mesa/src/intel/vulkan/genX_cmd_buffer.c

718 lines
28 KiB
C
Raw Normal View History

/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include "anv_private.h"
#if (ANV_GEN == 9)
# include "genxml/gen9_pack.h"
#elif (ANV_GEN == 8)
# include "genxml/gen8_pack.h"
#elif (ANV_IS_HASWELL)
# include "genxml/gen75_pack.h"
#elif (ANV_GEN == 7)
# include "genxml/gen7_pack.h"
#endif
void
genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_device *device = cmd_buffer->device;
struct anv_bo *scratch_bo = NULL;
cmd_buffer->state.scratch_size =
anv_block_pool_size(&device->scratch_block_pool);
if (cmd_buffer->state.scratch_size > 0)
scratch_bo = &device->scratch_block_pool.bo;
/* XXX: Do we need this on more than just BDW? */
#if (ANV_GEN >= 8)
/* Emit a render target cache flush.
*
* This isn't documented anywhere in the PRM. However, it seems to be
* necessary prior to changing the surface state base adress. Without
* this, we get GPU hangs when using multi-level command buffers which
* clear depth, reset state base address, and then go render stuff.
*/
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL),
.RenderTargetCacheFlushEnable = true);
#endif
anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS),
.GeneralStateBaseAddress = { scratch_bo, 0 },
.GeneralStateMemoryObjectControlState = GENX(MOCS),
.GeneralStateBaseAddressModifyEnable = true,
.SurfaceStateBaseAddress = anv_cmd_buffer_surface_base_address(cmd_buffer),
.SurfaceStateMemoryObjectControlState = GENX(MOCS),
.SurfaceStateBaseAddressModifyEnable = true,
.DynamicStateBaseAddress = { &device->dynamic_state_block_pool.bo, 0 },
.DynamicStateMemoryObjectControlState = GENX(MOCS),
.DynamicStateBaseAddressModifyEnable = true,
.IndirectObjectBaseAddress = { NULL, 0 },
.IndirectObjectMemoryObjectControlState = GENX(MOCS),
.IndirectObjectBaseAddressModifyEnable = true,
.InstructionBaseAddress = { &device->instruction_block_pool.bo, 0 },
.InstructionMemoryObjectControlState = GENX(MOCS),
.InstructionBaseAddressModifyEnable = true,
# if (ANV_GEN >= 8)
/* Broadwell requires that we specify a buffer size for a bunch of
* these fields. However, since we will be growing the BO's live, we
* just set them all to the maximum.
*/
.GeneralStateBufferSize = 0xfffff,
.GeneralStateBufferSizeModifyEnable = true,
.DynamicStateBufferSize = 0xfffff,
.DynamicStateBufferSizeModifyEnable = true,
.IndirectObjectBufferSize = 0xfffff,
.IndirectObjectBufferSizeModifyEnable = true,
.InstructionBufferSize = 0xfffff,
.InstructionBuffersizeModifyEnable = true,
# endif
);
/* After re-setting the surface state base address, we have to do some
* cache flusing so that the sampler engine will pick up the new
* SURFACE_STATE objects and binding tables. From the Broadwell PRM,
* Shared Function > 3D Sampler > State > State Caching (page 96):
*
* Coherency with system memory in the state cache, like the texture
* cache is handled partially by software. It is expected that the
* command stream or shader will issue Cache Flush operation or
* Cache_Flush sampler message to ensure that the L1 cache remains
* coherent with system memory.
*
* [...]
*
* Whenever the value of the Dynamic_State_Base_Addr,
* Surface_State_Base_Addr are altered, the L1 state cache must be
* invalidated to ensure the new surface or sampler state is fetched
* from system memory.
*
* The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
* which, according the PIPE_CONTROL instruction documentation in the
* Broadwell PRM:
*
* Setting this bit is independent of any other bit in this packet.
* This bit controls the invalidation of the L1 and L2 state caches
* at the top of the pipe i.e. at the parsing time.
*
* Unfortunately, experimentation seems to indicate that state cache
* invalidation through a PIPE_CONTROL does nothing whatsoever in
* regards to surface state and binding tables. In stead, it seems that
* invalidating the texture cache is what is actually needed.
*
* XXX: As far as we have been able to determine through
* experimentation, shows that flush the texture cache appears to be
* sufficient. The theory here is that all of the sampling/rendering
* units cache the binding table in the texture cache. However, we have
* yet to be able to actually confirm this.
