mesa/src/amd/vulkan/radv_private.h

2749 lines
90 KiB
C

/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifndef RADV_PRIVATE_H
#define RADV_PRIVATE_H
#include <assert.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef HAVE_VALGRIND
#include <memcheck.h>
#include <valgrind.h>
#define VG(x) x
#else
#define VG(x) ((void)0)
#endif
#include "c11/threads.h"
#ifndef _WIN32
#include <amdgpu.h>
#include <xf86drm.h>
#endif
#include "compiler/shader_enums.h"
#include "util/bitscan.h"
#include "util/cnd_monotonic.h"
#include "util/list.h"
#include "util/macros.h"
#include "util/rwlock.h"
#include "util/xmlconfig.h"
#include "vk_alloc.h"
#include "vk_debug_report.h"
#include "vk_device.h"
#include "vk_format.h"
#include "vk_instance.h"
#include "vk_physical_device.h"
#include "vk_shader_module.h"
#include "vk_util.h"
#include "ac_binary.h"
#include "ac_gpu_info.h"
#include "ac_shader_util.h"
#include "ac_sqtt.h"
#include "ac_surface.h"
#include "radv_constants.h"
#include "radv_descriptor_set.h"
#include "radv_radeon_winsys.h"
#include "sid.h"
/* Pre-declarations needed for WSI entrypoints */
struct wl_surface;
struct wl_display;
typedef struct xcb_connection_t xcb_connection_t;
typedef uint32_t xcb_visualid_t;
typedef uint32_t xcb_window_t;
#include <vulkan/vk_android_native_buffer.h>
#include <vulkan/vk_icd.h>
#include <vulkan/vulkan.h>
#include <vulkan/vulkan_android.h>
#include "radv_entrypoints.h"
#include "wsi_common.h"
/* Helper to determine if we should compile
* any of the Android AHB support.
*
* To actually enable the ext we also need
* the necessary kernel support.
*/
#if defined(ANDROID) && ANDROID_API_LEVEL >= 26
#define RADV_SUPPORT_ANDROID_HARDWARE_BUFFER 1
#else
#define RADV_SUPPORT_ANDROID_HARDWARE_BUFFER 0
#endif
#ifdef _WIN32
#define RADV_SUPPORT_CALIBRATED_TIMESTAMPS 0
#else
#define RADV_SUPPORT_CALIBRATED_TIMESTAMPS 1
#endif
#ifdef _WIN32
#define radv_printflike(a, b)
#else
#define radv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
#endif
static inline uint32_t
align_u32(uint32_t v, uint32_t a)
{
assert(a != 0 && a == (a & -a));
return (v + a - 1) & ~(a - 1);
}
static inline uint32_t
align_u32_npot(uint32_t v, uint32_t a)
{
return (v + a - 1) / a * a;
}
static inline uint64_t
align_u64(uint64_t v, uint64_t a)
{
assert(a != 0 && a == (a & -a));
return (v + a - 1) & ~(a - 1);
}
static inline int32_t
align_i32(int32_t v, int32_t a)
{
assert(a != 0 && a == (a & -a));
return (v + a - 1) & ~(a - 1);
}
/** Alignment must be a power of 2. */
static inline bool
radv_is_aligned(uintmax_t n, uintmax_t a)
{
assert(a == (a & -a));
return (n & (a - 1)) == 0;
}
static inline uint32_t
round_up_u32(uint32_t v, uint32_t a)
{
return (v + a - 1) / a;
}
static inline uint64_t
round_up_u64(uint64_t v, uint64_t a)
{
return (v + a - 1) / a;
}
static inline uint32_t
radv_minify(uint32_t n, uint32_t levels)
{
if (unlikely(n == 0))
return 0;
else
return MAX2(n >> levels, 1);
}
static inline float
radv_clamp_f(float f, float min, float max)
{
assert(min < max);
if (f > max)
return max;
else if (f < min)
return min;
else
return f;
}
static inline bool
radv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
{
if (*inout_mask & clear_mask) {
*inout_mask &= ~clear_mask;
return true;
} else {
return false;
}
}
/* Whenever we generate an error, pass it through this function. Useful for
* debugging, where we can break on it. Only call at error site, not when
* propagating errors. Might be useful to plug in a stack trace here.
*/
struct radv_image_view;
struct radv_instance;
VkResult __vk_errorv(struct radv_instance *instance, const void *object,
VkDebugReportObjectTypeEXT type, VkResult error, const char *file, int line,
const char *format, va_list args);
VkResult __vk_errorf(struct radv_instance *instance, const void *object,
VkDebugReportObjectTypeEXT type, VkResult error, const char *file, int line,
const char *format, ...) radv_printflike(7, 8);
#define vk_error(instance, error) \
__vk_errorf(instance, NULL, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, error, __FILE__, __LINE__, \
NULL);
#define vk_errorf(instance, error, format, ...) \
__vk_errorf(instance, NULL, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, error, __FILE__, __LINE__, \
format, ##__VA_ARGS__);
void __radv_finishme(const char *file, int line, const char *format, ...) radv_printflike(3, 4);
void radv_loge(const char *format, ...) radv_printflike(1, 2);
void radv_loge_v(const char *format, va_list va);
void radv_logi(const char *format, ...) radv_printflike(1, 2);
void radv_logi_v(const char *format, va_list va);
/**
* Print a FINISHME message, including its source location.
*/
#define radv_finishme(format, ...) \
do { \
static bool reported = false; \
if (!reported) { \
__radv_finishme(__FILE__, __LINE__, format, ##__VA_ARGS__); \
reported = true; \
} \
} while (0)
/* A non-fatal assert. Useful for debugging. */
#ifdef NDEBUG
#define radv_assert(x) \
do { \
} while (0)
#else
#define radv_assert(x) \
do { \
if (unlikely(!(x))) \
fprintf(stderr, "%s:%d ASSERT: %s\n", __FILE__, __LINE__, #x); \
} while (0)
#endif
int radv_get_instance_entrypoint_index(const char *name);
int radv_get_device_entrypoint_index(const char *name);
int radv_get_physical_device_entrypoint_index(const char *name);
const char *radv_get_instance_entry_name(int index);
const char *radv_get_physical_device_entry_name(int index);
const char *radv_get_device_entry_name(int index);
struct radv_physical_device {
struct vk_physical_device vk;
/* Link in radv_instance::physical_devices */
struct list_head link;
struct radv_instance *instance;
struct radeon_winsys *ws;
struct radeon_info rad_info;
char name[VK_MAX_PHYSICAL_DEVICE_NAME_SIZE];
uint8_t driver_uuid[VK_UUID_SIZE];
uint8_t device_uuid[VK_UUID_SIZE];
uint8_t cache_uuid[VK_UUID_SIZE];
int local_fd;
int master_fd;
struct wsi_device wsi_device;
bool out_of_order_rast_allowed;
/* Whether DCC should be enabled for MSAA textures. */
bool dcc_msaa_allowed;
/* Whether to enable NGG. */
bool use_ngg;
/* Whether to enable NGG streamout. */
bool use_ngg_streamout;
/* Number of threads per wave. */
uint8_t ps_wave_size;
uint8_t cs_wave_size;
uint8_t ge_wave_size;
/* Whether to use the LLVM compiler backend */
bool use_llvm;
/* This is the drivers on-disk cache used as a fallback as opposed to
* the pipeline cache defined by apps.
*/
struct disk_cache *disk_cache;
VkPhysicalDeviceMemoryProperties memory_properties;
enum radeon_bo_domain memory_domains[VK_MAX_MEMORY_TYPES];
enum radeon_bo_flag memory_flags[VK_MAX_MEMORY_TYPES];
unsigned heaps;
#ifndef _WIN32
drmPciBusInfo bus_info;
#endif
};
struct radv_instance {
struct vk_instance vk;
VkAllocationCallbacks alloc;
uint64_t debug_flags;
uint64_t perftest_flags;
bool physical_devices_enumerated;
struct list_head physical_devices;
struct driOptionCache dri_options;
struct driOptionCache available_dri_options;
/**
* Workarounds for game bugs.
*/
bool enable_mrt_output_nan_fixup;
bool disable_tc_compat_htile_in_general;
bool disable_shrink_image_store;
};
VkResult radv_init_wsi(struct radv_physical_device *physical_device);
void radv_finish_wsi(struct radv_physical_device *physical_device);
struct cache_entry;
struct radv_pipeline_cache {
struct vk_object_base base;
struct radv_device *device;
mtx_t mutex;
VkPipelineCacheCreateFlags flags;
uint32_t total_size;
uint32_t table_size;
uint32_t kernel_count;
struct cache_entry **hash_table;
bool modified;
VkAllocationCallbacks alloc;
};
struct radv_pipeline_key {
uint32_t instance_rate_inputs;
uint32_t instance_rate_divisors[MAX_VERTEX_ATTRIBS];
uint8_t vertex_attribute_formats[MAX_VERTEX_ATTRIBS];
uint32_t vertex_attribute_bindings[MAX_VERTEX_ATTRIBS];
uint32_t vertex_attribute_offsets[MAX_VERTEX_ATTRIBS];
uint32_t vertex_attribute_strides[MAX_VERTEX_ATTRIBS];
enum ac_fetch_format vertex_alpha_adjust[MAX_VERTEX_ATTRIBS];
uint32_t vertex_post_shuffle;
unsigned tess_input_vertices;
uint32_t col_format;
uint32_t is_int8;
uint32_t is_int10;
uint8_t log2_ps_iter_samples;
uint8_t num_samples;
uint32_t has_multiview_view_index : 1;
uint32_t optimisations_disabled : 1;
uint32_t provoking_vtx_last : 1;
uint8_t topology;
/* Non-zero if a required subgroup size is specified via
* VK_EXT_subgroup_size_control.
*/
uint8_t compute_subgroup_size;
bool require_full_subgroups;
};
struct radv_shader_binary;
struct radv_shader_variant;
void radv_pipeline_cache_init(struct radv_pipeline_cache *cache, struct radv_device *device);
void radv_pipeline_cache_finish(struct radv_pipeline_cache *cache);
bool radv_pipeline_cache_load(struct radv_pipeline_cache *cache, const void *data, size_t size);
bool radv_create_shader_variants_from_pipeline_cache(struct radv_device *device,
struct radv_pipeline_cache *cache,
const unsigned char *sha1,
struct radv_shader_variant **variants,
bool *found_in_application_cache);
void radv_pipeline_cache_insert_shaders(struct radv_device *device,
struct radv_pipeline_cache *cache,
const unsigned char *sha1,
struct radv_shader_variant **variants,
struct radv_shader_binary *const *binaries);
enum radv_blit_ds_layout {
RADV_BLIT_DS_LAYOUT_TILE_ENABLE,
RADV_BLIT_DS_LAYOUT_TILE_DISABLE,
RADV_BLIT_DS_LAYOUT_COUNT,
};
static inline enum radv_blit_ds_layout
radv_meta_blit_ds_to_type(VkImageLayout layout)
{
return (layout == VK_IMAGE_LAYOUT_GENERAL) ? RADV_BLIT_DS_LAYOUT_TILE_DISABLE
: RADV_BLIT_DS_LAYOUT_TILE_ENABLE;
}
static inline VkImageLayout
radv_meta_blit_ds_to_layout(enum radv_blit_ds_layout ds_layout)
{
return ds_layout == RADV_BLIT_DS_LAYOUT_TILE_ENABLE ? VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
: VK_IMAGE_LAYOUT_GENERAL;
}
enum radv_meta_dst_layout {
RADV_META_DST_LAYOUT_GENERAL,
RADV_META_DST_LAYOUT_OPTIMAL,
RADV_META_DST_LAYOUT_COUNT,
};
static inline enum radv_meta_dst_layout
radv_meta_dst_layout_from_layout(VkImageLayout layout)
{
return (layout == VK_IMAGE_LAYOUT_GENERAL) ? RADV_META_DST_LAYOUT_GENERAL
: RADV_META_DST_LAYOUT_OPTIMAL;
}
static inline VkImageLayout
radv_meta_dst_layout_to_layout(enum radv_meta_dst_layout layout)
{
return layout == RADV_META_DST_LAYOUT_OPTIMAL ? VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
: VK_IMAGE_LAYOUT_GENERAL;
}
struct radv_meta_state {
VkAllocationCallbacks alloc;
struct radv_pipeline_cache cache;
/*
* For on-demand pipeline creation, makes sure that
* only one thread tries to build a pipeline at the same time.
