWW;
emit(CMP(dst_null_f(), ndc_w, brw_imm_f(0.0f), BRW_CONDITIONAL_L));
vec4_instruction *inst;
inst = emit(OR(header1_w, src_reg(header1_w), brw_imm_ud(1u << 6)));
inst->predicate = BRW_PREDICATE_NORMAL;
output_reg[BRW_VARYING_SLOT_NDC][0].type = BRW_REGISTER_TYPE_F;
inst = emit(MOV(output_reg[BRW_VARYING_SLOT_NDC][0], brw_imm_f(0.0f)));
inst->predicate = BRW_PREDICATE_NORMAL;
}
emit(MOV(retype(reg, BRW_REGISTER_TYPE_UD), src_reg(header1)));
} else if (devinfo->ver < 6) {
emit(MOV(retype(reg, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u)));
} else {
emit(MOV(retype(reg, BRW_REGISTER_TYPE_D), brw_imm_d(0)));
if (output_reg[VARYING_SLOT_PSIZ][0].file != BAD_FILE) {
dst_reg reg_w = reg;
reg_w.writemask = WRITEMASK_W;
src_reg reg_as_src = src_reg(output_reg[VARYING_SLOT_PSIZ][0]);
reg_as_src.type = reg_w.type;
reg_as_src.swizzle = brw_swizzle_for_size(1);
emit(MOV(reg_w, reg_as_src));
}
if (output_reg[VARYING_SLOT_LAYER][0].file != BAD_FILE) {
dst_reg reg_y = reg;
reg_y.writemask = WRITEMASK_Y;
reg_y.type = BRW_REGISTER_TYPE_D;
output_reg[VARYING_SLOT_LAYER][0].type = reg_y.type;
emit(MOV(reg_y, src_reg(output_reg[VARYING_SLOT_LAYER][0])));
}
if (output_reg[VARYING_SLOT_VIEWPORT][0].file != BAD_FILE) {
dst_reg reg_z = reg;
reg_z.writemask = WRITEMASK_Z;
reg_z.type = BRW_REGISTER_TYPE_D;
output_reg[VARYING_SLOT_VIEWPORT][0].type = reg_z.type;
emit(MOV(reg_z, src_reg(output_reg[VARYING_SLOT_VIEWPORT][0])));
}
}
}
vec4_instruction *
vec4_visitor::emit_generic_urb_slot(dst_reg reg, int varying, int component)
{
assert(varying < VARYING_SLOT_MAX);
unsigned num_comps = output_num_components[varying][component];
if (num_comps == 0)
return NULL;
assert(output_reg[varying][component].type == reg.type);
current_annotation = output_reg_annotation[varying];
if (output_reg[varying][component].file != BAD_FILE) {
src_reg src = src_reg(output_reg[varying][component]);
src.swizzle = BRW_SWZ_COMP_OUTPUT(component);
reg.writemask =
brw_writemask_for_component_packing(num_comps, component);
return emit(MOV(reg, src));
}
return NULL;
}
void
vec4_visitor::emit_urb_slot(dst_reg reg, int varying)
{
reg.type = BRW_REGISTER_TYPE_F;
output_reg[varying][0].type = reg.type;
switch (varying) {
case VARYING_SLOT_PSIZ:
{
/* PSIZ is always in slot 0, and is coupled with other flags. */
current_annotation = "indices, point width, clip flags";
emit_psiz_and_flags(reg);
break;
}
case BRW_VARYING_SLOT_NDC:
current_annotation = "NDC";
if (output_reg[BRW_VARYING_SLOT_NDC][0].file != BAD_FILE)
emit(MOV(reg, src_reg(output_reg[BRW_VARYING_SLOT_NDC][0])));
break;
case VARYING_SLOT_POS:
current_annotation = "gl_Position";
if (output_reg[VARYING_SLOT_POS][0].file != BAD_FILE)
emit(MOV(reg, src_reg(output_reg[VARYING_SLOT_POS][0])));
break;
case BRW_VARYING_SLOT_PAD:
/* No need to write to this slot */
break;
default:
for (int i = 0; i < 4; i++) {
emit_generic_urb_slot(reg, varying, i);
}
break;
}
}
static unsigned
align_interleaved_urb_mlen(const struct intel_device_info *devinfo,
unsigned mlen)
{
if (devinfo->ver >= 6) {
/* URB data written (does not include the message header reg) must
* be a multiple of 256 bits, or 2 VS registers. See vol5c.5,
* section 5.4.3.2.2: URB_INTERLEAVED.
