mesa/src/intel/vulkan/genX_cmd_buffer.c

2555 lines
96 KiB
C
Raw Normal View History

/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include "anv_private.h"
#include "vk_format_info.h"
#include "common/gen_l3_config.h"
#include "genxml/gen_macros.h"
#include "genxml/genX_pack.h"
static void
emit_lrm(struct anv_batch *batch,
uint32_t reg, struct anv_bo *bo, uint32_t offset)
{
anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
lrm.RegisterAddress = reg;
lrm.MemoryAddress = (struct anv_address) { bo, offset };
}
}
static void
emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
{
anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
lri.RegisterOffset = reg;
lri.DataDWord = imm;
}
}
void
genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_device *device = cmd_buffer->device;
/* Emit a render target cache flush.
*
* This isn't documented anywhere in the PRM. However, it seems to be
* necessary prior to changing the surface state base adress. Without
* this, we get GPU hangs when using multi-level command buffers which
* clear depth, reset state base address, and then go render stuff.
*/
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.DCFlushEnable = true;
pc.RenderTargetCacheFlushEnable = true;
pc.CommandStreamerStallEnable = true;
}
anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
sba.GeneralStateMemoryObjectControlState = GENX(MOCS);
sba.GeneralStateBaseAddressModifyEnable = true;
sba.SurfaceStateBaseAddress =
anv_cmd_buffer_surface_base_address(cmd_buffer);
sba.SurfaceStateMemoryObjectControlState = GENX(MOCS);
sba.SurfaceStateBaseAddressModifyEnable = true;
sba.DynamicStateBaseAddress =
(struct anv_address) { &device->dynamic_state_block_pool.bo, 0 };
sba.DynamicStateMemoryObjectControlState = GENX(MOCS);
sba.DynamicStateBaseAddressModifyEnable = true;
sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
sba.IndirectObjectMemoryObjectControlState = GENX(MOCS);
sba.IndirectObjectBaseAddressModifyEnable = true;
sba.InstructionBaseAddress =
(struct anv_address) { &device->instruction_block_pool.bo, 0 };
sba.InstructionMemoryObjectControlState = GENX(MOCS);
sba.InstructionBaseAddressModifyEnable = true;
# if (GEN_GEN >= 8)
/* Broadwell requires that we specify a buffer size for a bunch of
* these fields. However, since we will be growing the BO's live, we
* just set them all to the maximum.
*/
sba.GeneralStateBufferSize = 0xfffff;
sba.GeneralStateBufferSizeModifyEnable = true;
sba.DynamicStateBufferSize = 0xfffff;
sba.DynamicStateBufferSizeModifyEnable = true;
sba.IndirectObjectBufferSize = 0xfffff;
sba.IndirectObjectBufferSizeModifyEnable = true;
sba.InstructionBufferSize = 0xfffff;
sba.InstructionBuffersizeModifyEnable = true;
# endif
}
/* After re-setting the surface state base address, we have to do some
* cache flusing so that the sampler engine will pick up the new
* SURFACE_STATE objects and binding tables. From the Broadwell PRM,
* Shared Function > 3D Sampler > State > State Caching (page 96):
*
* Coherency with system memory in the state cache, like the texture
* cache is handled partially by software. It is expected that the
* command stream or shader will issue Cache Flush operation or
* Cache_Flush sampler message to ensure that the L1 cache remains
* coherent with system memory.
*
* [...]
*
* Whenever the value of the Dynamic_State_Base_Addr,
* Surface_State_Base_Addr are altered, the L1 state cache must be
* invalidated to ensure the new surface or sampler state is fetched
* from system memory.
*
* The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
* which, according the PIPE_CONTROL instruction documentation in the
* Broadwell PRM:
*
* Setting this bit is independent of any other bit in this packet.
* This bit controls the invalidation of the L1 and L2 state caches
* at the top of the pipe i.e. at the parsing time.
*
* Unfortunately, experimentation seems to indicate that state cache
* invalidation through a PIPE_CONTROL does nothing whatsoever in
* regards to surface state and binding tables. In stead, it seems that
* invalidating the texture cache is what is actually needed.
*
* XXX: As far as we have been able to determine through
* experimentation, shows that flush the texture cache appears to be
* sufficient. The theory here is that all of the sampling/rendering
* units cache the binding table in the texture cache. However, we have
* yet to be able to actually confirm this.
*/
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.TextureCacheInvalidationEnable = true;
pc.ConstantCacheInvalidationEnable = true;
pc.StateCacheInvalidationEnable = true;
}
}
static void
add_surface_state_reloc(struct anv_cmd_buffer *cmd_buffer,
struct anv_state state,
struct anv_bo *bo, uint32_t offset)
{
const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
VkResult result =
anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
state.offset + isl_dev->ss.addr_offset, bo, offset);
if (result != VK_SUCCESS)
anv_batch_set_error(&cmd_buffer->batch, result);
}
static void
add_image_view_relocs(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image_view *iview,
enum isl_aux_usage aux_usage,
struct anv_state state)
{
const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
add_surface_state_reloc(cmd_buffer, state, iview->bo, iview->offset);
if (aux_usage != ISL_AUX_USAGE_NONE) {
uint32_t aux_offset = iview->offset + iview->image->aux_surface.offset;
/* On gen7 and prior, the bottom 12 bits of the MCS base address are
* used to store other information. This should be ok, however, because
* surface buffer addresses are always 4K page alinged.
*/
assert((aux_offset & 0xfff) == 0);
uint32_t *aux_addr_dw = state.map + isl_dev->ss.aux_addr_offset;
aux_offset += *aux_addr_dw & 0xfff;
VkResult result =
anv_reloc_list_add(&cmd_buffer->surface_relocs,
&cmd_buffer->pool->alloc,
state.offset + isl_dev->ss.aux_addr_offset,
iview->bo, aux_offset);
if (result != VK_SUCCESS)
anv_batch_set_error(&cmd_buffer->batch, result);
}
}
static bool
color_is_zero_one(VkClearColorValue value, enum isl_format format)
{
if (isl_format_has_int_channel(format)) {
for (unsigned i = 0; i < 4; i++) {
if (value.int32[i] != 0 && value.int32[i] != 1)
return false;
}
} else {
for (unsigned i = 0; i < 4; i++) {
if (value.float32[i] != 0.0f && value.float32[i] != 1.0f)
return false;
}
}
return true;
}
static void
color_attachment_compute_aux_usage(struct anv_device *device,
struct anv_attachment_state *att_state,
struct anv_image_view *iview,
VkRect2D render_area,
union isl_color_value *fast_clear_color)
{
if (iview->image->aux_surface.isl.size == 0) {
att_state->aux_usage = ISL_AUX_USAGE_NONE;
att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
att_state->fast_clear = false;
return;
} else if (iview->image->aux_usage == ISL_AUX_USAGE_MCS) {
att_state->aux_usage = ISL_AUX_USAGE_MCS;
att_state->input_aux_usage = ISL_AUX_USAGE_MCS;
att_state->fast_clear = false;
return;
}
assert(iview->image->aux_surface.isl.usage & ISL_SURF_USAGE_CCS_BIT);
att_state->clear_color_is_zero_one =
color_is_zero_one(att_state->clear_value.color, iview->isl.format);
if (att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
/* Start off assuming fast clears are possible */
att_state->fast_clear = true;
/* Potentially, we could do partial fast-clears but doing so has crazy
* alignment restrictions. It's easier to just restrict to full size
* fast clears for now.
*/
if (render_area.offset.x != 0 ||
render_area.offset.y != 0 ||
render_area.extent.width != iview->extent.width ||
render_area.extent.height != iview->extent.height)
att_state->fast_clear = false;
if (GEN_GEN <= 7) {
/* On gen7, we can't do multi-LOD or multi-layer fast-clears. We
* technically can, but it comes with crazy restrictions that we
* don't want to deal with now.
*/
if (iview->isl.base_level > 0 ||
iview->isl.base_array_layer > 0 ||
iview->isl.array_len > 1)
att_state->fast_clear = false;
}
/* On Broadwell and earlier, we can only handle 0/1 clear colors */
if (GEN_GEN <= 8 && !att_state->clear_color_is_zero_one)
att_state->fast_clear = false;
if (att_state->fast_clear) {
memcpy(fast_clear_color->u32, att_state->clear_value.color.uint32,
sizeof(fast_clear_color->u32));
}
} else {
att_state->fast_clear = false;
}
/**
* TODO: Consider using a heuristic to determine if temporarily enabling
* CCS_E for this image view would be beneficial.
*
* While fast-clear resolves and partial resolves are fairly cheap in the
* case where you render to most of the pixels, full resolves are not
* because they potentially involve reading and writing the entire
* framebuffer. If we can't texture with CCS_E, we should leave it off and
* limit ourselves to fast clears.
*/
if (iview->image->aux_usage == ISL_AUX_USAGE_CCS_E) {
att_state->aux_usage = ISL_AUX_USAGE_CCS_E;
att_state->input_aux_usage = ISL_AUX_USAGE_CCS_E;
} else if (att_state->fast_clear) {
att_state->aux_usage = ISL_AUX_USAGE_CCS_D;
if (GEN_GEN >= 9 &&
!isl_format_supports_ccs_e(&device->info, iview->isl.format)) {
/* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode:
*
* "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D
* setting is only allowed if Surface Format supported for Fast
* Clear. In addition, if the surface is bound to the sampling
* engine, Surface Format must be supported for Render Target
* Compression for surfaces bound to the sampling engine."