*/
mtx_t mtx;
/**
* Use array element `i` for images with `2^i` samples.
*/
struct {
VkRenderPass render_pass[NUM_META_FS_KEYS];
VkPipeline color_pipelines[NUM_META_FS_KEYS];
VkRenderPass depthstencil_rp;
VkPipeline depth_only_pipeline[NUM_DEPTH_CLEAR_PIPELINES];
VkPipeline stencil_only_pipeline[NUM_DEPTH_CLEAR_PIPELINES];
VkPipeline depthstencil_pipeline[NUM_DEPTH_CLEAR_PIPELINES];
VkPipeline depth_only_unrestricted_pipeline[NUM_DEPTH_CLEAR_PIPELINES];
VkPipeline stencil_only_unrestricted_pipeline[NUM_DEPTH_CLEAR_PIPELINES];
VkPipeline depthstencil_unrestricted_pipeline[NUM_DEPTH_CLEAR_PIPELINES];
} clear[MAX_SAMPLES_LOG2];
VkPipelineLayout clear_color_p_layout;
VkPipelineLayout clear_depth_p_layout;
VkPipelineLayout clear_depth_unrestricted_p_layout;
/* Optimized compute fast HTILE clear for stencil or depth only. */
VkPipeline clear_htile_mask_pipeline;
VkPipelineLayout clear_htile_mask_p_layout;
VkDescriptorSetLayout clear_htile_mask_ds_layout;
/* Copy VRS into HTILE. */
VkPipeline copy_vrs_htile_pipeline;
VkPipelineLayout copy_vrs_htile_p_layout;
VkDescriptorSetLayout copy_vrs_htile_ds_layout;
struct {
VkRenderPass render_pass[NUM_META_FS_KEYS][RADV_META_DST_LAYOUT_COUNT];
/** Pipeline that blits from a 1D image. */
VkPipeline pipeline_1d_src[NUM_META_FS_KEYS];
/** Pipeline that blits from a 2D image. */
VkPipeline pipeline_2d_src[NUM_META_FS_KEYS];
/** Pipeline that blits from a 3D image. */
VkPipeline pipeline_3d_src[NUM_META_FS_KEYS];
VkRenderPass depth_only_rp[RADV_BLIT_DS_LAYOUT_COUNT];
VkPipeline depth_only_1d_pipeline;
VkPipeline depth_only_2d_pipeline;
VkPipeline depth_only_3d_pipeline;
VkRenderPass stencil_only_rp[RADV_BLIT_DS_LAYOUT_COUNT];
VkPipeline stencil_only_1d_pipeline;
VkPipeline stencil_only_2d_pipeline;
VkPipeline stencil_only_3d_pipeline;
VkPipelineLayout pipeline_layout;
VkDescriptorSetLayout ds_layout;
} blit;
struct {
VkPipelineLayout p_layouts[5];
VkDescriptorSetLayout ds_layouts[5];
VkPipeline pipelines[5][NUM_META_FS_KEYS];
VkPipeline depth_only_pipeline[5];
VkPipeline stencil_only_pipeline[5];
} blit2d[MAX_SAMPLES_LOG2];
VkRenderPass blit2d_render_passes[NUM_META_FS_KEYS][RADV_META_DST_LAYOUT_COUNT];
VkRenderPass blit2d_depth_only_rp[RADV_BLIT_DS_LAYOUT_COUNT];
VkRenderPass blit2d_stencil_only_rp[RADV_BLIT_DS_LAYOUT_COUNT];
struct {
VkPipelineLayout img_p_layout;
VkDescriptorSetLayout img_ds_layout;
VkPipeline pipeline;
VkPipeline pipeline_3d;
} itob;
struct {
VkPipelineLayout img_p_layout;
VkDescriptorSetLayout img_ds_layout;
VkPipeline pipeline;
VkPipeline pipeline_3d;
} btoi;
struct {
VkPipelineLayout img_p_layout;
VkDescriptorSetLayout img_ds_layout;
VkPipeline pipeline;
} btoi_r32g32b32;
struct {
VkPipelineLayout img_p_layout;
VkDescriptorSetLayout img_ds_layout;
VkPipeline pipeline[MAX_SAMPLES_LOG2];
VkPipeline pipeline_3d;
} itoi;
struct {
VkPipelineLayout img_p_layout;
VkDescriptorSetLayout img_ds_layout;
VkPipeline pipeline;
} itoi_r32g32b32;
struct {
VkPipelineLayout img_p_layout;
VkDescriptorSetLayout img_ds_layout;
VkPipeline pipeline[MAX_SAMPLES_LOG2];
VkPipeline pipeline_3d;
} cleari;
struct {
VkPipelineLayout img_p_layout;
VkDescriptorSetLayout img_ds_layout;
VkPipeline pipeline;
} cleari_r32g32b32;
struct {
VkPipelineLayout p_layout;
VkPipeline pipeline[NUM_META_FS_KEYS];
VkRenderPass pass[NUM_META_FS_KEYS];
} resolve;
struct {
VkDescriptorSetLayout ds_layout;
VkPipelineLayout p_layout;
struct {
VkPipeline pipeline;
VkPipeline i_pipeline;
VkPipeline srgb_pipeline;
} rc[MAX_SAMPLES_LOG2];
VkPipeline depth_zero_pipeline;
struct {
VkPipeline average_pipeline;
VkPipeline max_pipeline;
VkPipeline min_pipeline;
} depth[MAX_SAMPLES_LOG2];
VkPipeline stencil_zero_pipeline;
struct {
VkPipeline max_pipeline;
VkPipeline min_pipeline;
} stencil[MAX_SAMPLES_LOG2];
} resolve_compute;
struct {
VkDescriptorSetLayout ds_layout;
VkPipelineLayout p_layout;
struct {
VkRenderPass render_pass[NUM_META_FS_KEYS][RADV_META_DST_LAYOUT_COUNT];
VkPipeline pipeline[NUM_META_FS_KEYS];
} rc[MAX_SAMPLES_LOG2];
VkRenderPass depth_render_pass;
VkPipeline depth_zero_pipeline;
struct {
VkPipeline average_pipeline;
VkPipeline max_pipeline;
VkPipeline min_pipeline;
} depth[MAX_SAMPLES_LOG2];
VkRenderPass stencil_render_pass;
VkPipeline stencil_zero_pipeline;
struct {
VkPipeline max_pipeline;
VkPipeline min_pipeline;
} stencil[MAX_SAMPLES_LOG2];
} resolve_fragment;
struct {
VkPipelineLayout p_layout;
VkPipeline decompress_pipeline[NUM_DEPTH_DECOMPRESS_PIPELINES];
VkPipeline resummarize_pipeline;
VkRenderPass pass;
} depth_decomp[MAX_SAMPLES_LOG2];
struct {
VkPipelineLayout p_layout;
VkPipeline cmask_eliminate_pipeline;
VkPipeline fmask_decompress_pipeline;
VkPipeline dcc_decompress_pipeline;
VkRenderPass pass;
VkDescriptorSetLayout dcc_decompress_compute_ds_layout;
VkPipelineLayout dcc_decompress_compute_p_layout;
VkPipeline dcc_decompress_compute_pipeline;
} fast_clear_flush;
struct {
VkPipelineLayout fill_p_layout;
VkPipelineLayout copy_p_layout;
VkDescriptorSetLayout fill_ds_layout;
VkDescriptorSetLayout copy_ds_layout;
VkPipeline fill_pipeline;
VkPipeline copy_pipeline;
} buffer;
struct {
VkDescriptorSetLayout ds_layout;
VkPipelineLayout p_layout;
VkPipeline occlusion_query_pipeline;
VkPipeline pipeline_statistics_query_pipeline;
VkPipeline tfb_query_pipeline;
VkPipeline timestamp_query_pipeline;
} query;
struct {
VkDescriptorSetLayout ds_layout;
VkPipelineLayout p_layout;
VkPipeline pipeline[MAX_SAMPLES_LOG2];
} fmask_expand;
struct {
VkDescriptorSetLayout ds_layout;
VkPipelineLayout p_layout;
VkPipeline pipeline;
} dcc_retile;
};
/* queue types */
#define RADV_QUEUE_GENERAL 0
#define RADV_QUEUE_COMPUTE 1
#define RADV_QUEUE_TRANSFER 2
/* Not a real queue family */
#define RADV_QUEUE_FOREIGN 3
#define RADV_MAX_QUEUE_FAMILIES 3
#define RADV_NUM_HW_CTX (RADEON_CTX_PRIORITY_REALTIME + 1)
struct radv_deferred_queue_submission;
enum ring_type radv_queue_family_to_ring(int f);
struct radv_queue {
struct vk_object_base base;
struct radv_device *device;
struct radeon_winsys_ctx *hw_ctx;
enum radeon_ctx_priority priority;
uint32_t queue_family_index;
int queue_idx;
VkDeviceQueueCreateFlags flags;
uint32_t scratch_size_per_wave;
uint32_t scratch_waves;
uint32_t compute_scratch_size_per_wave;
uint32_t compute_scratch_waves;
uint32_t esgs_ring_size;
uint32_t gsvs_ring_size;
bool has_tess_rings;
bool has_gds;
bool has_gds_oa;
bool has_sample_positions;
struct radeon_winsys_bo *scratch_bo;
struct radeon_winsys_bo *descriptor_bo;
struct radeon_winsys_bo *compute_scratch_bo;
struct radeon_winsys_bo *esgs_ring_bo;
struct radeon_winsys_bo *gsvs_ring_bo;
struct radeon_winsys_bo *tess_rings_bo;
struct radeon_winsys_bo *gds_bo;
struct radeon_winsys_bo *gds_oa_bo;
struct radeon_cmdbuf *initial_preamble_cs;
struct radeon_cmdbuf *initial_full_flush_preamble_cs;
struct radeon_cmdbuf *continue_preamble_cs;
struct list_head pending_submissions;
mtx_t pending_mutex;
mtx_t thread_mutex;
struct u_cnd_monotonic thread_cond;
struct radv_deferred_queue_submission *thread_submission;
thrd_t submission_thread;
bool thread_exit;
bool thread_running;
bool cond_created;
};
#define RADV_BORDER_COLOR_COUNT 4096
#define RADV_BORDER_COLOR_BUFFER_SIZE (sizeof(VkClearColorValue) * RADV_BORDER_COLOR_COUNT)
struct radv_device_border_color_data {
bool used[RADV_BORDER_COLOR_COUNT];
struct radeon_winsys_bo *bo;
VkClearColorValue *colors_gpu_ptr;
/* Mutex is required to guarantee vkCreateSampler thread safety
* given that we are writing to a buffer and checking color occupation */
mtx_t mutex;
};
enum radv_force_vrs {
RADV_FORCE_VRS_NONE = 0,
RADV_FORCE_VRS_2x2,
RADV_FORCE_VRS_2x1,
RADV_FORCE_VRS_1x2,
};
struct radv_device {
struct vk_device vk;
struct radv_instance *instance;
struct radeon_winsys *ws;
struct radeon_winsys_ctx *hw_ctx[RADV_NUM_HW_CTX];
struct radv_meta_state meta_state;
struct radv_queue *queues[RADV_MAX_QUEUE_FAMILIES];
int queue_count[RADV_MAX_QUEUE_FAMILIES];
struct radeon_cmdbuf *empty_cs[RADV_MAX_QUEUE_FAMILIES];
bool pbb_allowed;
bool dfsm_allowed;
uint32_t tess_offchip_block_dw_size;
uint32_t scratch_waves;
uint32_t dispatch_initiator;
uint32_t gs_table_depth;
/* MSAA sample locations.