*
* URB entries are allocated on a multiple of 1024 bits, so an
* extra 128 bits written here to make the end align to 256 is
* no problem.
*/
if ((mlen % 2) != 1)
mlen++;
}
return mlen;
}
/**
* Generates the VUE payload plus the necessary URB write instructions to
* output it.
*
* The VUE layout is documented in Volume 2a.
*/
void
vec4_visitor::emit_vertex()
{
/* MRF 0 is reserved for the debugger, so start with message header
* in MRF 1.
*/
int base_mrf = 1;
int mrf = base_mrf;
/* In the process of generating our URB write message contents, we
* may need to unspill a register or load from an array. Those
* reads would use MRFs 14-15.
*/
int max_usable_mrf = FIRST_SPILL_MRF(devinfo->ver);
/* The following assertion verifies that max_usable_mrf causes an
* even-numbered amount of URB write data, which will meet gfx6's
* requirements for length alignment.
*/
assert ((max_usable_mrf - base_mrf) % 2 == 0);
/* First mrf is the g0-based message header containing URB handles and
* such.
*/
emit_urb_write_header(mrf++);
if (devinfo->ver < 6) {
emit_ndc_computation();
}
/* We may need to split this up into several URB writes, so do them in a
* loop.
*/
int slot = 0;
bool complete = false;
do {
/* URB offset is in URB row increments, and each of our MRFs is half of
* one of those, since we're doing interleaved writes.
*/
int offset = slot / 2;
mrf = base_mrf + 1;
for (; slot < prog_data->vue_map.num_slots; ++slot) {
emit_urb_slot(dst_reg(MRF, mrf++),
prog_data->vue_map.slot_to_varying[slot]);
/* If this was max_usable_mrf, we can't fit anything more into this
* URB WRITE. Same thing if we reached the maximum length available.
*/
if (mrf > max_usable_mrf ||
align_interleaved_urb_mlen(devinfo, mrf - base_mrf + 1) > BRW_MAX_MSG_LENGTH) {
slot++;
break;
}
}
complete = slot >= prog_data->vue_map.num_slots;
current_annotation = "URB write";
vec4_instruction *inst = emit_urb_write_opcode(complete);
inst->base_mrf = base_mrf;
inst->mlen = align_interleaved_urb_mlen(devinfo, mrf - base_mrf);
inst->offset += offset;
} while(!complete);
}
src_reg
vec4_visitor::get_scratch_offset(bblock_t *block, vec4_instruction *inst,
src_reg *reladdr, int reg_offset)
{
/* Because we store the values to scratch interleaved like our
* vertex data, we need to scale the vec4 index by 2.
*/
int message_header_scale = 2;
/* Pre-gfx6, the message header uses byte offsets instead of vec4
* (16-byte) offset units.
*/
if (devinfo->ver < 6)
message_header_scale *= 16;
if (reladdr) {
/* A vec4 is 16 bytes and a dvec4 is 32 bytes so for doubles we have
* to multiply the reladdr by 2. Notice that the reg_offset part
* is in units of 16 bytes and is used to select the low/high 16-byte
* chunk of a full dvec4, so we don't want to multiply that part.
*/
src_reg index = src_reg(this, glsl_type::int_type);
if (type_sz(inst->dst.type) < 8) {
emit_before(block, inst, ADD(dst_reg(index), *reladdr,
brw_imm_d(reg_offset)));
emit_before(block, inst, MUL(dst_reg(index), index,
brw_imm_d(message_header_scale)));
} else {
emit_before(block, inst, MUL(dst_reg(index), *reladdr,
brw_imm_d(message_header_scale * 2)));
emit_before(block, inst, ADD(dst_reg(index), index,
brw_imm_d(reg_offset * message_header_scale)));
}
return index;
} else {
return brw_imm_d(reg_offset * message_header_scale);
}
}
/**
* Emits an instruction before @inst to load the value named by @orig_src
* from scratch space at @base_offset to @temp.
*
* @base_offset is measured in 32-byte units (the size of a register).