*
* In other words, we can't sample from a fast-cleared image if it
* doesn't also support color compression.
*/
att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
} else if (GEN_GEN == 8) {
/* Broadwell can sample from fast-cleared images */
att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D;
} else {
/* Ivy Bridge and Haswell cannot */
att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
}
} else {
att_state->aux_usage = ISL_AUX_USAGE_NONE;
att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
}
}
static bool
need_input_attachment_state(const struct anv_render_pass_attachment *att)
{
if (!(att->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
return false;
/* We only allocate input attachment states for color surfaces. Compression
* is not yet enabled for depth textures and stencil doesn't allow
* compression so we can just use the texture surface state from the view.
*/
return vk_format_is_color(att->format);
}
/* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
* the initial layout is undefined, the HiZ buffer and depth buffer will
* represent the same data at the end of this operation.
*/
static void
transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
VkImageLayout initial_layout,
VkImageLayout final_layout)
{
assert(image);
/* A transition is a no-op if HiZ is not enabled, or if the initial and
* final layouts are equal.
*
* The undefined layout indicates that the user doesn't care about the data
* that's currently in the buffer. Therefore, a data-preserving resolve
* operation is not needed.
*
* The pre-initialized layout is equivalent to the undefined layout for
* optimally-tiled images. Anv only exposes support for optimally-tiled
* depth buffers.
*/
if (image->aux_usage != ISL_AUX_USAGE_HIZ ||
initial_layout == final_layout ||
initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED)
return;
const bool hiz_enabled = ISL_AUX_USAGE_HIZ ==
anv_layout_to_aux_usage(&cmd_buffer->device->info, image, image->aspects,
initial_layout);
const bool enable_hiz = ISL_AUX_USAGE_HIZ ==
anv_layout_to_aux_usage(&cmd_buffer->device->info, image, image->aspects,
final_layout);
enum blorp_hiz_op hiz_op;
if (hiz_enabled && !enable_hiz) {
hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
} else if (!hiz_enabled && enable_hiz) {
hiz_op = BLORP_HIZ_OP_HIZ_RESOLVE;
} else {
assert(hiz_enabled == enable_hiz);
/* If the same buffer will be used, no resolves are necessary. */
hiz_op = BLORP_HIZ_OP_NONE;
}
if (hiz_op != BLORP_HIZ_OP_NONE)
anv_gen8_hiz_op_resolve(cmd_buffer, image, hiz_op);
}
/**
* Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
*/
static VkResult
genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
struct anv_render_pass *pass,
const VkRenderPassBeginInfo *begin)
{
const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
struct anv_cmd_state *state = &cmd_buffer->state;
vk_free(&cmd_buffer->pool->alloc, state->attachments);
if (pass->attachment_count == 0) {
state->attachments = NULL;
return VK_SUCCESS;
}
state->attachments = vk_alloc(&cmd_buffer->pool->alloc,
pass->attachment_count *
sizeof(state->attachments[0]),
8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (state->attachments == NULL) {
/* FIXME: Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
bool need_null_state = false;
unsigned num_states = 0;
for (uint32_t i = 0; i < pass->attachment_count; ++i) {
if (vk_format_is_color(pass->attachments[i].format)) {
num_states++;
} else {
/* We need a null state for any depth-stencil-only subpasses.
* Importantly, this includes depth/stencil clears so we create one
* whenever we have depth or stencil
*/
need_null_state = true;
}
if (need_input_attachment_state(&pass->attachments[i]))
num_states++;
}
num_states += need_null_state;
const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align);
state->render_pass_states =
anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
num_states * ss_stride, isl_dev->ss.align);
struct anv_state next_state = state->render_pass_states;
next_state.alloc_size = isl_dev->ss.size;
if (need_null_state) {
state->null_surface_state = next_state;
next_state.offset += ss_stride;
next_state.map += ss_stride;
}
for (uint32_t i = 0; i < pass->attachment_count; ++i) {
if (vk_format_is_color(pass->attachments[i].format)) {
state->attachments[i].color_rt_state = next_state;
next_state.offset += ss_stride;
next_state.map += ss_stride;
}
if (need_input_attachment_state(&pass->attachments[i])) {
state->attachments[i].input_att_state = next_state;
next_state.offset += ss_stride;
next_state.map += ss_stride;
}
}
assert(next_state.offset == state->render_pass_states.offset +
state->render_pass_states.alloc_size);
if (begin) {
ANV_FROM_HANDLE(anv_framebuffer, framebuffer, begin->framebuffer);
assert(pass->attachment_count == framebuffer->attachment_count);
if (need_null_state) {
struct GENX(RENDER_SURFACE_STATE) null_ss = {
.SurfaceType = SURFTYPE_NULL,
.SurfaceArray = framebuffer->layers > 0,
.SurfaceFormat = ISL_FORMAT_R8G8B8A8_UNORM,
#if GEN_GEN >= 8
.TileMode = YMAJOR,
#else
.TiledSurface = true,
#endif
.Width = framebuffer->width - 1,
.Height = framebuffer->height - 1,
.Depth = framebuffer->layers - 1,
.RenderTargetViewExtent = framebuffer->layers - 1,
};
GENX(RENDER_SURFACE_STATE_pack)(NULL, state->null_surface_state.map,
&null_ss);
}
for (uint32_t i = 0; i < pass->attachment_count; ++i) {
struct anv_render_pass_attachment *att = &pass->attachments[i];
VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
VkImageAspectFlags clear_aspects = 0;
if (att_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
/* color attachment */
if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
}
} else {
/* depthstencil attachment */
if ((att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
}
if ((att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
}
}
state->attachments[i].current_layout = att->initial_layout;
state->attachments[i].pending_clear_aspects = clear_aspects;
if (clear_aspects)
state->attachments[i].clear_value = begin->pClearValues[i];
struct anv_image_view *iview = framebuffer->attachments[i];
anv_assert(iview->vk_format == att->format);
union isl_color_value clear_color = { .u32 = { 0, } };
if (att_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
color_attachment_compute_aux_usage(cmd_buffer->device,
&state->attachments[i],
iview, begin->renderArea,
&clear_color);
struct isl_view view = iview->isl;
view.usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT;
view.swizzle = anv_swizzle_for_render(view.swizzle);
isl_surf_fill_state(isl_dev,
state->attachments[i].color_rt_state.map,
.surf = &iview->image->color_surface.isl,
.view = &view,
.aux_surf = &iview->image->aux_surface.isl,
.aux_usage = state->attachments[i].aux_usage,
.clear_color = clear_color,
.mocs = cmd_buffer->device->default_mocs);
add_image_view_relocs(cmd_buffer, iview,
state->attachments[i].aux_usage,
state->attachments[i].color_rt_state);
} else {
/* This field will be initialized after the first subpass
* transition.
*/
state->attachments[i].aux_usage = ISL_AUX_USAGE_NONE;
state->attachments[i].input_aux_usage = ISL_AUX_USAGE_NONE;
}
if (need_input_attachment_state(&pass->attachments[i])) {
struct isl_view view = iview->isl;
view.usage |= ISL_SURF_USAGE_TEXTURE_BIT;
isl_surf_fill_state(isl_dev,
state->attachments[i].input_att_state.map,
.surf = &iview->image->color_surface.isl,
.view = &view,
.aux_surf = &iview->image->aux_surface.isl,
.aux_usage = state->attachments[i].input_aux_usage,
.clear_color = clear_color,
.mocs = cmd_buffer->device->default_mocs);
add_image_view_relocs(cmd_buffer, iview,
state->attachments[i].input_aux_usage,
state->attachments[i].input_att_state);
}
}
anv_state_flush(cmd_buffer->device, state->render_pass_states);
}
return VK_SUCCESS;
}
VkResult
genX(BeginCommandBuffer)(
VkCommandBuffer commandBuffer,
const VkCommandBufferBeginInfo* pBeginInfo)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
/* If this is the first vkBeginCommandBuffer, we must *initialize* the
* command buffer's state. Otherwise, we must *reset* its state. In both
* cases we reset it.
*
* From the Vulkan 1.0 spec:
*
* If a command buffer is in the executable state and the command buffer
* was allocated from a command pool with the
* VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
* vkBeginCommandBuffer implicitly resets the command buffer, behaving
* as if vkResetCommandBuffer had been called with
* VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
* the command buffer in the recording state.
*/
anv_cmd_buffer_reset(cmd_buffer);
cmd_buffer->usage_flags = pBeginInfo->flags;
assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
!(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
VkResult result = VK_SUCCESS;
if (cmd_buffer->usage_flags &
VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
cmd_buffer->state.pass =
anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
cmd_buffer->state.subpass =
&cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
cmd_buffer->state.framebuffer = NULL;
result = genX(cmd_buffer_setup_attachments)(cmd_buffer,
cmd_buffer->state.pass, NULL);
cmd_buffer->state.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
}
return result;
}
VkResult
genX(EndCommandBuffer)(
VkCommandBuffer commandBuffer)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
if (anv_batch_has_error(&cmd_buffer->batch))
return cmd_buffer->batch.status;
/* We want every command buffer to start with the PMA fix in a known state,
* so we disable it at the end of the command buffer.
*/
genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
anv_cmd_buffer_end_batch_buffer(cmd_buffer);
return VK_SUCCESS;
}
void
genX(CmdExecuteCommands)(
VkCommandBuffer commandBuffer,
uint32_t commandBufferCount,
const VkCommandBuffer* pCmdBuffers)
{
ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
/* The secondary command buffers will assume that the PMA fix is disabled
* when they begin executing. Make sure this is true.