* The first index is the sample index.
* The second index is the coordinate: X, Y. */
float sample_locations_1x[1][2];
float sample_locations_2x[2][2];
float sample_locations_4x[4][2];
float sample_locations_8x[8][2];
/* GFX7 and later */
uint32_t gfx_init_size_dw;
struct radeon_winsys_bo *gfx_init;
struct radeon_winsys_bo *trace_bo;
uint32_t *trace_id_ptr;
/* Whether to keep shader debug info, for tracing or VK_AMD_shader_info */
bool keep_shader_info;
struct radv_physical_device *physical_device;
/* Backup in-memory cache to be used if the app doesn't provide one */
struct radv_pipeline_cache *mem_cache;
/*
* use different counters so MSAA MRTs get consecutive surface indices,
* even if MASK is allocated in between.
*/
uint32_t image_mrt_offset_counter;
uint32_t fmask_mrt_offset_counter;
struct list_head shader_slabs;
mtx_t shader_slab_mutex;
/* For detecting VM faults reported by dmesg. */
uint64_t dmesg_timestamp;
/* Whether the app has enabled the robustBufferAccess/robustBufferAccess2 features. */
bool robust_buffer_access;
bool robust_buffer_access2;
/* Whether gl_FragCoord.z should be adjusted for VRS due to a hw bug
* on some GFX10.3 chips.
*/
bool adjust_frag_coord_z;
/* Whether the driver uses a global BO list. */
bool use_global_bo_list;
/* Whether attachment VRS is enabled. */
bool attachment_vrs_enabled;
/* Whether anisotropy is forced with RADV_TEX_ANISO (-1 is disabled). */
int force_aniso;
struct radv_device_border_color_data border_color_data;
/* Condition variable for legacy timelines, to notify waiters when a
* new point gets submitted. */
struct u_cnd_monotonic timeline_cond;
/* Thread trace. */
struct ac_thread_trace_data thread_trace;
/* Trap handler. */
struct radv_shader_variant *trap_handler_shader;
struct radeon_winsys_bo *tma_bo; /* Trap Memory Address */
uint32_t *tma_ptr;
/* Overallocation. */
bool overallocation_disallowed;
uint64_t allocated_memory_size[VK_MAX_MEMORY_HEAPS];
mtx_t overallocation_mutex;
/* Track the number of device loss occurs. */
int lost;
/* Whether the user forced VRS rates on GFX10.3+. */
enum radv_force_vrs force_vrs;
/* Depth image for VRS when not bound by the app. */
struct {
struct radv_image *image;
struct radv_device_memory *mem;
} vrs;
};
VkResult _radv_device_set_lost(struct radv_device *device, const char *file, int line,
const char *msg, ...) radv_printflike(4, 5);
#define radv_device_set_lost(dev, ...) _radv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
static inline bool
radv_device_is_lost(const struct radv_device *device)
{
return unlikely(p_atomic_read(&device->lost));
}
struct radv_device_memory {
struct vk_object_base base;
struct radeon_winsys_bo *bo;
/* for dedicated allocations */
struct radv_image *image;
struct radv_buffer *buffer;
uint32_t heap_index;
uint64_t alloc_size;
void *map;
void *user_ptr;
#if RADV_SUPPORT_ANDROID_HARDWARE_BUFFER
struct AHardwareBuffer *android_hardware_buffer;
#endif
};
struct radv_descriptor_range {
uint64_t va;
uint32_t size;
};
struct radv_descriptor_set_header {
struct vk_object_base base;
const struct radv_descriptor_set_layout *layout;
uint32_t size;
uint32_t buffer_count;
struct radeon_winsys_bo *bo;
uint64_t va;
uint32_t *mapped_ptr;
struct radv_descriptor_range *dynamic_descriptors;
};
struct radv_descriptor_set {
struct radv_descriptor_set_header header;
struct radeon_winsys_bo *descriptors[];
};
struct radv_push_descriptor_set {
struct radv_descriptor_set_header set;
uint32_t capacity;
};
struct radv_descriptor_pool_entry {
uint32_t offset;
uint32_t size;
struct radv_descriptor_set *set;
};
struct radv_descriptor_pool {
struct vk_object_base base;
struct radeon_winsys_bo *bo;
uint8_t *host_bo;
uint8_t *mapped_ptr;
uint64_t current_offset;
uint64_t size;
uint8_t *host_memory_base;
uint8_t *host_memory_ptr;
uint8_t *host_memory_end;
uint32_t entry_count;
uint32_t max_entry_count;
struct radv_descriptor_pool_entry entries[0];
};
struct radv_descriptor_update_template_entry {
VkDescriptorType descriptor_type;
/* The number of descriptors to update */
uint32_t descriptor_count;
/* Into mapped_ptr or dynamic_descriptors, in units of the respective array */
uint32_t dst_offset;
/* In dwords. Not valid/used for dynamic descriptors */
uint32_t dst_stride;
uint32_t buffer_offset;
/* Only valid for combined image samplers and samplers */
uint8_t has_sampler;
uint8_t sampler_offset;
/* In bytes */
size_t src_offset;
size_t src_stride;
/* For push descriptors */
const uint32_t *immutable_samplers;
};
struct radv_descriptor_update_template {
struct vk_object_base base;
uint32_t entry_count;
VkPipelineBindPoint bind_point;
struct radv_descriptor_update_template_entry entry[0];
};
struct radv_buffer {
struct vk_object_base base;
VkDeviceSize size;
VkBufferUsageFlags usage;
VkBufferCreateFlags flags;
/* Set when bound */
struct radeon_winsys_bo *bo;
VkDeviceSize offset;
bool shareable;
};
enum radv_dynamic_state_bits {
RADV_DYNAMIC_VIEWPORT = 1ull << 0,
RADV_DYNAMIC_SCISSOR = 1ull << 1,
RADV_DYNAMIC_LINE_WIDTH = 1ull << 2,
RADV_DYNAMIC_DEPTH_BIAS = 1ull << 3,
RADV_DYNAMIC_BLEND_CONSTANTS = 1ull << 4,
RADV_DYNAMIC_DEPTH_BOUNDS = 1ull << 5,
RADV_DYNAMIC_STENCIL_COMPARE_MASK = 1ull << 6,
RADV_DYNAMIC_STENCIL_WRITE_MASK = 1ull << 7,
RADV_DYNAMIC_STENCIL_REFERENCE = 1ull << 8,
RADV_DYNAMIC_DISCARD_RECTANGLE = 1ull << 9,
RADV_DYNAMIC_SAMPLE_LOCATIONS = 1ull << 10,
RADV_DYNAMIC_LINE_STIPPLE = 1ull << 11,
RADV_DYNAMIC_CULL_MODE = 1ull << 12,
RADV_DYNAMIC_FRONT_FACE = 1ull << 13,
RADV_DYNAMIC_PRIMITIVE_TOPOLOGY = 1ull << 14,
RADV_DYNAMIC_DEPTH_TEST_ENABLE = 1ull << 15,
RADV_DYNAMIC_DEPTH_WRITE_ENABLE = 1ull << 16,
RADV_DYNAMIC_DEPTH_COMPARE_OP = 1ull << 17,
RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE = 1ull << 18,
RADV_DYNAMIC_STENCIL_TEST_ENABLE = 1ull << 19,
RADV_DYNAMIC_STENCIL_OP = 1ull << 20,
RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE = 1ull << 21,
RADV_DYNAMIC_FRAGMENT_SHADING_RATE = 1ull << 22,
RADV_DYNAMIC_PATCH_CONTROL_POINTS = 1ull << 23,
RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE = 1ull << 24,
RADV_DYNAMIC_DEPTH_BIAS_ENABLE = 1ull << 25,
RADV_DYNAMIC_LOGIC_OP = 1ull << 26,
RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE = 1ull << 27,
RADV_DYNAMIC_ALL = (1ull << 28) - 1,
};
enum radv_cmd_dirty_bits {
/* Keep the dynamic state dirty bits in sync with
* enum radv_dynamic_state_bits */
RADV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1ull << 0,
RADV_CMD_DIRTY_DYNAMIC_SCISSOR = 1ull << 1,
RADV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1ull << 2,
RADV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1ull << 3,
RADV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1ull << 4,
RADV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1ull << 5,
RADV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1ull << 6,
RADV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1ull << 7,
RADV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1ull << 8,
RADV_CMD_DIRTY_DYNAMIC_DISCARD_RECTANGLE = 1ull << 9,
RADV_CMD_DIRTY_DYNAMIC_SAMPLE_LOCATIONS = 1ull << 10,
RADV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1ull << 11,
RADV_CMD_DIRTY_DYNAMIC_CULL_MODE = 1ull << 12,
RADV_CMD_DIRTY_DYNAMIC_FRONT_FACE = 1ull << 13,
RADV_CMD_DIRTY_DYNAMIC_PRIMITIVE_TOPOLOGY = 1ull << 14,
RADV_CMD_DIRTY_DYNAMIC_DEPTH_TEST_ENABLE = 1ull << 15,
RADV_CMD_DIRTY_DYNAMIC_DEPTH_WRITE_ENABLE = 1ull << 16,
RADV_CMD_DIRTY_DYNAMIC_DEPTH_COMPARE_OP = 1ull << 17,
RADV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE = 1ull << 18,
RADV_CMD_DIRTY_DYNAMIC_STENCIL_TEST_ENABLE = 1ull << 19,
RADV_CMD_DIRTY_DYNAMIC_STENCIL_OP = 1ull << 20,
RADV_CMD_DIRTY_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE = 1ull << 21,
RADV_CMD_DIRTY_DYNAMIC_FRAGMENT_SHADING_RATE = 1ull << 22,
RADV_CMD_DIRTY_DYNAMIC_PATCH_CONTROL_POINTS = 1ull << 23,
RADV_CMD_DIRTY_DYNAMIC_RASTERIZER_DISCARD_ENABLE = 1ull << 24,
RADV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS_ENABLE = 1ull << 25,
RADV_CMD_DIRTY_DYNAMIC_LOGIC_OP = 1ull << 26,
RADV_CMD_DIRTY_DYNAMIC_PRIMITIVE_RESTART_ENABLE = 1ull << 27,
RADV_CMD_DIRTY_DYNAMIC_ALL = (1ull << 28) - 1,
RADV_CMD_DIRTY_PIPELINE = 1ull << 28,
RADV_CMD_DIRTY_INDEX_BUFFER = 1ull << 29,
RADV_CMD_DIRTY_FRAMEBUFFER = 1ull << 30,
RADV_CMD_DIRTY_VERTEX_BUFFER = 1ull << 31,
RADV_CMD_DIRTY_STREAMOUT_BUFFER = 1ull << 32,
};
enum radv_cmd_flush_bits {
/* Instruction cache. */
RADV_CMD_FLAG_INV_ICACHE = 1 << 0,
/* Scalar L1 cache. */
RADV_CMD_FLAG_INV_SCACHE = 1 << 1,
/* Vector L1 cache. */
RADV_CMD_FLAG_INV_VCACHE = 1 << 2,
/* L2 cache + L2 metadata cache writeback & invalidate.
* GFX6-8: Used by shaders only. GFX9-10: Used by everything. */
RADV_CMD_FLAG_INV_L2 = 1 << 3,
/* L2 writeback (write dirty L2 lines to memory for non-L2 clients).
* Only used for coherency with non-L2 clients like CB, DB, CP on GFX6-8.