*/
void
vec4_visitor::emit_scratch_read(bblock_t *block, vec4_instruction *inst,
dst_reg temp, src_reg orig_src,
int base_offset)
{
assert(orig_src.offset % REG_SIZE == 0);
i965/vec4: Replace dst/src_reg::reg_offset with dst/src_reg::offset expressed in bytes. The dst/src_reg::offset field in byte units introduced in the previous patch is a more straightforward alternative to an offset representation split between ::reg_offset and ::subreg_offset fields. The split representation makes it too easy to forget about one of the offsets while dealing with the other, which has led to multiple FS back-end bugs in the past. To make the matter worse the unit reg_offset was expressed in was rather inconsistent, for uniforms it would be expressed in either 4B or 16B units depending on the back-end, and for most other things it would be expressed in 32B units. This encodes reg_offset as a new offset field expressed consistently in byte units. Each rvalue reference of reg_offset in existing code like 'x = r.reg_offset' is rewritten to 'x = r.offset / reg_unit', and each lvalue reference like 'r.reg_offset = x' is rewritten to 'r.offset = r.offset % reg_unit + x * reg_unit'. Because the change affects a lot of places and is rather non-trivial to verify due to the inconsistent value of reg_unit, I've tried to avoid making any additional changes other than applying the rewrite rule above in order to keep the patch as simple as possible, sometimes at the cost of introducing obvious stupidity (e.g. algebraic expressions that could be simplified given some knowledge of the context) -- I'll clean those up later on in a second pass. v2: Fix division by the wrong reg_unit in the UNIFORM case of convert_to_hw_regs(). (Iago) Reviewed-by: Iago Toral Quiroga <itoral@igalia.com>
2016-09-01 21:10:36 +01:00
int reg_offset = base_offset + orig_src.offset / REG_SIZE;
src_reg index = get_scratch_offset(block, inst, orig_src.reladdr,
reg_offset);
if (type_sz(orig_src.type) < 8) {
emit_before(block, inst, SCRATCH_READ(temp, index));
} else {
dst_reg shuffled = dst_reg(this, glsl_type::dvec4_type);
dst_reg shuffled_float = retype(shuffled, BRW_REGISTER_TYPE_F);
emit_before(block, inst, SCRATCH_READ(shuffled_float, index));
index = get_scratch_offset(block, inst, orig_src.reladdr, reg_offset + 1);
vec4_instruction *last_read =
SCRATCH_READ(byte_offset(shuffled_float, REG_SIZE), index);
emit_before(block, inst, last_read);
shuffle_64bit_data(temp, src_reg(shuffled), false, true, block, last_read);
}
}
/**
* Emits an instruction after @inst to store the value to be written
* to @orig_dst to scratch space at @base_offset, from @temp.
*
* @base_offset is measured in 32-byte units (the size of a register).
*/
void
vec4_visitor::emit_scratch_write(bblock_t *block, vec4_instruction *inst,
int base_offset)
{
assert(inst->dst.offset % REG_SIZE == 0);
i965/vec4: Replace dst/src_reg::reg_offset with dst/src_reg::offset expressed in bytes. The dst/src_reg::offset field in byte units introduced in the previous patch is a more straightforward alternative to an offset representation split between ::reg_offset and ::subreg_offset fields. The split representation makes it too easy to forget about one of the offsets while dealing with the other, which has led to multiple FS back-end bugs in the past. To make the matter worse the unit reg_offset was expressed in was rather inconsistent, for uniforms it would be expressed in either 4B or 16B units depending on the back-end, and for most other things it would be expressed in 32B units. This encodes reg_offset as a new offset field expressed consistently in byte units. Each rvalue reference of reg_offset in existing code like 'x = r.reg_offset' is rewritten to 'x = r.offset / reg_unit', and each lvalue reference like 'r.reg_offset = x' is rewritten to 'r.offset = r.offset % reg_unit + x * reg_unit'. Because the change affects a lot of places and is rather non-trivial to verify due to the inconsistent value of reg_unit, I've tried to avoid making any additional changes other than applying the rewrite rule above in order to keep the patch as simple as possible, sometimes at the cost of introducing obvious stupidity (e.g. algebraic expressions that could be simplified given some knowledge of the context) -- I'll clean those up later on in a second pass. v2: Fix division by the wrong reg_unit in the UNIFORM case of convert_to_hw_regs(). (Iago) Reviewed-by: Iago Toral Quiroga <itoral@igalia.com>
2016-09-01 21:10:36 +01:00
int reg_offset = base_offset + inst->dst.offset / REG_SIZE;
src_reg index = get_scratch_offset(block, inst, inst->dst.reladdr,
reg_offset);
/* Create a temporary register to store *inst's result in.
*
* We have to be careful in MOVing from our temporary result register in
* the scratch write. If we swizzle from channels of the temporary that
* weren't initialized, it will confuse live interval analysis, which will
* make spilling fail to make progress.
