mesa/src/amd/vulkan/radv_cmd_buffer.c

7280 lines
275 KiB
C

/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "radv_cs.h"
#include "radv_debug.h"
#include "radv_meta.h"
#include "radv_private.h"
#include "radv_radeon_winsys.h"
#include "radv_shader.h"
#include "sid.h"
#include "vk_format.h"
#include "vk_util.h"
#include "ac_debug.h"
enum {
RADV_PREFETCH_VBO_DESCRIPTORS = (1 << 0),
RADV_PREFETCH_VS = (1 << 1),
RADV_PREFETCH_TCS = (1 << 2),
RADV_PREFETCH_TES = (1 << 3),
RADV_PREFETCH_GS = (1 << 4),
RADV_PREFETCH_PS = (1 << 5),
RADV_PREFETCH_SHADERS = (RADV_PREFETCH_VS | RADV_PREFETCH_TCS | RADV_PREFETCH_TES |
RADV_PREFETCH_GS | RADV_PREFETCH_PS)
};
enum {
RADV_RT_STAGE_BITS = (VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_ANY_HIT_BIT_KHR |
VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_MISS_BIT_KHR |
VK_SHADER_STAGE_INTERSECTION_BIT_KHR | VK_SHADER_STAGE_CALLABLE_BIT_KHR)
};
static void radv_handle_image_transition(struct radv_cmd_buffer *cmd_buffer,
struct radv_image *image, VkImageLayout src_layout,
bool src_render_loop, VkImageLayout dst_layout,
bool dst_render_loop, uint32_t src_family,
uint32_t dst_family, const VkImageSubresourceRange *range,
struct radv_sample_locations_state *sample_locs);
const struct radv_dynamic_state default_dynamic_state = {
.viewport =
{
.count = 0,
},
.scissor =
{
.count = 0,
},
.line_width = 1.0f,
.depth_bias =
{
.bias = 0.0f,
.clamp = 0.0f,
.slope = 0.0f,
},
.blend_constants = {0.0f, 0.0f, 0.0f, 0.0f},
.depth_bounds =
{
.min = 0.0f,
.max = 1.0f,
},
.stencil_compare_mask =
{
.front = ~0u,
.back = ~0u,
},
.stencil_write_mask =
{
.front = ~0u,
.back = ~0u,
},
.stencil_reference =
{
.front = 0u,
.back = 0u,
},
.line_stipple =
{
.factor = 0u,
.pattern = 0u,
},
.cull_mode = 0u,
.front_face = 0u,
.primitive_topology = 0u,
.fragment_shading_rate =
{
.size = {1u, 1u},
.combiner_ops = {VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR,
VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR},
},
.depth_bias_enable = 0u,
.primitive_restart_enable = 0u,
.rasterizer_discard_enable = 0u,
};
static void
radv_bind_dynamic_state(struct radv_cmd_buffer *cmd_buffer, const struct radv_dynamic_state *src)
{
struct radv_dynamic_state *dest = &cmd_buffer->state.dynamic;
uint64_t copy_mask = src->mask;
uint64_t dest_mask = 0;
dest->discard_rectangle.count = src->discard_rectangle.count;
dest->sample_location.count = src->sample_location.count;
if (copy_mask & RADV_DYNAMIC_VIEWPORT) {
if (dest->viewport.count != src->viewport.count) {
dest->viewport.count = src->viewport.count;
dest_mask |= RADV_DYNAMIC_VIEWPORT;
}
if (memcmp(&dest->viewport.viewports, &src->viewport.viewports,
src->viewport.count * sizeof(VkViewport))) {
typed_memcpy(dest->viewport.viewports, src->viewport.viewports, src->viewport.count);
dest_mask |= RADV_DYNAMIC_VIEWPORT;
}
}
if (copy_mask & RADV_DYNAMIC_SCISSOR) {
if (dest->scissor.count != src->scissor.count) {
dest->scissor.count = src->scissor.count;
dest_mask |= RADV_DYNAMIC_SCISSOR;
}
if (memcmp(&dest->scissor.scissors, &src->scissor.scissors,
src->scissor.count * sizeof(VkRect2D))) {
typed_memcpy(dest->scissor.scissors, src->scissor.scissors, src->scissor.count);
dest_mask |= RADV_DYNAMIC_SCISSOR;
}
}
if (copy_mask & RADV_DYNAMIC_LINE_WIDTH) {
if (dest->line_width != src->line_width) {
dest->line_width = src->line_width;
dest_mask |= RADV_DYNAMIC_LINE_WIDTH;
}
}
if (copy_mask & RADV_DYNAMIC_DEPTH_BIAS) {
if (memcmp(&dest->depth_bias, &src->depth_bias, sizeof(src->depth_bias))) {
dest->depth_bias = src->depth_bias;
dest_mask |= RADV_DYNAMIC_DEPTH_BIAS;
}
}
if (copy_mask & RADV_DYNAMIC_BLEND_CONSTANTS) {
if (memcmp(&dest->blend_constants, &src->blend_constants, sizeof(src->blend_constants))) {
typed_memcpy(dest->blend_constants, src->blend_constants, 4);
dest_mask |= RADV_DYNAMIC_BLEND_CONSTANTS;
}
}
if (copy_mask & RADV_DYNAMIC_DEPTH_BOUNDS) {
if (memcmp(&dest->depth_bounds, &src->depth_bounds, sizeof(src->depth_bounds))) {
dest->depth_bounds = src->depth_bounds;
dest_mask |= RADV_DYNAMIC_DEPTH_BOUNDS;
}
}
if (copy_mask & RADV_DYNAMIC_STENCIL_COMPARE_MASK) {
if (memcmp(&dest->stencil_compare_mask, &src->stencil_compare_mask,
sizeof(src->stencil_compare_mask))) {
dest->stencil_compare_mask = src->stencil_compare_mask;
dest_mask |= RADV_DYNAMIC_STENCIL_COMPARE_MASK;
}
}
if (copy_mask & RADV_DYNAMIC_STENCIL_WRITE_MASK) {
if (memcmp(&dest->stencil_write_mask, &src->stencil_write_mask,
sizeof(src->stencil_write_mask))) {
dest->stencil_write_mask = src->stencil_write_mask;
dest_mask |= RADV_DYNAMIC_STENCIL_WRITE_MASK;
}
}
if (copy_mask & RADV_DYNAMIC_STENCIL_REFERENCE) {
if (memcmp(&dest->stencil_reference, &src->stencil_reference,
sizeof(src->stencil_reference))) {
dest->stencil_reference = src->stencil_reference;
dest_mask |= RADV_DYNAMIC_STENCIL_REFERENCE;
}
}
if (copy_mask & RADV_DYNAMIC_DISCARD_RECTANGLE) {
if (memcmp(&dest->discard_rectangle.rectangles, &src->discard_rectangle.rectangles,
src->discard_rectangle.count * sizeof(VkRect2D))) {
typed_memcpy(dest->discard_rectangle.rectangles, src->discard_rectangle.rectangles,
src->discard_rectangle.count);
dest_mask |= RADV_DYNAMIC_DISCARD_RECTANGLE;
}
}
if (copy_mask & RADV_DYNAMIC_SAMPLE_LOCATIONS) {
if (dest->sample_location.per_pixel != src->sample_location.per_pixel ||
dest->sample_location.grid_size.width != src->sample_location.grid_size.width ||
dest->sample_location.grid_size.height != src->sample_location.grid_size.height ||
memcmp(&dest->sample_location.locations, &src->sample_location.locations,
src->sample_location.count * sizeof(VkSampleLocationEXT))) {
dest->sample_location.per_pixel = src->sample_location.per_pixel;
dest->sample_location.grid_size = src->sample_location.grid_size;
typed_memcpy(dest->sample_location.locations, src->sample_location.locations,
src->sample_location.count);
dest_mask |= RADV_DYNAMIC_SAMPLE_LOCATIONS;
}
}
if (copy_mask & RADV_DYNAMIC_LINE_STIPPLE) {
if (memcmp(&dest->line_stipple, &src->line_stipple, sizeof(src->line_stipple))) {
dest->line_stipple = src->line_stipple;
dest_mask |= RADV_DYNAMIC_LINE_STIPPLE;
}
}
if (copy_mask & RADV_DYNAMIC_CULL_MODE) {
if (dest->cull_mode != src->cull_mode) {
dest->cull_mode = src->cull_mode;
dest_mask |= RADV_DYNAMIC_CULL_MODE;
}
}
if (copy_mask & RADV_DYNAMIC_FRONT_FACE) {
if (dest->front_face != src->front_face) {
dest->front_face = src->front_face;
dest_mask |= RADV_DYNAMIC_FRONT_FACE;
}
}
if (copy_mask & RADV_DYNAMIC_PRIMITIVE_TOPOLOGY) {
if (dest->primitive_topology != src->primitive_topology) {
dest->primitive_topology = src->primitive_topology;
dest_mask |= RADV_DYNAMIC_PRIMITIVE_TOPOLOGY;
}
}
if (copy_mask & RADV_DYNAMIC_DEPTH_TEST_ENABLE) {
if (dest->depth_test_enable != src->depth_test_enable) {
dest->depth_test_enable = src->depth_test_enable;
dest_mask |= RADV_DYNAMIC_DEPTH_TEST_ENABLE;
}
}
if (copy_mask & RADV_DYNAMIC_DEPTH_WRITE_ENABLE) {
if (dest->depth_write_enable != src->depth_write_enable) {
dest->depth_write_enable = src->depth_write_enable;
dest_mask |= RADV_DYNAMIC_DEPTH_WRITE_ENABLE;
}
}
if (copy_mask & RADV_DYNAMIC_DEPTH_COMPARE_OP) {
if (dest->depth_compare_op != src->depth_compare_op) {
dest->depth_compare_op = src->depth_compare_op;
dest_mask |= RADV_DYNAMIC_DEPTH_COMPARE_OP;
}
}
if (copy_mask & RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE) {
if (dest->depth_bounds_test_enable != src->depth_bounds_test_enable) {
dest->depth_bounds_test_enable = src->depth_bounds_test_enable;
dest_mask |= RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE;
}
}
if (copy_mask & RADV_DYNAMIC_STENCIL_TEST_ENABLE) {
if (dest->stencil_test_enable != src->stencil_test_enable) {
dest->stencil_test_enable = src->stencil_test_enable;
dest_mask |= RADV_DYNAMIC_STENCIL_TEST_ENABLE;
}
}
if (copy_mask & RADV_DYNAMIC_STENCIL_OP) {
if (memcmp(&dest->stencil_op, &src->stencil_op, sizeof(src->stencil_op))) {
dest->stencil_op = src->stencil_op;
dest_mask |= RADV_DYNAMIC_STENCIL_OP;
}
}
if (copy_mask & RADV_DYNAMIC_FRAGMENT_SHADING_RATE) {
if (memcmp(&dest->fragment_shading_rate, &src->fragment_shading_rate,
sizeof(src->fragment_shading_rate))) {
dest->fragment_shading_rate = src->fragment_shading_rate;
dest_mask |= RADV_DYNAMIC_FRAGMENT_SHADING_RATE;
}
}
if (copy_mask & RADV_DYNAMIC_DEPTH_BIAS_ENABLE) {
if (dest->depth_bias_enable != src->depth_bias_enable) {
dest->depth_bias_enable = src->depth_bias_enable;
dest_mask |= RADV_DYNAMIC_DEPTH_BIAS_ENABLE;
}
}
if (copy_mask & RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE) {
if (dest->primitive_restart_enable != src->primitive_restart_enable) {
dest->primitive_restart_enable = src->primitive_restart_enable;
dest_mask |= RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE;
}
}
if (copy_mask & RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE) {
if (dest->rasterizer_discard_enable != src->rasterizer_discard_enable) {
dest->rasterizer_discard_enable = src->rasterizer_discard_enable;
dest_mask |= RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE;
}
}
cmd_buffer->state.dirty |= dest_mask;
}
static void
radv_bind_streamout_state(struct radv_cmd_buffer *cmd_buffer, struct radv_pipeline *pipeline)
{
struct radv_streamout_state *so = &cmd_buffer->state.streamout;
struct radv_shader_info *info;
if (!pipeline->streamout_shader || cmd_buffer->device->physical_device->use_ngg_streamout)
return;
info = &pipeline->streamout_shader->info;
for (int i = 0; i < MAX_SO_BUFFERS; i++)
so->stride_in_dw[i] = info->so.strides[i];
so->enabled_stream_buffers_mask = info->so.enabled_stream_buffers_mask;
}
bool
radv_cmd_buffer_uses_mec(struct radv_cmd_buffer *cmd_buffer)
{
return cmd_buffer->queue_family_index == RADV_QUEUE_COMPUTE &&
cmd_buffer->device->physical_device->rad_info.chip_class >= GFX7;
}
enum ring_type
radv_queue_family_to_ring(int f)
{
switch (f) {
case RADV_QUEUE_GENERAL:
return RING_GFX;
case RADV_QUEUE_COMPUTE:
return RING_COMPUTE;
case RADV_QUEUE_TRANSFER:
return RING_DMA;
default:
unreachable("Unknown queue family");
}
}
static void
radv_destroy_cmd_buffer(struct radv_cmd_buffer *cmd_buffer)
{
list_del(&cmd_buffer->pool_link);
list_for_each_entry_safe(struct radv_cmd_buffer_upload, up, &cmd_buffer->upload.list, list)
{
cmd_buffer->device->ws->buffer_destroy(cmd_buffer->device->ws, up->upload_bo);
list_del(&up->list);
free(up);
}
if (cmd_buffer->upload.upload_bo)
cmd_buffer->device->ws->buffer_destroy(cmd_buffer->device->ws, cmd_buffer->upload.upload_bo);
if (cmd_buffer->cs)
cmd_buffer->device->ws->cs_destroy(cmd_buffer->cs);
for (unsigned i = 0; i < MAX_BIND_POINTS; i++)
free(cmd_buffer->descriptors[i].push_set.set.mapped_ptr);
vk_object_base_finish(&cmd_buffer->base);
vk_free(&cmd_buffer->pool->alloc, cmd_buffer);
}
static VkResult
radv_create_cmd_buffer(struct radv_device *device, struct radv_cmd_pool *pool,
VkCommandBufferLevel level, VkCommandBuffer *pCommandBuffer)
{
struct radv_cmd_buffer *cmd_buffer;
unsigned ring;
cmd_buffer = vk_zalloc(&pool->alloc, sizeof(*cmd_buffer), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (cmd_buffer == NULL)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
vk_object_base_init(&device->vk, &cmd_buffer->base, VK_OBJECT_TYPE_COMMAND_BUFFER);
cmd_buffer->device = device;
cmd_buffer->pool = pool;
cmd_buffer->level = level;
list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
cmd_buffer->queue_family_index = pool->queue_family_index;
ring = radv_queue_family_to_ring(cmd_buffer->queue_family_index);
cmd_buffer->cs = device->ws->cs_create(device->ws, ring);
if (!cmd_buffer->cs) {
radv_destroy_cmd_buffer(cmd_buffer);
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
}
*pCommandBuffer = radv_cmd_buffer_to_handle(cmd_buffer);
list_inithead(&cmd_buffer->upload.list);
return VK_SUCCESS;
}
static VkResult
radv_reset_cmd_buffer(struct radv_cmd_buffer *cmd_buffer)