*/
genX(cmd_buffer_enable_pma_fix)(primary, false);
for (uint32_t i = 0; i < commandBufferCount; i++) {
ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
if (secondary->usage_flags &
VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
/* If we're continuing a render pass from the primary, we need to
* copy the surface states for the current subpass into the storage
* we allocated for them in BeginCommandBuffer.
*/
struct anv_bo *ss_bo = &primary->device->surface_state_block_pool.bo;
struct anv_state src_state = primary->state.render_pass_states;
struct anv_state dst_state = secondary->state.render_pass_states;
assert(src_state.alloc_size == dst_state.alloc_size);
genX(cmd_buffer_gpu_memcpy)(primary, ss_bo, dst_state.offset,
ss_bo, src_state.offset,
src_state.alloc_size);
}
anv_cmd_buffer_add_secondary(primary, secondary);
}
/* Each of the secondary command buffers will use its own state base
* address. We need to re-emit state base address for the primary after
* all of the secondaries are done.
*
* TODO: Maybe we want to make this a dirty bit to avoid extra state base
* address calls?
*/
genX(cmd_buffer_emit_state_base_address)(primary);
}
#define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000
#define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000
#define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000
/**
* Program the hardware to use the specified L3 configuration.
*/
void
genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
const struct gen_l3_config *cfg)
{
assert(cfg);
if (cfg == cmd_buffer->state.current_l3_config)
return;
if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
fprintf(stderr, "L3 config transition: ");
gen_dump_l3_config(cfg, stderr);
}
const bool has_slm = cfg->n[GEN_L3P_SLM];
/* According to the hardware docs, the L3 partitioning can only be changed
* while the pipeline is completely drained and the caches are flushed,
* which involves a first PIPE_CONTROL flush which stalls the pipeline...
*/
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.DCFlushEnable = true;
pc.PostSyncOperation = NoWrite;
pc.CommandStreamerStallEnable = true;
}
/* ...followed by a second pipelined PIPE_CONTROL that initiates
* invalidation of the relevant caches. Note that because RO invalidation
* happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
* command is processed by the CS) we cannot combine it with the previous
* stalling flush as the hardware documentation suggests, because that
* would cause the CS to stall on previous rendering *after* RO
* invalidation and wouldn't prevent the RO caches from being polluted by
* concurrent rendering before the stall completes. This intentionally
* doesn't implement the SKL+ hardware workaround suggesting to enable CS
* stall on PIPE_CONTROLs with the texture cache invalidation bit set for
* GPGPU workloads because the previous and subsequent PIPE_CONTROLs
* already guarantee that there is no concurrent GPGPU kernel execution
* (see SKL HSD 2132585).
*/
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.TextureCacheInvalidationEnable = true;
pc.ConstantCacheInvalidationEnable = true;
pc.InstructionCacheInvalidateEnable = true;
pc.StateCacheInvalidationEnable = true;
pc.PostSyncOperation = NoWrite;
}
/* Now send a third stalling flush to make sure that invalidation is
* complete when the L3 configuration registers are modified.
*/
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.DCFlushEnable = true;
pc.PostSyncOperation = NoWrite;
pc.CommandStreamerStallEnable = true;
}
#if GEN_GEN >= 8
assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
uint32_t l3cr;
anv_pack_struct(&l3cr, GENX(L3CNTLREG),
.SLMEnable = has_slm,
.URBAllocation = cfg->n[GEN_L3P_URB],
.ROAllocation = cfg->n[GEN_L3P_RO],
.DCAllocation = cfg->n[GEN_L3P_DC],
.AllAllocation = cfg->n[GEN_L3P_ALL]);
/* Set up the L3 partitioning. */
emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG_num), l3cr);
#else
const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
cfg->n[GEN_L3P_ALL];
const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
cfg->n[GEN_L3P_ALL];
const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
cfg->n[GEN_L3P_ALL];
assert(!cfg->n[GEN_L3P_ALL]);
/* When enabled SLM only uses a portion of the L3 on half of the banks,
* the matching space on the remaining banks has to be allocated to a
* client (URB for all validated configurations) set to the
* lower-bandwidth 2-bank address hashing mode.
*/
const struct gen_device_info *devinfo = &cmd_buffer->device->info;
const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
/* Minimum number of ways that can be allocated to the URB. */
MAYBE_UNUSED const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
assert(cfg->n[GEN_L3P_URB] >= n0_urb);
uint32_t l3sqcr1, l3cr2, l3cr3;
anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1),
.ConvertDC_UC = !has_dc,
.ConvertIS_UC = !has_is,
.ConvertC_UC = !has_c,
.ConvertT_UC = !has_t);
l3sqcr1 |=
GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
IVB_L3SQCREG1_SQGHPCI_DEFAULT;
anv_pack_struct(&l3cr2, GENX(L3CNTLREG2),
.SLMEnable = has_slm,
.URBLowBandwidth = urb_low_bw,
.URBAllocation = cfg->n[GEN_L3P_URB],
#if !GEN_IS_HASWELL
.ALLAllocation = cfg->n[GEN_L3P_ALL],
#endif
.ROAllocation = cfg->n[GEN_L3P_RO],
.DCAllocation = cfg->n[GEN_L3P_DC]);
anv_pack_struct(&l3cr3, GENX(L3CNTLREG3),
.ISAllocation = cfg->n[GEN_L3P_IS],
.ISLowBandwidth = 0,
.CAllocation = cfg->n[GEN_L3P_C],
.CLowBandwidth = 0,
.TAllocation = cfg->n[GEN_L3P_T],
.TLowBandwidth = 0);
/* Set up the L3 partitioning. */
emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1);
emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2);
emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3);
#if GEN_IS_HASWELL
if (cmd_buffer->device->instance->physicalDevice.cmd_parser_version >= 4) {
/* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
* them disabled to avoid crashing the system hard.
*/
uint32_t scratch1, chicken3;
anv_pack_struct(&scratch1, GENX(SCRATCH1),
.L3AtomicDisable = !has_dc);
anv_pack_struct(&chicken3, GENX(CHICKEN3),
.L3AtomicDisableMask = true,
.L3AtomicDisable = !has_dc);
emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1);
emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3);
}
#endif
#endif
cmd_buffer->state.current_l3_config = cfg;
}
void
genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
{
enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
/* Flushes are pipelined while invalidations are handled immediately.
* Therefore, if we're flushing anything then we need to schedule a stall
* before any invalidations can happen.
*/
if (bits & ANV_PIPE_FLUSH_BITS)
bits |= ANV_PIPE_NEEDS_CS_STALL_BIT;
/* If we're going to do an invalidate and we have a pending CS stall that
* has yet to be resolved, we do the CS stall now.
*/
if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
(bits & ANV_PIPE_NEEDS_CS_STALL_BIT)) {
bits |= ANV_PIPE_CS_STALL_BIT;
bits &= ~ANV_PIPE_NEEDS_CS_STALL_BIT;
}
if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT)) {
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
pipe.RenderTargetCacheFlushEnable =
bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
/*
* According to the Broadwell documentation, any PIPE_CONTROL with the
* "Command Streamer Stall" bit set must also have another bit set,
* with five different options:
*
* - Render Target Cache Flush
* - Depth Cache Flush
* - Stall at Pixel Scoreboard
* - Post-Sync Operation
* - Depth Stall
* - DC Flush Enable
*
* I chose "Stall at Pixel Scoreboard" since that's what we use in
* mesa and it seems to work fine. The choice is fairly arbitrary.
*/
if ((bits & ANV_PIPE_CS_STALL_BIT) &&
!(bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_DEPTH_STALL_BIT |
ANV_PIPE_STALL_AT_SCOREBOARD_BIT)))
pipe.StallAtPixelScoreboard = true;
}
bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT);
}
if (bits & ANV_PIPE_INVALIDATE_BITS) {
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
pipe.StateCacheInvalidationEnable =
bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
pipe.ConstantCacheInvalidationEnable =
bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
pipe.VFCacheInvalidationEnable =
bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
pipe.TextureCacheInvalidationEnable =
bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
pipe.InstructionCacheInvalidateEnable =
bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
}
bits &= ~ANV_PIPE_INVALIDATE_BITS;
}
cmd_buffer->state.pending_pipe_bits = bits;
}
void genX(CmdPipelineBarrier)(
VkCommandBuffer commandBuffer,
VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags destStageMask,
VkBool32 byRegion,
2016-01-14 16:09:39 +00:00
uint32_t memoryBarrierCount,
const VkMemoryBarrier* pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier* pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier* pImageMemoryBarriers)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
uint32_t b;
/* XXX: Right now, we're really dumb and just flush whatever categories
* the app asks for. One of these days we may make this a bit better
* but right now that's all the hardware allows for in most areas.