* GFX6-7 will do complete invalidation, because the writeback is unsupported. */
RADV_CMD_FLAG_WB_L2 = 1 << 4,
/* Invalidate the metadata cache. To be used when the DCC/HTILE metadata
* changed and we want to read an image from shaders. */
RADV_CMD_FLAG_INV_L2_METADATA = 1 << 5,
/* Framebuffer caches */
RADV_CMD_FLAG_FLUSH_AND_INV_CB_META = 1 << 6,
RADV_CMD_FLAG_FLUSH_AND_INV_DB_META = 1 << 7,
RADV_CMD_FLAG_FLUSH_AND_INV_DB = 1 << 8,
RADV_CMD_FLAG_FLUSH_AND_INV_CB = 1 << 9,
/* Engine synchronization. */
RADV_CMD_FLAG_VS_PARTIAL_FLUSH = 1 << 10,
RADV_CMD_FLAG_PS_PARTIAL_FLUSH = 1 << 11,
RADV_CMD_FLAG_CS_PARTIAL_FLUSH = 1 << 12,
RADV_CMD_FLAG_VGT_FLUSH = 1 << 13,
/* Pipeline query controls. */
RADV_CMD_FLAG_START_PIPELINE_STATS = 1 << 14,
RADV_CMD_FLAG_STOP_PIPELINE_STATS = 1 << 15,
RADV_CMD_FLAG_VGT_STREAMOUT_SYNC = 1 << 16,
RADV_CMD_FLUSH_AND_INV_FRAMEBUFFER =
(RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_CB_META |
RADV_CMD_FLAG_FLUSH_AND_INV_DB | RADV_CMD_FLAG_FLUSH_AND_INV_DB_META)
};
struct radv_vertex_binding {
struct radv_buffer *buffer;
VkDeviceSize offset;
VkDeviceSize size;
VkDeviceSize stride;
};
struct radv_streamout_binding {
struct radv_buffer *buffer;
VkDeviceSize offset;
VkDeviceSize size;
};
struct radv_streamout_state {
/* Mask of bound streamout buffers. */
uint8_t enabled_mask;
/* External state that comes from the last vertex stage, it must be
* set explicitely when binding a new graphics pipeline.
*/
uint16_t stride_in_dw[MAX_SO_BUFFERS];
uint32_t enabled_stream_buffers_mask; /* stream0 buffers0-3 in 4 LSB */
/* State of VGT_STRMOUT_BUFFER_(CONFIG|END) */
uint32_t hw_enabled_mask;
/* State of VGT_STRMOUT_(CONFIG|EN) */
bool streamout_enabled;
};
struct radv_viewport_state {
uint32_t count;
VkViewport viewports[MAX_VIEWPORTS];
};
struct radv_scissor_state {
uint32_t count;
VkRect2D scissors[MAX_SCISSORS];
};
struct radv_discard_rectangle_state {
uint32_t count;
VkRect2D rectangles[MAX_DISCARD_RECTANGLES];
};
struct radv_sample_locations_state {
VkSampleCountFlagBits per_pixel;
VkExtent2D grid_size;
uint32_t count;
VkSampleLocationEXT locations[MAX_SAMPLE_LOCATIONS];
};
struct radv_dynamic_state {
/**
* Bitmask of (1ull << VK_DYNAMIC_STATE_*).
* Defines the set of saved dynamic state.
*/
uint64_t mask;
struct radv_viewport_state viewport;
struct radv_scissor_state scissor;
float line_width;
struct {
float bias;
float clamp;
float slope;
} depth_bias;
float blend_constants[4];
struct {
float min;
float max;
} depth_bounds;
struct {
uint32_t front;
uint32_t back;
} stencil_compare_mask;
struct {
uint32_t front;
uint32_t back;
} stencil_write_mask;
struct {
struct {
VkStencilOp fail_op;
VkStencilOp pass_op;
VkStencilOp depth_fail_op;
VkCompareOp compare_op;
} front;
struct {
VkStencilOp fail_op;
VkStencilOp pass_op;
VkStencilOp depth_fail_op;
VkCompareOp compare_op;
} back;
} stencil_op;
struct {
uint32_t front;
uint32_t back;
} stencil_reference;
struct radv_discard_rectangle_state discard_rectangle;
struct radv_sample_locations_state sample_location;
struct {
uint32_t factor;
uint16_t pattern;
} line_stipple;
VkCullModeFlags cull_mode;
VkFrontFace front_face;
unsigned primitive_topology;
bool depth_test_enable;
bool depth_write_enable;
VkCompareOp depth_compare_op;
bool depth_bounds_test_enable;
bool stencil_test_enable;
struct {
VkExtent2D size;
VkFragmentShadingRateCombinerOpKHR combiner_ops[2];
} fragment_shading_rate;
bool depth_bias_enable;
bool primitive_restart_enable;
bool rasterizer_discard_enable;
};
extern const struct radv_dynamic_state default_dynamic_state;
const char *radv_get_debug_option_name(int id);
const char *radv_get_perftest_option_name(int id);
int radv_get_int_debug_option(const char *name, int default_value);
struct radv_color_buffer_info {
uint64_t cb_color_base;
uint64_t cb_color_cmask;
uint64_t cb_color_fmask;
uint64_t cb_dcc_base;
uint32_t cb_color_slice;
uint32_t cb_color_view;
uint32_t cb_color_info;
uint32_t cb_color_attrib;
uint32_t cb_color_attrib2; /* GFX9 and later */
uint32_t cb_color_attrib3; /* GFX10 and later */
uint32_t cb_dcc_control;
uint32_t cb_color_cmask_slice;
uint32_t cb_color_fmask_slice;
union {
uint32_t cb_color_pitch; // GFX6-GFX8
uint32_t cb_mrt_epitch; // GFX9+
};
};
struct radv_ds_buffer_info {
uint64_t db_z_read_base;
uint64_t db_stencil_read_base;
uint64_t db_z_write_base;
uint64_t db_stencil_write_base;
uint64_t db_htile_data_base;
uint32_t db_depth_info;
uint32_t db_z_info;
uint32_t db_stencil_info;
uint32_t db_depth_view;
uint32_t db_depth_size;
uint32_t db_depth_slice;
uint32_t db_htile_surface;
uint32_t pa_su_poly_offset_db_fmt_cntl;
uint32_t db_z_info2; /* GFX9 only */
uint32_t db_stencil_info2; /* GFX9 only */
};
void radv_initialise_color_surface(struct radv_device *device, struct radv_color_buffer_info *cb,
struct radv_image_view *iview);
void radv_initialise_ds_surface(struct radv_device *device, struct radv_ds_buffer_info *ds,
struct radv_image_view *iview);
/**
* Attachment state when recording a renderpass instance.
*
* The clear value is valid only if there exists a pending clear.
*/
struct radv_attachment_state {
VkImageAspectFlags pending_clear_aspects;
uint32_t cleared_views;
VkClearValue clear_value;
VkImageLayout current_layout;
VkImageLayout current_stencil_layout;
bool current_in_render_loop;
bool disable_dcc;
struct radv_sample_locations_state sample_location;
union {
struct radv_color_buffer_info cb;
struct radv_ds_buffer_info ds;
};
struct radv_image_view *iview;
};
struct radv_descriptor_state {
struct radv_descriptor_set *sets[MAX_SETS];
uint32_t dirty;
uint32_t valid;
struct radv_push_descriptor_set push_set;
bool push_dirty;
uint32_t dynamic_buffers[4 * MAX_DYNAMIC_BUFFERS];
};
struct radv_subpass_sample_locs_state {
uint32_t subpass_idx;
struct radv_sample_locations_state sample_location;
};
enum rgp_flush_bits {
RGP_FLUSH_WAIT_ON_EOP_TS = 0x1,
RGP_FLUSH_VS_PARTIAL_FLUSH = 0x2,
RGP_FLUSH_PS_PARTIAL_FLUSH = 0x4,
RGP_FLUSH_CS_PARTIAL_FLUSH = 0x8,
RGP_FLUSH_PFP_SYNC_ME = 0x10,
RGP_FLUSH_SYNC_CP_DMA = 0x20,
RGP_FLUSH_INVAL_VMEM_L0 = 0x40,
RGP_FLUSH_INVAL_ICACHE = 0x80,
RGP_FLUSH_INVAL_SMEM_L0 = 0x100,
RGP_FLUSH_FLUSH_L2 = 0x200,
RGP_FLUSH_INVAL_L2 = 0x400,
RGP_FLUSH_FLUSH_CB = 0x800,
RGP_FLUSH_INVAL_CB = 0x1000,
RGP_FLUSH_FLUSH_DB = 0x2000,
RGP_FLUSH_INVAL_DB = 0x4000,
RGP_FLUSH_INVAL_L1 = 0x8000,
};
struct radv_cmd_state {
/* Vertex descriptors */
uint64_t vb_va;
unsigned vb_size;
bool predicating;
uint64_t dirty;
uint32_t prefetch_L2_mask;
struct radv_pipeline *pipeline;
struct radv_pipeline *emitted_pipeline;
struct radv_pipeline *compute_pipeline;
struct radv_pipeline *emitted_compute_pipeline;
struct radv_pipeline *rt_pipeline; /* emitted = emitted_compute_pipeline */
struct radv_framebuffer *framebuffer;
struct radv_render_pass *pass;
const struct radv_subpass *subpass;
struct radv_dynamic_state dynamic;
struct radv_attachment_state *attachments;
struct radv_streamout_state streamout;
VkRect2D render_area;
uint32_t num_subpass_sample_locs;
struct radv_subpass_sample_locs_state *subpass_sample_locs;
/* Index buffer */
struct radv_buffer *index_buffer;
uint64_t index_offset;
uint32_t index_type;
uint32_t max_index_count;
uint64_t index_va;
int32_t last_index_type;
int32_t last_primitive_reset_en;
uint32_t last_primitive_reset_index;
enum radv_cmd_flush_bits flush_bits;
unsigned active_occlusion_queries;
bool perfect_occlusion_queries_enabled;
unsigned active_pipeline_queries;
unsigned active_pipeline_gds_queries;
uint32_t trace_id;
uint32_t last_ia_multi_vgt_param;
uint32_t last_num_instances;
uint32_t last_first_instance;
uint32_t last_vertex_offset;
uint32_t last_drawid;
uint32_t last_sx_ps_downconvert;
uint32_t last_sx_blend_opt_epsilon;
uint32_t last_sx_blend_opt_control;
/* Whether CP DMA is busy/idle. */
bool dma_is_busy;
/* Conditional rendering info. */
uint8_t predication_op; /* 32-bit or 64-bit predicate value */
int predication_type; /* -1: disabled, 0: normal, 1: inverted */
uint64_t predication_va;
/* Inheritance info. */
VkQueryPipelineStatisticFlags inherited_pipeline_statistics;
bool context_roll_without_scissor_emitted;
/* SQTT related state. */
uint32_t current_event_type;
uint32_t num_events;
uint32_t num_layout_transitions;
bool pending_sqtt_barrier_end;
enum rgp_flush_bits sqtt_flush_bits;
uint8_t cb_mip[MAX_RTS];
};
struct radv_cmd_pool {
struct vk_object_base base;
VkAllocationCallbacks alloc;
struct list_head cmd_buffers;
struct list_head free_cmd_buffers;
uint32_t queue_family_index;
};
struct radv_cmd_buffer_upload {
uint8_t *map;
unsigned offset;
uint64_t size;
struct radeon_winsys_bo *upload_bo;
struct list_head list;
};
enum radv_cmd_buffer_status {
RADV_CMD_BUFFER_STATUS_INVALID,
RADV_CMD_BUFFER_STATUS_INITIAL,
RADV_CMD_BUFFER_STATUS_RECORDING,
RADV_CMD_BUFFER_STATUS_EXECUTABLE,
RADV_CMD_BUFFER_STATUS_PENDING,
};
struct radv_cmd_buffer {
struct vk_object_base base;
struct radv_device *device;
struct radv_cmd_pool *pool;
struct list_head pool_link;
VkCommandBufferUsageFlags usage_flags;
VkCommandBufferLevel level;
enum radv_cmd_buffer_status status;
struct radeon_cmdbuf *cs;
struct radv_cmd_state state;
struct radv_vertex_binding vertex_bindings[MAX_VBS];
struct radv_streamout_binding streamout_bindings[MAX_SO_BUFFERS];
uint32_t queue_family_index;
uint8_t push_constants[MAX_PUSH_CONSTANTS_SIZE];
VkShaderStageFlags push_constant_stages;
struct radv_descriptor_set_header meta_push_descriptors;
struct radv_descriptor_state descriptors[MAX_BIND_POINTS];
struct radv_cmd_buffer_upload upload;
uint32_t scratch_size_per_wave_needed;
uint32_t scratch_waves_wanted;
uint32_t compute_scratch_size_per_wave_needed;
uint32_t compute_scratch_waves_wanted;
uint32_t esgs_ring_size_needed;
uint32_t gsvs_ring_size_needed;
bool tess_rings_needed;
bool gds_needed; /* for GFX10 streamout and NGG GS queries */
bool gds_oa_needed; /* for GFX10 streamout */
bool sample_positions_needed;
VkResult record_result;
uint64_t gfx9_fence_va;
uint32_t gfx9_fence_idx;
uint64_t gfx9_eop_bug_va;
/**
* Whether a query pool has been resetted and we have to flush caches.