{
cmd_buffer->device->ws->cs_reset(cmd_buffer->cs);
list_for_each_entry_safe(struct radv_cmd_buffer_upload, up, &cmd_buffer->upload.list, list)
{
cmd_buffer->device->ws->buffer_destroy(cmd_buffer->device->ws, up->upload_bo);
list_del(&up->list);
free(up);
}
cmd_buffer->push_constant_stages = 0;
cmd_buffer->scratch_size_per_wave_needed = 0;
cmd_buffer->scratch_waves_wanted = 0;
cmd_buffer->compute_scratch_size_per_wave_needed = 0;
cmd_buffer->compute_scratch_waves_wanted = 0;
cmd_buffer->esgs_ring_size_needed = 0;
cmd_buffer->gsvs_ring_size_needed = 0;
cmd_buffer->tess_rings_needed = false;
cmd_buffer->gds_needed = false;
cmd_buffer->gds_oa_needed = false;
cmd_buffer->sample_positions_needed = false;
if (cmd_buffer->upload.upload_bo)
radv_cs_add_buffer(cmd_buffer->device->ws, cmd_buffer->cs, cmd_buffer->upload.upload_bo);
cmd_buffer->upload.offset = 0;
cmd_buffer->record_result = VK_SUCCESS;
memset(cmd_buffer->vertex_bindings, 0, sizeof(cmd_buffer->vertex_bindings));
for (unsigned i = 0; i < MAX_BIND_POINTS; i++) {
cmd_buffer->descriptors[i].dirty = 0;
cmd_buffer->descriptors[i].valid = 0;
cmd_buffer->descriptors[i].push_dirty = false;
}
if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9 &&
cmd_buffer->queue_family_index == RADV_QUEUE_GENERAL) {
unsigned num_db = cmd_buffer->device->physical_device->rad_info.max_render_backends;
unsigned fence_offset, eop_bug_offset;
void *fence_ptr;
radv_cmd_buffer_upload_alloc(cmd_buffer, 8, &fence_offset, &fence_ptr);
memset(fence_ptr, 0, 8);
cmd_buffer->gfx9_fence_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
cmd_buffer->gfx9_fence_va += fence_offset;
if (cmd_buffer->device->physical_device->rad_info.chip_class == GFX9) {
/* Allocate a buffer for the EOP bug on GFX9. */
radv_cmd_buffer_upload_alloc(cmd_buffer, 16 * num_db, &eop_bug_offset, &fence_ptr);
memset(fence_ptr, 0, 16 * num_db);
cmd_buffer->gfx9_eop_bug_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
cmd_buffer->gfx9_eop_bug_va += eop_bug_offset;
}
}
cmd_buffer->status = RADV_CMD_BUFFER_STATUS_INITIAL;
return cmd_buffer->record_result;
}
static bool
radv_cmd_buffer_resize_upload_buf(struct radv_cmd_buffer *cmd_buffer, uint64_t min_needed)
{
uint64_t new_size;
struct radeon_winsys_bo *bo;
struct radv_cmd_buffer_upload *upload;
struct radv_device *device = cmd_buffer->device;
new_size = MAX2(min_needed, 16 * 1024);
new_size = MAX2(new_size, 2 * cmd_buffer->upload.size);
bo = device->ws->buffer_create(device->ws, new_size, 4096, device->ws->cs_domain(device->ws),
RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING |
RADEON_FLAG_32BIT | RADEON_FLAG_GTT_WC,
RADV_BO_PRIORITY_UPLOAD_BUFFER);
if (!bo) {
cmd_buffer->record_result = VK_ERROR_OUT_OF_DEVICE_MEMORY;
return false;
}
radv_cs_add_buffer(device->ws, cmd_buffer->cs, bo);
if (cmd_buffer->upload.upload_bo) {
upload = malloc(sizeof(*upload));
if (!upload) {
cmd_buffer->record_result = VK_ERROR_OUT_OF_HOST_MEMORY;
device->ws->buffer_destroy(device->ws, bo);
return false;
}
memcpy(upload, &cmd_buffer->upload, sizeof(*upload));
list_add(&upload->list, &cmd_buffer->upload.list);
}
cmd_buffer->upload.upload_bo = bo;
cmd_buffer->upload.size = new_size;
cmd_buffer->upload.offset = 0;
cmd_buffer->upload.map = device->ws->buffer_map(cmd_buffer->upload.upload_bo);
if (!cmd_buffer->upload.map) {
cmd_buffer->record_result = VK_ERROR_OUT_OF_DEVICE_MEMORY;
return false;
}
return true;
}
bool
radv_cmd_buffer_upload_alloc(struct radv_cmd_buffer *cmd_buffer, unsigned size,
unsigned *out_offset, void **ptr)
{
assert(size % 4 == 0);
struct radeon_info *rad_info = &cmd_buffer->device->physical_device->rad_info;
/* Align to the scalar cache line size if it results in this allocation
* being placed in less of them.
*/
unsigned offset = cmd_buffer->upload.offset;
unsigned line_size = rad_info->chip_class >= GFX10 ? 64 : 32;
unsigned gap = align(offset, line_size) - offset;
if ((size & (line_size - 1)) > gap)
offset = align(offset, line_size);
if (offset + size > cmd_buffer->upload.size) {
if (!radv_cmd_buffer_resize_upload_buf(cmd_buffer, size))
return false;
offset = 0;
}
*out_offset = offset;
*ptr = cmd_buffer->upload.map + offset;
cmd_buffer->upload.offset = offset + size;
return true;
}
bool
radv_cmd_buffer_upload_data(struct radv_cmd_buffer *cmd_buffer, unsigned size, const void *data,
unsigned *out_offset)
{
uint8_t *ptr;
if (!radv_cmd_buffer_upload_alloc(cmd_buffer, size, out_offset, (void **)&ptr))
return false;
if (ptr)
memcpy(ptr, data, size);
return true;
}
static void
radv_emit_write_data_packet(struct radv_cmd_buffer *cmd_buffer, uint64_t va, unsigned count,
const uint32_t *data)
{
struct radeon_cmdbuf *cs = cmd_buffer->cs;
radeon_check_space(cmd_buffer->device->ws, cs, 4 + count);
radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 2 + count, 0));
radeon_emit(cs, S_370_DST_SEL(V_370_MEM) | S_370_WR_CONFIRM(1) | S_370_ENGINE_SEL(V_370_ME));
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit_array(cs, data, count);
}
void
radv_cmd_buffer_trace_emit(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_device *device = cmd_buffer->device;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
uint64_t va;
va = radv_buffer_get_va(device->trace_bo);
if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY)
va += 4;
++cmd_buffer->state.trace_id;
radv_emit_write_data_packet(cmd_buffer, va, 1, &cmd_buffer->state.trace_id);
radeon_check_space(cmd_buffer->device->ws, cs, 2);
radeon_emit(cs, PKT3(PKT3_NOP, 0, 0));
radeon_emit(cs, AC_ENCODE_TRACE_POINT(cmd_buffer->state.trace_id));
}
static void
radv_cmd_buffer_after_draw(struct radv_cmd_buffer *cmd_buffer, enum radv_cmd_flush_bits flags)
{
if (unlikely(cmd_buffer->device->thread_trace.bo)) {
radeon_emit(cmd_buffer->cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cmd_buffer->cs, EVENT_TYPE(V_028A90_THREAD_TRACE_MARKER) | EVENT_INDEX(0));
}
if (cmd_buffer->device->instance->debug_flags & RADV_DEBUG_SYNC_SHADERS) {
enum rgp_flush_bits sqtt_flush_bits = 0;
assert(flags & (RADV_CMD_FLAG_PS_PARTIAL_FLUSH | RADV_CMD_FLAG_CS_PARTIAL_FLUSH));
radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, 4);
/* Force wait for graphics or compute engines to be idle. */
si_cs_emit_cache_flush(cmd_buffer->cs,
cmd_buffer->device->physical_device->rad_info.chip_class,
&cmd_buffer->gfx9_fence_idx, cmd_buffer->gfx9_fence_va,
radv_cmd_buffer_uses_mec(cmd_buffer), flags, &sqtt_flush_bits,
cmd_buffer->gfx9_eop_bug_va);
}
if (unlikely(cmd_buffer->device->trace_bo))
radv_cmd_buffer_trace_emit(cmd_buffer);
}
static void
radv_save_pipeline(struct radv_cmd_buffer *cmd_buffer, struct radv_pipeline *pipeline)
{
struct radv_device *device = cmd_buffer->device;
enum ring_type ring;
uint32_t data[2];
uint64_t va;
va = radv_buffer_get_va(device->trace_bo);
ring = radv_queue_family_to_ring(cmd_buffer->queue_family_index);
switch (ring) {
case RING_GFX:
va += 8;
break;
case RING_COMPUTE:
va += 16;
break;
default:
assert(!"invalid ring type");
}
uint64_t pipeline_address = (uintptr_t)pipeline;
data[0] = pipeline_address;
data[1] = pipeline_address >> 32;
radv_emit_write_data_packet(cmd_buffer, va, 2, data);
}
static void
radv_save_vertex_descriptors(struct radv_cmd_buffer *cmd_buffer, uint64_t vb_ptr)
{
struct radv_device *device = cmd_buffer->device;
uint32_t data[2];
uint64_t va;
va = radv_buffer_get_va(device->trace_bo);
va += 24;
data[0] = vb_ptr;
data[1] = vb_ptr >> 32;
radv_emit_write_data_packet(cmd_buffer, va, 2, data);
}
void
radv_set_descriptor_set(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point,
struct radv_descriptor_set *set, unsigned idx)
{
struct radv_descriptor_state *descriptors_state =
radv_get_descriptors_state(cmd_buffer, bind_point);
descriptors_state->sets[idx] = set;
descriptors_state->valid |= (1u << idx); /* active descriptors */
descriptors_state->dirty |= (1u << idx);
}
static void
radv_save_descriptors(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point)
{
struct radv_descriptor_state *descriptors_state =
radv_get_descriptors_state(cmd_buffer, bind_point);
struct radv_device *device = cmd_buffer->device;
uint32_t data[MAX_SETS * 2] = {0};
uint64_t va;
va = radv_buffer_get_va(device->trace_bo) + 32;
u_foreach_bit(i, descriptors_state->valid)
{
struct radv_descriptor_set *set = descriptors_state->sets[i];
data[i * 2] = (uint64_t)(uintptr_t)set;
data[i * 2 + 1] = (uint64_t)(uintptr_t)set >> 32;
}
radv_emit_write_data_packet(cmd_buffer, va, MAX_SETS * 2, data);
}
struct radv_userdata_info *
radv_lookup_user_sgpr(struct radv_pipeline *pipeline, gl_shader_stage stage, int idx)
{
struct radv_shader_variant *shader = radv_get_shader(pipeline, stage);
return &shader->info.user_sgprs_locs.shader_data[idx];
}
static void
radv_emit_userdata_address(struct radv_cmd_buffer *cmd_buffer, struct radv_pipeline *pipeline,
gl_shader_stage stage, int idx, uint64_t va)
{
struct radv_userdata_info *loc = radv_lookup_user_sgpr(pipeline, stage, idx);
uint32_t base_reg = pipeline->user_data_0[stage];
if (loc->sgpr_idx == -1)
return;
assert(loc->num_sgprs == 1);
radv_emit_shader_pointer(cmd_buffer->device, cmd_buffer->cs, base_reg + loc->sgpr_idx * 4, va,
false);
}
static void
radv_emit_descriptor_pointers(struct radv_cmd_buffer *cmd_buffer, struct radv_pipeline *pipeline,
struct radv_descriptor_state *descriptors_state,
gl_shader_stage stage)
{
struct radv_device *device = cmd_buffer->device;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
uint32_t sh_base = pipeline->user_data_0[stage];
struct radv_userdata_locations *locs = &pipeline->shaders[stage]->info.user_sgprs_locs;
unsigned mask = locs->descriptor_sets_enabled;
mask &= descriptors_state->dirty & descriptors_state->valid;
while (mask) {
int start, count;
u_bit_scan_consecutive_range(&mask, &start, &count);
struct radv_userdata_info *loc = &locs->descriptor_sets[start];
unsigned sh_offset = sh_base + loc->sgpr_idx * 4;
radv_emit_shader_pointer_head(cs, sh_offset, count, true);
for (int i = 0; i < count; i++) {
struct radv_descriptor_set *set = descriptors_state->sets[start + i];
radv_emit_shader_pointer_body(device, cs, set->header.va, true);
}
}
}
/**
* Convert the user sample locations to hardware sample locations (the values
* that will be emitted by PA_SC_AA_SAMPLE_LOCS_PIXEL_*).
*/
static void
radv_convert_user_sample_locs(struct radv_sample_locations_state *state, uint32_t x, uint32_t y,
VkOffset2D *sample_locs)
{
uint32_t x_offset = x % state->grid_size.width;
uint32_t y_offset = y % state->grid_size.height;
uint32_t num_samples = (uint32_t)state->per_pixel;
VkSampleLocationEXT *user_locs;
uint32_t pixel_offset;
pixel_offset = (x_offset + y_offset * state->grid_size.width) * num_samples;
assert(pixel_offset <= MAX_SAMPLE_LOCATIONS);
user_locs = &state->locations[pixel_offset];
for (uint32_t i = 0; i < num_samples; i++) {
float shifted_pos_x = user_locs[i].x - 0.5;
float shifted_pos_y = user_locs[i].y - 0.5;
int32_t scaled_pos_x = floorf(shifted_pos_x * 16);
int32_t scaled_pos_y = floorf(shifted_pos_y * 16);
sample_locs[i].x = CLAMP(scaled_pos_x, -8, 7);
sample_locs[i].y = CLAMP(scaled_pos_y, -8, 7);
}
}
/**
* Compute the PA_SC_AA_SAMPLE_LOCS_PIXEL_* mask based on hardware sample
* locations.
*/
static void
radv_compute_sample_locs_pixel(uint32_t num_samples, VkOffset2D *sample_locs,
uint32_t *sample_locs_pixel)
{
for (uint32_t i = 0; i < num_samples; i++) {
uint32_t sample_reg_idx = i / 4;
uint32_t sample_loc_idx = i % 4;
int32_t pos_x = sample_locs[i].x;
int32_t pos_y = sample_locs[i].y;
uint32_t shift_x = 8 * sample_loc_idx;
uint32_t shift_y = shift_x + 4;
sample_locs_pixel[sample_reg_idx] |= (pos_x & 0xf) << shift_x;
sample_locs_pixel[sample_reg_idx] |= (pos_y & 0xf) << shift_y;
}
}
/**
* Compute the PA_SC_CENTROID_PRIORITY_* mask based on the top left hardware
* sample locations.