*/
VkAccessFlags src_flags = 0;
VkAccessFlags dst_flags = 0;
2016-01-14 16:09:39 +00:00
for (uint32_t i = 0; i < memoryBarrierCount; i++) {
src_flags |= pMemoryBarriers[i].srcAccessMask;
dst_flags |= pMemoryBarriers[i].dstAccessMask;
}
for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
}
for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
src_flags |= pImageMemoryBarriers[i].srcAccessMask;
dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image);
if (pImageMemoryBarriers[i].subresourceRange.aspectMask &
VK_IMAGE_ASPECT_DEPTH_BIT) {
transition_depth_buffer(cmd_buffer, image,
pImageMemoryBarriers[i].oldLayout,
pImageMemoryBarriers[i].newLayout);
}
}
enum anv_pipe_bits pipe_bits = 0;
for_each_bit(b, src_flags) {
switch ((VkAccessFlagBits)(1 << b)) {
case VK_ACCESS_SHADER_WRITE_BIT:
pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
break;
case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
break;
case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
break;
case VK_ACCESS_TRANSFER_WRITE_BIT:
pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
break;
default:
break; /* Nothing to do */
}
}
for_each_bit(b, dst_flags) {
switch ((VkAccessFlagBits)(1 << b)) {
case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
case VK_ACCESS_INDEX_READ_BIT:
case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
break;
case VK_ACCESS_UNIFORM_READ_BIT:
pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
break;
case VK_ACCESS_SHADER_READ_BIT:
case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
case VK_ACCESS_TRANSFER_READ_BIT:
pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
break;
default:
break; /* Nothing to do */
}
}
cmd_buffer->state.pending_pipe_bits |= pipe_bits;
}
static void
cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
{
VkShaderStageFlags stages = cmd_buffer->state.pipeline->active_stages;
/* In order to avoid thrash, we assume that vertex and fragment stages
* always exist. In the rare case where one is missing *and* the other
* uses push concstants, this may be suboptimal. However, avoiding stalls
* seems more important.
*/
stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
if (stages == cmd_buffer->state.push_constant_stages)
return;
#if GEN_GEN >= 8
const unsigned push_constant_kb = 32;
#elif GEN_IS_HASWELL
const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16;
#else
const unsigned push_constant_kb = 16;
#endif
const unsigned num_stages =
_mesa_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
unsigned size_per_stage = push_constant_kb / num_stages;
/* Broadwell+ and Haswell gt3 require that the push constant sizes be in
* units of 2KB. Incidentally, these are the same platforms that have
* 32KB worth of push constant space.
*/
if (push_constant_kb == 32)
size_per_stage &= ~1u;
uint32_t kb_used = 0;
for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
anv_batch_emit(&cmd_buffer->batch,
GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
alloc._3DCommandSubOpcode = 18 + i;
alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
alloc.ConstantBufferSize = push_size;
}
kb_used += push_size;
}
anv_batch_emit(&cmd_buffer->batch,
GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
alloc.ConstantBufferOffset = kb_used;
alloc.ConstantBufferSize = push_constant_kb - kb_used;
}
cmd_buffer->state.push_constant_stages = stages;
/* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
*
* "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
* the next 3DPRIMITIVE command after programming the
* 3DSTATE_PUSH_CONSTANT_ALLOC_VS"
*
* Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
* pipeline setup, we need to dirty push constants.
*/
cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
}
static VkResult
emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
gl_shader_stage stage,
struct anv_state *bt_state)
{
struct anv_subpass *subpass = cmd_buffer->state.subpass;
struct anv_pipeline *pipeline;
uint32_t bias, state_offset;
switch (stage) {
case MESA_SHADER_COMPUTE:
pipeline = cmd_buffer->state.compute_pipeline;
bias = 1;
break;
default:
pipeline = cmd_buffer->state.pipeline;
bias = 0;
break;
}
if (!anv_pipeline_has_stage(pipeline, stage)) {
*bt_state = (struct anv_state) { 0, };
return VK_SUCCESS;
}
struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
if (bias + map->surface_count == 0) {
*bt_state = (struct anv_state) { 0, };
return VK_SUCCESS;
}
*bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
bias + map->surface_count,
&state_offset);
uint32_t *bt_map = bt_state->map;
if (bt_state->map == NULL)
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
if (stage == MESA_SHADER_COMPUTE &&
get_cs_prog_data(cmd_buffer->state.compute_pipeline)->uses_num_work_groups) {
struct anv_bo *bo = cmd_buffer->state.num_workgroups_bo;
uint32_t bo_offset = cmd_buffer->state.num_workgroups_offset;
struct anv_state surface_state;
surface_state =
anv_cmd_buffer_alloc_surface_state(cmd_buffer);
const enum isl_format format =
anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
format, bo_offset, 12, 1);
bt_map[0] = surface_state.offset + state_offset;
add_surface_state_reloc(cmd_buffer, surface_state, bo, bo_offset);
}
if (map->surface_count == 0)
goto out;
if (map->image_count > 0) {
VkResult result =
anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, images);
if (result != VK_SUCCESS)
return result;
cmd_buffer->state.push_constants_dirty |= 1 << stage;
}
uint32_t image = 0;
for (uint32_t s = 0; s < map->surface_count; s++) {
struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
struct anv_state surface_state;
if (binding->set == ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS) {
/* Color attachment binding */
assert(stage == MESA_SHADER_FRAGMENT);
assert(binding->binding == 0);
if (binding->index < subpass->color_count) {
const unsigned att = subpass->color_attachments[binding->index].attachment;
surface_state = cmd_buffer->state.attachments[att].color_rt_state;
} else {
surface_state = cmd_buffer->state.null_surface_state;
}
bt_map[bias + s] = surface_state.offset + state_offset;
continue;
}
struct anv_descriptor_set *set =
cmd_buffer->state.descriptors[binding->set];
uint32_t offset = set->layout->binding[binding->binding].descriptor_index;
struct anv_descriptor *desc = &set->descriptors[offset + binding->index];
switch (desc->type) {
case VK_DESCRIPTOR_TYPE_SAMPLER:
/* Nothing for us to do here */
continue;
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
surface_state = desc->aux_usage == ISL_AUX_USAGE_NONE ?
desc->image_view->no_aux_sampler_surface_state :
desc->image_view->sampler_surface_state;
assert(surface_state.alloc_size);
add_image_view_relocs(cmd_buffer, desc->image_view,
desc->aux_usage, surface_state);
break;
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
assert(stage == MESA_SHADER_FRAGMENT);
if (desc->image_view->aspect_mask != VK_IMAGE_ASPECT_COLOR_BIT) {
/* For depth and stencil input attachments, we treat it like any
* old texture that a user may have bound.
*/
surface_state = desc->aux_usage == ISL_AUX_USAGE_NONE ?
desc->image_view->no_aux_sampler_surface_state :
desc->image_view->sampler_surface_state;
assert(surface_state.alloc_size);
add_image_view_relocs(cmd_buffer, desc->image_view,
desc->aux_usage, surface_state);
} else {
/* For color input attachments, we create the surface state at
* vkBeginRenderPass time so that we can include aux and clear
* color information.
*/
assert(binding->input_attachment_index < subpass->input_count);
const unsigned subpass_att = binding->input_attachment_index;
const unsigned att = subpass->input_attachments[subpass_att].attachment;
surface_state = cmd_buffer->state.attachments[att].input_att_state;
}
break;
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
surface_state = (binding->write_only)
? desc->image_view->writeonly_storage_surface_state
: desc->image_view->storage_surface_state;
assert(surface_state.alloc_size);
add_image_view_relocs(cmd_buffer, desc->image_view,
desc->image_view->image->aux_usage,
surface_state);
struct brw_image_param *image_param =
&cmd_buffer->state.push_constants[stage]->images[image++];
*image_param = desc->image_view->storage_image_param;
image_param->surface_idx = bias + s;
break;
}
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
surface_state = desc->buffer_view->surface_state;
assert(surface_state.alloc_size);
add_surface_state_reloc(cmd_buffer, surface_state,
desc->buffer_view->bo,
desc->buffer_view->offset);
break;
anv: Use on-the-fly surface states for dynamic buffer descriptors We have a performance problem with dynamic buffer descriptors. Because we are currently implementing them by pushing an offset into the shader and adding that offset onto the already existing offset for the UBO/SSBO operation, all UBO/SSBO operations on dynamic descriptors are indirect. The back-end compiler implements indirect pull constant loads using what basically amounts to a texelFetch instruction. For pull constant loads with constant offsets, however, we use an oword block read message which goes through the constant cache and reads a whole cache line at a time. Because of these two things, direct pull constant loads are much faster than indirect pull constant loads. Because all loads from dynamically bound buffers are indirect, the user takes a substantial performance penalty when using this "performance" feature. There are two potential solutions I have seen for this problem. The alternate solution is to continue pushing offsets into the shader but wire things up in the back-end compiler so that we use the oword block read messages anyway. The only reason we can do this because we know a priori that the dynamic offsets are uniform and 16-byte aligned. Unfortunately, thanks to the 16-byte alignment requirement of the oword messages, we can't do some general "if the indirect offset is uniform, use an oword message" sort of thing. This solution, however, is recommended for a few of reasons: 1. Surface states are relatively cheap. We've been using on-the-fly surface state setup for some time in GL and it works well. Also, dynamic offsets with on-the-fly surface state should still be cheaper than allocating new descriptor sets every time you want to change a buffer offset which is really the only requirement of the dynamic offsets feature. 2. This requires substantially less compiler plumbing. Not only can we delete the entire apply_dynamic_offsets pass but we can also avoid having to add architecture for passing dynamic offsets to the back- end compiler in such a way that it can continue using oword messages. 3. We get robust buffer access range-checking for free. Because the offset and range are baked into the surface state, we no longer need to pass ranges around and do bounds-checking in the shader. 4. Once we finally get UBO pushing implemented, it will be much easier to handle pushing chunks of dynamic descriptors if the compiler remains blissfully unaware of dynamic descriptors. This commit improves performance of The Talos Principle on ULTRA settings by around 50% and brings it nicely into line with OpenGL performance. Reviewed-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