*/
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL),
.TextureCacheInvalidationEnable = true);
}
void genX(CmdPipelineBarrier)(
VkCommandBuffer commandBuffer,
VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags destStageMask,
VkBool32 byRegion,
2016-01-14 16:09:39 +00:00
uint32_t memoryBarrierCount,
const VkMemoryBarrier* pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier* pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier* pImageMemoryBarriers)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
uint32_t b, *dw;
/* XXX: Right now, we're really dumb and just flush whatever categories
* the app asks for. One of these days we may make this a bit better
* but right now that's all the hardware allows for in most areas.
*/
VkAccessFlags src_flags = 0;
VkAccessFlags dst_flags = 0;
2016-01-14 16:09:39 +00:00
for (uint32_t i = 0; i < memoryBarrierCount; i++) {
src_flags |= pMemoryBarriers[i].srcAccessMask;
dst_flags |= pMemoryBarriers[i].dstAccessMask;
}
for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
}
for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
src_flags |= pImageMemoryBarriers[i].srcAccessMask;
dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
}
/* Mask out the Source access flags we care about */
const uint32_t src_mask =
VK_ACCESS_SHADER_WRITE_BIT |
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
VK_ACCESS_TRANSFER_WRITE_BIT;
src_flags = src_flags & src_mask;
/* Mask out the destination access flags we care about */
const uint32_t dst_mask =
VK_ACCESS_INDIRECT_COMMAND_READ_BIT |
VK_ACCESS_INDEX_READ_BIT |
VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT |
VK_ACCESS_UNIFORM_READ_BIT |
VK_ACCESS_SHADER_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
VK_ACCESS_TRANSFER_READ_BIT;
dst_flags = dst_flags & dst_mask;
/* The src flags represent how things were used previously. This is
* what we use for doing flushes.
*/
struct GENX(PIPE_CONTROL) flush_cmd = {
GENX(PIPE_CONTROL_header),
.PostSyncOperation = NoWrite,
};
for_each_bit(b, src_flags) {
switch ((VkAccessFlagBits)(1 << b)) {
case VK_ACCESS_SHADER_WRITE_BIT:
flush_cmd.DCFlushEnable = true;
break;
case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
flush_cmd.RenderTargetCacheFlushEnable = true;
break;
case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
flush_cmd.DepthCacheFlushEnable = true;
break;
case VK_ACCESS_TRANSFER_WRITE_BIT:
flush_cmd.RenderTargetCacheFlushEnable = true;
flush_cmd.DepthCacheFlushEnable = true;
break;
default:
unreachable("should've masked this out by now");
}
}
/* If we end up doing two PIPE_CONTROLs, the first, flusing one also has to
* stall and wait for the flushing to finish, so we don't re-dirty the
* caches with in-flight rendering after the second PIPE_CONTROL
* invalidates.
*/
if (dst_flags)
flush_cmd.CommandStreamerStallEnable = true;
if (src_flags && dst_flags) {
dw = anv_batch_emit_dwords(&cmd_buffer->batch, GENX(PIPE_CONTROL_length));
GENX(PIPE_CONTROL_pack)(&cmd_buffer->batch, dw, &flush_cmd);
}
/* The dst flags represent how things will be used in the future. This
* is what we use for doing cache invalidations.
*/
struct GENX(PIPE_CONTROL) invalidate_cmd = {
GENX(PIPE_CONTROL_header),
.PostSyncOperation = NoWrite,
};
for_each_bit(b, dst_flags) {
switch ((VkAccessFlagBits)(1 << b)) {
case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
case VK_ACCESS_INDEX_READ_BIT:
case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
invalidate_cmd.VFCacheInvalidationEnable = true;
break;
case VK_ACCESS_UNIFORM_READ_BIT:
invalidate_cmd.ConstantCacheInvalidationEnable = true;
/* fallthrough */
case VK_ACCESS_SHADER_READ_BIT:
invalidate_cmd.TextureCacheInvalidationEnable = true;
break;
case VK_ACCESS_COLOR_ATTACHMENT_READ_BIT:
invalidate_cmd.TextureCacheInvalidationEnable = true;
break;
case VK_ACCESS_TRANSFER_READ_BIT:
invalidate_cmd.TextureCacheInvalidationEnable = true;
break;
default:
unreachable("should've masked this out by now");
}
}
if (dst_flags) {
dw = anv_batch_emit_dwords(&cmd_buffer->batch, GENX(PIPE_CONTROL_length));
GENX(PIPE_CONTROL_pack)(&cmd_buffer->batch, dw, &invalidate_cmd);
}
}
static void
emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
struct anv_bo *bo, uint32_t offset)
{
uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
GENX(3DSTATE_VERTEX_BUFFERS));
GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
&(struct GENX(VERTEX_BUFFER_STATE)) {
.VertexBufferIndex = 32, /* Reserved for this */
.AddressModifyEnable = true,
.BufferPitch = 0,