*/
bool is_64bit = type_sz(inst->dst.type) == 8;
const glsl_type *alloc_type =
is_64bit ? glsl_type::dvec4_type : glsl_type::vec4_type;
const src_reg temp = swizzle(retype(src_reg(this, alloc_type),
inst->dst.type),
brw_swizzle_for_mask(inst->dst.writemask));
if (!is_64bit) {
dst_reg dst = dst_reg(brw_writemask(brw_vec8_grf(0, 0),
inst->dst.writemask));
vec4_instruction *write = SCRATCH_WRITE(dst, temp, index);
if (inst->opcode != BRW_OPCODE_SEL)
write->predicate = inst->predicate;
write->ir = inst->ir;
write->annotation = inst->annotation;
inst->insert_after(block, write);
} else {
dst_reg shuffled = dst_reg(this, alloc_type);
vec4_instruction *last =
shuffle_64bit_data(shuffled, temp, true, true, block, inst);
src_reg shuffled_float = src_reg(retype(shuffled, BRW_REGISTER_TYPE_F));
uint8_t mask = 0;
if (inst->dst.writemask & WRITEMASK_X)
mask |= WRITEMASK_XY;
if (inst->dst.writemask & WRITEMASK_Y)
mask |= WRITEMASK_ZW;
if (mask) {
dst_reg dst = dst_reg(brw_writemask(brw_vec8_grf(0, 0), mask));
vec4_instruction *write = SCRATCH_WRITE(dst, shuffled_float, index);
if (inst->opcode != BRW_OPCODE_SEL)
write->predicate = inst->predicate;
write->ir = inst->ir;
write->annotation = inst->annotation;
last->insert_after(block, write);
}
mask = 0;
if (inst->dst.writemask & WRITEMASK_Z)
mask |= WRITEMASK_XY;
if (inst->dst.writemask & WRITEMASK_W)
mask |= WRITEMASK_ZW;
if (mask) {
dst_reg dst = dst_reg(brw_writemask(brw_vec8_grf(0, 0), mask));
src_reg index = get_scratch_offset(block, inst, inst->dst.reladdr,
reg_offset + 1);
vec4_instruction *write =
SCRATCH_WRITE(dst, byte_offset(shuffled_float, REG_SIZE), index);
if (inst->opcode != BRW_OPCODE_SEL)
write->predicate = inst->predicate;
write->ir = inst->ir;
write->annotation = inst->annotation;
last->insert_after(block, write);
}
}
inst->dst.file = temp.file;
inst->dst.nr = temp.nr;
i965/vec4: Replace dst/src_reg::reg_offset with dst/src_reg::offset expressed in bytes. The dst/src_reg::offset field in byte units introduced in the previous patch is a more straightforward alternative to an offset representation split between ::reg_offset and ::subreg_offset fields. The split representation makes it too easy to forget about one of the offsets while dealing with the other, which has led to multiple FS back-end bugs in the past. To make the matter worse the unit reg_offset was expressed in was rather inconsistent, for uniforms it would be expressed in either 4B or 16B units depending on the back-end, and for most other things it would be expressed in 32B units. This encodes reg_offset as a new offset field expressed consistently in byte units. Each rvalue reference of reg_offset in existing code like 'x = r.reg_offset' is rewritten to 'x = r.offset / reg_unit', and each lvalue reference like 'r.reg_offset = x' is rewritten to 'r.offset = r.offset % reg_unit + x * reg_unit'. Because the change affects a lot of places and is rather non-trivial to verify due to the inconsistent value of reg_unit, I've tried to avoid making any additional changes other than applying the rewrite rule above in order to keep the patch as simple as possible, sometimes at the cost of introducing obvious stupidity (e.g. algebraic expressions that could be simplified given some knowledge of the context) -- I'll clean those up later on in a second pass. v2: Fix division by the wrong reg_unit in the UNIFORM case of convert_to_hw_regs(). (Iago) Reviewed-by: Iago Toral Quiroga <itoral@igalia.com>
2016-09-01 21:10:36 +01:00
inst->dst.offset %= REG_SIZE;
inst->dst.reladdr = NULL;
}
/**
* Checks if \p src and/or \p src.reladdr require a scratch read, and if so,
* adds the scratch read(s) before \p inst. The function also checks for
* recursive reladdr scratch accesses, issuing the corresponding scratch
* loads and rewriting reladdr references accordingly.
*
* \return \p src if it did not require a scratch load, otherwise, the
* register holding the result of the scratch load that the caller should
* use to rewrite src.