*/
static uint64_t
radv_compute_centroid_priority(struct radv_cmd_buffer *cmd_buffer, VkOffset2D *sample_locs,
uint32_t num_samples)
{
uint32_t *centroid_priorities = alloca(num_samples * sizeof(*centroid_priorities));
uint32_t sample_mask = num_samples - 1;
uint32_t *distances = alloca(num_samples * sizeof(*distances));
uint64_t centroid_priority = 0;
/* Compute the distances from center for each sample. */
for (int i = 0; i < num_samples; i++) {
distances[i] = (sample_locs[i].x * sample_locs[i].x) + (sample_locs[i].y * sample_locs[i].y);
}
/* Compute the centroid priorities by looking at the distances array. */
for (int i = 0; i < num_samples; i++) {
uint32_t min_idx = 0;
for (int j = 1; j < num_samples; j++) {
if (distances[j] < distances[min_idx])
min_idx = j;
}
centroid_priorities[i] = min_idx;
distances[min_idx] = 0xffffffff;
}
/* Compute the final centroid priority. */
for (int i = 0; i < 8; i++) {
centroid_priority |= centroid_priorities[i & sample_mask] << (i * 4);
}
return centroid_priority << 32 | centroid_priority;
}
/**
* Emit the sample locations that are specified with VK_EXT_sample_locations.
*/
static void
radv_emit_sample_locations(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_sample_locations_state *sample_location = &cmd_buffer->state.dynamic.sample_location;
uint32_t num_samples = (uint32_t)sample_location->per_pixel;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
uint32_t sample_locs_pixel[4][2] = {0};
VkOffset2D sample_locs[4][8]; /* 8 is the max. sample count supported */
uint32_t max_sample_dist = 0;
uint64_t centroid_priority;
if (!cmd_buffer->state.dynamic.sample_location.count)
return;
/* Convert the user sample locations to hardware sample locations. */
radv_convert_user_sample_locs(sample_location, 0, 0, sample_locs[0]);
radv_convert_user_sample_locs(sample_location, 1, 0, sample_locs[1]);
radv_convert_user_sample_locs(sample_location, 0, 1, sample_locs[2]);
radv_convert_user_sample_locs(sample_location, 1, 1, sample_locs[3]);
/* Compute the PA_SC_AA_SAMPLE_LOCS_PIXEL_* mask. */
for (uint32_t i = 0; i < 4; i++) {
radv_compute_sample_locs_pixel(num_samples, sample_locs[i], sample_locs_pixel[i]);
}
/* Compute the PA_SC_CENTROID_PRIORITY_* mask. */
centroid_priority = radv_compute_centroid_priority(cmd_buffer, sample_locs[0], num_samples);
/* Compute the maximum sample distance from the specified locations. */
for (unsigned i = 0; i < 4; ++i) {
for (uint32_t j = 0; j < num_samples; j++) {
VkOffset2D offset = sample_locs[i][j];
max_sample_dist = MAX2(max_sample_dist, MAX2(abs(offset.x), abs(offset.y)));
}
}
/* Emit the specified user sample locations. */
switch (num_samples) {
case 2:
case 4:
radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0,
sample_locs_pixel[0][0]);
radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0,
sample_locs_pixel[1][0]);
radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0,
sample_locs_pixel[2][0]);
radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0,
sample_locs_pixel[3][0]);
break;
case 8:
radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0,
sample_locs_pixel[0][0]);
radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0,
sample_locs_pixel[1][0]);
radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0,
sample_locs_pixel[2][0]);
radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0,
sample_locs_pixel[3][0]);
radeon_set_context_reg(cs, R_028BFC_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_1,
sample_locs_pixel[0][1]);
radeon_set_context_reg(cs, R_028C0C_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_1,
sample_locs_pixel[1][1]);
radeon_set_context_reg(cs, R_028C1C_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_1,
sample_locs_pixel[2][1]);
radeon_set_context_reg(cs, R_028C2C_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_1,
sample_locs_pixel[3][1]);
break;
default:
unreachable("invalid number of samples");
}
/* Emit the maximum sample distance and the centroid priority. */
radeon_set_context_reg_rmw(cs, R_028BE0_PA_SC_AA_CONFIG,
S_028BE0_MAX_SAMPLE_DIST(max_sample_dist), ~C_028BE0_MAX_SAMPLE_DIST);
radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2);
radeon_emit(cs, centroid_priority);
radeon_emit(cs, centroid_priority >> 32);
/* GFX9: Flush DFSM when the AA mode changes. */
if (cmd_buffer->device->dfsm_allowed) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_DFSM) | EVENT_INDEX(0));
}
cmd_buffer->state.context_roll_without_scissor_emitted = true;
}
static void
radv_emit_inline_push_consts(struct radv_cmd_buffer *cmd_buffer, struct radv_pipeline *pipeline,
gl_shader_stage stage, int idx, int count, uint32_t *values)
{
struct radv_userdata_info *loc = radv_lookup_user_sgpr(pipeline, stage, idx);
uint32_t base_reg = pipeline->user_data_0[stage];
if (loc->sgpr_idx == -1)
return;
assert(loc->num_sgprs == count);
radeon_set_sh_reg_seq(cmd_buffer->cs, base_reg + loc->sgpr_idx * 4, count);
radeon_emit_array(cmd_buffer->cs, values, count);
}
static void
radv_update_multisample_state(struct radv_cmd_buffer *cmd_buffer, struct radv_pipeline *pipeline)
{
int num_samples = pipeline->graphics.ms.num_samples;
struct radv_pipeline *old_pipeline = cmd_buffer->state.emitted_pipeline;
if (pipeline->shaders[MESA_SHADER_FRAGMENT]->info.ps.needs_sample_positions)
cmd_buffer->sample_positions_needed = true;
if (old_pipeline && num_samples == old_pipeline->graphics.ms.num_samples)
return;
radv_emit_default_sample_locations(cmd_buffer->cs, num_samples);
cmd_buffer->state.context_roll_without_scissor_emitted = true;
}
static void
radv_update_binning_state(struct radv_cmd_buffer *cmd_buffer, struct radv_pipeline *pipeline)
{
const struct radv_pipeline *old_pipeline = cmd_buffer->state.emitted_pipeline;
if (pipeline->device->physical_device->rad_info.chip_class < GFX9)
return;
if (old_pipeline &&
old_pipeline->graphics.binning.pa_sc_binner_cntl_0 ==
pipeline->graphics.binning.pa_sc_binner_cntl_0 &&
old_pipeline->graphics.binning.db_dfsm_control == pipeline->graphics.binning.db_dfsm_control)
return;
bool binning_flush = false;
if (cmd_buffer->device->physical_device->rad_info.family == CHIP_VEGA12 ||
cmd_buffer->device->physical_device->rad_info.family == CHIP_VEGA20 ||
cmd_buffer->device->physical_device->rad_info.family == CHIP_RAVEN2 ||
cmd_buffer->device->physical_device->rad_info.chip_class >= GFX10) {
binning_flush = !old_pipeline ||
G_028C44_BINNING_MODE(old_pipeline->graphics.binning.pa_sc_binner_cntl_0) !=
G_028C44_BINNING_MODE(pipeline->graphics.binning.pa_sc_binner_cntl_0);
}
radeon_set_context_reg(cmd_buffer->cs, R_028C44_PA_SC_BINNER_CNTL_0,
pipeline->graphics.binning.pa_sc_binner_cntl_0 |
S_028C44_FLUSH_ON_BINNING_TRANSITION(!!binning_flush));
if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX10) {
radeon_set_context_reg(cmd_buffer->cs, R_028038_DB_DFSM_CONTROL,
pipeline->graphics.binning.db_dfsm_control);
} else {
radeon_set_context_reg(cmd_buffer->cs, R_028060_DB_DFSM_CONTROL,
pipeline->graphics.binning.db_dfsm_control);
}
cmd_buffer->state.context_roll_without_scissor_emitted = true;
}
static void
radv_emit_shader_prefetch(struct radv_cmd_buffer *cmd_buffer, struct radv_shader_variant *shader)
{
uint64_t va;
if (!shader)
return;
va = radv_buffer_get_va(shader->bo) + shader->bo_offset;
si_cp_dma_prefetch(cmd_buffer, va, shader->code_size);
}
static void
radv_emit_prefetch_L2(struct radv_cmd_buffer *cmd_buffer, struct radv_pipeline *pipeline,
bool vertex_stage_only)
{
struct radv_cmd_state *state = &cmd_buffer->state;
uint32_t mask = state->prefetch_L2_mask;
if (vertex_stage_only) {
/* Fast prefetch path for starting draws as soon as possible.
*/
mask = state->prefetch_L2_mask & (RADV_PREFETCH_VS | RADV_PREFETCH_VBO_DESCRIPTORS);
}
if (mask & RADV_PREFETCH_VS)
radv_emit_shader_prefetch(cmd_buffer, pipeline->shaders[MESA_SHADER_VERTEX]);
if (mask & RADV_PREFETCH_VBO_DESCRIPTORS)
si_cp_dma_prefetch(cmd_buffer, state->vb_va, state->vb_size);
if (mask & RADV_PREFETCH_TCS)
radv_emit_shader_prefetch(cmd_buffer, pipeline->shaders[MESA_SHADER_TESS_CTRL]);
if (mask & RADV_PREFETCH_TES)
radv_emit_shader_prefetch(cmd_buffer, pipeline->shaders[MESA_SHADER_TESS_EVAL]);
if (mask & RADV_PREFETCH_GS) {
radv_emit_shader_prefetch(cmd_buffer, pipeline->shaders[MESA_SHADER_GEOMETRY]);
if (radv_pipeline_has_gs_copy_shader(pipeline))
radv_emit_shader_prefetch(cmd_buffer, pipeline->gs_copy_shader);
}
if (mask & RADV_PREFETCH_PS)
radv_emit_shader_prefetch(cmd_buffer, pipeline->shaders[MESA_SHADER_FRAGMENT]);
state->prefetch_L2_mask &= ~mask;
}
static void
radv_emit_rbplus_state(struct radv_cmd_buffer *cmd_buffer)
{
if (!cmd_buffer->device->physical_device->rad_info.rbplus_allowed)
return;
struct radv_pipeline *pipeline = cmd_buffer->state.pipeline;
const struct radv_subpass *subpass = cmd_buffer->state.subpass;
unsigned sx_ps_downconvert = 0;
unsigned sx_blend_opt_epsilon = 0;
unsigned sx_blend_opt_control = 0;
if (!cmd_buffer->state.attachments || !subpass)
return;
for (unsigned i = 0; i < subpass->color_count; ++i) {
if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED) {
/* We don't set the DISABLE bits, because the HW can't have holes,
* so the SPI color format is set to 32-bit 1-component. */
sx_ps_downconvert |= V_028754_SX_RT_EXPORT_32_R << (i * 4);
continue;
}
int idx = subpass->color_attachments[i].attachment;
struct radv_color_buffer_info *cb = &cmd_buffer->state.attachments[idx].cb;
unsigned format = G_028C70_FORMAT(cb->cb_color_info);
unsigned swap = G_028C70_COMP_SWAP(cb->cb_color_info);
uint32_t spi_format = (pipeline->graphics.col_format >> (i * 4)) & 0xf;
uint32_t colormask = (pipeline->graphics.cb_target_mask >> (i * 4)) & 0xf;
bool has_alpha, has_rgb;
/* Set if RGB and A are present. */
has_alpha = !G_028C74_FORCE_DST_ALPHA_1(cb->cb_color_attrib);
if (format == V_028C70_COLOR_8 || format == V_028C70_COLOR_16 || format == V_028C70_COLOR_32)
has_rgb = !has_alpha;
else
has_rgb = true;
/* Check the colormask and export format. */
if (!(colormask & 0x7))
has_rgb = false;
if (!(colormask & 0x8))
has_alpha = false;
if (spi_format == V_028714_SPI_SHADER_ZERO) {
has_rgb = false;
has_alpha = false;
}
/* The HW doesn't quite blend correctly with rgb9e5 if we disable the alpha
* optimization, even though it has no alpha. */
if (has_rgb && format == V_028C70_COLOR_5_9_9_9)
has_alpha = true;
/* Disable value checking for disabled channels. */
if (!has_rgb)
sx_blend_opt_control |= S_02875C_MRT0_COLOR_OPT_DISABLE(1) << (i * 4);
if (!has_alpha)
sx_blend_opt_control |= S_02875C_MRT0_ALPHA_OPT_DISABLE(1) << (i * 4);
/* Enable down-conversion for 32bpp and smaller formats. */
switch (format) {
case V_028C70_COLOR_8:
case V_028C70_COLOR_8_8:
case V_028C70_COLOR_8_8_8_8:
/* For 1 and 2-channel formats, use the superset thereof. */
if (spi_format == V_028714_SPI_SHADER_FP16_ABGR ||
spi_format == V_028714_SPI_SHADER_UINT16_ABGR ||
spi_format == V_028714_SPI_SHADER_SINT16_ABGR) {
sx_ps_downconvert |= V_028754_SX_RT_EXPORT_8_8_8_8 << (i * 4);
sx_blend_opt_epsilon |= V_028758_8BIT_FORMAT << (i * 4);
}
break;
case V_028C70_COLOR_5_6_5:
if (spi_format == V_028714_SPI_SHADER_FP16_ABGR) {
sx_ps_downconvert |= V_028754_SX_RT_EXPORT_5_6_5 << (i * 4);
sx_blend_opt_epsilon |= V_028758_6BIT_FORMAT << (i * 4);
}
break;
case V_028C70_COLOR_1_5_5_5:
if (spi_format == V_028714_SPI_SHADER_FP16_ABGR) {
sx_ps_downconvert |= V_028754_SX_RT_EXPORT_1_5_5_5 << (i * 4);
sx_blend_opt_epsilon |= V_028758_5BIT_FORMAT << (i * 4);
}
break;
case V_028C70_COLOR_4_4_4_4:
if (spi_format == V_028714_SPI_SHADER_FP16_ABGR) {
sx_ps_downconvert |= V_028754_SX_RT_EXPORT_4_4_4_4 << (i * 4);
sx_blend_opt_epsilon |= V_028758_4BIT_FORMAT << (i * 4);
}
break;
case V_028C70_COLOR_32:
if (swap == V_028C70_SWAP_STD && spi_format == V_028714_SPI_SHADER_32_R)
sx_ps_downconvert |= V_028754_SX_RT_EXPORT_32_R << (i * 4);
else if (swap == V_028C70_SWAP_ALT_REV && spi_format == V_028714_SPI_SHADER_32_AR)
sx_ps_downconvert |= V_028754_SX_RT_EXPORT_32_A << (i * 4);
break;
case V_028C70_COLOR_16:
case V_028C70_COLOR_16_16:
/* For 1-channel formats, use the superset thereof. */
if (spi_format == V_028714_SPI_SHADER_UNORM16_ABGR ||
spi_format == V_028714_SPI_SHADER_SNORM16_ABGR ||
spi_format == V_028714_SPI_SHADER_UINT16_ABGR ||
spi_format == V_028714_SPI_SHADER_SINT16_ABGR) {
if (swap == V_028C70_SWAP_STD || swap == V_028C70_SWAP_STD_REV)
sx_ps_downconvert |= V_028754_SX_RT_EXPORT_16_16_GR << (i * 4);
else
sx_ps_downconvert |= V_028754_SX_RT_EXPORT_16_16_AR << (i * 4);
}
break;
case V_028C70_COLOR_10_11_11:
if (spi_format == V_028714_SPI_SHADER_FP16_ABGR)
sx_ps_downconvert |= V_028754_SX_RT_EXPORT_10_11_11 << (i * 4);
break;
case V_028C70_COLOR_2_10_10_10:
if (spi_format == V_028714_SPI_SHADER_FP16_ABGR) {
sx_ps_downconvert |= V_028754_SX_RT_EXPORT_2_10_10_10 << (i * 4);
sx_blend_opt_epsilon |= V_028758_10BIT_FORMAT << (i * 4);
}
break;
case V_028C70_COLOR_5_9_9_9:
if (spi_format == V_028714_SPI_SHADER_FP16_ABGR)
sx_ps_downconvert |= V_028754_SX_RT_EXPORT_9_9_9_E5 << (i * 4);
break;
}
}
/* Do not set the DISABLE bits for the unused attachments, as that