#if (ANV_GEN >= 8)
.MemoryObjectControlState = GENX(MOCS),
.BufferStartingAddress = { bo, offset },
.BufferSize = 8
#else
.VertexBufferMemoryObjectControlState = GENX(MOCS),
.BufferStartingAddress = { bo, offset },
.EndAddress = { bo, offset + 8 },
#endif
});
}
static void
emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
uint32_t base_vertex, uint32_t base_instance)
{
struct anv_state id_state =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
((uint32_t *)id_state.map)[0] = base_vertex;
((uint32_t *)id_state.map)[1] = base_instance;
if (!cmd_buffer->device->info.has_llc)
anv_state_clflush(id_state);
emit_base_vertex_instance_bo(cmd_buffer,
&cmd_buffer->device->dynamic_state_block_pool.bo, id_state.offset);
}
void genX(CmdDraw)(
VkCommandBuffer commandBuffer,
uint32_t vertexCount,
uint32_t instanceCount,
uint32_t firstVertex,
uint32_t firstInstance)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
genX(cmd_buffer_flush_state)(cmd_buffer);
if (cmd_buffer->state.pipeline->vs_prog_data.uses_basevertex ||
cmd_buffer->state.pipeline->vs_prog_data.uses_baseinstance)
emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE),
.VertexAccessType = SEQUENTIAL,
.PrimitiveTopologyType = pipeline->topology,
.VertexCountPerInstance = vertexCount,
.StartVertexLocation = firstVertex,
.InstanceCount = instanceCount,
.StartInstanceLocation = firstInstance,
.BaseVertexLocation = 0);
}
void genX(CmdDrawIndexed)(
VkCommandBuffer commandBuffer,
uint32_t indexCount,
uint32_t instanceCount,
uint32_t firstIndex,
int32_t vertexOffset,
uint32_t firstInstance)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
genX(cmd_buffer_flush_state)(cmd_buffer);
if (cmd_buffer->state.pipeline->vs_prog_data.uses_basevertex ||
cmd_buffer->state.pipeline->vs_prog_data.uses_baseinstance)
emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE),
.VertexAccessType = RANDOM,
.PrimitiveTopologyType = pipeline->topology,
.VertexCountPerInstance = indexCount,
.StartVertexLocation = firstIndex,
.InstanceCount = instanceCount,
.StartInstanceLocation = firstInstance,
.BaseVertexLocation = vertexOffset);
}
/* Auto-Draw / Indirect Registers */
#define GEN7_3DPRIM_END_OFFSET 0x2420
#define GEN7_3DPRIM_START_VERTEX 0x2430
#define GEN7_3DPRIM_VERTEX_COUNT 0x2434
#define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
#define GEN7_3DPRIM_START_INSTANCE 0x243C
#define GEN7_3DPRIM_BASE_VERTEX 0x2440
static void
emit_lrm(struct anv_batch *batch,
uint32_t reg, struct anv_bo *bo, uint32_t offset)
{
anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM),
.RegisterAddress = reg,
.MemoryAddress = { bo, offset });
}
static void
emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
{
anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM),
.RegisterOffset = reg,
.DataDWord = imm);
}
void genX(CmdDrawIndirect)(
VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
uint32_t drawCount,
uint32_t stride)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
struct anv_bo *bo = buffer->bo;
uint32_t bo_offset = buffer->offset + offset;
genX(cmd_buffer_flush_state)(cmd_buffer);
if (cmd_buffer->state.pipeline->vs_prog_data.uses_basevertex ||
cmd_buffer->state.pipeline->vs_prog_data.uses_baseinstance)
emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 8);
emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 12);
emit_lri(&cmd_buffer->batch, GEN7_3DPRIM_BASE_VERTEX, 0);
anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE),
.IndirectParameterEnable = true,
.VertexAccessType = SEQUENTIAL,
.PrimitiveTopologyType = pipeline->topology);
}
void genX(CmdDrawIndexedIndirect)(
VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
uint32_t drawCount,
uint32_t stride)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
struct anv_bo *bo = buffer->bo;
uint32_t bo_offset = buffer->offset + offset;
genX(cmd_buffer_flush_state)(cmd_buffer);
/* TODO: We need to stomp base vertex to 0 somehow */
if (cmd_buffer->state.pipeline->vs_prog_data.uses_basevertex ||
cmd_buffer->state.pipeline->vs_prog_data.uses_baseinstance)
emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 12);
emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_BASE_VERTEX, bo, bo_offset + 12);
emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 16);
anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE),
.IndirectParameterEnable = true,
.VertexAccessType = RANDOM,
.PrimitiveTopologyType = pipeline->topology);
}
void genX(CmdDispatch)(
VkCommandBuffer commandBuffer,
uint32_t x,
uint32_t y,