*/
src_reg
vec4_visitor::emit_resolve_reladdr(int scratch_loc[], bblock_t *block,
vec4_instruction *inst, src_reg src)
{
/* Resolve recursive reladdr scratch access by calling ourselves
* with src.reladdr
*/
if (src.reladdr)
*src.reladdr = emit_resolve_reladdr(scratch_loc, block, inst,
*src.reladdr);
/* Now handle scratch access on src */
if (src.file == VGRF && scratch_loc[src.nr] != -1) {
dst_reg temp = dst_reg(this, type_sz(src.type) == 8 ?
glsl_type::dvec4_type : glsl_type::vec4_type);
emit_scratch_read(block, inst, temp, src, scratch_loc[src.nr]);
src.nr = temp.nr;
i965/vec4: Replace dst/src_reg::reg_offset with dst/src_reg::offset expressed in bytes. The dst/src_reg::offset field in byte units introduced in the previous patch is a more straightforward alternative to an offset representation split between ::reg_offset and ::subreg_offset fields. The split representation makes it too easy to forget about one of the offsets while dealing with the other, which has led to multiple FS back-end bugs in the past. To make the matter worse the unit reg_offset was expressed in was rather inconsistent, for uniforms it would be expressed in either 4B or 16B units depending on the back-end, and for most other things it would be expressed in 32B units. This encodes reg_offset as a new offset field expressed consistently in byte units. Each rvalue reference of reg_offset in existing code like 'x = r.reg_offset' is rewritten to 'x = r.offset / reg_unit', and each lvalue reference like 'r.reg_offset = x' is rewritten to 'r.offset = r.offset % reg_unit + x * reg_unit'. Because the change affects a lot of places and is rather non-trivial to verify due to the inconsistent value of reg_unit, I've tried to avoid making any additional changes other than applying the rewrite rule above in order to keep the patch as simple as possible, sometimes at the cost of introducing obvious stupidity (e.g. algebraic expressions that could be simplified given some knowledge of the context) -- I'll clean those up later on in a second pass. v2: Fix division by the wrong reg_unit in the UNIFORM case of convert_to_hw_regs(). (Iago) Reviewed-by: Iago Toral Quiroga <itoral@igalia.com>
2016-09-01 21:10:36 +01:00
src.offset %= REG_SIZE;
src.reladdr = NULL;
}
return src;
}
/**
* We can't generally support array access in GRF space, because a
* single instruction's destination can only span 2 contiguous
* registers. So, we send all GRF arrays that get variable index
* access to scratch space.
*/
void
vec4_visitor::move_grf_array_access_to_scratch()
{
int scratch_loc[this->alloc.count];
memset(scratch_loc, -1, sizeof(scratch_loc));
/* First, calculate the set of virtual GRFs that need to be punted
* to scratch due to having any array access on them, and where in
* scratch.
*/
foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
if (inst->dst.file == VGRF && inst->dst.reladdr) {
if (scratch_loc[inst->dst.nr] == -1) {
scratch_loc[inst->dst.nr] = last_scratch;
last_scratch += this->alloc.sizes[inst->dst.nr];
}
for (src_reg *iter = inst->dst.reladdr;
iter->reladdr;
iter = iter->reladdr) {
if (iter->file == VGRF && scratch_loc[iter->nr] == -1) {
scratch_loc[iter->nr] = last_scratch;
last_scratch += this->alloc.sizes[iter->nr];
}
}
}
for (int i = 0 ; i < 3; i++) {
for (src_reg *iter = &inst->src[i];
iter->reladdr;
iter = iter->reladdr) {
if (iter->file == VGRF && scratch_loc[iter->nr] == -1) {
scratch_loc[iter->nr] = last_scratch;
last_scratch += this->alloc.sizes[iter->nr];
}
}
}
}
/* Now, for anything that will be accessed through scratch, rewrite
* it to load/store. Note that this is a _safe list walk, because
* we may generate a new scratch_write instruction after the one
* we're processing.
*/
foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
/* Set up the annotation tracking for new generated instructions. */
base_ir = inst->ir;
current_annotation = inst->annotation;
/* First handle scratch access on the dst. Notice we have to handle
* the case where the dst's reladdr also points to scratch space.