* breaks dual source blending in SkQP and does not seem to improve
* performance. */
if (sx_ps_downconvert == cmd_buffer->state.last_sx_ps_downconvert &&
sx_blend_opt_epsilon == cmd_buffer->state.last_sx_blend_opt_epsilon &&
sx_blend_opt_control == cmd_buffer->state.last_sx_blend_opt_control)
return;
radeon_set_context_reg_seq(cmd_buffer->cs, R_028754_SX_PS_DOWNCONVERT, 3);
radeon_emit(cmd_buffer->cs, sx_ps_downconvert);
radeon_emit(cmd_buffer->cs, sx_blend_opt_epsilon);
radeon_emit(cmd_buffer->cs, sx_blend_opt_control);
cmd_buffer->state.context_roll_without_scissor_emitted = true;
cmd_buffer->state.last_sx_ps_downconvert = sx_ps_downconvert;
cmd_buffer->state.last_sx_blend_opt_epsilon = sx_blend_opt_epsilon;
cmd_buffer->state.last_sx_blend_opt_control = sx_blend_opt_control;
}
static void
radv_emit_batch_break_on_new_ps(struct radv_cmd_buffer *cmd_buffer)
{
if (!cmd_buffer->device->pbb_allowed)
return;
struct radv_binning_settings settings =
radv_get_binning_settings(cmd_buffer->device->physical_device);
bool break_for_new_ps =
(!cmd_buffer->state.emitted_pipeline ||
cmd_buffer->state.emitted_pipeline->shaders[MESA_SHADER_FRAGMENT] !=
cmd_buffer->state.pipeline->shaders[MESA_SHADER_FRAGMENT]) &&
(settings.context_states_per_bin > 1 || settings.persistent_states_per_bin > 1);
bool break_for_new_cb_target_mask =
(!cmd_buffer->state.emitted_pipeline ||
cmd_buffer->state.emitted_pipeline->graphics.cb_target_mask !=
cmd_buffer->state.pipeline->graphics.cb_target_mask) &&
settings.context_states_per_bin > 1;
if (!break_for_new_ps && !break_for_new_cb_target_mask)
return;
radeon_emit(cmd_buffer->cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cmd_buffer->cs, EVENT_TYPE(V_028A90_BREAK_BATCH) | EVENT_INDEX(0));
}
static void
radv_emit_graphics_pipeline(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_pipeline *pipeline = cmd_buffer->state.pipeline;
if (!pipeline || cmd_buffer->state.emitted_pipeline == pipeline)
return;
radv_update_multisample_state(cmd_buffer, pipeline);
radv_update_binning_state(cmd_buffer, pipeline);
cmd_buffer->scratch_size_per_wave_needed =
MAX2(cmd_buffer->scratch_size_per_wave_needed, pipeline->scratch_bytes_per_wave);
cmd_buffer->scratch_waves_wanted = MAX2(cmd_buffer->scratch_waves_wanted, pipeline->max_waves);
if (!cmd_buffer->state.emitted_pipeline ||
cmd_buffer->state.emitted_pipeline->graphics.can_use_guardband !=
pipeline->graphics.can_use_guardband)
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DYNAMIC_SCISSOR;
if (!cmd_buffer->state.emitted_pipeline ||
cmd_buffer->state.emitted_pipeline->graphics.pa_su_sc_mode_cntl !=
pipeline->graphics.pa_su_sc_mode_cntl)
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DYNAMIC_CULL_MODE |
RADV_CMD_DIRTY_DYNAMIC_FRONT_FACE |
RADV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
if (!cmd_buffer->state.emitted_pipeline ||
cmd_buffer->state.emitted_pipeline->graphics.pa_cl_clip_cntl !=
pipeline->graphics.pa_cl_clip_cntl)
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DYNAMIC_RASTERIZER_DISCARD_ENABLE;
if (!cmd_buffer->state.emitted_pipeline)
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DYNAMIC_PRIMITIVE_TOPOLOGY |
RADV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS |
RADV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS |
RADV_CMD_DIRTY_DYNAMIC_PRIMITIVE_RESTART_ENABLE;
if (!cmd_buffer->state.emitted_pipeline ||
cmd_buffer->state.emitted_pipeline->graphics.db_depth_control !=
pipeline->graphics.db_depth_control)
cmd_buffer->state.dirty |=
RADV_CMD_DIRTY_DYNAMIC_DEPTH_TEST_ENABLE | RADV_CMD_DIRTY_DYNAMIC_DEPTH_WRITE_ENABLE |
RADV_CMD_DIRTY_DYNAMIC_DEPTH_COMPARE_OP | RADV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE |
RADV_CMD_DIRTY_DYNAMIC_STENCIL_TEST_ENABLE | RADV_CMD_DIRTY_DYNAMIC_STENCIL_OP;
if (!cmd_buffer->state.emitted_pipeline)
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DYNAMIC_STENCIL_OP;
radeon_emit_array(cmd_buffer->cs, pipeline->cs.buf, pipeline->cs.cdw);
if (!cmd_buffer->state.emitted_pipeline ||
cmd_buffer->state.emitted_pipeline->ctx_cs.cdw != pipeline->ctx_cs.cdw ||
cmd_buffer->state.emitted_pipeline->ctx_cs_hash != pipeline->ctx_cs_hash ||
memcmp(cmd_buffer->state.emitted_pipeline->ctx_cs.buf, pipeline->ctx_cs.buf,
pipeline->ctx_cs.cdw * 4)) {
radeon_emit_array(cmd_buffer->cs, pipeline->ctx_cs.buf, pipeline->ctx_cs.cdw);
cmd_buffer->state.context_roll_without_scissor_emitted = true;
}
radv_emit_batch_break_on_new_ps(cmd_buffer);
for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
if (!pipeline->shaders[i])
continue;
radv_cs_add_buffer(cmd_buffer->device->ws, cmd_buffer->cs, pipeline->shaders[i]->bo);
}
if (radv_pipeline_has_gs_copy_shader(pipeline))
radv_cs_add_buffer(cmd_buffer->device->ws, cmd_buffer->cs, pipeline->gs_copy_shader->bo);
if (unlikely(cmd_buffer->device->trace_bo))
radv_save_pipeline(cmd_buffer, pipeline);
cmd_buffer->state.emitted_pipeline = pipeline;
cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_PIPELINE;
}
static void
radv_emit_viewport(struct radv_cmd_buffer *cmd_buffer)
{
si_write_viewport(cmd_buffer->cs, 0, cmd_buffer->state.dynamic.viewport.count,
cmd_buffer->state.dynamic.viewport.viewports);
}
static void
radv_emit_scissor(struct radv_cmd_buffer *cmd_buffer)
{
uint32_t count = cmd_buffer->state.dynamic.scissor.count;
si_write_scissors(cmd_buffer->cs, 0, count, cmd_buffer->state.dynamic.scissor.scissors,
cmd_buffer->state.dynamic.viewport.viewports,
cmd_buffer->state.emitted_pipeline->graphics.can_use_guardband);
cmd_buffer->state.context_roll_without_scissor_emitted = false;
}
static void
radv_emit_discard_rectangle(struct radv_cmd_buffer *cmd_buffer)
{
if (!cmd_buffer->state.dynamic.discard_rectangle.count)
return;
radeon_set_context_reg_seq(cmd_buffer->cs, R_028210_PA_SC_CLIPRECT_0_TL,
cmd_buffer->state.dynamic.discard_rectangle.count * 2);
for (unsigned i = 0; i < cmd_buffer->state.dynamic.discard_rectangle.count; ++i) {
VkRect2D rect = cmd_buffer->state.dynamic.discard_rectangle.rectangles[i];
radeon_emit(cmd_buffer->cs, S_028210_TL_X(rect.offset.x) | S_028210_TL_Y(rect.offset.y));
radeon_emit(cmd_buffer->cs, S_028214_BR_X(rect.offset.x + rect.extent.width) |
S_028214_BR_Y(rect.offset.y + rect.extent.height));
}
}
static void
radv_emit_line_width(struct radv_cmd_buffer *cmd_buffer)
{
unsigned width = cmd_buffer->state.dynamic.line_width * 8;
radeon_set_context_reg(cmd_buffer->cs, R_028A08_PA_SU_LINE_CNTL,
S_028A08_WIDTH(CLAMP(width, 0, 0xFFFF)));
}
static void
radv_emit_blend_constants(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
radeon_set_context_reg_seq(cmd_buffer->cs, R_028414_CB_BLEND_RED, 4);
radeon_emit_array(cmd_buffer->cs, (uint32_t *)d->blend_constants, 4);
}
static void
radv_emit_stencil(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
radeon_set_context_reg_seq(cmd_buffer->cs, R_028430_DB_STENCILREFMASK, 2);
radeon_emit(cmd_buffer->cs, S_028430_STENCILTESTVAL(d->stencil_reference.front) |
S_028430_STENCILMASK(d->stencil_compare_mask.front) |
S_028430_STENCILWRITEMASK(d->stencil_write_mask.front) |
S_028430_STENCILOPVAL(1));
radeon_emit(cmd_buffer->cs, S_028434_STENCILTESTVAL_BF(d->stencil_reference.back) |
S_028434_STENCILMASK_BF(d->stencil_compare_mask.back) |
S_028434_STENCILWRITEMASK_BF(d->stencil_write_mask.back) |
S_028434_STENCILOPVAL_BF(1));
}
static void
radv_emit_depth_bounds(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
radeon_set_context_reg(cmd_buffer->cs, R_028020_DB_DEPTH_BOUNDS_MIN, fui(d->depth_bounds.min));
radeon_set_context_reg(cmd_buffer->cs, R_028024_DB_DEPTH_BOUNDS_MAX, fui(d->depth_bounds.max));
}
static void
radv_emit_depth_bias(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
unsigned slope = fui(d->depth_bias.slope * 16.0f);
radeon_set_context_reg_seq(cmd_buffer->cs, R_028B7C_PA_SU_POLY_OFFSET_CLAMP, 5);
radeon_emit(cmd_buffer->cs, fui(d->depth_bias.clamp)); /* CLAMP */
radeon_emit(cmd_buffer->cs, slope); /* FRONT SCALE */
radeon_emit(cmd_buffer->cs, fui(d->depth_bias.bias)); /* FRONT OFFSET */
radeon_emit(cmd_buffer->cs, slope); /* BACK SCALE */
radeon_emit(cmd_buffer->cs, fui(d->depth_bias.bias)); /* BACK OFFSET */
}
static void
radv_emit_line_stipple(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
uint32_t auto_reset_cntl = 1;
if (d->primitive_topology == V_008958_DI_PT_LINESTRIP)
auto_reset_cntl = 2;
radeon_set_context_reg(cmd_buffer->cs, R_028A0C_PA_SC_LINE_STIPPLE,
S_028A0C_LINE_PATTERN(d->line_stipple.pattern) |
S_028A0C_REPEAT_COUNT(d->line_stipple.factor - 1) |
S_028A0C_AUTO_RESET_CNTL(auto_reset_cntl));
}
static void
radv_emit_culling(struct radv_cmd_buffer *cmd_buffer, uint64_t states)
{
unsigned pa_su_sc_mode_cntl = cmd_buffer->state.pipeline->graphics.pa_su_sc_mode_cntl;
struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
if (states & RADV_CMD_DIRTY_DYNAMIC_CULL_MODE) {
pa_su_sc_mode_cntl &= C_028814_CULL_FRONT;
pa_su_sc_mode_cntl |= S_028814_CULL_FRONT(!!(d->cull_mode & VK_CULL_MODE_FRONT_BIT));
pa_su_sc_mode_cntl &= C_028814_CULL_BACK;
pa_su_sc_mode_cntl |= S_028814_CULL_BACK(!!(d->cull_mode & VK_CULL_MODE_BACK_BIT));
}
if (states & RADV_CMD_DIRTY_DYNAMIC_FRONT_FACE) {
pa_su_sc_mode_cntl &= C_028814_FACE;
pa_su_sc_mode_cntl |= S_028814_FACE(d->front_face);
}
if (states & RADV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS_ENABLE) {
pa_su_sc_mode_cntl &= C_028814_POLY_OFFSET_FRONT_ENABLE & C_028814_POLY_OFFSET_BACK_ENABLE &
C_028814_POLY_OFFSET_PARA_ENABLE;
pa_su_sc_mode_cntl |= S_028814_POLY_OFFSET_FRONT_ENABLE(d->depth_bias_enable) |
S_028814_POLY_OFFSET_BACK_ENABLE(d->depth_bias_enable) |
S_028814_POLY_OFFSET_PARA_ENABLE(d->depth_bias_enable);
}
radeon_set_context_reg(cmd_buffer->cs, R_028814_PA_SU_SC_MODE_CNTL, pa_su_sc_mode_cntl);
}
static void
radv_emit_primitive_topology(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX7) {
radeon_set_uconfig_reg_idx(cmd_buffer->device->physical_device, cmd_buffer->cs,
R_030908_VGT_PRIMITIVE_TYPE, 1, d->primitive_topology);
} else {
radeon_set_config_reg(cmd_buffer->cs, R_008958_VGT_PRIMITIVE_TYPE, d->primitive_topology);
}
}
static void
radv_emit_depth_control(struct radv_cmd_buffer *cmd_buffer, uint64_t states)
{
unsigned db_depth_control = cmd_buffer->state.pipeline->graphics.db_depth_control;
struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
if (states & RADV_CMD_DIRTY_DYNAMIC_DEPTH_TEST_ENABLE) {
db_depth_control &= C_028800_Z_ENABLE;
db_depth_control |= S_028800_Z_ENABLE(d->depth_test_enable ? 1 : 0);
}
if (states & RADV_CMD_DIRTY_DYNAMIC_DEPTH_WRITE_ENABLE) {
db_depth_control &= C_028800_Z_WRITE_ENABLE;
db_depth_control |= S_028800_Z_WRITE_ENABLE(d->depth_write_enable ? 1 : 0);
}
if (states & RADV_CMD_DIRTY_DYNAMIC_DEPTH_COMPARE_OP) {
db_depth_control &= C_028800_ZFUNC;
db_depth_control |= S_028800_ZFUNC(d->depth_compare_op);
}
if (states & RADV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE) {
db_depth_control &= C_028800_DEPTH_BOUNDS_ENABLE;
db_depth_control |= S_028800_DEPTH_BOUNDS_ENABLE(d->depth_bounds_test_enable ? 1 : 0);
}
if (states & RADV_CMD_DIRTY_DYNAMIC_STENCIL_TEST_ENABLE) {
db_depth_control &= C_028800_STENCIL_ENABLE;
db_depth_control |= S_028800_STENCIL_ENABLE(d->stencil_test_enable ? 1 : 0);
db_depth_control &= C_028800_BACKFACE_ENABLE;
db_depth_control |= S_028800_BACKFACE_ENABLE(d->stencil_test_enable ? 1 : 0);
}
if (states & RADV_CMD_DIRTY_DYNAMIC_STENCIL_OP) {
db_depth_control &= C_028800_STENCILFUNC;
db_depth_control |= S_028800_STENCILFUNC(d->stencil_op.front.compare_op);
db_depth_control &= C_028800_STENCILFUNC_BF;
db_depth_control |= S_028800_STENCILFUNC_BF(d->stencil_op.back.compare_op);
}
radeon_set_context_reg(cmd_buffer->cs, R_028800_DB_DEPTH_CONTROL, db_depth_control);
}
static void
radv_emit_stencil_control(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
radeon_set_context_reg(
cmd_buffer->cs, R_02842C_DB_STENCIL_CONTROL,
S_02842C_STENCILFAIL(si_translate_stencil_op(d->stencil_op.front.fail_op)) |
S_02842C_STENCILZPASS(si_translate_stencil_op(d->stencil_op.front.pass_op)) |
S_02842C_STENCILZFAIL(si_translate_stencil_op(d->stencil_op.front.depth_fail_op)) |
S_02842C_STENCILFAIL_BF(si_translate_stencil_op(d->stencil_op.back.fail_op)) |
S_02842C_STENCILZPASS_BF(si_translate_stencil_op(d->stencil_op.back.pass_op)) |
S_02842C_STENCILZFAIL_BF(si_translate_stencil_op(d->stencil_op.back.depth_fail_op)));
}
static void
radv_emit_fragment_shading_rate(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_pipeline *pipeline = cmd_buffer->state.pipeline;
const struct radv_subpass *subpass = cmd_buffer->state.subpass;
struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
uint32_t rate_x = MIN2(2, d->fragment_shading_rate.size.width) - 1;
uint32_t rate_y = MIN2(2, d->fragment_shading_rate.size.height) - 1;
uint32_t pa_cl_vrs_cntl = pipeline->graphics.vrs.pa_cl_vrs_cntl;
uint32_t vertex_comb_mode = d->fragment_shading_rate.combiner_ops[0];
uint32_t htile_comb_mode = d->fragment_shading_rate.combiner_ops[1];
if (subpass && !subpass->vrs_attachment) {
/* When the current subpass has no VRS attachment, the VRS rates are expected to be 1x1, so we
* can cheat by tweaking the different combiner modes.