uint32_t z)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
struct brw_cs_prog_data *prog_data = &pipeline->cs_prog_data;
if (prog_data->uses_num_work_groups) {
struct anv_state state =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
uint32_t *sizes = state.map;
sizes[0] = x;
sizes[1] = y;
sizes[2] = z;
if (!cmd_buffer->device->info.has_llc)
anv_state_clflush(state);
cmd_buffer->state.num_workgroups_offset = state.offset;
cmd_buffer->state.num_workgroups_bo =
&cmd_buffer->device->dynamic_state_block_pool.bo;
}
genX(cmd_buffer_flush_compute_state)(cmd_buffer);
anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER),
.SIMDSize = prog_data->simd_size / 16,
.ThreadDepthCounterMaximum = 0,
.ThreadHeightCounterMaximum = 0,
.ThreadWidthCounterMaximum = pipeline->cs_thread_width_max - 1,
.ThreadGroupIDXDimension = x,
.ThreadGroupIDYDimension = y,
.ThreadGroupIDZDimension = z,
.RightExecutionMask = pipeline->cs_right_mask,
.BottomExecutionMask = 0xffffffff);
anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH));
}
#define GPGPU_DISPATCHDIMX 0x2500
#define GPGPU_DISPATCHDIMY 0x2504
#define GPGPU_DISPATCHDIMZ 0x2508
void genX(CmdDispatchIndirect)(
VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
struct brw_cs_prog_data *prog_data = &pipeline->cs_prog_data;
struct anv_bo *bo = buffer->bo;
uint32_t bo_offset = buffer->offset + offset;
if (prog_data->uses_num_work_groups) {
cmd_buffer->state.num_workgroups_offset = bo_offset;
cmd_buffer->state.num_workgroups_bo = bo;
}
genX(cmd_buffer_flush_compute_state)(cmd_buffer);
emit_lrm(&cmd_buffer->batch, GPGPU_DISPATCHDIMX, bo, bo_offset);
emit_lrm(&cmd_buffer->batch, GPGPU_DISPATCHDIMY, bo, bo_offset + 4);
emit_lrm(&cmd_buffer->batch, GPGPU_DISPATCHDIMZ, bo, bo_offset + 8);
anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER),
.IndirectParameterEnable = true,
.SIMDSize = prog_data->simd_size / 16,
.ThreadDepthCounterMaximum = 0,
.ThreadHeightCounterMaximum = 0,
.ThreadWidthCounterMaximum = pipeline->cs_thread_width_max - 1,
.RightExecutionMask = pipeline->cs_right_mask,
.BottomExecutionMask = 0xffffffff);
anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH));
}
void
genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
{
if (cmd_buffer->state.current_pipeline != _3D) {
anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT),
#if ANV_GEN >= 9
.MaskBits = 3,
#endif
.PipelineSelection = _3D);
cmd_buffer->state.current_pipeline = _3D;
}
}
static void
cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_device *device = cmd_buffer->device;
const struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
const struct anv_image_view *iview =
anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
const struct anv_image *image = iview ? iview->image : NULL;
const struct anv_format *anv_format =
iview ? anv_format_for_vk_format(iview->vk_format) : NULL;
const bool has_depth = iview && anv_format->has_depth;
const bool has_stencil = iview && anv_format->has_stencil;
/* FIXME: Implement the PMA stall W/A */
/* FIXME: Width and Height are wrong */
/* Emit 3DSTATE_DEPTH_BUFFER */
if (has_depth) {
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_DEPTH_BUFFER),
.SurfaceType = SURFTYPE_2D,
.DepthWriteEnable = true,
.StencilWriteEnable = has_stencil,
.HierarchicalDepthBufferEnable = false,
.SurfaceFormat = isl_surf_get_depth_format(&device->isl_dev,
&image->depth_surface.isl),
.SurfacePitch = image->depth_surface.isl.row_pitch - 1,
.SurfaceBaseAddress = {
.bo = image->bo,
.offset = image->depth_surface.offset,
},
.Height = fb->height - 1,
.Width = fb->width - 1,
.LOD = 0,
.Depth = 1 - 1,
.MinimumArrayElement = 0,
.DepthBufferObjectControlState = GENX(MOCS),
#if ANV_GEN >= 8
.SurfaceQPitch = isl_surf_get_array_pitch_el_rows(&image->depth_surface.isl) >> 2,
#endif
.RenderTargetViewExtent = 1 - 1);
} else {
/* Even when no depth buffer is present, the hardware requires that
* 3DSTATE_DEPTH_BUFFER be programmed correctly. The Broadwell PRM says:
*
* If a null depth buffer is bound, the driver must instead bind depth as:
* 3DSTATE_DEPTH.SurfaceType = SURFTYPE_2D
* 3DSTATE_DEPTH.Width = 1
* 3DSTATE_DEPTH.Height = 1
* 3DSTATE_DEPTH.SuraceFormat = D16_UNORM
* 3DSTATE_DEPTH.SurfaceBaseAddress = 0
* 3DSTATE_DEPTH.HierarchicalDepthBufferEnable = 0
* 3DSTATE_WM_DEPTH_STENCIL.DepthTestEnable = 0
* 3DSTATE_WM_DEPTH_STENCIL.DepthBufferWriteEnable = 0
*
* The PRM is wrong, though. The width and height must be programmed to
* actual framebuffer's width and height, even when neither depth buffer
* nor stencil buffer is present.