2017-03-04 17:23:26 +00:00
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
uint32_t dynamic_offset_idx =
pipeline->layout->set[binding->set].dynamic_offset_start +
set->layout->binding[binding->binding].dynamic_offset_index +
binding->index;
/* Compute the offset within the buffer */
uint64_t offset = desc->offset +
cmd_buffer->state.dynamic_offsets[dynamic_offset_idx];
/* Clamp to the buffer size */
offset = MIN2(offset, desc->buffer->size);
/* Clamp the range to the buffer size */
uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
surface_state =
anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
enum isl_format format =
anv_isl_format_for_descriptor_type(desc->type);
anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
format, offset, range, 1);
add_surface_state_reloc(cmd_buffer, surface_state,
desc->buffer->bo,
desc->buffer->offset + offset);
break;
}
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
surface_state = (binding->write_only)
? desc->buffer_view->writeonly_storage_surface_state
: desc->buffer_view->storage_surface_state;
assert(surface_state.alloc_size);
add_surface_state_reloc(cmd_buffer, surface_state,
desc->buffer_view->bo,
desc->buffer_view->offset);
struct brw_image_param *image_param =
&cmd_buffer->state.push_constants[stage]->images[image++];
*image_param = desc->buffer_view->storage_image_param;
image_param->surface_idx = bias + s;
break;
default:
assert(!"Invalid descriptor type");
continue;
}
bt_map[bias + s] = surface_state.offset + state_offset;
}
assert(image == map->image_count);
out:
anv_state_flush(cmd_buffer->device, *bt_state);
return VK_SUCCESS;
}
static VkResult
emit_samplers(struct anv_cmd_buffer *cmd_buffer,
gl_shader_stage stage,
struct anv_state *state)
{
struct anv_pipeline *pipeline;
if (stage == MESA_SHADER_COMPUTE)
pipeline = cmd_buffer->state.compute_pipeline;
else
pipeline = cmd_buffer->state.pipeline;
if (!anv_pipeline_has_stage(pipeline, stage)) {
*state = (struct anv_state) { 0, };
return VK_SUCCESS;
}
struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
if (map->sampler_count == 0) {
*state = (struct anv_state) { 0, };
return VK_SUCCESS;
}
uint32_t size = map->sampler_count * 16;
*state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
if (state->map == NULL)
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
for (uint32_t s = 0; s < map->sampler_count; s++) {
struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
struct anv_descriptor_set *set =
cmd_buffer->state.descriptors[binding->set];
uint32_t offset = set->layout->binding[binding->binding].descriptor_index;
struct anv_descriptor *desc = &set->descriptors[offset + binding->index];
if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
continue;
struct anv_sampler *sampler = desc->sampler;
/* This can happen if we have an unfilled slot since TYPE_SAMPLER
* happens to be zero.
*/
if (sampler == NULL)
continue;
memcpy(state->map + (s * 16),
sampler->state, sizeof(sampler->state));
}
anv_state_flush(cmd_buffer->device, *state);
return VK_SUCCESS;
}
static uint32_t
flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer)
{
VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty &
cmd_buffer->state.pipeline->active_stages;
VkResult result = VK_SUCCESS;
anv_foreach_stage(s, dirty) {
result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
if (result != VK_SUCCESS)
break;
result = emit_binding_table(cmd_buffer, s,
&cmd_buffer->state.binding_tables[s]);
if (result != VK_SUCCESS)
break;
}
if (result != VK_SUCCESS) {
assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
assert(result == VK_SUCCESS);
/* Re-emit state base addresses so we get the new surface state base
* address before we start emitting binding tables etc.
*/
genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
/* Re-emit all active binding tables */
dirty |= cmd_buffer->state.pipeline->active_stages;
anv_foreach_stage(s, dirty) {
result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
if (result != VK_SUCCESS)
return result;
result = emit_binding_table(cmd_buffer, s,
&cmd_buffer->state.binding_tables[s]);
if (result != VK_SUCCESS)
return result;
}
}
cmd_buffer->state.descriptors_dirty &= ~dirty;
return dirty;
}
static void
cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
uint32_t stages)
{
static const uint32_t sampler_state_opcodes[] = {
[MESA_SHADER_VERTEX] = 43,
[MESA_SHADER_TESS_CTRL] = 44, /* HS */
[MESA_SHADER_TESS_EVAL] = 45, /* DS */
[MESA_SHADER_GEOMETRY] = 46,
[MESA_SHADER_FRAGMENT] = 47,
[MESA_SHADER_COMPUTE] = 0,
};
static const uint32_t binding_table_opcodes[] = {
[MESA_SHADER_VERTEX] = 38,
[MESA_SHADER_TESS_CTRL] = 39,
[MESA_SHADER_TESS_EVAL] = 40,
[MESA_SHADER_GEOMETRY] = 41,
[MESA_SHADER_FRAGMENT] = 42,
[MESA_SHADER_COMPUTE] = 0,
};
anv_foreach_stage(s, stages) {
if (cmd_buffer->state.samplers[s].alloc_size > 0) {
anv_batch_emit(&cmd_buffer->batch,
GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
}
}
/* Always emit binding table pointers if we're asked to, since on SKL
* this is what flushes push constants. */
anv_batch_emit(&cmd_buffer->batch,
GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
btp._3DCommandSubOpcode = binding_table_opcodes[s];
btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
}
}
}
static uint32_t
cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer)
{
static const uint32_t push_constant_opcodes[] = {
[MESA_SHADER_VERTEX] = 21,
[MESA_SHADER_TESS_CTRL] = 25, /* HS */
[MESA_SHADER_TESS_EVAL] = 26, /* DS */
[MESA_SHADER_GEOMETRY] = 22,
[MESA_SHADER_FRAGMENT] = 23,
[MESA_SHADER_COMPUTE] = 0,
};
VkShaderStageFlags flushed = 0;
anv_foreach_stage(stage, cmd_buffer->state.push_constants_dirty) {
if (stage == MESA_SHADER_COMPUTE)
continue;
struct anv_state state = anv_cmd_buffer_push_constants(cmd_buffer, stage);
if (state.offset == 0) {
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c)
c._3DCommandSubOpcode = push_constant_opcodes[stage];
} else {
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
c._3DCommandSubOpcode = push_constant_opcodes[stage],
c.ConstantBody = (struct GENX(3DSTATE_CONSTANT_BODY)) {
#if GEN_GEN >= 9
.PointerToConstantBuffer2 = { &cmd_buffer->device->dynamic_state_block_pool.bo, state.offset },
.ConstantBuffer2ReadLength = DIV_ROUND_UP(state.alloc_size, 32),
#else
.PointerToConstantBuffer0 = { .offset = state.offset },
.ConstantBuffer0ReadLength = DIV_ROUND_UP(state.alloc_size, 32),
#endif
};
}
}
flushed |= mesa_to_vk_shader_stage(stage);
}
cmd_buffer->state.push_constants_dirty &= ~VK_SHADER_STAGE_ALL_GRAPHICS;
return flushed;
}
void
genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
uint32_t *p;
uint32_t vb_emit = cmd_buffer->state.vb_dirty & pipeline->vb_used;
assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
genX(flush_pipeline_select_3d)(cmd_buffer);
if (vb_emit) {
const uint32_t num_buffers = __builtin_popcount(vb_emit);
const uint32_t num_dwords = 1 + num_buffers * 4;
p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
GENX(3DSTATE_VERTEX_BUFFERS));
uint32_t vb, i = 0;
for_each_bit(vb, vb_emit) {
struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
struct GENX(VERTEX_BUFFER_STATE) state = {
.VertexBufferIndex = vb,
#if GEN_GEN >= 8
.MemoryObjectControlState = GENX(MOCS),
#else
.BufferAccessType = pipeline->instancing_enable[vb] ? INSTANCEDATA : VERTEXDATA,
.InstanceDataStepRate = 1,
.VertexBufferMemoryObjectControlState = GENX(MOCS),
#endif
.AddressModifyEnable = true,
.BufferPitch = pipeline->binding_stride[vb],
.BufferStartingAddress = { buffer->bo, buffer->offset + offset },
#if GEN_GEN >= 8
.BufferSize = buffer->size - offset
#else
.EndAddress = { buffer->bo, buffer->offset + buffer->size - 1},
#endif
};
GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
i++;
}
}
cmd_buffer->state.vb_dirty &= ~vb_emit;
if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_PIPELINE) {
anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
/* The exact descriptor layout is pulled from the pipeline, so we need
* to re-emit binding tables on every pipeline change.
*/
cmd_buffer->state.descriptors_dirty |=
cmd_buffer->state.pipeline->active_stages;
/* If the pipeline changed, we may need to re-allocate push constant
* space in the URB.
*/
cmd_buffer_alloc_push_constants(cmd_buffer);
}
#if GEN_GEN <= 7
if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
/* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
*
* "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
* stall needs to be sent just prior to any 3DSTATE_VS,
* 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
* 3DSTATE_BINDING_TABLE_POINTER_VS,
* 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one
* PIPE_CONTROL needs to be sent before any combination of VS
* associated 3DSTATE."