*/
switch (htile_comb_mode) {
case VK_FRAGMENT_SHADING_RATE_COMBINER_OP_MIN_KHR:
/* The result of min(A, 1x1) is always 1x1. */
FALLTHROUGH;
case VK_FRAGMENT_SHADING_RATE_COMBINER_OP_REPLACE_KHR:
/* Force the per-draw VRS rate to 1x1. */
rate_x = rate_y = 0;
/* As the result of min(A, 1x1) or replace(A, 1x1) are always 1x1, set the vertex rate
* combiner mode as passthrough.
*/
vertex_comb_mode = V_028848_VRS_COMB_MODE_PASSTHRU;
break;
case VK_FRAGMENT_SHADING_RATE_COMBINER_OP_MAX_KHR:
/* The result of max(A, 1x1) is always A. */
FALLTHROUGH;
case VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR:
/* Nothing to do here because the SAMPLE_ITER combiner mode should already be passthrough. */
break;
default:
break;
}
}
/* Emit per-draw VRS rate which is the first combiner. */
radeon_set_uconfig_reg(cmd_buffer->cs, R_03098C_GE_VRS_RATE,
S_03098C_RATE_X(rate_x) | S_03098C_RATE_Y(rate_y));
/* VERTEX_RATE_COMBINER_MODE controls the combiner mode between the
* draw rate and the vertex rate.
*/
pa_cl_vrs_cntl |= S_028848_VERTEX_RATE_COMBINER_MODE(vertex_comb_mode);
/* HTILE_RATE_COMBINER_MODE controls the combiner mode between the primitive rate and the HTILE
* rate.
*/
pa_cl_vrs_cntl |= S_028848_HTILE_RATE_COMBINER_MODE(htile_comb_mode);
radeon_set_context_reg(cmd_buffer->cs, R_028848_PA_CL_VRS_CNTL, pa_cl_vrs_cntl);
}
static void
radv_emit_primitive_restart_enable(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9) {
radeon_set_uconfig_reg(cmd_buffer->cs, R_03092C_VGT_MULTI_PRIM_IB_RESET_EN,
d->primitive_restart_enable);
} else {
radeon_set_context_reg(cmd_buffer->cs, R_028A94_VGT_MULTI_PRIM_IB_RESET_EN,
d->primitive_restart_enable);
}
}
static void
radv_emit_rasterizer_discard_enable(struct radv_cmd_buffer *cmd_buffer)
{
unsigned pa_cl_clip_cntl = cmd_buffer->state.pipeline->graphics.pa_cl_clip_cntl;
struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
pa_cl_clip_cntl &= C_028810_DX_RASTERIZATION_KILL;
pa_cl_clip_cntl |= S_028810_DX_RASTERIZATION_KILL(d->rasterizer_discard_enable);
radeon_set_context_reg(cmd_buffer->cs, R_028810_PA_CL_CLIP_CNTL, pa_cl_clip_cntl);
}
static void
radv_emit_fb_color_state(struct radv_cmd_buffer *cmd_buffer, int index,
struct radv_color_buffer_info *cb, struct radv_image_view *iview,
VkImageLayout layout, bool in_render_loop, bool disable_dcc)
{
bool is_vi = cmd_buffer->device->physical_device->rad_info.chip_class >= GFX8;
uint32_t cb_color_info = cb->cb_color_info;
struct radv_image *image = iview->image;
if (!radv_layout_dcc_compressed(
cmd_buffer->device, image, layout, in_render_loop,
radv_image_queue_family_mask(image, cmd_buffer->queue_family_index,
cmd_buffer->queue_family_index)) ||
disable_dcc) {
cb_color_info &= C_028C70_DCC_ENABLE;
}
if (!radv_layout_fmask_compressed(
cmd_buffer->device, image, layout,
radv_image_queue_family_mask(image, cmd_buffer->queue_family_index,
cmd_buffer->queue_family_index))) {
cb_color_info &= C_028C70_COMPRESSION;
}
if (radv_image_is_tc_compat_cmask(image) && (radv_is_fmask_decompress_pipeline(cmd_buffer) ||
radv_is_dcc_decompress_pipeline(cmd_buffer))) {
/* If this bit is set, the FMASK decompression operation
* doesn't occur (DCC_COMPRESS also implies FMASK_DECOMPRESS).
*/
cb_color_info &= C_028C70_FMASK_COMPRESS_1FRAG_ONLY;
}
if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX10) {
radeon_set_context_reg_seq(cmd_buffer->cs, R_028C60_CB_COLOR0_BASE + index * 0x3c, 11);
radeon_emit(cmd_buffer->cs, cb->cb_color_base);
radeon_emit(cmd_buffer->cs, 0);
radeon_emit(cmd_buffer->cs, 0);
radeon_emit(cmd_buffer->cs, cb->cb_color_view);
radeon_emit(cmd_buffer->cs, cb_color_info);
radeon_emit(cmd_buffer->cs, cb->cb_color_attrib);
radeon_emit(cmd_buffer->cs, cb->cb_dcc_control);
radeon_emit(cmd_buffer->cs, cb->cb_color_cmask);
radeon_emit(cmd_buffer->cs, 0);
radeon_emit(cmd_buffer->cs, cb->cb_color_fmask);
radeon_emit(cmd_buffer->cs, 0);
radeon_set_context_reg_seq(cmd_buffer->cs, R_028C94_CB_COLOR0_DCC_BASE + index * 0x3c, 1);
radeon_emit(cmd_buffer->cs, cb->cb_dcc_base);
radeon_set_context_reg(cmd_buffer->cs, R_028E40_CB_COLOR0_BASE_EXT + index * 4,
cb->cb_color_base >> 32);
radeon_set_context_reg(cmd_buffer->cs, R_028E60_CB_COLOR0_CMASK_BASE_EXT + index * 4,
cb->cb_color_cmask >> 32);
radeon_set_context_reg(cmd_buffer->cs, R_028E80_CB_COLOR0_FMASK_BASE_EXT + index * 4,
cb->cb_color_fmask >> 32);
radeon_set_context_reg(cmd_buffer->cs, R_028EA0_CB_COLOR0_DCC_BASE_EXT + index * 4,
cb->cb_dcc_base >> 32);
radeon_set_context_reg(cmd_buffer->cs, R_028EC0_CB_COLOR0_ATTRIB2 + index * 4,
cb->cb_color_attrib2);
radeon_set_context_reg(cmd_buffer->cs, R_028EE0_CB_COLOR0_ATTRIB3 + index * 4,
cb->cb_color_attrib3);
} else if (cmd_buffer->device->physical_device->rad_info.chip_class == GFX9) {
radeon_set_context_reg_seq(cmd_buffer->cs, R_028C60_CB_COLOR0_BASE + index * 0x3c, 11);
radeon_emit(cmd_buffer->cs, cb->cb_color_base);
radeon_emit(cmd_buffer->cs, S_028C64_BASE_256B(cb->cb_color_base >> 32));
radeon_emit(cmd_buffer->cs, cb->cb_color_attrib2);
radeon_emit(cmd_buffer->cs, cb->cb_color_view);
radeon_emit(cmd_buffer->cs, cb_color_info);
radeon_emit(cmd_buffer->cs, cb->cb_color_attrib);
radeon_emit(cmd_buffer->cs, cb->cb_dcc_control);
radeon_emit(cmd_buffer->cs, cb->cb_color_cmask);
radeon_emit(cmd_buffer->cs, S_028C80_BASE_256B(cb->cb_color_cmask >> 32));
radeon_emit(cmd_buffer->cs, cb->cb_color_fmask);
radeon_emit(cmd_buffer->cs, S_028C88_BASE_256B(cb->cb_color_fmask >> 32));
radeon_set_context_reg_seq(cmd_buffer->cs, R_028C94_CB_COLOR0_DCC_BASE + index * 0x3c, 2);
radeon_emit(cmd_buffer->cs, cb->cb_dcc_base);
radeon_emit(cmd_buffer->cs, S_028C98_BASE_256B(cb->cb_dcc_base >> 32));
radeon_set_context_reg(cmd_buffer->cs, R_0287A0_CB_MRT0_EPITCH + index * 4,
cb->cb_mrt_epitch);
} else {
radeon_set_context_reg_seq(cmd_buffer->cs, R_028C60_CB_COLOR0_BASE + index * 0x3c, 11);
radeon_emit(cmd_buffer->cs, cb->cb_color_base);
radeon_emit(cmd_buffer->cs, cb->cb_color_pitch);
radeon_emit(cmd_buffer->cs, cb->cb_color_slice);
radeon_emit(cmd_buffer->cs, cb->cb_color_view);
radeon_emit(cmd_buffer->cs, cb_color_info);
radeon_emit(cmd_buffer->cs, cb->cb_color_attrib);
radeon_emit(cmd_buffer->cs, cb->cb_dcc_control);
radeon_emit(cmd_buffer->cs, cb->cb_color_cmask);
radeon_emit(cmd_buffer->cs, cb->cb_color_cmask_slice);
radeon_emit(cmd_buffer->cs, cb->cb_color_fmask);
radeon_emit(cmd_buffer->cs, cb->cb_color_fmask_slice);
if (is_vi) { /* DCC BASE */
radeon_set_context_reg(cmd_buffer->cs, R_028C94_CB_COLOR0_DCC_BASE + index * 0x3c,
cb->cb_dcc_base);
}
}
if (radv_dcc_enabled(image, iview->base_mip)) {
/* Drawing with DCC enabled also compresses colorbuffers. */
VkImageSubresourceRange range = {
.aspectMask = iview->aspect_mask,
.baseMipLevel = iview->base_mip,
.levelCount = iview->level_count,
.baseArrayLayer = iview->base_layer,
.layerCount = iview->layer_count,
};
radv_update_dcc_metadata(cmd_buffer, image, &range, true);
}
}
static void
radv_update_zrange_precision(struct radv_cmd_buffer *cmd_buffer, struct radv_ds_buffer_info *ds,
const struct radv_image_view *iview, VkImageLayout layout,
bool in_render_loop, bool requires_cond_exec)
{
const struct radv_image *image = iview->image;
uint32_t db_z_info = ds->db_z_info;
uint32_t db_z_info_reg;
if (!cmd_buffer->device->physical_device->rad_info.has_tc_compat_zrange_bug ||
!radv_image_is_tc_compat_htile(image))
return;
if (!radv_layout_is_htile_compressed(
cmd_buffer->device, image, layout, in_render_loop,
radv_image_queue_family_mask(image, cmd_buffer->queue_family_index,
cmd_buffer->queue_family_index))) {
db_z_info &= C_028040_TILE_SURFACE_ENABLE;
}
db_z_info &= C_028040_ZRANGE_PRECISION;
if (cmd_buffer->device->physical_device->rad_info.chip_class == GFX9) {
db_z_info_reg = R_028038_DB_Z_INFO;
} else {
db_z_info_reg = R_028040_DB_Z_INFO;
}
/* When we don't know the last fast clear value we need to emit a
* conditional packet that will eventually skip the following
* SET_CONTEXT_REG packet.