*/
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_DEPTH_BUFFER),
.SurfaceType = SURFTYPE_2D,
.SurfaceFormat = D16_UNORM,
.Width = fb->width - 1,
.Height = fb->height - 1,
.StencilWriteEnable = has_stencil);
}
/* Emit 3DSTATE_STENCIL_BUFFER */
if (has_stencil) {
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_STENCIL_BUFFER),
#if ANV_GEN >= 8 || ANV_IS_HASWELL
.StencilBufferEnable = true,
#endif
.StencilBufferObjectControlState = GENX(MOCS),
/* Stencil buffers have strange pitch. The PRM says:
*
* The pitch must be set to 2x the value computed based on width,
* as the stencil buffer is stored with two rows interleaved.
*/
.SurfacePitch = 2 * image->stencil_surface.isl.row_pitch - 1,
#if ANV_GEN >= 8
.SurfaceQPitch = isl_surf_get_array_pitch_el_rows(&image->stencil_surface.isl) >> 2,
#endif
.SurfaceBaseAddress = {
.bo = image->bo,
.offset = image->offset + image->stencil_surface.offset,
});
} else {
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_STENCIL_BUFFER));
}
/* Disable hierarchial depth buffers. */
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_HIER_DEPTH_BUFFER));
/* Clear the clear params. */
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CLEAR_PARAMS));
}
/**
* @see anv_cmd_buffer_set_subpass()
*/
void
genX(cmd_buffer_set_subpass)(struct anv_cmd_buffer *cmd_buffer,
struct anv_subpass *subpass)
{
cmd_buffer->state.subpass = subpass;
cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
cmd_buffer_emit_depth_stencil(cmd_buffer);
}
void genX(CmdBeginRenderPass)(
VkCommandBuffer commandBuffer,
const VkRenderPassBeginInfo* pRenderPassBegin,
VkSubpassContents contents)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
cmd_buffer->state.framebuffer = framebuffer;
cmd_buffer->state.pass = pass;
anv_cmd_state_setup_attachments(cmd_buffer, pRenderPassBegin);
genX(flush_pipeline_select_3d)(cmd_buffer);
const VkRect2D *render_area = &pRenderPassBegin->renderArea;
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_DRAWING_RECTANGLE),
.ClippedDrawingRectangleYMin = render_area->offset.y,
.ClippedDrawingRectangleXMin = render_area->offset.x,
.ClippedDrawingRectangleYMax =
render_area->offset.y + render_area->extent.height - 1,
.ClippedDrawingRectangleXMax =
render_area->offset.x + render_area->extent.width - 1,
.DrawingRectangleOriginY = 0,
.DrawingRectangleOriginX = 0);
genX(cmd_buffer_set_subpass)(cmd_buffer, pass->subpasses);
anv_cmd_buffer_clear_subpass(cmd_buffer);
}
void genX(CmdNextSubpass)(
VkCommandBuffer commandBuffer,
VkSubpassContents contents)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
anv_cmd_buffer_resolve_subpass(cmd_buffer);
genX(cmd_buffer_set_subpass)(cmd_buffer, cmd_buffer->state.subpass + 1);
anv_cmd_buffer_clear_subpass(cmd_buffer);
}
void genX(CmdEndRenderPass)(
VkCommandBuffer commandBuffer)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
anv_cmd_buffer_resolve_subpass(cmd_buffer);
}