*/
bool pending_reset_query;
/**
* Bitmask of pending active query flushes.
*/
enum radv_cmd_flush_bits active_query_flush_bits;
};
struct radv_image;
struct radv_image_view;
bool radv_cmd_buffer_uses_mec(struct radv_cmd_buffer *cmd_buffer);
void si_emit_graphics(struct radv_device *device, struct radeon_cmdbuf *cs);
void si_emit_compute(struct radv_device *device, struct radeon_cmdbuf *cs);
void cik_create_gfx_config(struct radv_device *device);
void si_write_viewport(struct radeon_cmdbuf *cs, int first_vp, int count,
const VkViewport *viewports);
void si_write_scissors(struct radeon_cmdbuf *cs, int first, int count, const VkRect2D *scissors,
const VkViewport *viewports, bool can_use_guardband);
uint32_t si_get_ia_multi_vgt_param(struct radv_cmd_buffer *cmd_buffer, bool instanced_draw,
bool indirect_draw, bool count_from_stream_output,
uint32_t draw_vertex_count, unsigned topology,
bool prim_restart_enable);
void si_cs_emit_write_event_eop(struct radeon_cmdbuf *cs, enum chip_class chip_class, bool is_mec,
unsigned event, unsigned event_flags, unsigned dst_sel,
unsigned data_sel, uint64_t va, uint32_t new_fence,
uint64_t gfx9_eop_bug_va);
void radv_cp_wait_mem(struct radeon_cmdbuf *cs, uint32_t op, uint64_t va, uint32_t ref,
uint32_t mask);
void si_cs_emit_cache_flush(struct radeon_cmdbuf *cs, enum chip_class chip_class,
uint32_t *fence_ptr, uint64_t va, bool is_mec,
enum radv_cmd_flush_bits flush_bits,
enum rgp_flush_bits *sqtt_flush_bits, uint64_t gfx9_eop_bug_va);
void si_emit_cache_flush(struct radv_cmd_buffer *cmd_buffer);
void si_emit_set_predication_state(struct radv_cmd_buffer *cmd_buffer, bool draw_visible,
unsigned pred_op, uint64_t va);
void si_cp_dma_buffer_copy(struct radv_cmd_buffer *cmd_buffer, uint64_t src_va, uint64_t dest_va,
uint64_t size);
void si_cp_dma_prefetch(struct radv_cmd_buffer *cmd_buffer, uint64_t va, unsigned size);
void si_cp_dma_clear_buffer(struct radv_cmd_buffer *cmd_buffer, uint64_t va, uint64_t size,
unsigned value);
void si_cp_dma_wait_for_idle(struct radv_cmd_buffer *cmd_buffer);
void radv_set_db_count_control(struct radv_cmd_buffer *cmd_buffer);
bool radv_cmd_buffer_upload_alloc(struct radv_cmd_buffer *cmd_buffer, unsigned size,
unsigned *out_offset, void **ptr);
void radv_cmd_buffer_set_subpass(struct radv_cmd_buffer *cmd_buffer,
const struct radv_subpass *subpass);
bool radv_cmd_buffer_upload_data(struct radv_cmd_buffer *cmd_buffer, unsigned size,
const void *data, unsigned *out_offset);
void radv_cmd_buffer_clear_subpass(struct radv_cmd_buffer *cmd_buffer);
void radv_cmd_buffer_resolve_subpass(struct radv_cmd_buffer *cmd_buffer);
void radv_cmd_buffer_resolve_subpass_cs(struct radv_cmd_buffer *cmd_buffer);
void radv_depth_stencil_resolve_subpass_cs(struct radv_cmd_buffer *cmd_buffer,
VkImageAspectFlags aspects,
VkResolveModeFlagBits resolve_mode);
void radv_cmd_buffer_resolve_subpass_fs(struct radv_cmd_buffer *cmd_buffer);
void radv_depth_stencil_resolve_subpass_fs(struct radv_cmd_buffer *cmd_buffer,
VkImageAspectFlags aspects,
VkResolveModeFlagBits resolve_mode);
void radv_emit_default_sample_locations(struct radeon_cmdbuf *cs, int nr_samples);
unsigned radv_get_default_max_sample_dist(int log_samples);
void radv_device_init_msaa(struct radv_device *device);
VkResult radv_device_init_vrs_image(struct radv_device *device);
void radv_update_ds_clear_metadata(struct radv_cmd_buffer *cmd_buffer,
const struct radv_image_view *iview,
VkClearDepthStencilValue ds_clear_value,
VkImageAspectFlags aspects);
void radv_update_color_clear_metadata(struct radv_cmd_buffer *cmd_buffer,
const struct radv_image_view *iview, int cb_idx,
uint32_t color_values[2]);
bool radv_image_use_dcc_image_stores(const struct radv_device *device,
const struct radv_image *image);
bool radv_image_use_dcc_predication(const struct radv_device *device,
const struct radv_image *image);
void radv_update_fce_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
const VkImageSubresourceRange *range, bool value);
void radv_update_dcc_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
const VkImageSubresourceRange *range, bool value);
enum radv_cmd_flush_bits radv_src_access_flush(struct radv_cmd_buffer *cmd_buffer,
VkAccessFlags src_flags,
const struct radv_image *image);
enum radv_cmd_flush_bits radv_dst_access_flush(struct radv_cmd_buffer *cmd_buffer,
VkAccessFlags dst_flags,
const struct radv_image *image);
uint32_t radv_fill_buffer(struct radv_cmd_buffer *cmd_buffer, const struct radv_image *image,
struct radeon_winsys_bo *bo, uint64_t offset, uint64_t size,
uint32_t value);
void radv_cmd_buffer_trace_emit(struct radv_cmd_buffer *cmd_buffer);
bool radv_get_memory_fd(struct radv_device *device, struct radv_device_memory *memory, int *pFD);
void radv_free_memory(struct radv_device *device, const VkAllocationCallbacks *pAllocator,
struct radv_device_memory *mem);
static inline void
radv_emit_shader_pointer_head(struct radeon_cmdbuf *cs, unsigned sh_offset, unsigned pointer_count,
bool use_32bit_pointers)
{
radeon_emit(cs, PKT3(PKT3_SET_SH_REG, pointer_count * (use_32bit_pointers ? 1 : 2), 0));
radeon_emit(cs, (sh_offset - SI_SH_REG_OFFSET) >> 2);
}
static inline void
radv_emit_shader_pointer_body(struct radv_device *device, struct radeon_cmdbuf *cs, uint64_t va,
bool use_32bit_pointers)
{
radeon_emit(cs, va);
if (use_32bit_pointers) {
assert(va == 0 || (va >> 32) == device->physical_device->rad_info.address32_hi);
} else {
radeon_emit(cs, va >> 32);
}
}
static inline void
radv_emit_shader_pointer(struct radv_device *device, struct radeon_cmdbuf *cs, uint32_t sh_offset,
uint64_t va, bool global)
{
bool use_32bit_pointers = !global;
radv_emit_shader_pointer_head(cs, sh_offset, 1, use_32bit_pointers);
radv_emit_shader_pointer_body(device, cs, va, use_32bit_pointers);
}
static inline struct radv_descriptor_state *
radv_get_descriptors_state(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point)
{
switch (bind_point) {
case VK_PIPELINE_BIND_POINT_GRAPHICS:
case VK_PIPELINE_BIND_POINT_COMPUTE:
return &cmd_buffer->descriptors[bind_point];
case VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR:
return &cmd_buffer->descriptors[2];
default:
unreachable("Unhandled bind point");
}
}
/*
* Takes x,y,z as exact numbers of invocations, instead of blocks.
*
* Limitations: Can't call normal dispatch functions without binding or rebinding
* the compute pipeline.