*/
if (requires_cond_exec) {
uint64_t va = radv_get_tc_compat_zrange_va(image, iview->base_mip);
radeon_emit(cmd_buffer->cs, PKT3(PKT3_COND_EXEC, 3, 0));
radeon_emit(cmd_buffer->cs, va);
radeon_emit(cmd_buffer->cs, va >> 32);
radeon_emit(cmd_buffer->cs, 0);
radeon_emit(cmd_buffer->cs, 3); /* SET_CONTEXT_REG size */
}
radeon_set_context_reg(cmd_buffer->cs, db_z_info_reg, db_z_info);
}
static void
radv_emit_fb_ds_state(struct radv_cmd_buffer *cmd_buffer, struct radv_ds_buffer_info *ds,
struct radv_image_view *iview, VkImageLayout layout, bool in_render_loop)
{
const struct radv_image *image = iview->image;
uint32_t db_z_info = ds->db_z_info;
uint32_t db_stencil_info = ds->db_stencil_info;
if (!radv_layout_is_htile_compressed(
cmd_buffer->device, image, layout, in_render_loop,
radv_image_queue_family_mask(image, cmd_buffer->queue_family_index,
cmd_buffer->queue_family_index))) {
db_z_info &= C_028040_TILE_SURFACE_ENABLE;
db_stencil_info |= S_028044_TILE_STENCIL_DISABLE(1);
}
radeon_set_context_reg(cmd_buffer->cs, R_028008_DB_DEPTH_VIEW, ds->db_depth_view);
radeon_set_context_reg(cmd_buffer->cs, R_028ABC_DB_HTILE_SURFACE, ds->db_htile_surface);
if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX10) {
radeon_set_context_reg(cmd_buffer->cs, R_028014_DB_HTILE_DATA_BASE, ds->db_htile_data_base);
radeon_set_context_reg(cmd_buffer->cs, R_02801C_DB_DEPTH_SIZE_XY, ds->db_depth_size);
radeon_set_context_reg_seq(cmd_buffer->cs, R_02803C_DB_DEPTH_INFO, 7);
radeon_emit(cmd_buffer->cs, S_02803C_RESOURCE_LEVEL(1));
radeon_emit(cmd_buffer->cs, db_z_info);
radeon_emit(cmd_buffer->cs, db_stencil_info);
radeon_emit(cmd_buffer->cs, ds->db_z_read_base);
radeon_emit(cmd_buffer->cs, ds->db_stencil_read_base);
radeon_emit(cmd_buffer->cs, ds->db_z_read_base);
radeon_emit(cmd_buffer->cs, ds->db_stencil_read_base);
radeon_set_context_reg_seq(cmd_buffer->cs, R_028068_DB_Z_READ_BASE_HI, 5);
radeon_emit(cmd_buffer->cs, ds->db_z_read_base >> 32);
radeon_emit(cmd_buffer->cs, ds->db_stencil_read_base >> 32);
radeon_emit(cmd_buffer->cs, ds->db_z_read_base >> 32);
radeon_emit(cmd_buffer->cs, ds->db_stencil_read_base >> 32);
radeon_emit(cmd_buffer->cs, ds->db_htile_data_base >> 32);
} else if (cmd_buffer->device->physical_device->rad_info.chip_class == GFX9) {
radeon_set_context_reg_seq(cmd_buffer->cs, R_028014_DB_HTILE_DATA_BASE, 3);
radeon_emit(cmd_buffer->cs, ds->db_htile_data_base);
radeon_emit(cmd_buffer->cs, S_028018_BASE_HI(ds->db_htile_data_base >> 32));
radeon_emit(cmd_buffer->cs, ds->db_depth_size);
radeon_set_context_reg_seq(cmd_buffer->cs, R_028038_DB_Z_INFO, 10);
radeon_emit(cmd_buffer->cs, db_z_info); /* DB_Z_INFO */
radeon_emit(cmd_buffer->cs, db_stencil_info); /* DB_STENCIL_INFO */
radeon_emit(cmd_buffer->cs, ds->db_z_read_base); /* DB_Z_READ_BASE */
radeon_emit(cmd_buffer->cs,
S_028044_BASE_HI(ds->db_z_read_base >> 32)); /* DB_Z_READ_BASE_HI */
radeon_emit(cmd_buffer->cs, ds->db_stencil_read_base); /* DB_STENCIL_READ_BASE */
radeon_emit(cmd_buffer->cs,
S_02804C_BASE_HI(ds->db_stencil_read_base >> 32)); /* DB_STENCIL_READ_BASE_HI */
radeon_emit(cmd_buffer->cs, ds->db_z_write_base); /* DB_Z_WRITE_BASE */
radeon_emit(cmd_buffer->cs,
S_028054_BASE_HI(ds->db_z_write_base >> 32)); /* DB_Z_WRITE_BASE_HI */
radeon_emit(cmd_buffer->cs, ds->db_stencil_write_base); /* DB_STENCIL_WRITE_BASE */
radeon_emit(cmd_buffer->cs,
S_02805C_BASE_HI(ds->db_stencil_write_base >> 32)); /* DB_STENCIL_WRITE_BASE_HI */
radeon_set_context_reg_seq(cmd_buffer->cs, R_028068_DB_Z_INFO2, 2);
radeon_emit(cmd_buffer->cs, ds->db_z_info2);
radeon_emit(cmd_buffer->cs, ds->db_stencil_info2);
} else {
radeon_set_context_reg(cmd_buffer->cs, R_028014_DB_HTILE_DATA_BASE, ds->db_htile_data_base);
radeon_set_context_reg_seq(cmd_buffer->cs, R_02803C_DB_DEPTH_INFO, 9);
radeon_emit(cmd_buffer->cs, ds->db_depth_info); /* R_02803C_DB_DEPTH_INFO */
radeon_emit(cmd_buffer->cs, db_z_info); /* R_028040_DB_Z_INFO */
radeon_emit(cmd_buffer->cs, db_stencil_info); /* R_028044_DB_STENCIL_INFO */
radeon_emit(cmd_buffer->cs, ds->db_z_read_base); /* R_028048_DB_Z_READ_BASE */
radeon_emit(cmd_buffer->cs, ds->db_stencil_read_base); /* R_02804C_DB_STENCIL_READ_BASE */
radeon_emit(cmd_buffer->cs, ds->db_z_write_base); /* R_028050_DB_Z_WRITE_BASE */
radeon_emit(cmd_buffer->cs, ds->db_stencil_write_base); /* R_028054_DB_STENCIL_WRITE_BASE */
radeon_emit(cmd_buffer->cs, ds->db_depth_size); /* R_028058_DB_DEPTH_SIZE */
radeon_emit(cmd_buffer->cs, ds->db_depth_slice); /* R_02805C_DB_DEPTH_SLICE */
}
/* Update the ZRANGE_PRECISION value for the TC-compat bug. */
radv_update_zrange_precision(cmd_buffer, ds, iview, layout, in_render_loop, true);
radeon_set_context_reg(cmd_buffer->cs, R_028B78_PA_SU_POLY_OFFSET_DB_FMT_CNTL,
ds->pa_su_poly_offset_db_fmt_cntl);
}
/**
* Update the fast clear depth/stencil values if the image is bound as a
* depth/stencil buffer.
*/
static void
radv_update_bound_fast_clear_ds(struct radv_cmd_buffer *cmd_buffer,
const struct radv_image_view *iview,
VkClearDepthStencilValue ds_clear_value, VkImageAspectFlags aspects)
{
const struct radv_subpass *subpass = cmd_buffer->state.subpass;
const struct radv_image *image = iview->image;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
uint32_t att_idx;
if (!cmd_buffer->state.attachments || !subpass)
return;
if (!subpass->depth_stencil_attachment)
return;
att_idx = subpass->depth_stencil_attachment->attachment;
if (cmd_buffer->state.attachments[att_idx].iview->image != image)
return;
if (aspects == (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
radeon_set_context_reg_seq(cs, R_028028_DB_STENCIL_CLEAR, 2);
radeon_emit(cs, ds_clear_value.stencil);
radeon_emit(cs, fui(ds_clear_value.depth));
} else if (aspects == VK_IMAGE_ASPECT_DEPTH_BIT) {
radeon_set_context_reg_seq(cs, R_02802C_DB_DEPTH_CLEAR, 1);
radeon_emit(cs, fui(ds_clear_value.depth));
} else {
assert(aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
radeon_set_context_reg_seq(cs, R_028028_DB_STENCIL_CLEAR, 1);
radeon_emit(cs, ds_clear_value.stencil);
}
/* Update the ZRANGE_PRECISION value for the TC-compat bug. This is
* only needed when clearing Z to 0.0.
*/
if ((aspects & VK_IMAGE_ASPECT_DEPTH_BIT) && ds_clear_value.depth == 0.0) {
VkImageLayout layout = subpass->depth_stencil_attachment->layout;
bool in_render_loop = subpass->depth_stencil_attachment->in_render_loop;
radv_update_zrange_precision(cmd_buffer, &cmd_buffer->state.attachments[att_idx].ds, iview,
layout, in_render_loop, false);
}
cmd_buffer->state.context_roll_without_scissor_emitted = true;
}
/**
* Set the clear depth/stencil values to the image's metadata.
*/
static void
radv_set_ds_clear_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
const VkImageSubresourceRange *range,
VkClearDepthStencilValue ds_clear_value, VkImageAspectFlags aspects)
{
struct radeon_cmdbuf *cs = cmd_buffer->cs;
uint32_t level_count = radv_get_levelCount(image, range);
if (aspects == (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
uint64_t va = radv_get_ds_clear_value_va(image, range->baseMipLevel);
/* Use the fastest way when both aspects are used. */
radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 2 + 2 * level_count, cmd_buffer->state.predicating));
radeon_emit(cs, S_370_DST_SEL(V_370_MEM) | S_370_WR_CONFIRM(1) | S_370_ENGINE_SEL(V_370_PFP));
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
for (uint32_t l = 0; l < level_count; l++) {
radeon_emit(cs, ds_clear_value.stencil);
radeon_emit(cs, fui(ds_clear_value.depth));
}
} else {
/* Otherwise we need one WRITE_DATA packet per level. */
for (uint32_t l = 0; l < level_count; l++) {
uint64_t va = radv_get_ds_clear_value_va(image, range->baseMipLevel + l);
unsigned value;
if (aspects == VK_IMAGE_ASPECT_DEPTH_BIT) {
value = fui(ds_clear_value.depth);
va += 4;
} else {
assert(aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
value = ds_clear_value.stencil;
}
radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 3, cmd_buffer->state.predicating));
radeon_emit(cs,
S_370_DST_SEL(V_370_MEM) | S_370_WR_CONFIRM(1) | S_370_ENGINE_SEL(V_370_PFP));
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit(cs, value);
}
}
}
/**
* Update the TC-compat metadata value for this image.
*/
static void
radv_set_tc_compat_zrange_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
const VkImageSubresourceRange *range, uint32_t value)
{
struct radeon_cmdbuf *cs = cmd_buffer->cs;
if (!cmd_buffer->device->physical_device->rad_info.has_tc_compat_zrange_bug)
return;
uint64_t va = radv_get_tc_compat_zrange_va(image, range->baseMipLevel);
uint32_t level_count = radv_get_levelCount(image, range);
radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 2 + level_count, cmd_buffer->state.predicating));
radeon_emit(cs, S_370_DST_SEL(V_370_MEM) | S_370_WR_CONFIRM(1) | S_370_ENGINE_SEL(V_370_PFP));
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
for (uint32_t l = 0; l < level_count; l++)
radeon_emit(cs, value);
}
static void
radv_update_tc_compat_zrange_metadata(struct radv_cmd_buffer *cmd_buffer,
const struct radv_image_view *iview,
VkClearDepthStencilValue ds_clear_value)
{
VkImageSubresourceRange range = {
.aspectMask = iview->aspect_mask,
.baseMipLevel = iview->base_mip,
.levelCount = iview->level_count,
.baseArrayLayer = iview->base_layer,
.layerCount = iview->layer_count,
};
uint32_t cond_val;
/* Conditionally set DB_Z_INFO.ZRANGE_PRECISION to 0 when the last
* depth clear value is 0.0f.
*/
cond_val = ds_clear_value.depth == 0.0f ? UINT_MAX : 0;
radv_set_tc_compat_zrange_metadata(cmd_buffer, iview->image, &range, cond_val);
}
/**
* Update the clear depth/stencil values for this image.
*/
void
radv_update_ds_clear_metadata(struct radv_cmd_buffer *cmd_buffer,
const struct radv_image_view *iview,
VkClearDepthStencilValue ds_clear_value, VkImageAspectFlags aspects)
{
VkImageSubresourceRange range = {
.aspectMask = iview->aspect_mask,
.baseMipLevel = iview->base_mip,
.levelCount = iview->level_count,
.baseArrayLayer = iview->base_layer,
.layerCount = iview->layer_count,
};
struct radv_image *image = iview->image;
assert(radv_htile_enabled(image, range.baseMipLevel));
radv_set_ds_clear_metadata(cmd_buffer, iview->image, &range, ds_clear_value, aspects);
if (radv_image_is_tc_compat_htile(image) && (aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
radv_update_tc_compat_zrange_metadata(cmd_buffer, iview, ds_clear_value);
}
radv_update_bound_fast_clear_ds(cmd_buffer, iview, ds_clear_value, aspects);
}
/**
* Load the clear depth/stencil values from the image's metadata.
*/
static void
radv_load_ds_clear_metadata(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview)
{
struct radeon_cmdbuf *cs = cmd_buffer->cs;
const struct radv_image *image = iview->image;
VkImageAspectFlags aspects = vk_format_aspects(image->vk_format);
uint64_t va = radv_get_ds_clear_value_va(image, iview->base_mip);
unsigned reg_offset = 0, reg_count = 0;
assert(radv_image_has_htile(image));
if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
++reg_count;
} else {
++reg_offset;
va += 4;
}
if (aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
++reg_count;
uint32_t reg = R_028028_DB_STENCIL_CLEAR + 4 * reg_offset;
if (cmd_buffer->device->physical_device->rad_info.has_load_ctx_reg_pkt) {
radeon_emit(cs, PKT3(PKT3_LOAD_CONTEXT_REG_INDEX, 3, 0));
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit(cs, (reg - SI_CONTEXT_REG_OFFSET) >> 2);
radeon_emit(cs, reg_count);
} else {
radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_REG) |
(reg_count == 2 ? COPY_DATA_COUNT_SEL : 0));
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit(cs, reg >> 2);
radeon_emit(cs, 0);
radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
radeon_emit(cs, 0);
}
}
/*
* With DCC some colors don't require CMASK elimination before being
* used as a texture. This sets a predicate value to determine if the
* cmask eliminate is required.
*/
void
radv_update_fce_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
const VkImageSubresourceRange *range, bool value)
{
if (!image->fce_pred_offset)
return;
uint64_t pred_val = value;
uint64_t va = radv_image_get_fce_pred_va(image, range->baseMipLevel);
uint32_t level_count = radv_get_levelCount(image, range);
uint32_t count = 2 * level_count;
radeon_emit(cmd_buffer->cs, PKT3(PKT3_WRITE_DATA, 2 + count, 0));
radeon_emit(cmd_buffer->cs,
S_370_DST_SEL(V_370_MEM) | S_370_WR_CONFIRM(1) | S_370_ENGINE_SEL(V_370_PFP));
radeon_emit(cmd_buffer->cs, va);
radeon_emit(cmd_buffer->cs, va >> 32);
for (uint32_t l = 0; l < level_count; l++) {
radeon_emit(cmd_buffer->cs, pred_val);
radeon_emit(cmd_buffer->cs, pred_val >> 32);
}
}
/**
* Update the DCC predicate to reflect the compression state.