*/
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.DepthStallEnable = true;
pc.PostSyncOperation = WriteImmediateData;
pc.Address =
(struct anv_address) { &cmd_buffer->device->workaround_bo, 0 };
}
}
#endif
/* Render targets live in the same binding table as fragment descriptors */
if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
/* We emit the binding tables and sampler tables first, then emit push
* constants and then finally emit binding table and sampler table
* pointers. It has to happen in this order, since emitting the binding
* tables may change the push constants (in case of storage images). After
* emitting push constants, on SKL+ we have to emit the corresponding
* 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
*/
uint32_t dirty = 0;
if (cmd_buffer->state.descriptors_dirty)
dirty = flush_descriptor_sets(cmd_buffer);
if (cmd_buffer->state.push_constants_dirty) {
#if GEN_GEN >= 9
/* On Sky Lake and later, the binding table pointers commands are
* what actually flush the changes to push constant state so we need
* to dirty them so they get re-emitted below.
*/
dirty |= cmd_buffer_flush_push_constants(cmd_buffer);
#else
cmd_buffer_flush_push_constants(cmd_buffer);
#endif
}
if (dirty)
cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
gen8_cmd_buffer_emit_viewport(cmd_buffer);
if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
ANV_CMD_DIRTY_PIPELINE)) {
gen8_cmd_buffer_emit_depth_viewport(cmd_buffer,
pipeline->depth_clamp_enable);
}
if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_DYNAMIC_SCISSOR)
gen7_cmd_buffer_emit_scissor(cmd_buffer);
genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
}
static void
emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
struct anv_bo *bo, uint32_t offset,
uint32_t size, uint32_t index)
{
uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
GENX(3DSTATE_VERTEX_BUFFERS));
GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
&(struct GENX(VERTEX_BUFFER_STATE)) {
.VertexBufferIndex = index,
.AddressModifyEnable = true,
.BufferPitch = 0,
#if (GEN_GEN >= 8)
.MemoryObjectControlState = GENX(MOCS),
.BufferStartingAddress = { bo, offset },
.BufferSize = size
#else
.VertexBufferMemoryObjectControlState = GENX(MOCS),
.BufferStartingAddress = { bo, offset },
.EndAddress = { bo, offset + size },
#endif
});
}
static void
emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
struct anv_bo *bo, uint32_t offset)
{
emit_vertex_bo(cmd_buffer, bo, offset, 8, ANV_SVGS_VB_INDEX);
}
static void
emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
uint32_t base_vertex, uint32_t base_instance)
{
struct anv_state id_state =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
((uint32_t *)id_state.map)[0] = base_vertex;
((uint32_t *)id_state.map)[1] = base_instance;
anv_state_flush(cmd_buffer->device, id_state);
emit_base_vertex_instance_bo(cmd_buffer,
&cmd_buffer->device->dynamic_state_block_pool.bo, id_state.offset);
}
static void
emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
{
struct anv_state state =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
((uint32_t *)state.map)[0] = draw_index;
anv_state_flush(cmd_buffer->device, state);
emit_vertex_bo(cmd_buffer,
&cmd_buffer->device->dynamic_state_block_pool.bo,
state.offset, 4, ANV_DRAWID_VB_INDEX);
}
void genX(CmdDraw)(
VkCommandBuffer commandBuffer,
uint32_t vertexCount,
uint32_t instanceCount,
uint32_t firstVertex,
uint32_t firstInstance)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
genX(cmd_buffer_flush_state)(cmd_buffer);
if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
if (vs_prog_data->uses_drawid)
emit_draw_index(cmd_buffer, 0);
anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
prim.VertexAccessType = SEQUENTIAL;
prim.PrimitiveTopologyType = pipeline->topology;
prim.VertexCountPerInstance = vertexCount;
prim.StartVertexLocation = firstVertex;
prim.InstanceCount = instanceCount;
prim.StartInstanceLocation = firstInstance;
prim.BaseVertexLocation = 0;
}
}
void genX(CmdDrawIndexed)(
VkCommandBuffer commandBuffer,
uint32_t indexCount,
uint32_t instanceCount,
uint32_t firstIndex,
int32_t vertexOffset,
uint32_t firstInstance)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
genX(cmd_buffer_flush_state)(cmd_buffer);
if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
if (vs_prog_data->uses_drawid)
emit_draw_index(cmd_buffer, 0);
anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
prim.VertexAccessType = RANDOM;
prim.PrimitiveTopologyType = pipeline->topology;
prim.VertexCountPerInstance = indexCount;
prim.StartVertexLocation = firstIndex;
prim.InstanceCount = instanceCount;
prim.StartInstanceLocation = firstInstance;
prim.BaseVertexLocation = vertexOffset;
}
}
/* Auto-Draw / Indirect Registers */
#define GEN7_3DPRIM_END_OFFSET 0x2420
#define GEN7_3DPRIM_START_VERTEX 0x2430
#define GEN7_3DPRIM_VERTEX_COUNT 0x2434
#define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
#define GEN7_3DPRIM_START_INSTANCE 0x243C
#define GEN7_3DPRIM_BASE_VERTEX 0x2440
void genX(CmdDrawIndirect)(
VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
uint32_t drawCount,
uint32_t stride)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
struct anv_bo *bo = buffer->bo;
uint32_t bo_offset = buffer->offset + offset;
genX(cmd_buffer_flush_state)(cmd_buffer);
if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 8);
if (vs_prog_data->uses_drawid)
emit_draw_index(cmd_buffer, 0);
emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 12);
emit_lri(&cmd_buffer->batch, GEN7_3DPRIM_BASE_VERTEX, 0);
anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
prim.IndirectParameterEnable = true;
prim.VertexAccessType = SEQUENTIAL;
prim.PrimitiveTopologyType = pipeline->topology;
}
}
void genX(CmdDrawIndexedIndirect)(
VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
uint32_t drawCount,
uint32_t stride)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
struct anv_bo *bo = buffer->bo;
uint32_t bo_offset = buffer->offset + offset;
genX(cmd_buffer_flush_state)(cmd_buffer);
/* TODO: We need to stomp base vertex to 0 somehow */
if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 12);
if (vs_prog_data->uses_drawid)
emit_draw_index(cmd_buffer, 0);
emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_BASE_VERTEX, bo, bo_offset + 12);
emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 16);
anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
prim.IndirectParameterEnable = true;
prim.VertexAccessType = RANDOM;
prim.PrimitiveTopologyType = pipeline->topology;
}
}
static VkResult
flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
struct anv_state surfaces = { 0, }, samplers = { 0, };
VkResult result;
result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
if (result != VK_SUCCESS) {
assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
assert(result == VK_SUCCESS);
/* Re-emit state base addresses so we get the new surface state base
* address before we start emitting binding tables etc.
*/
genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
assert(result == VK_SUCCESS);
}
result = emit_samplers(cmd_buffer, MESA_SHADER_COMPUTE, &samplers);
assert(result == VK_SUCCESS);
uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
.BindingTablePointer = surfaces.offset,
.SamplerStatePointer = samplers.offset,
};
GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
struct anv_state state =
anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
pipeline->interface_descriptor_data,
GENX(INTERFACE_DESCRIPTOR_DATA_length),
64);
uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
anv_batch_emit(&cmd_buffer->batch,
GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
mid.InterfaceDescriptorTotalLength = size;
mid.InterfaceDescriptorDataStartAddress = state.offset;
}
return VK_SUCCESS;
}
void
genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
MAYBE_UNUSED VkResult result;
assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
genX(flush_pipeline_select_gpgpu)(cmd_buffer);
if (cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE) {
/* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
*
* "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
* the only bits that are changed are scoreboard related: Scoreboard
* Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
* these scoreboard related states, a MEDIA_STATE_FLUSH is
* sufficient."
*/
cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
}
if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
(cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE)) {
/* FIXME: figure out descriptors for gen7 */
result = flush_compute_descriptor_set(cmd_buffer);
assert(result == VK_SUCCESS);
cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
}
if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
struct anv_state push_state =
anv_cmd_buffer_cs_push_constants(cmd_buffer);
if (push_state.alloc_size) {
anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
curbe.CURBETotalDataLength = push_state.alloc_size;
curbe.CURBEDataStartAddress = push_state.offset;
}
}
}
cmd_buffer->state.compute_dirty = 0;
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
}
#if GEN_GEN == 7
static VkResult
verify_cmd_parser(const struct anv_device *device,
int required_version,
const char *function)
{
if (device->instance->physicalDevice.cmd_parser_version < required_version) {
return vk_errorf(VK_ERROR_FEATURE_NOT_PRESENT,
"cmd parser version %d is required for %s",
required_version, function);
} else {
return VK_SUCCESS;
}
}
#endif
void genX(CmdDispatch)(
VkCommandBuffer commandBuffer,
uint32_t x,
uint32_t y,
uint32_t z)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
if (prog_data->uses_num_work_groups) {
struct anv_state state =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
uint32_t *sizes = state.map;
sizes[0] = x;
sizes[1] = y;
sizes[2] = z;
anv_state_flush(cmd_buffer->device, state);
cmd_buffer->state.num_workgroups_offset = state.offset;
cmd_buffer->state.num_workgroups_bo =
&cmd_buffer->device->dynamic_state_block_pool.bo;
}
genX(cmd_buffer_flush_compute_state)(cmd_buffer);
anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
ggw.SIMDSize = prog_data->simd_size / 16;
ggw.ThreadDepthCounterMaximum = 0;
ggw.ThreadHeightCounterMaximum = 0;
ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
ggw.ThreadGroupIDXDimension = x;
ggw.ThreadGroupIDYDimension = y;
ggw.ThreadGroupIDZDimension = z;
ggw.RightExecutionMask = pipeline->cs_right_mask;
ggw.BottomExecutionMask = 0xffffffff;
}
anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
}
#define GPGPU_DISPATCHDIMX 0x2500
#define GPGPU_DISPATCHDIMY 0x2504
#define GPGPU_DISPATCHDIMZ 0x2508
#define MI_PREDICATE_SRC0 0x2400
#define MI_PREDICATE_SRC1 0x2408
void genX(CmdDispatchIndirect)(
VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
struct anv_bo *bo = buffer->bo;
uint32_t bo_offset = buffer->offset + offset;
struct anv_batch *batch = &cmd_buffer->batch;
#if GEN_GEN == 7
/* Linux 4.4 added command parser version 5 which allows the GPGPU
* indirect dispatch registers to be written.