*/
void radv_unaligned_dispatch(struct radv_cmd_buffer *cmd_buffer, uint32_t x, uint32_t y,
uint32_t z);
struct radv_event {
struct vk_object_base base;
struct radeon_winsys_bo *bo;
uint64_t *map;
};
#define RADV_HASH_SHADER_NO_NGG (1 << 0)
#define RADV_HASH_SHADER_CS_WAVE32 (1 << 1)
#define RADV_HASH_SHADER_PS_WAVE32 (1 << 2)
#define RADV_HASH_SHADER_GE_WAVE32 (1 << 3)
#define RADV_HASH_SHADER_LLVM (1 << 4)
#define RADV_HASH_SHADER_DISCARD_TO_DEMOTE (1 << 5)
#define RADV_HASH_SHADER_MRT_NAN_FIXUP (1 << 6)
#define RADV_HASH_SHADER_INVARIANT_GEOM (1 << 7)
#define RADV_HASH_SHADER_KEEP_STATISTICS (1 << 8)
#define RADV_HASH_SHADER_FORCE_VRS_2x2 (1 << 9)
#define RADV_HASH_SHADER_FORCE_VRS_2x1 (1 << 10)
#define RADV_HASH_SHADER_FORCE_VRS_1x2 (1 << 11)
void radv_hash_shaders(unsigned char *hash, const VkPipelineShaderStageCreateInfo **stages,
const struct radv_pipeline_layout *layout,
const struct radv_pipeline_key *key, uint32_t flags);
#define RADV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
#define radv_foreach_stage(stage, stage_bits) \
for (gl_shader_stage stage, __tmp = (gl_shader_stage)((stage_bits)&RADV_STAGE_MASK); \
stage = ffs(__tmp) - 1, __tmp; __tmp &= ~(1 << (stage)))
extern const VkFormat radv_fs_key_format_exemplars[NUM_META_FS_KEYS];
unsigned radv_format_meta_fs_key(struct radv_device *device, VkFormat format);
struct radv_multisample_state {
uint32_t db_eqaa;
uint32_t pa_sc_mode_cntl_0;
uint32_t pa_sc_mode_cntl_1;
uint32_t pa_sc_aa_config;
uint32_t pa_sc_aa_mask[2];
unsigned num_samples;
};
struct radv_vrs_state {
uint32_t pa_cl_vrs_cntl;
};
struct radv_prim_vertex_count {
uint8_t min;
uint8_t incr;
};
struct radv_ia_multi_vgt_param_helpers {
uint32_t base;
bool partial_es_wave;
uint8_t primgroup_size;
bool ia_switch_on_eoi;
bool partial_vs_wave;
};
struct radv_binning_state {
uint32_t pa_sc_binner_cntl_0;
uint32_t db_dfsm_control;
};
#define SI_GS_PER_ES 128
struct radv_pipeline {
struct vk_object_base base;
struct radv_device *device;
struct radv_dynamic_state dynamic_state;
struct radv_pipeline_layout *layout;
bool need_indirect_descriptor_sets;
struct radv_shader_variant *shaders[MESA_SHADER_STAGES];
struct radv_shader_variant *gs_copy_shader;
VkShaderStageFlags active_stages;
struct radeon_cmdbuf cs;
uint32_t ctx_cs_hash;
struct radeon_cmdbuf ctx_cs;
uint32_t binding_stride[MAX_VBS];
uint8_t attrib_bindings[MAX_VERTEX_ATTRIBS];
uint16_t attrib_ends[MAX_VERTEX_ATTRIBS];
bool use_per_attribute_vb_descs;
uint32_t vb_desc_usage_mask;
uint32_t user_data_0[MESA_SHADER_STAGES];
union {
struct {
struct radv_multisample_state ms;
struct radv_binning_state binning;
struct radv_vrs_state vrs;
uint32_t spi_baryc_cntl;
unsigned esgs_ring_size;
unsigned gsvs_ring_size;
uint32_t vtx_base_sgpr;
struct radv_ia_multi_vgt_param_helpers ia_multi_vgt_param;
uint8_t vtx_emit_num;
bool uses_drawid;
bool uses_baseinstance;
bool can_use_guardband;
uint64_t needed_dynamic_state;
bool disable_out_of_order_rast_for_occlusion;
unsigned tess_patch_control_points;
unsigned pa_su_sc_mode_cntl;
unsigned db_depth_control;
unsigned pa_cl_clip_cntl;
bool uses_dynamic_stride;
/* Used for rbplus */
uint32_t col_format;
uint32_t cb_target_mask;
/* Whether the pipeline uses NGG (GFX10+). */
bool is_ngg;
} graphics;
};
unsigned max_waves;
unsigned scratch_bytes_per_wave;
/* Not NULL if graphics pipeline uses streamout. */
struct radv_shader_variant *streamout_shader;
/* Unique pipeline hash identifier. */
uint64_t pipeline_hash;
};
static inline bool
radv_pipeline_has_gs(const struct radv_pipeline *pipeline)
{
return pipeline->shaders[MESA_SHADER_GEOMETRY] ? true : false;
}
static inline bool
radv_pipeline_has_tess(const struct radv_pipeline *pipeline)
{
return pipeline->shaders[MESA_SHADER_TESS_CTRL] ? true : false;
}
bool radv_pipeline_has_ngg_passthrough(const struct radv_pipeline *pipeline);
bool radv_pipeline_has_gs_copy_shader(const struct radv_pipeline *pipeline);
struct radv_userdata_info *radv_lookup_user_sgpr(struct radv_pipeline *pipeline,
gl_shader_stage stage, int idx);
struct radv_shader_variant *radv_get_shader(const struct radv_pipeline *pipeline,
gl_shader_stage stage);
struct radv_graphics_pipeline_create_info {
bool use_rectlist;
bool db_depth_clear;
bool db_stencil_clear;
bool db_depth_disable_expclear;
bool db_stencil_disable_expclear;
bool depth_compress_disable;
bool stencil_compress_disable;
bool resummarize_enable;
uint32_t custom_blend_mode;
};
VkResult radv_graphics_pipeline_create(VkDevice device, VkPipelineCache cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct radv_graphics_pipeline_create_info *extra,
const VkAllocationCallbacks *alloc, VkPipeline *pPipeline);
struct radv_binning_settings {
unsigned context_states_per_bin; /* allowed range: [1, 6] */
unsigned persistent_states_per_bin; /* allowed range: [1, 32] */
unsigned fpovs_per_batch; /* allowed range: [0, 255], 0 = unlimited */
};
struct radv_binning_settings radv_get_binning_settings(const struct radv_physical_device *pdev);
struct vk_format_description;
uint32_t radv_translate_buffer_dataformat(const struct util_format_description *desc,
int first_non_void);
uint32_t radv_translate_buffer_numformat(const struct util_format_description *desc,
int first_non_void);
bool radv_is_buffer_format_supported(VkFormat format, bool *scaled);
uint32_t radv_translate_colorformat(VkFormat format);
uint32_t radv_translate_color_numformat(VkFormat format, const struct util_format_description *desc,
int first_non_void);
uint32_t radv_colorformat_endian_swap(uint32_t colorformat);
unsigned radv_translate_colorswap(VkFormat format, bool do_endian_swap);
uint32_t radv_translate_dbformat(VkFormat format);
uint32_t radv_translate_tex_dataformat(VkFormat format, const struct util_format_description *desc,
int first_non_void);
uint32_t radv_translate_tex_numformat(VkFormat format, const struct util_format_description *desc,
int first_non_void);
bool radv_format_pack_clear_color(VkFormat format, uint32_t clear_vals[2],
VkClearColorValue *value);
bool radv_is_storage_image_format_supported(struct radv_physical_device *physical_device,
VkFormat format);
bool radv_is_colorbuffer_format_supported(const struct radv_physical_device *pdevice,
VkFormat format, bool *blendable);
bool radv_dcc_formats_compatible(VkFormat format1, VkFormat format2);
bool radv_is_atomic_format_supported(VkFormat format);
bool radv_device_supports_etc(struct radv_physical_device *physical_device);
struct radv_image_plane {
VkFormat format;
struct radeon_surf surface;
};
struct radv_image {
struct vk_object_base base;
VkImageType type;
/* The original VkFormat provided by the client. This may not match any
* of the actual surface formats.
*/
VkFormat vk_format;
VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
struct ac_surf_info info;
VkImageTiling tiling; /** VkImageCreateInfo::tiling */
VkImageCreateFlags flags; /** VkImageCreateInfo::flags */
VkDeviceSize size;
uint32_t alignment;
unsigned queue_family_mask;
bool exclusive;
bool shareable;
/* Set when bound */
struct radeon_winsys_bo *bo;
VkDeviceSize offset;
bool tc_compatible_cmask;
uint64_t clear_value_offset;
uint64_t fce_pred_offset;
uint64_t dcc_pred_offset;
/*
* Metadata for the TC-compat zrange workaround. If the 32-bit value
* stored at this offset is UINT_MAX, the driver will emit
* DB_Z_INFO.ZRANGE_PRECISION=0, otherwise it will skip the
* SET_CONTEXT_REG packet.
*/
uint64_t tc_compat_zrange_offset;
/* For VK_ANDROID_native_buffer, the WSI image owns the memory, */
VkDeviceMemory owned_memory;
unsigned plane_count;
struct radv_image_plane planes[0];
};
/* Whether the image has a htile that is known consistent with the contents of
* the image and is allowed to be in compressed form.
*
* If this is false reads that don't use the htile should be able to return
* correct results.
*/
bool radv_layout_is_htile_compressed(const struct radv_device *device,
const struct radv_image *image, VkImageLayout layout,
bool in_render_loop, unsigned queue_mask);
bool radv_layout_can_fast_clear(const struct radv_device *device, const struct radv_image *image,
VkImageLayout layout, bool in_render_loop, unsigned queue_mask);
bool radv_layout_dcc_compressed(const struct radv_device *device, const struct radv_image *image,
VkImageLayout layout, bool in_render_loop, unsigned queue_mask);
bool radv_layout_fmask_compressed(const struct radv_device *device, const struct radv_image *image,
VkImageLayout layout, unsigned queue_mask);
/**
* Return whether the image has CMASK metadata for color surfaces.
*/
static inline bool
radv_image_has_cmask(const struct radv_image *image)
{
return image->planes[0].surface.cmask_offset;
}
/**
* Return whether the image has FMASK metadata for color surfaces.
*/
static inline bool
radv_image_has_fmask(const struct radv_image *image)
{
return image->planes[0].surface.fmask_offset;
}
/**
* Return whether the image has DCC metadata for color surfaces.
*/
static inline bool
radv_image_has_dcc(const struct radv_image *image)
{
return !(image->planes[0].surface.flags & RADEON_SURF_Z_OR_SBUFFER) &&
image->planes[0].surface.meta_offset;
}
/**
* Return whether the image is TC-compatible CMASK.
*/
static inline bool
radv_image_is_tc_compat_cmask(const struct radv_image *image)
{
return radv_image_has_fmask(image) && image->tc_compatible_cmask;
}
/**
* Return whether DCC metadata is enabled for a level.
*/
static inline bool
radv_dcc_enabled(const struct radv_image *image, unsigned level)
{
return radv_image_has_dcc(image) && level < image->planes[0].surface.num_meta_levels;
}
/**
* Return whether the image has CB metadata.
*/
static inline bool
radv_image_has_CB_metadata(const struct radv_image *image)
{
return radv_image_has_cmask(image) || radv_image_has_fmask(image) || radv_image_has_dcc(image);
}
/**
* Return whether the image has HTILE metadata for depth surfaces.
*/
static inline bool
radv_image_has_htile(const struct radv_image *image)
{
return image->planes[0].surface.flags & RADEON_SURF_Z_OR_SBUFFER &&
image->planes[0].surface.meta_size;
}
/**
* Return whether the image has VRS HTILE metadata for depth surfaces
*/
static inline bool
radv_image_has_vrs_htile(const struct radv_device *device, const struct radv_image *image)
{
/* Any depth buffer can potentially use VRS. */
return device->attachment_vrs_enabled && radv_image_has_htile(image) &&
(image->usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT);
}
/**
* Return whether HTILE metadata is enabled for a level.
*/
static inline bool
radv_htile_enabled(const struct radv_image *image, unsigned level)
{
return radv_image_has_htile(image) && level < image->planes[0].surface.num_meta_levels;
}
/**
* Return whether the image is TC-compatible HTILE.
*/
static inline bool
radv_image_is_tc_compat_htile(const struct radv_image *image)
{
return radv_image_has_htile(image) &&
(image->planes[0].surface.flags & RADEON_SURF_TC_COMPATIBLE_HTILE);
}
/**
* Return whether the entire HTILE buffer can be used for depth in order to
* improve HiZ Z-Range precision.
*/
static inline bool
radv_image_tile_stencil_disabled(const struct radv_device *device, const struct radv_image *image)
{
if (device->physical_device->rad_info.chip_class >= GFX9) {
return !vk_format_has_stencil(image->vk_format) && !radv_image_has_vrs_htile(device, image);
} else {
/* Due to a hw bug, TILE_STENCIL_DISABLE must be set to 0 for
* the TC-compat ZRANGE issue even if no stencil is used.
*/
return !vk_format_has_stencil(image->vk_format) && !radv_image_is_tc_compat_htile(image);
}
}
static inline bool
radv_image_has_clear_value(const struct radv_image *image)
{
return image->clear_value_offset != 0;
}
static inline uint64_t
radv_image_get_fast_clear_va(const struct radv_image *image, uint32_t base_level)
{
assert(radv_image_has_clear_value(image));
uint64_t va = radv_buffer_get_va(image->bo);
va += image->offset + image->clear_value_offset + base_level * 8;
return va;
}
static inline uint64_t
radv_image_get_fce_pred_va(const struct radv_image *image, uint32_t base_level)
{
assert(image->fce_pred_offset != 0);
uint64_t va = radv_buffer_get_va(image->bo);
va += image->offset + image->fce_pred_offset + base_level * 8;
return va;
}
static inline uint64_t
radv_image_get_dcc_pred_va(const struct radv_image *image, uint32_t base_level)
{
assert(image->dcc_pred_offset != 0);
uint64_t va = radv_buffer_get_va(image->bo);
va += image->offset + image->dcc_pred_offset + base_level * 8;
return va;
}
static inline uint64_t
radv_get_tc_compat_zrange_va(const struct radv_image *image, uint32_t base_level)
{
assert(image->tc_compat_zrange_offset != 0);
uint64_t va = radv_buffer_get_va(image->bo);
va += image->offset + image->tc_compat_zrange_offset + base_level * 4;
return va;
}
static inline uint64_t
radv_get_ds_clear_value_va(const struct radv_image *image, uint32_t base_level)
{
assert(radv_image_has_clear_value(image));
uint64_t va = radv_buffer_get_va(image->bo);
va += image->offset + image->clear_value_offset + base_level * 8;
return va;
}
static inline uint32_t
radv_get_htile_initial_value(const struct radv_device *device, const struct radv_image *image)
{
uint32_t initial_value;
if (radv_image_tile_stencil_disabled(device, image)) {
/* Z only (no stencil):
*
* |31 18|17 4|3 0|
* +---------+---------+-------+
* | Max Z | Min Z | ZMask |
*/
initial_value = 0xfffc000f;
} else {
/* Z and stencil:
*
* |31 12|11 10|9 8|7 6|5 4|3 0|
* +-----------+-----+------+-----+-----+-------+
* | Z Range | | SMem | SR1 | SR0 | ZMask |
*
* SR0/SR1 contains the stencil test results. Initializing
* SR0/SR1 to 0x3 means the stencil test result is unknown.