*/
void
radv_update_dcc_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
const VkImageSubresourceRange *range, bool value)
{
if (image->dcc_pred_offset == 0)
return;
uint64_t pred_val = value;
uint64_t va = radv_image_get_dcc_pred_va(image, range->baseMipLevel);
uint32_t level_count = radv_get_levelCount(image, range);
uint32_t count = 2 * level_count;
assert(radv_dcc_enabled(image, range->baseMipLevel));
radeon_emit(cmd_buffer->cs, PKT3(PKT3_WRITE_DATA, 2 + count, 0));
radeon_emit(cmd_buffer->cs,
S_370_DST_SEL(V_370_MEM) | S_370_WR_CONFIRM(1) | S_370_ENGINE_SEL(V_370_PFP));
radeon_emit(cmd_buffer->cs, va);
radeon_emit(cmd_buffer->cs, va >> 32);
for (uint32_t l = 0; l < level_count; l++) {
radeon_emit(cmd_buffer->cs, pred_val);
radeon_emit(cmd_buffer->cs, pred_val >> 32);
}
}
/**
* Update the fast clear color values if the image is bound as a color buffer.
*/
static void
radv_update_bound_fast_clear_color(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
int cb_idx, uint32_t color_values[2])
{
const struct radv_subpass *subpass = cmd_buffer->state.subpass;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
uint32_t att_idx;
if (!cmd_buffer->state.attachments || !subpass)
return;
att_idx = subpass->color_attachments[cb_idx].attachment;
if (att_idx == VK_ATTACHMENT_UNUSED)
return;
if (cmd_buffer->state.attachments[att_idx].iview->image != image)
return;
radeon_set_context_reg_seq(cs, R_028C8C_CB_COLOR0_CLEAR_WORD0 + cb_idx * 0x3c, 2);
radeon_emit(cs, color_values[0]);
radeon_emit(cs, color_values[1]);
cmd_buffer->state.context_roll_without_scissor_emitted = true;
}
/**
* Set the clear color values to the image's metadata.
*/
static void
radv_set_color_clear_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
const VkImageSubresourceRange *range, uint32_t color_values[2])
{
struct radeon_cmdbuf *cs = cmd_buffer->cs;
uint32_t level_count = radv_get_levelCount(image, range);
uint32_t count = 2 * level_count;
assert(radv_image_has_cmask(image) || radv_dcc_enabled(image, range->baseMipLevel));
if (radv_image_has_clear_value(image)) {
uint64_t va = radv_image_get_fast_clear_va(image, range->baseMipLevel);
radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 2 + count, cmd_buffer->state.predicating));
radeon_emit(cs, S_370_DST_SEL(V_370_MEM) | S_370_WR_CONFIRM(1) | S_370_ENGINE_SEL(V_370_PFP));
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
for (uint32_t l = 0; l < level_count; l++) {
radeon_emit(cs, color_values[0]);
radeon_emit(cs, color_values[1]);
}
} else {
/* Some default value we can set in the update. */
assert(color_values[0] == 0 && color_values[1] == 0);
}
}
/**
* Update the clear color values for this image.
*/
void
radv_update_color_clear_metadata(struct radv_cmd_buffer *cmd_buffer,
const struct radv_image_view *iview, int cb_idx,
uint32_t color_values[2])
{
struct radv_image *image = iview->image;
VkImageSubresourceRange range = {
.aspectMask = iview->aspect_mask,
.baseMipLevel = iview->base_mip,
.levelCount = iview->level_count,
.baseArrayLayer = iview->base_layer,
.layerCount = iview->layer_count,
};
assert(radv_image_has_cmask(image) || radv_dcc_enabled(image, iview->base_mip));
radv_set_color_clear_metadata(cmd_buffer, image, &range, color_values);
radv_update_bound_fast_clear_color(cmd_buffer, image, cb_idx, color_values);
}
/**
* Load the clear color values from the image's metadata.
*/
static void
radv_load_color_clear_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image_view *iview,
int cb_idx)
{
struct radeon_cmdbuf *cs = cmd_buffer->cs;
struct radv_image *image = iview->image;
if (!radv_image_has_cmask(image) && !radv_dcc_enabled(image, iview->base_mip))
return;
if (!radv_image_has_clear_value(image)) {
uint32_t color_values[2] = {0, 0};
radv_update_bound_fast_clear_color(cmd_buffer, image, cb_idx, color_values);
return;
}
uint64_t va = radv_image_get_fast_clear_va(image, iview->base_mip);
uint32_t reg = R_028C8C_CB_COLOR0_CLEAR_WORD0 + cb_idx * 0x3c;
if (cmd_buffer->device->physical_device->rad_info.has_load_ctx_reg_pkt) {
radeon_emit(cs, PKT3(PKT3_LOAD_CONTEXT_REG_INDEX, 3, cmd_buffer->state.predicating));
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit(cs, (reg - SI_CONTEXT_REG_OFFSET) >> 2);
radeon_emit(cs, 2);
} else {
radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, cmd_buffer->state.predicating));
radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_REG) |
COPY_DATA_COUNT_SEL);
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit(cs, reg >> 2);
radeon_emit(cs, 0);
radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, cmd_buffer->state.predicating));
radeon_emit(cs, 0);
}
}
/* GFX9+ metadata cache flushing workaround. metadata cache coherency is
* broken if the CB caches data of multiple mips of the same image at the
* same time.
*
* Insert some flushes to avoid this.
*/
static void
radv_emit_fb_mip_change_flush(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_framebuffer *framebuffer = cmd_buffer->state.framebuffer;
const struct radv_subpass *subpass = cmd_buffer->state.subpass;
bool color_mip_changed = false;
/* Entire workaround is not applicable before GFX9 */
if (cmd_buffer->device->physical_device->rad_info.chip_class < GFX9)
return;
if (!framebuffer)
return;
for (int i = 0; i < subpass->color_count; ++i) {
int idx = subpass->color_attachments[i].attachment;
if (idx == VK_ATTACHMENT_UNUSED)
continue;
struct radv_image_view *iview = cmd_buffer->state.attachments[idx].iview;
if ((radv_image_has_CB_metadata(iview->image) || radv_image_has_dcc(iview->image)) &&
cmd_buffer->state.cb_mip[i] != iview->base_mip)
color_mip_changed = true;
cmd_buffer->state.cb_mip[i] = iview->base_mip;
}
if (color_mip_changed) {
cmd_buffer->state.flush_bits |=
RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
}
}
/* This function does the flushes for mip changes if the levels are not zero for
* all render targets. This way we can assume at the start of the next cmd_buffer
* that rendering to mip 0 doesn't need any flushes. As that is the most common
* case that saves some flushes. */
static void
radv_emit_mip_change_flush_default(struct radv_cmd_buffer *cmd_buffer)
{
/* Entire workaround is not applicable before GFX9 */
if (cmd_buffer->device->physical_device->rad_info.chip_class < GFX9)
return;
bool need_color_mip_flush = false;
for (unsigned i = 0; i < 8; ++i) {
if (cmd_buffer->state.cb_mip[i]) {
need_color_mip_flush = true;
break;
}
}
if (need_color_mip_flush) {
cmd_buffer->state.flush_bits |=
RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
}
memset(cmd_buffer->state.cb_mip, 0, sizeof(cmd_buffer->state.cb_mip));
}
static struct radv_image *
radv_cmd_buffer_get_vrs_image(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_device *device = cmd_buffer->device;
if (!device->vrs.image) {
VkResult result;
/* The global VRS image is created on-demand to avoid wasting space */
result = radv_device_init_vrs_image(device);
if (result != VK_SUCCESS) {
cmd_buffer->record_result = result;
return NULL;
}
}
return device->vrs.image;
}
static void
radv_emit_framebuffer_state(struct radv_cmd_buffer *cmd_buffer)
{
int i;
struct radv_framebuffer *framebuffer = cmd_buffer->state.framebuffer;
const struct radv_subpass *subpass = cmd_buffer->state.subpass;
/* this may happen for inherited secondary recording */
if (!framebuffer)
return;
for (i = 0; i < 8; ++i) {
if (i >= subpass->color_count ||
subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED) {
radeon_set_context_reg(cmd_buffer->cs, R_028C70_CB_COLOR0_INFO + i * 0x3C,
S_028C70_FORMAT(V_028C70_COLOR_INVALID));
continue;
}
int idx = subpass->color_attachments[i].attachment;
struct radv_image_view *iview = cmd_buffer->state.attachments[idx].iview;
VkImageLayout layout = subpass->color_attachments[i].layout;
bool in_render_loop = subpass->color_attachments[i].in_render_loop;
radv_cs_add_buffer(cmd_buffer->device->ws, cmd_buffer->cs, iview->image->bo);
assert(iview->aspect_mask & (VK_IMAGE_ASPECT_COLOR_BIT | VK_IMAGE_ASPECT_PLANE_0_BIT |
VK_IMAGE_ASPECT_PLANE_1_BIT | VK_IMAGE_ASPECT_PLANE_2_BIT));
radv_emit_fb_color_state(cmd_buffer, i, &cmd_buffer->state.attachments[idx].cb, iview, layout,
in_render_loop, cmd_buffer->state.attachments[idx].disable_dcc);
radv_load_color_clear_metadata(cmd_buffer, iview, i);
}
if (subpass->depth_stencil_attachment) {
int idx = subpass->depth_stencil_attachment->attachment;
VkImageLayout layout = subpass->depth_stencil_attachment->layout;
bool in_render_loop = subpass->depth_stencil_attachment->in_render_loop;
struct radv_image_view *iview = cmd_buffer->state.attachments[idx].iview;
radv_cs_add_buffer(cmd_buffer->device->ws, cmd_buffer->cs,
cmd_buffer->state.attachments[idx].iview->image->bo);
radv_emit_fb_ds_state(cmd_buffer, &cmd_buffer->state.attachments[idx].ds, iview, layout,
in_render_loop);
if (radv_layout_is_htile_compressed(
cmd_buffer->device, iview->image, layout, in_render_loop,
radv_image_queue_family_mask(iview->image, cmd_buffer->queue_family_index,
cmd_buffer->queue_family_index))) {
/* Only load the depth/stencil fast clear values when
* compressed rendering is enabled.
*/
radv_load_ds_clear_metadata(cmd_buffer, iview);
}
} else if (subpass->vrs_attachment && cmd_buffer->device->vrs.image) {
/* When a subpass uses a VRS attachment without binding a depth/stencil attachment, we have to
* bind our internal depth buffer that contains the VRS data as part of HTILE.
*/
VkImageLayout layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
struct radv_image *image = cmd_buffer->device->vrs.image;
struct radv_ds_buffer_info ds;
struct radv_image_view iview;
radv_image_view_init(&iview, cmd_buffer->device,
&(VkImageViewCreateInfo){
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = radv_image_to_handle(image),
.viewType = radv_meta_get_view_type(image),
.format = image->vk_format,
.subresourceRange =
{
.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1,
},
},
NULL);
radv_initialise_ds_surface(cmd_buffer->device, &ds, &iview);
radv_cs_add_buffer(cmd_buffer->device->ws, cmd_buffer->cs, image->bo);
radv_emit_fb_ds_state(cmd_buffer, &ds, &iview, layout, false);
} else {
if (cmd_buffer->device->physical_device->rad_info.chip_class == GFX9)
radeon_set_context_reg_seq(cmd_buffer->cs, R_028038_DB_Z_INFO, 2);
else
radeon_set_context_reg_seq(cmd_buffer->cs, R_028040_DB_Z_INFO, 2);
radeon_emit(cmd_buffer->cs, S_028040_FORMAT(V_028040_Z_INVALID)); /* DB_Z_INFO */
radeon_emit(cmd_buffer->cs, S_028044_FORMAT(V_028044_STENCIL_INVALID)); /* DB_STENCIL_INFO */
}
radeon_set_context_reg(cmd_buffer->cs, R_028208_PA_SC_WINDOW_SCISSOR_BR,
S_028208_BR_X(framebuffer->width) | S_028208_BR_Y(framebuffer->height));
if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX8) {
bool disable_constant_encode =
cmd_buffer->device->physical_device->rad_info.has_dcc_constant_encode;
enum chip_class chip_class = cmd_buffer->device->physical_device->rad_info.chip_class;
uint8_t watermark = chip_class >= GFX10 ? 6 : 4;
radeon_set_context_reg(cmd_buffer->cs, R_028424_CB_DCC_CONTROL,
S_028424_OVERWRITE_COMBINER_MRT_SHARING_DISABLE(chip_class <= GFX9) |
S_028424_OVERWRITE_COMBINER_WATERMARK(watermark) |
S_028424_DISABLE_CONSTANT_ENCODE_REG(disable_constant_encode));
}
if (cmd_buffer->device->dfsm_allowed) {
radeon_emit(cmd_buffer->cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cmd_buffer->cs, EVENT_TYPE(V_028A90_BREAK_BATCH) | EVENT_INDEX(0));
}
cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_FRAMEBUFFER;
}
static void
radv_emit_index_buffer(struct radv_cmd_buffer *cmd_buffer, bool indirect)
{
struct radeon_cmdbuf *cs = cmd_buffer->cs;
struct radv_cmd_state *state = &cmd_buffer->state;
if (state->index_type != state->last_index_type) {
if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9) {
radeon_set_uconfig_reg_idx(cmd_buffer->device->physical_device, cs,
R_03090C_VGT_INDEX_TYPE, 2, state->index_type);
} else {
radeon_emit(cs, PKT3(PKT3_INDEX_TYPE, 0, 0));
radeon_emit(cs, state->index_type);
}
state->last_index_type = state->index_type;
}
/* For the direct indexed draws we use DRAW_INDEX_2, which includes
* the index_va and max_index_count already. */
if (!indirect)
return;
radeon_emit(cs, PKT3(PKT3_INDEX_BASE, 1, 0));
radeon_emit(cs, state->index_va);
radeon_emit(cs, state->index_va >> 32);
radeon_emit(cs, PKT3(PKT3_INDEX_BUFFER_SIZE, 0, 0));
radeon_emit(cs, state->max_index_count);
cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_INDEX_BUFFER;
}
void
radv_set_db_count_control(struct radv_cmd_buffer *cmd_buffer)
{
bool has_perfect_queries = cmd_buffer->state.perfect_occlusion_queries_enabled;
struct radv_pipeline *pipeline = cmd_buffer->state.pipeline;
uint32_t pa_sc_mode_cntl_1 = pipeline ? pipeline->graphics.ms.pa_sc_mode_cntl_1 : 0;
uint32_t db_count_control;
if (!cmd_buffer->state.active_occlusion_queries) {
if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX7) {
if (G_028A4C_OUT_OF_ORDER_PRIMITIVE_ENABLE(pa_sc_mode_cntl_1) &&
pipeline->graphics.disable_out_of_order_rast_for_occlusion && has_perfect_queries) {
/* Re-enable out-of-order rasterization if the
* bound pipeline supports it and if it's has
* been disabled before starting any perfect
* occlusion queries.