*/
if (verify_cmd_parser(cmd_buffer->device, 5,
"vkCmdDispatchIndirect") != VK_SUCCESS)
return;
#endif
if (prog_data->uses_num_work_groups) {
cmd_buffer->state.num_workgroups_offset = bo_offset;
cmd_buffer->state.num_workgroups_bo = bo;
}
genX(cmd_buffer_flush_compute_state)(cmd_buffer);
emit_lrm(batch, GPGPU_DISPATCHDIMX, bo, bo_offset);
emit_lrm(batch, GPGPU_DISPATCHDIMY, bo, bo_offset + 4);
emit_lrm(batch, GPGPU_DISPATCHDIMZ, bo, bo_offset + 8);
#if GEN_GEN <= 7
/* Clear upper 32-bits of SRC0 and all 64-bits of SRC1 */
emit_lri(batch, MI_PREDICATE_SRC0 + 4, 0);
emit_lri(batch, MI_PREDICATE_SRC1 + 0, 0);
emit_lri(batch, MI_PREDICATE_SRC1 + 4, 0);
/* Load compute_dispatch_indirect_x_size into SRC0 */
emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 0);
/* predicate = (compute_dispatch_indirect_x_size == 0); */
anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
mip.LoadOperation = LOAD_LOAD;
mip.CombineOperation = COMBINE_SET;
mip.CompareOperation = COMPARE_SRCS_EQUAL;
}
/* Load compute_dispatch_indirect_y_size into SRC0 */
emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 4);
/* predicate |= (compute_dispatch_indirect_y_size == 0); */
anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
mip.LoadOperation = LOAD_LOAD;
mip.CombineOperation = COMBINE_OR;
mip.CompareOperation = COMPARE_SRCS_EQUAL;
}
/* Load compute_dispatch_indirect_z_size into SRC0 */
emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 8);
/* predicate |= (compute_dispatch_indirect_z_size == 0); */
anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
mip.LoadOperation = LOAD_LOAD;
mip.CombineOperation = COMBINE_OR;
mip.CompareOperation = COMPARE_SRCS_EQUAL;
}
/* predicate = !predicate; */
#define COMPARE_FALSE 1
anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
mip.LoadOperation = LOAD_LOADINV;
mip.CombineOperation = COMBINE_OR;
mip.CompareOperation = COMPARE_FALSE;
}
#endif
anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
ggw.IndirectParameterEnable = true;
ggw.PredicateEnable = GEN_GEN <= 7;
ggw.SIMDSize = prog_data->simd_size / 16;
ggw.ThreadDepthCounterMaximum = 0;
ggw.ThreadHeightCounterMaximum = 0;
ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
ggw.RightExecutionMask = pipeline->cs_right_mask;
ggw.BottomExecutionMask = 0xffffffff;
}
anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf);
}
static void
flush_pipeline_before_pipeline_select(struct anv_cmd_buffer *cmd_buffer,
uint32_t pipeline)
{
#if GEN_GEN >= 8 && GEN_GEN < 10
/* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
*
* Software must clear the COLOR_CALC_STATE Valid field in
* 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
* with Pipeline Select set to GPGPU.
*
* The internal hardware docs recommend the same workaround for Gen9
* hardware too.
*/
if (pipeline == GPGPU)
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
#elif GEN_GEN <= 7
/* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
* PIPELINE_SELECT [DevBWR+]":
*
* Project: DEVSNB+
*
* Software must ensure all the write caches are flushed through a
* stalling PIPE_CONTROL command followed by another PIPE_CONTROL
* command to invalidate read only caches prior to programming
* MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
*/
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.RenderTargetCacheFlushEnable = true;
pc.DepthCacheFlushEnable = true;
pc.DCFlushEnable = true;
pc.PostSyncOperation = NoWrite;
pc.CommandStreamerStallEnable = true;
}
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.TextureCacheInvalidationEnable = true;
pc.ConstantCacheInvalidationEnable = true;
pc.StateCacheInvalidationEnable = true;
pc.InstructionCacheInvalidateEnable = true;
pc.PostSyncOperation = NoWrite;
}
#endif
}
void
genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
{
if (cmd_buffer->state.current_pipeline != _3D) {
flush_pipeline_before_pipeline_select(cmd_buffer, _3D);
anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
#if GEN_GEN >= 9
ps.MaskBits = 3;
#endif
ps.PipelineSelection = _3D;
}
cmd_buffer->state.current_pipeline = _3D;
}
}
void
genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
{
if (cmd_buffer->state.current_pipeline != GPGPU) {
flush_pipeline_before_pipeline_select(cmd_buffer, GPGPU);
anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
#if GEN_GEN >= 9
ps.MaskBits = 3;
#endif
ps.PipelineSelection = GPGPU;
}
cmd_buffer->state.current_pipeline = GPGPU;
}
}
void
genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
{
if (GEN_GEN >= 8)
return;
/* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
*
* "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
* combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
* 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
* issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
* set), followed by a pipelined depth cache flush (PIPE_CONTROL with
* Depth Flush Bit set, followed by another pipelined depth stall
* (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
* guarantee that the pipeline from WM onwards is already flushed (e.g.,
* via a preceding MI_FLUSH)."
*/
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
pipe.DepthStallEnable = true;
}
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
pipe.DepthCacheFlushEnable = true;
}
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
pipe.DepthStallEnable = true;
}
}
static uint32_t
depth_stencil_surface_type(enum isl_surf_dim dim)
{
switch (dim) {
case ISL_SURF_DIM_1D:
if (GEN_GEN >= 9) {
/* From the Sky Lake PRM, 3DSTATAE_DEPTH_BUFFER::SurfaceType
*
* Programming Notes:
* The Surface Type of the depth buffer must be the same as the
* Surface Type of the render target(s) (defined in
* SURFACE_STATE), unless either the depth buffer or render
* targets are SURFTYPE_NULL (see exception below for SKL). 1D
* surface type not allowed for depth surface and stencil surface.
*
* Workaround:
* If depth/stencil is enabled with 1D render target,
* depth/stencil surface type needs to be set to 2D surface type
* and height set to 1. Depth will use (legacy) TileY and stencil
* will use TileW. For this case only, the Surface Type of the
* depth buffer can be 2D while the Surface Type of the render
* target(s) are 1D, representing an exception to a programming
* note above.
*/
return SURFTYPE_2D;
} else {
return SURFTYPE_1D;
}
case ISL_SURF_DIM_2D:
return SURFTYPE_2D;
case ISL_SURF_DIM_3D:
if (GEN_GEN >= 9) {
/* The Sky Lake docs list the value for 3D as "Reserved". However,
* they have the exact same layout as 2D arrays on gen9+, so we can
* just use 2D here.
*/
return SURFTYPE_2D;
} else {
return SURFTYPE_3D;
}
default:
unreachable("Invalid surface dimension");
}
}
static void
cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_device *device = cmd_buffer->device;
const struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
const struct anv_image_view *iview =
anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
const struct anv_image *image = iview ? iview->image : NULL;
const bool has_depth = image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT);
const uint32_t ds = cmd_buffer->state.subpass->depth_stencil_attachment.attachment;
const bool has_hiz = image != NULL &&
cmd_buffer->state.attachments[ds].aux_usage == ISL_AUX_USAGE_HIZ;
const bool has_stencil =
image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT);
cmd_buffer->state.hiz_enabled = has_hiz;
/* FIXME: Width and Height are wrong */
genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer);
/* Emit 3DSTATE_DEPTH_BUFFER */
if (has_depth) {
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_DEPTH_BUFFER), db) {
db.SurfaceType =
depth_stencil_surface_type(image->depth_surface.isl.dim);
db.DepthWriteEnable = true;
db.StencilWriteEnable = has_stencil;
db.HierarchicalDepthBufferEnable = has_hiz;
db.SurfaceFormat = isl_surf_get_depth_format(&device->isl_dev,
&image->depth_surface.isl);
db.SurfaceBaseAddress = (struct anv_address) {
.bo = image->bo,
.offset = image->offset + image->depth_surface.offset,
};
db.DepthBufferObjectControlState = GENX(MOCS);
db.SurfacePitch = image->depth_surface.isl.row_pitch - 1;
db.Height = image->extent.height - 1;
db.Width = image->extent.width - 1;
db.LOD = iview->isl.base_level;
db.MinimumArrayElement = iview->isl.base_array_layer;
assert(image->depth_surface.isl.dim != ISL_SURF_DIM_3D);
db.Depth =
db.RenderTargetViewExtent = iview->isl.array_len - 1;
#if GEN_GEN >= 8
db.SurfaceQPitch =
isl_surf_get_array_pitch_el_rows(&image->depth_surface.isl) >> 2;
#endif
}
} else {
/* Even when no depth buffer is present, the hardware requires that
* 3DSTATE_DEPTH_BUFFER be programmed correctly. The Broadwell PRM says:
*
* If a null depth buffer is bound, the driver must instead bind depth as:
* 3DSTATE_DEPTH.SurfaceType = SURFTYPE_2D
* 3DSTATE_DEPTH.Width = 1
* 3DSTATE_DEPTH.Height = 1
* 3DSTATE_DEPTH.SuraceFormat = D16_UNORM
* 3DSTATE_DEPTH.SurfaceBaseAddress = 0
* 3DSTATE_DEPTH.HierarchicalDepthBufferEnable = 0
* 3DSTATE_WM_DEPTH_STENCIL.DepthTestEnable = 0
* 3DSTATE_WM_DEPTH_STENCIL.DepthBufferWriteEnable = 0
*
* The PRM is wrong, though. The width and height must be programmed to
* actual framebuffer's width and height, even when neither depth buffer
* nor stencil buffer is present. Also, D16_UNORM is not allowed to
* be combined with a stencil buffer so we use D32_FLOAT instead.