*/
if (inst->dst.reladdr)
*inst->dst.reladdr = emit_resolve_reladdr(scratch_loc, block, inst,
*inst->dst.reladdr);
/* Now that we have handled any (possibly recursive) reladdr scratch
* accesses for dst we can safely do the scratch write for dst itself
*/
if (inst->dst.file == VGRF && scratch_loc[inst->dst.nr] != -1)
emit_scratch_write(block, inst, scratch_loc[inst->dst.nr]);
/* Now handle scratch access on any src. In this case, since inst->src[i]
* already is a src_reg, we can just call emit_resolve_reladdr with
* inst->src[i] and it will take care of handling scratch loads for
* both src and src.reladdr (recursively).
*/
for (int i = 0 ; i < 3; i++) {
inst->src[i] = emit_resolve_reladdr(scratch_loc, block, inst,
inst->src[i]);
}
}
}
void
vec4_visitor::resolve_ud_negate(src_reg *reg)
{
if (reg->type != BRW_REGISTER_TYPE_UD ||
!reg->negate)
return;
src_reg temp = src_reg(this, glsl_type::uvec4_type);
emit(BRW_OPCODE_MOV, dst_reg(temp), *reg);
*reg = temp;
}
vec4_visitor::vec4_visitor(const struct brw_compiler *compiler,
void *log_data,
const struct brw_sampler_prog_key_data *key_tex,
struct brw_vue_prog_data *prog_data,
const nir_shader *shader,
void *mem_ctx,
bool no_spills,
bool debug_enabled)
: backend_shader(compiler, log_data, mem_ctx, shader, &prog_data->base,
debug_enabled),
key_tex(key_tex),
prog_data(prog_data),
fail_msg(NULL),
first_non_payload_grf(0),
ubo_push_start(),
push_length(0),
intel/ir: Import shader performance analysis pass. This introduces an analysis pass intended to estimate several performance statistics of the shader, including cycle count latency and throughput values, based on static modeling. It has instruction performance information more comprehensive than the current scheduling pass for all platforms between Gen4-11, and works on both the FS and VEC4 back-end. The most immediate purpose of this pass is to implement a heuristic meant to determine whether using SIMD32 dispatch for a fragment shader can be expected to help more than it hurts. In addition this will allow the effect of passes run after scheduling (e.g. the TGL software scoreboard pass and the VEC4 dependency control pass) to be visible in shader-db statistics. But that isn't the end of the story, other potential applications of this pass (not part of this MR) I've been playing around with are: - Implement a similar SIMD16 heuristic allowing the identification of inefficient SIMD16 fragment shaders. - Implement similar SIMD16 and SIMD32 heuristics for the compute shader stage -- Currently compute shader builds always use the SIMD16 shader if available and never use the SIMD32 shader unless strictly necessary, which is suboptimal under certain conditions. - Hook up to the instruction scheduler in order to improve the accuracy of its timing information. - Use as heuristic in order to drive the selection of scheduling modes (Matt was experimenting with that). - Plug to the TGL software scoreboard pass in order to implement a more effective SBID token allocation algorithm, since in general the optimal token allocation depends on the timings of all instructions in the program. - Use its bottleneck detection functionality in order to implement a heuristic computing a more optimal bound for the number of fragment shader threads executed in parallel (by adjusting the MaximumNumberofThreadsPerPSD control of 3DSTATE_PS). As a follow-up I'm planning to submit updated timing information for Gen12 platforms -- Everything else required to support Gen12 like SWSB handling is already included in this patch, but there were some IP concerns regarding the TGL timing parameters since they cannot currently be obtained with the documentation and hardware which is publicly available. The timing parameters for any previous Gen7-11 platforms can be obtained by anyone by sampling the timestamp register using e.g. shader_time, though I have some more convenient instrumentation coming up. Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
2020-03-26 21:59:02 +00:00
live_analysis(this), performance_analysis(this),
need_all_constants_in_pull_buffer(false),
no_spills(no_spills),
last_scratch(0)
{
this->failed = false;
this->base_ir = NULL;
this->current_annotation = NULL;
memset(this->output_reg_annotation, 0, sizeof(this->output_reg_annotation));
memset(this->output_num_components, 0, sizeof(this->output_num_components));
this->max_grf = devinfo->ver >= 7 ? GFX7_MRF_HACK_START : BRW_MAX_GRF;
this->uniforms = 0;
this->nir_locals = NULL;
this->nir_ssa_values = NULL;
}
void
vec4_visitor::fail(const char *format, ...)
{
va_list va;
char *msg;
if (failed)
return;
failed = true;
va_start(va, format);
msg = ralloc_vasprintf(mem_ctx, format, va);
va_end(va);
msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
this->fail_msg = msg;
if (unlikely(debug_enabled)) {
fprintf(stderr, "%s", msg);
}
}
} /* namespace brw */