*
* Z, stencil and 4 bit VRS encoding:
* |31 12|11 10|9 8|7 6|5 4|3 0|
* +-----------+------------+------+------------+-----+-------+
* | Z Range | VRS y-rate | SMem | VRS x-rate | SR0 | ZMask |
*/
if (radv_image_has_vrs_htile(device, image)) {
/* Initialize the VRS x-rate value at 0, so the hw interprets it as 1 sample. */
initial_value = 0xfffff33f;
} else {
initial_value = 0xfffff3ff;
}
}
return initial_value;
}
static inline bool
radv_image_get_iterate256(struct radv_device *device, struct radv_image *image)
{
/* ITERATE_256 is required for depth or stencil MSAA images that are TC-compatible HTILE. */
return device->physical_device->rad_info.chip_class >= GFX10 &&
(image->usage & (VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT |
VK_IMAGE_USAGE_TRANSFER_DST_BIT)) &&
radv_image_is_tc_compat_htile(image) &&
image->info.samples > 1;
}
unsigned radv_image_queue_family_mask(const struct radv_image *image, uint32_t family,
uint32_t queue_family);
static inline uint32_t
radv_get_layerCount(const struct radv_image *image, const VkImageSubresourceRange *range)
{
return range->layerCount == VK_REMAINING_ARRAY_LAYERS
? image->info.array_size - range->baseArrayLayer
: range->layerCount;
}
static inline uint32_t
radv_get_levelCount(const struct radv_image *image, const VkImageSubresourceRange *range)
{
return range->levelCount == VK_REMAINING_MIP_LEVELS ? image->info.levels - range->baseMipLevel
: range->levelCount;
}
bool radv_image_is_renderable(struct radv_device *device, struct radv_image *image);
struct radeon_bo_metadata;
void radv_init_metadata(struct radv_device *device, struct radv_image *image,
struct radeon_bo_metadata *metadata);
void radv_image_override_offset_stride(struct radv_device *device, struct radv_image *image,
uint64_t offset, uint32_t stride);
union radv_descriptor {
struct {
uint32_t plane0_descriptor[8];
uint32_t fmask_descriptor[8];
};
struct {
uint32_t plane_descriptors[3][8];
};
};
struct radv_image_view {
struct vk_object_base base;
struct radv_image *image; /**< VkImageViewCreateInfo::image */
VkImageViewType type;
VkImageAspectFlags aspect_mask;
VkFormat vk_format;
unsigned plane_id;
uint32_t base_layer;
uint32_t layer_count;
uint32_t base_mip;
uint32_t level_count;
VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
/* Whether the image iview supports fast clear. */
bool support_fast_clear;
union radv_descriptor descriptor;
/* Descriptor for use as a storage image as opposed to a sampled image.
* This has a few differences for cube maps (e.g. type).
*/
union radv_descriptor storage_descriptor;
};
struct radv_image_create_info {
const VkImageCreateInfo *vk_info;
bool scanout;
bool no_metadata_planes;
const struct radeon_bo_metadata *bo_metadata;
};
VkResult
radv_image_create_layout(struct radv_device *device, struct radv_image_create_info create_info,
const struct VkImageDrmFormatModifierExplicitCreateInfoEXT *mod_info,
struct radv_image *image);
VkResult radv_image_create(VkDevice _device, const struct radv_image_create_info *info,
const VkAllocationCallbacks *alloc, VkImage *pImage);
bool radv_are_formats_dcc_compatible(const struct radv_physical_device *pdev, const void *pNext,
VkFormat format, VkImageCreateFlags flags);
bool vi_alpha_is_on_msb(struct radv_device *device, VkFormat format);
VkResult radv_image_from_gralloc(VkDevice device_h, const VkImageCreateInfo *base_info,
const VkNativeBufferANDROID *gralloc_info,
const VkAllocationCallbacks *alloc, VkImage *out_image_h);
uint64_t radv_ahb_usage_from_vk_usage(const VkImageCreateFlags vk_create,
const VkImageUsageFlags vk_usage);
VkResult radv_import_ahb_memory(struct radv_device *device, struct radv_device_memory *mem,
unsigned priority,
const VkImportAndroidHardwareBufferInfoANDROID *info);
VkResult radv_create_ahb_memory(struct radv_device *device, struct radv_device_memory *mem,
unsigned priority, const VkMemoryAllocateInfo *pAllocateInfo);
VkFormat radv_select_android_external_format(const void *next, VkFormat default_format);
bool radv_android_gralloc_supports_format(VkFormat format, VkImageUsageFlagBits usage);
struct radv_image_view_extra_create_info {
bool disable_compression;
bool enable_compression;
};
void radv_image_view_init(struct radv_image_view *view, struct radv_device *device,
const VkImageViewCreateInfo *pCreateInfo,
const struct radv_image_view_extra_create_info *extra_create_info);
VkFormat radv_get_aspect_format(struct radv_image *image, VkImageAspectFlags mask);
struct radv_sampler_ycbcr_conversion {
struct vk_object_base base;
VkFormat format;
VkSamplerYcbcrModelConversion ycbcr_model;
VkSamplerYcbcrRange ycbcr_range;
VkComponentMapping components;
VkChromaLocation chroma_offsets[2];
VkFilter chroma_filter;
};
struct radv_buffer_view {
struct vk_object_base base;
struct radeon_winsys_bo *bo;
VkFormat vk_format;
uint64_t range; /**< VkBufferViewCreateInfo::range */
uint32_t state[4];
};
void radv_buffer_view_init(struct radv_buffer_view *view, struct radv_device *device,
const VkBufferViewCreateInfo *pCreateInfo);
static inline struct VkExtent3D
radv_sanitize_image_extent(const VkImageType imageType, const struct VkExtent3D imageExtent)
{
switch (imageType) {
case VK_IMAGE_TYPE_1D:
return (VkExtent3D){imageExtent.width, 1, 1};
case VK_IMAGE_TYPE_2D:
return (VkExtent3D){imageExtent.width, imageExtent.height, 1};
case VK_IMAGE_TYPE_3D:
return imageExtent;
default:
unreachable("invalid image type");
}
}
static inline struct VkOffset3D
radv_sanitize_image_offset(const VkImageType imageType, const struct VkOffset3D imageOffset)
{
switch (imageType) {
case VK_IMAGE_TYPE_1D:
return (VkOffset3D){imageOffset.x, 0, 0};
case VK_IMAGE_TYPE_2D:
return (VkOffset3D){imageOffset.x, imageOffset.y, 0};
case VK_IMAGE_TYPE_3D:
return imageOffset;
default:
unreachable("invalid image type");
}
}
static inline bool
radv_image_extent_compare(const struct radv_image *image, const VkExtent3D *extent)
{
if (extent->width != image->info.width || extent->height != image->info.height ||
extent->depth != image->info.depth)
return false;
return true;
}
struct radv_sampler {
struct vk_object_base base;
uint32_t state[4];
struct radv_sampler_ycbcr_conversion *ycbcr_sampler;
uint32_t border_color_slot;
};
struct radv_framebuffer {
struct vk_object_base base;
uint32_t width;
uint32_t height;
uint32_t layers;
bool imageless;
uint32_t attachment_count;
struct radv_image_view *attachments[0];
};
struct radv_subpass_barrier {
VkPipelineStageFlags src_stage_mask;
VkAccessFlags src_access_mask;
VkAccessFlags dst_access_mask;
};
void radv_subpass_barrier(struct radv_cmd_buffer *cmd_buffer,
const struct radv_subpass_barrier *barrier);
struct radv_subpass_attachment {
uint32_t attachment;
VkImageLayout layout;
VkImageLayout stencil_layout;
bool in_render_loop;
};
struct radv_subpass {
uint32_t attachment_count;
struct radv_subpass_attachment *attachments;
uint32_t input_count;
uint32_t color_count;
struct radv_subpass_attachment *input_attachments;
struct radv_subpass_attachment *color_attachments;
struct radv_subpass_attachment *resolve_attachments;
struct radv_subpass_attachment *depth_stencil_attachment;
struct radv_subpass_attachment *ds_resolve_attachment;
struct radv_subpass_attachment *vrs_attachment;
VkResolveModeFlagBits depth_resolve_mode;
VkResolveModeFlagBits stencil_resolve_mode;
/** Subpass has at least one color resolve attachment */
bool has_color_resolve;
/** Subpass has at least one color attachment */
bool has_color_att;
struct radv_subpass_barrier start_barrier;
uint32_t view_mask;
VkSampleCountFlagBits color_sample_count;
VkSampleCountFlagBits depth_sample_count;
VkSampleCountFlagBits max_sample_count;
/* Whether the subpass has ingoing/outgoing external dependencies. */
bool has_ingoing_dep;
bool has_outgoing_dep;
};
uint32_t radv_get_subpass_id(struct radv_cmd_buffer *cmd_buffer);
struct radv_render_pass_attachment {
VkFormat format;
uint32_t samples;
VkAttachmentLoadOp load_op;
VkAttachmentLoadOp stencil_load_op;
VkImageLayout initial_layout;
VkImageLayout final_layout;
VkImageLayout stencil_initial_layout;
VkImageLayout stencil_final_layout;
/* The subpass id in which the attachment will be used first/last. */
uint32_t first_subpass_idx;
uint32_t last_subpass_idx;
};
struct radv_render_pass {
struct vk_object_base base;
uint32_t attachment_count;
uint32_t subpass_count;
struct radv_subpass_attachment *subpass_attachments;
struct radv_render_pass_attachment *attachments;
struct radv_subpass_barrier end_barrier;
struct radv_subpass subpasses[0];
};
VkResult radv_device_init_meta(struct radv_device *device);
void radv_device_finish_meta(struct radv_device *device);
struct radv_query_pool {
struct vk_object_base base;
struct radeon_winsys_bo *bo;
uint32_t stride;
uint32_t availability_offset;
uint64_t size;
char *ptr;
VkQueryType type;
uint32_t pipeline_stats_mask;
};
typedef enum {
RADV_SEMAPHORE_NONE,
RADV_SEMAPHORE_SYNCOBJ,
RADV_SEMAPHORE_TIMELINE_SYNCOBJ,
RADV_SEMAPHORE_TIMELINE,
} radv_semaphore_kind;
struct radv_deferred_queue_submission;
struct radv_timeline_waiter {
struct list_head list;
struct radv_deferred_queue_submission *submission;
uint64_t value;
};
struct radv_timeline_point {
struct list_head list;
uint64_t value;
uint32_t syncobj;
/* Separate from the list to accomodate CPU wait being async, as well
* as prevent point deletion during submission. */
unsigned wait_count;
};
struct radv_timeline {
mtx_t mutex;
uint64_t highest_signaled;
uint64_t highest_submitted;
struct list_head points;
/* Keep free points on hand so we do not have to recreate syncobjs all
* the time. */
struct list_head free_points;
/* Submissions that are deferred waiting for a specific value to be
* submitted. */
struct list_head waiters;
};
struct radv_timeline_syncobj {
/* Keep syncobj first, so common-code can just handle this as
* non-timeline syncobj. */
uint32_t syncobj;
uint64_t max_point; /* max submitted point. */
};
struct radv_semaphore_part {
radv_semaphore_kind kind;
union {
uint32_t syncobj;
struct radv_timeline timeline;
struct radv_timeline_syncobj timeline_syncobj;
};
};
struct radv_semaphore {
struct vk_object_base base;
struct radv_semaphore_part permanent;
struct radv_semaphore_part temporary;
};
bool radv_queue_internal_submit(struct radv_queue *queue, struct radeon_cmdbuf *cs);
void radv_set_descriptor_set(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point,
struct radv_descriptor_set *set, unsigned idx);