*/
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_DEPTH_BUFFER), db) {
if (has_stencil) {
db.SurfaceType =
depth_stencil_surface_type(image->stencil_surface.isl.dim);
} else {
db.SurfaceType = SURFTYPE_2D;
}
db.SurfaceFormat = D32_FLOAT;
db.Width = MAX2(fb->width, 1) - 1;
db.Height = MAX2(fb->height, 1) - 1;
db.StencilWriteEnable = has_stencil;
}
}
if (has_hiz) {
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_HIER_DEPTH_BUFFER), hdb) {
hdb.HierarchicalDepthBufferObjectControlState = GENX(MOCS);
hdb.SurfacePitch = image->aux_surface.isl.row_pitch - 1;
hdb.SurfaceBaseAddress = (struct anv_address) {
.bo = image->bo,
.offset = image->offset + image->aux_surface.offset,
};
#if GEN_GEN >= 8
/* From the SKL PRM Vol2a:
*
* The interpretation of this field is dependent on Surface Type
* as follows:
* - SURFTYPE_1D: distance in pixels between array slices
* - SURFTYPE_2D/CUBE: distance in rows between array slices
* - SURFTYPE_3D: distance in rows between R - slices
*
* Unfortunately, the docs aren't 100% accurate here. They fail to
* mention that the 1-D rule only applies to linear 1-D images.
* Since depth and HiZ buffers are always tiled, they are treated as
* 2-D images. Prior to Sky Lake, this field is always in rows.
*/
hdb.SurfaceQPitch =
isl_surf_get_array_pitch_sa_rows(&image->aux_surface.isl) >> 2;
#endif
}
} else {
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_HIER_DEPTH_BUFFER), hdb);
}
/* Emit 3DSTATE_STENCIL_BUFFER */
if (has_stencil) {
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_STENCIL_BUFFER), sb) {
#if GEN_GEN >= 8 || GEN_IS_HASWELL
sb.StencilBufferEnable = true;
#endif
sb.StencilBufferObjectControlState = GENX(MOCS);
sb.SurfacePitch = image->stencil_surface.isl.row_pitch - 1;
#if GEN_GEN >= 8
sb.SurfaceQPitch = isl_surf_get_array_pitch_el_rows(&image->stencil_surface.isl) >> 2;
#endif
sb.SurfaceBaseAddress = (struct anv_address) {
.bo = image->bo,
.offset = image->offset + image->stencil_surface.offset,
};
}
} else {
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_STENCIL_BUFFER), sb);
}
/* From the IVB PRM Vol2P1, 11.5.5.4 3DSTATE_CLEAR_PARAMS:
*
* 3DSTATE_CLEAR_PARAMS must always be programmed in the along with
* the other Depth/Stencil state commands(i.e. 3DSTATE_DEPTH_BUFFER,
* 3DSTATE_STENCIL_BUFFER, or 3DSTATE_HIER_DEPTH_BUFFER)
*
* Testing also shows that some variant of this restriction may exist HSW+.
* On BDW+, it is not possible to emit 2 of these packets consecutively when
* both have DepthClearValueValid set. An analysis of such state programming
* on SKL showed that the GPU doesn't register the latter packet's clear
* value.
*/
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CLEAR_PARAMS), cp) {
if (has_hiz) {
cp.DepthClearValueValid = true;
cp.DepthClearValue = ANV_HZ_FC_VAL;
}
}
}
/**
* @brief Perform any layout transitions required at the beginning and/or end
* of the current subpass for depth buffers.
*
* TODO: Consider preprocessing the attachment reference array at render pass
* create time to determine if no layout transition is needed at the
* beginning and/or end of each subpass.
*
* @param cmd_buffer The command buffer the transition is happening within.
* @param subpass_end If true, marks that the transition is happening at the
* end of the subpass.
*/
static void
cmd_buffer_subpass_transition_layouts(struct anv_cmd_buffer * const cmd_buffer,
const bool subpass_end)
{
/* We need a non-NULL command buffer. */
assert(cmd_buffer);
const struct anv_cmd_state * const cmd_state = &cmd_buffer->state;
const struct anv_subpass * const subpass = cmd_state->subpass;
/* This function must be called within a subpass. */
assert(subpass);
/* If there are attachment references, the array shouldn't be NULL.
*/
if (subpass->attachment_count > 0)
assert(subpass->attachments);
/* Iterate over the array of attachment references. */
for (const VkAttachmentReference *att_ref = subpass->attachments;
att_ref < subpass->attachments + subpass->attachment_count; att_ref++) {
/* If the attachment is unused, we can't perform a layout transition. */
if (att_ref->attachment == VK_ATTACHMENT_UNUSED)
continue;
/* This attachment index shouldn't go out of bounds. */
assert(att_ref->attachment < cmd_state->pass->attachment_count);
const struct anv_render_pass_attachment * const att_desc =
&cmd_state->pass->attachments[att_ref->attachment];
struct anv_attachment_state * const att_state =
&cmd_buffer->state.attachments[att_ref->attachment];
/* The attachment should not be used in a subpass after its last. */
assert(att_desc->last_subpass_idx >= anv_get_subpass_id(cmd_state));
if (subpass_end && anv_get_subpass_id(cmd_state) <
att_desc->last_subpass_idx) {
/* We're calling this function on a buffer twice in one subpass and
* this is not the last use of the buffer. The layout should not have
* changed from the first call and no transition is necessary.
*/
assert(att_ref->layout == att_state->current_layout);
continue;
}
/* Get the appropriate target layout for this attachment. */
const VkImageLayout target_layout = subpass_end ?
att_desc->final_layout : att_ref->layout;
/* The attachment index must be less than the number of attachments
* within the framebuffer.
*/
assert(att_ref->attachment < cmd_state->framebuffer->attachment_count);
const struct anv_image * const image =
cmd_state->framebuffer->attachments[att_ref->attachment]->image;
/* Perform the layout transition. */
if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
transition_depth_buffer(cmd_buffer, image,
att_state->current_layout, target_layout);
att_state->aux_usage =
anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
image->aspects, target_layout);
}
att_state->current_layout = target_layout;
}
}
static void
genX(cmd_buffer_set_subpass)(struct anv_cmd_buffer *cmd_buffer,
struct anv_subpass *subpass)
{
cmd_buffer->state.subpass = subpass;
cmd_buffer->state.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
/* Perform transitions to the subpass layout before any writes have
* occurred.
*/
cmd_buffer_subpass_transition_layouts(cmd_buffer, false);
cmd_buffer_emit_depth_stencil(cmd_buffer);
anv_cmd_buffer_clear_subpass(cmd_buffer);
}
void genX(CmdBeginRenderPass)(
VkCommandBuffer commandBuffer,
const VkRenderPassBeginInfo* pRenderPassBegin,
VkSubpassContents contents)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
cmd_buffer->state.framebuffer = framebuffer;
cmd_buffer->state.pass = pass;
cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, pRenderPassBegin);
genX(flush_pipeline_select_3d)(cmd_buffer);
genX(cmd_buffer_set_subpass)(cmd_buffer, pass->subpasses);
}
void genX(CmdNextSubpass)(
VkCommandBuffer commandBuffer,
VkSubpassContents contents)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
anv_cmd_buffer_resolve_subpass(cmd_buffer);
/* Perform transitions to the final layout after all writes have occurred.
*/
cmd_buffer_subpass_transition_layouts(cmd_buffer, true);
genX(cmd_buffer_set_subpass)(cmd_buffer, cmd_buffer->state.subpass + 1);
}
void genX(CmdEndRenderPass)(
VkCommandBuffer commandBuffer)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
anv_cmd_buffer_resolve_subpass(cmd_buffer);
/* Perform transitions to the final layout after all writes have occurred.
*/
cmd_buffer_subpass_transition_layouts(cmd_buffer, true);
cmd_buffer->state.hiz_enabled = false;
#ifndef NDEBUG
anv_dump_add_framebuffer(cmd_buffer, cmd_buffer->state.framebuffer);
#endif
/* Remove references to render pass specific state. This enables us to
* detect whether or not we're in a renderpass.
*/
cmd_buffer->state.framebuffer = NULL;
cmd_buffer->state.pass = NULL;
cmd_buffer->state.subpass = NULL;
}