void radv_update_descriptor_sets(struct radv_device *device, struct radv_cmd_buffer *cmd_buffer,
VkDescriptorSet overrideSet, uint32_t descriptorWriteCount,
const VkWriteDescriptorSet *pDescriptorWrites,
uint32_t descriptorCopyCount,
const VkCopyDescriptorSet *pDescriptorCopies);
void radv_update_descriptor_set_with_template(struct radv_device *device,
struct radv_cmd_buffer *cmd_buffer,
struct radv_descriptor_set *set,
VkDescriptorUpdateTemplate descriptorUpdateTemplate,
const void *pData);
void radv_meta_push_descriptor_set(struct radv_cmd_buffer *cmd_buffer,
VkPipelineBindPoint pipelineBindPoint, VkPipelineLayout _layout,
uint32_t set, uint32_t descriptorWriteCount,
const VkWriteDescriptorSet *pDescriptorWrites);
uint32_t radv_init_dcc(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
const VkImageSubresourceRange *range, uint32_t value);
uint32_t radv_init_fmask(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
const VkImageSubresourceRange *range);
typedef enum {
RADV_FENCE_NONE,
RADV_FENCE_SYNCOBJ,
} radv_fence_kind;
struct radv_fence_part {
radv_fence_kind kind;
/* DRM syncobj handle for syncobj-based fences. */
uint32_t syncobj;
};
struct radv_fence {
struct vk_object_base base;
struct radv_fence_part permanent;
struct radv_fence_part temporary;
};
/* radv_nir_to_llvm.c */
struct radv_shader_args;
void llvm_compile_shader(struct radv_device *device, unsigned shader_count,
struct nir_shader *const *shaders, struct radv_shader_binary **binary,
struct radv_shader_args *args);
unsigned radv_nir_get_max_workgroup_size(enum chip_class chip_class, gl_shader_stage stage,
const struct nir_shader *nir);
/* radv_shader_info.h */
struct radv_shader_info;
struct radv_shader_variant_key;
void radv_nir_shader_info_pass(struct radv_device *device, const struct nir_shader *nir,
const struct radv_pipeline_layout *layout,
const struct radv_shader_variant_key *key,
struct radv_shader_info *info);
void radv_nir_shader_info_init(struct radv_shader_info *info);
bool radv_thread_trace_init(struct radv_device *device);
void radv_thread_trace_finish(struct radv_device *device);
bool radv_begin_thread_trace(struct radv_queue *queue);
bool radv_end_thread_trace(struct radv_queue *queue);
bool radv_get_thread_trace(struct radv_queue *queue, struct ac_thread_trace *thread_trace);
void radv_emit_thread_trace_userdata(const struct radv_device *device, struct radeon_cmdbuf *cs,
const void *data, uint32_t num_dwords);
/* radv_sqtt_layer_.c */
struct radv_barrier_data {
union {
struct {
uint16_t depth_stencil_expand : 1;
uint16_t htile_hiz_range_expand : 1;
uint16_t depth_stencil_resummarize : 1;
uint16_t dcc_decompress : 1;
uint16_t fmask_decompress : 1;
uint16_t fast_clear_eliminate : 1;
uint16_t fmask_color_expand : 1;
uint16_t init_mask_ram : 1;
uint16_t reserved : 8;
};
uint16_t all;
} layout_transitions;
};
/**
* Value for the reason field of an RGP barrier start marker originating from
* the Vulkan client (does not include PAL-defined values). (Table 15)
*/
enum rgp_barrier_reason {
RGP_BARRIER_UNKNOWN_REASON = 0xFFFFFFFF,
/* External app-generated barrier reasons, i.e. API synchronization
* commands Range of valid values: [0x00000001 ... 0x7FFFFFFF].
*/
RGP_BARRIER_EXTERNAL_CMD_PIPELINE_BARRIER = 0x00000001,
RGP_BARRIER_EXTERNAL_RENDER_PASS_SYNC = 0x00000002,
RGP_BARRIER_EXTERNAL_CMD_WAIT_EVENTS = 0x00000003,
/* Internal barrier reasons, i.e. implicit synchronization inserted by
* the Vulkan driver Range of valid values: [0xC0000000 ... 0xFFFFFFFE].
*/
RGP_BARRIER_INTERNAL_BASE = 0xC0000000,
RGP_BARRIER_INTERNAL_PRE_RESET_QUERY_POOL_SYNC = RGP_BARRIER_INTERNAL_BASE + 0,
RGP_BARRIER_INTERNAL_POST_RESET_QUERY_POOL_SYNC = RGP_BARRIER_INTERNAL_BASE + 1,
RGP_BARRIER_INTERNAL_GPU_EVENT_RECYCLE_STALL = RGP_BARRIER_INTERNAL_BASE + 2,
RGP_BARRIER_INTERNAL_PRE_COPY_QUERY_POOL_RESULTS_SYNC = RGP_BARRIER_INTERNAL_BASE + 3
};
void radv_describe_begin_cmd_buffer(struct radv_cmd_buffer *cmd_buffer);
void radv_describe_end_cmd_buffer(struct radv_cmd_buffer *cmd_buffer);
void radv_describe_draw(struct radv_cmd_buffer *cmd_buffer);
void radv_describe_dispatch(struct radv_cmd_buffer *cmd_buffer, int x, int y, int z);
void radv_describe_begin_render_pass_clear(struct radv_cmd_buffer *cmd_buffer,
VkImageAspectFlagBits aspects);
void radv_describe_end_render_pass_clear(struct radv_cmd_buffer *cmd_buffer);
void radv_describe_begin_render_pass_resolve(struct radv_cmd_buffer *cmd_buffer);
void radv_describe_end_render_pass_resolve(struct radv_cmd_buffer *cmd_buffer);
void radv_describe_barrier_start(struct radv_cmd_buffer *cmd_buffer,
enum rgp_barrier_reason reason);
void radv_describe_barrier_end(struct radv_cmd_buffer *cmd_buffer);
void radv_describe_barrier_end_delayed(struct radv_cmd_buffer *cmd_buffer);
void radv_describe_layout_transition(struct radv_cmd_buffer *cmd_buffer,
const struct radv_barrier_data *barrier);
uint64_t radv_get_current_time(void);
static inline uint32_t
si_conv_gl_prim_to_vertices(unsigned gl_prim)
{
switch (gl_prim) {
case 0: /* GL_POINTS */
return 1;
case 1: /* GL_LINES */
case 3: /* GL_LINE_STRIP */
return 2;
case 4: /* GL_TRIANGLES */
case 5: /* GL_TRIANGLE_STRIP */
return 3;
case 0xA: /* GL_LINE_STRIP_ADJACENCY_ARB */
return 4;
case 0xc: /* GL_TRIANGLES_ADJACENCY_ARB */
return 6;
case 7: /* GL_QUADS */
return V_028A6C_TRISTRIP;
default:
assert(0);
return 0;
}
}
struct radv_extra_render_pass_begin_info {
bool disable_dcc;
};
void radv_cmd_buffer_begin_render_pass(struct radv_cmd_buffer *cmd_buffer,
const VkRenderPassBeginInfo *pRenderPassBegin,
const struct radv_extra_render_pass_begin_info *extra_info);
void radv_cmd_buffer_end_render_pass(struct radv_cmd_buffer *cmd_buffer);
static inline uint32_t
si_translate_prim(unsigned topology)
{
switch (topology) {
case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
return V_008958_DI_PT_POINTLIST;
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
return V_008958_DI_PT_LINELIST;
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
return V_008958_DI_PT_LINESTRIP;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
return V_008958_DI_PT_TRILIST;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
return V_008958_DI_PT_TRISTRIP;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
return V_008958_DI_PT_TRIFAN;
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
return V_008958_DI_PT_LINELIST_ADJ;
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
return V_008958_DI_PT_LINESTRIP_ADJ;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
return V_008958_DI_PT_TRILIST_ADJ;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
return V_008958_DI_PT_TRISTRIP_ADJ;
case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
return V_008958_DI_PT_PATCH;
default:
assert(0);
return 0;
}
}
static inline uint32_t
si_translate_stencil_op(enum VkStencilOp op)
{
switch (op) {
case VK_STENCIL_OP_KEEP:
return V_02842C_STENCIL_KEEP;
case VK_STENCIL_OP_ZERO:
return V_02842C_STENCIL_ZERO;
case VK_STENCIL_OP_REPLACE:
return V_02842C_STENCIL_REPLACE_TEST;
case VK_STENCIL_OP_INCREMENT_AND_CLAMP:
return V_02842C_STENCIL_ADD_CLAMP;
case VK_STENCIL_OP_DECREMENT_AND_CLAMP:
return V_02842C_STENCIL_SUB_CLAMP;
case VK_STENCIL_OP_INVERT:
return V_02842C_STENCIL_INVERT;
case VK_STENCIL_OP_INCREMENT_AND_WRAP:
return V_02842C_STENCIL_ADD_WRAP;
case VK_STENCIL_OP_DECREMENT_AND_WRAP:
return V_02842C_STENCIL_SUB_WRAP;
default:
return 0;
}
}
/**
* Helper used for debugging compiler issues by enabling/disabling LLVM for a
* specific shader stage (developers only).
*/
static inline bool
radv_use_llvm_for_stage(struct radv_device *device, UNUSED gl_shader_stage stage)
{
return device->physical_device->use_llvm;
}
#define RADV_DEFINE_HANDLE_CASTS(__radv_type, __VkType) \
\
static inline struct __radv_type *__radv_type##_from_handle(__VkType _handle) \
{ \
return (struct __radv_type *)_handle; \
} \
\
static inline __VkType __radv_type##_to_handle(struct __radv_type *_obj) \
{ \
return (__VkType)_obj; \
}
#define RADV_DEFINE_NONDISP_HANDLE_CASTS(__radv_type, __VkType) \
\
static inline struct __radv_type *__radv_type##_from_handle(__VkType _handle) \
{ \
return (struct __radv_type *)(uintptr_t)_handle; \
} \
\
static inline __VkType __radv_type##_to_handle(struct __radv_type *_obj) \
{ \
return (__VkType)(uintptr_t)_obj; \
}
#define RADV_FROM_HANDLE(__radv_type, __name, __handle) \
struct __radv_type *__name = __radv_type##_from_handle(__handle)
RADV_DEFINE_HANDLE_CASTS(radv_cmd_buffer, VkCommandBuffer)
RADV_DEFINE_HANDLE_CASTS(radv_device, VkDevice)
RADV_DEFINE_HANDLE_CASTS(radv_instance, VkInstance)
RADV_DEFINE_HANDLE_CASTS(radv_physical_device, VkPhysicalDevice)
RADV_DEFINE_HANDLE_CASTS(radv_queue, VkQueue)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_cmd_pool, VkCommandPool)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_buffer, VkBuffer)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_buffer_view, VkBufferView)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_descriptor_pool, VkDescriptorPool)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_descriptor_set, VkDescriptorSet)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_descriptor_set_layout, VkDescriptorSetLayout)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_descriptor_update_template, VkDescriptorUpdateTemplate)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_device_memory, VkDeviceMemory)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_fence, VkFence)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_event, VkEvent)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_framebuffer, VkFramebuffer)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_image, VkImage)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_image_view, VkImageView);
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_pipeline_cache, VkPipelineCache)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_pipeline, VkPipeline)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_pipeline_layout, VkPipelineLayout)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_query_pool, VkQueryPool)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_render_pass, VkRenderPass)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_sampler, VkSampler)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_sampler_ycbcr_conversion, VkSamplerYcbcrConversion)
RADV_DEFINE_NONDISP_HANDLE_CASTS(radv_semaphore, VkSemaphore)
#endif /* RADV_PRIVATE_H */