*/
radeon_set_context_reg(cmd_buffer->cs, R_028A4C_PA_SC_MODE_CNTL_1, pa_sc_mode_cntl_1);
}
}
db_count_control = S_028004_ZPASS_INCREMENT_DISABLE(1);
} else {
const struct radv_subpass *subpass = cmd_buffer->state.subpass;
uint32_t sample_rate = subpass ? util_logbase2(subpass->max_sample_count) : 0;
bool gfx10_perfect =
cmd_buffer->device->physical_device->rad_info.chip_class >= GFX10 && has_perfect_queries;
if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX7) {
/* Always enable PERFECT_ZPASS_COUNTS due to issues with partially
* covered tiles, discards, and early depth testing. For more details,
* see https://gitlab.freedesktop.org/mesa/mesa/-/issues/3218 */
db_count_control = S_028004_PERFECT_ZPASS_COUNTS(1) |
S_028004_DISABLE_CONSERVATIVE_ZPASS_COUNTS(gfx10_perfect) |
S_028004_SAMPLE_RATE(sample_rate) | S_028004_ZPASS_ENABLE(1) |
S_028004_SLICE_EVEN_ENABLE(1) | S_028004_SLICE_ODD_ENABLE(1);
if (G_028A4C_OUT_OF_ORDER_PRIMITIVE_ENABLE(pa_sc_mode_cntl_1) &&
pipeline->graphics.disable_out_of_order_rast_for_occlusion && has_perfect_queries) {
/* If the bound pipeline has enabled
* out-of-order rasterization, we should
* disable it before starting any perfect
* occlusion queries.
*/
pa_sc_mode_cntl_1 &= C_028A4C_OUT_OF_ORDER_PRIMITIVE_ENABLE;
radeon_set_context_reg(cmd_buffer->cs, R_028A4C_PA_SC_MODE_CNTL_1, pa_sc_mode_cntl_1);
}
} else {
db_count_control = S_028004_PERFECT_ZPASS_COUNTS(1) | S_028004_SAMPLE_RATE(sample_rate);
}
}
radeon_set_context_reg(cmd_buffer->cs, R_028004_DB_COUNT_CONTROL, db_count_control);
cmd_buffer->state.context_roll_without_scissor_emitted = true;
}
static void
radv_cmd_buffer_flush_dynamic_state(struct radv_cmd_buffer *cmd_buffer)
{
uint64_t states =
cmd_buffer->state.dirty & cmd_buffer->state.emitted_pipeline->graphics.needed_dynamic_state;
if (states & (RADV_CMD_DIRTY_DYNAMIC_VIEWPORT))
radv_emit_viewport(cmd_buffer);
if (states & (RADV_CMD_DIRTY_DYNAMIC_SCISSOR | RADV_CMD_DIRTY_DYNAMIC_VIEWPORT) &&
!cmd_buffer->device->physical_device->rad_info.has_gfx9_scissor_bug)
radv_emit_scissor(cmd_buffer);
if (states & RADV_CMD_DIRTY_DYNAMIC_LINE_WIDTH)
radv_emit_line_width(cmd_buffer);
if (states & RADV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS)
radv_emit_blend_constants(cmd_buffer);
if (states &
(RADV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | RADV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK |
RADV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK))
radv_emit_stencil(cmd_buffer);
if (states & RADV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS)
radv_emit_depth_bounds(cmd_buffer);
if (states & RADV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS)
radv_emit_depth_bias(cmd_buffer);
if (states & RADV_CMD_DIRTY_DYNAMIC_DISCARD_RECTANGLE)
radv_emit_discard_rectangle(cmd_buffer);
if (states & RADV_CMD_DIRTY_DYNAMIC_SAMPLE_LOCATIONS)
radv_emit_sample_locations(cmd_buffer);
if (states & RADV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
radv_emit_line_stipple(cmd_buffer);
if (states & (RADV_CMD_DIRTY_DYNAMIC_CULL_MODE | RADV_CMD_DIRTY_DYNAMIC_FRONT_FACE |
RADV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS_ENABLE))
radv_emit_culling(cmd_buffer, states);
if (states & RADV_CMD_DIRTY_DYNAMIC_PRIMITIVE_TOPOLOGY)
radv_emit_primitive_topology(cmd_buffer);
if (states &
(RADV_CMD_DIRTY_DYNAMIC_DEPTH_TEST_ENABLE | RADV_CMD_DIRTY_DYNAMIC_DEPTH_WRITE_ENABLE |
RADV_CMD_DIRTY_DYNAMIC_DEPTH_COMPARE_OP | RADV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE |
RADV_CMD_DIRTY_DYNAMIC_STENCIL_TEST_ENABLE | RADV_CMD_DIRTY_DYNAMIC_STENCIL_OP))
radv_emit_depth_control(cmd_buffer, states);
if (states & RADV_CMD_DIRTY_DYNAMIC_STENCIL_OP)
radv_emit_stencil_control(cmd_buffer);
if (states & RADV_CMD_DIRTY_DYNAMIC_FRAGMENT_SHADING_RATE)
radv_emit_fragment_shading_rate(cmd_buffer);
if (states & RADV_CMD_DIRTY_DYNAMIC_PRIMITIVE_RESTART_ENABLE)
radv_emit_primitive_restart_enable(cmd_buffer);
if (states & RADV_CMD_DIRTY_DYNAMIC_RASTERIZER_DISCARD_ENABLE)
radv_emit_rasterizer_discard_enable(cmd_buffer);
cmd_buffer->state.dirty &= ~states;
}
static void
radv_flush_push_descriptors(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point)
{
struct radv_descriptor_state *descriptors_state =
radv_get_descriptors_state(cmd_buffer, bind_point);
struct radv_descriptor_set *set = (struct radv_descriptor_set *)&descriptors_state->push_set.set;
unsigned bo_offset;
if (!radv_cmd_buffer_upload_data(cmd_buffer, set->header.size, set->header.mapped_ptr,
&bo_offset))
return;
set->header.va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
set->header.va += bo_offset;
}
static void
radv_flush_indirect_descriptor_sets(struct radv_cmd_buffer *cmd_buffer,
struct radv_pipeline *pipeline, VkPipelineBindPoint bind_point)
{
struct radv_descriptor_state *descriptors_state =
radv_get_descriptors_state(cmd_buffer, bind_point);
uint32_t size = MAX_SETS * 4;
uint32_t offset;
void *ptr;
if (!radv_cmd_buffer_upload_alloc(cmd_buffer, size, &offset, &ptr))
return;
for (unsigned i = 0; i < MAX_SETS; i++) {
uint32_t *uptr = ((uint32_t *)ptr) + i;
uint64_t set_va = 0;
struct radv_descriptor_set *set = descriptors_state->sets[i];
if (descriptors_state->valid & (1u << i))
set_va = set->header.va;
uptr[0] = set_va & 0xffffffff;
}
uint64_t va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
va += offset;
if (bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
if (pipeline->shaders[MESA_SHADER_VERTEX])
radv_emit_userdata_address(cmd_buffer, pipeline, MESA_SHADER_VERTEX,
AC_UD_INDIRECT_DESCRIPTOR_SETS, va);
if (pipeline->shaders[MESA_SHADER_FRAGMENT])
radv_emit_userdata_address(cmd_buffer, pipeline, MESA_SHADER_FRAGMENT,
AC_UD_INDIRECT_DESCRIPTOR_SETS, va);
if (radv_pipeline_has_gs(pipeline))
radv_emit_userdata_address(cmd_buffer, pipeline, MESA_SHADER_GEOMETRY,
AC_UD_INDIRECT_DESCRIPTOR_SETS, va);
if (radv_pipeline_has_tess(pipeline))
radv_emit_userdata_address(cmd_buffer, pipeline, MESA_SHADER_TESS_CTRL,
AC_UD_INDIRECT_DESCRIPTOR_SETS, va);
if (radv_pipeline_has_tess(pipeline))
radv_emit_userdata_address(cmd_buffer, pipeline, MESA_SHADER_TESS_EVAL,
AC_UD_INDIRECT_DESCRIPTOR_SETS, va);
} else {
radv_emit_userdata_address(cmd_buffer, pipeline, MESA_SHADER_COMPUTE,
AC_UD_INDIRECT_DESCRIPTOR_SETS, va);
}
}
static void
radv_flush_descriptors(struct radv_cmd_buffer *cmd_buffer, VkShaderStageFlags stages,
struct radv_pipeline *pipeline, VkPipelineBindPoint bind_point)
{
struct radv_descriptor_state *descriptors_state =
radv_get_descriptors_state(cmd_buffer, bind_point);
bool flush_indirect_descriptors;
if (!descriptors_state->dirty)
return;
if (descriptors_state->push_dirty)
radv_flush_push_descriptors(cmd_buffer, bind_point);
flush_indirect_descriptors = pipeline && pipeline->need_indirect_descriptor_sets;
if (flush_indirect_descriptors)
radv_flush_indirect_descriptor_sets(cmd_buffer, pipeline, bind_point);
ASSERTED unsigned cdw_max =
radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, MAX_SETS * MESA_SHADER_STAGES * 4);
if (pipeline) {
if (stages & VK_SHADER_STAGE_COMPUTE_BIT) {
radv_emit_descriptor_pointers(cmd_buffer, pipeline, descriptors_state,
MESA_SHADER_COMPUTE);
} else {
radv_foreach_stage(stage, stages)
{
if (!cmd_buffer->state.pipeline->shaders[stage])
continue;
radv_emit_descriptor_pointers(cmd_buffer, pipeline, descriptors_state, stage);
}
}
}
descriptors_state->dirty = 0;
descriptors_state->push_dirty = false;
assert(cmd_buffer->cs->cdw <= cdw_max);
if (unlikely(cmd_buffer->device->trace_bo))
radv_save_descriptors(cmd_buffer, bind_point);
}
static void
radv_flush_constants(struct radv_cmd_buffer *cmd_buffer, VkShaderStageFlags stages,
struct radv_pipeline *pipeline, VkPipelineBindPoint bind_point)
{
struct radv_descriptor_state *descriptors_state =
radv_get_descriptors_state(cmd_buffer, bind_point);
struct radv_pipeline_layout *layout = pipeline->layout;
struct radv_shader_variant *shader, *prev_shader;
bool need_push_constants = false;
unsigned offset;
void *ptr;
uint64_t va;
uint32_t internal_stages;
uint32_t dirty_stages = 0;
stages &= cmd_buffer->push_constant_stages;
if (!stages || (!layout->push_constant_size && !layout->dynamic_offset_count))
return;
internal_stages = stages;
switch (bind_point) {
case VK_PIPELINE_BIND_POINT_GRAPHICS:
break;
case VK_PIPELINE_BIND_POINT_COMPUTE:
dirty_stages = RADV_RT_STAGE_BITS;
break;
case VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR:
internal_stages = VK_SHADER_STAGE_COMPUTE_BIT;
dirty_stages = VK_SHADER_STAGE_COMPUTE_BIT;
break;
default:
unreachable("Unhandled bind point");
}
radv_foreach_stage(stage, internal_stages)
{
shader = radv_get_shader(pipeline, stage);
if (!shader)
continue;
need_push_constants |= shader->info.loads_push_constants;
need_push_constants |= shader->info.loads_dynamic_offsets;
uint8_t base = shader->info.base_inline_push_consts;
uint8_t count = shader->info.num_inline_push_consts;
radv_emit_inline_push_consts(cmd_buffer, pipeline, stage, AC_UD_INLINE_PUSH_CONSTANTS, count,
(uint32_t *)&cmd_buffer->push_constants[base * 4]);
}
if (need_push_constants) {
if (!radv_cmd_buffer_upload_alloc(
cmd_buffer, layout->push_constant_size + 16 * layout->dynamic_offset_count, &offset,
&ptr))
return;
memcpy(ptr, cmd_buffer->push_constants, layout->push_constant_size);
memcpy((char *)ptr + layout->push_constant_size, descriptors_state->dynamic_buffers,
16 * layout->dynamic_offset_count);
va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
va += offset;
ASSERTED unsigned cdw_max =
radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, MESA_SHADER_STAGES * 4);
prev_shader = NULL;
radv_foreach_stage(stage, internal_stages)
{
shader = radv_get_shader(pipeline, stage);
/* Avoid redundantly emitting the address for merged stages. */
if (shader && shader != prev_shader) {
radv_emit_userdata_address(cmd_buffer, pipeline, stage, AC_UD_PUSH_CONSTANTS, va);
prev_shader = shader;
}
}
assert(cmd_buffer->cs->cdw <= cdw_max);
}
cmd_buffer->push_constant_stages &= ~stages;
cmd_buffer->push_constant_stages |= dirty_stages;
}
static void
radv_flush_vertex_descriptors(struct radv_cmd_buffer *cmd_buffer, bool pipeline_is_dirty)
{
if ((pipeline_is_dirty || (cmd_buffer->state.dirty & RADV_CMD_DIRTY_VERTEX_BUFFER)) &&
cmd_buffer->state.pipeline->vb_desc_usage_mask) {
struct radv_pipeline *pipeline = cmd_buffer->state.pipeline;
unsigned vb_offset;
void *vb_ptr;
unsigned desc_index = 0;
uint32_t mask = pipeline->vb_desc_usage_mask;
uint32_t count = util_bitcount(mask);
uint64_t va;
/* allocate some descriptor state for vertex buffers */
if (!radv_cmd_buffer_upload_alloc(cmd_buffer, count * 16, &vb_offset, &vb_ptr))
return;
while (mask) {
unsigned i = u_bit_scan(&mask);
uint32_t *desc = &((uint32_t *)vb_ptr)[desc_index++ * 4];
uint32_t offset;
unsigned binding = pipeline->use_per_attribute_vb_descs ? pipeline->attrib_bindings[i] : i;
struct radv_buffer *buffer = cmd_buffer->vertex_bindings[binding].buffer;
unsigned num_records;
unsigned stride;
if (!buffer) {
memset(desc, 0, 4 * 4);
continue;
}
va = radv_buffer_get_va(buffer->bo);
offset = cmd_buffer->vertex_bindings[binding].offset;
va += offset + buffer->offset;
if (cmd_buffer->vertex_bindings[binding].size) {
num_records = cmd_buffer->vertex_bindings[binding].size;
} else {
num_records = buffer->size - offset;
}
if (pipeline->graphics.uses_dynamic_stride) {
stride = cmd_buffer->vertex_bindings[binding].stride;
} else {
stride = pipeline->binding_stride[binding];
}
enum chip_class chip = cmd_buffer->device->physical_device->rad_info.chip_class;
if (pipeline->use_per_attribute_vb_descs) {
uint16_t attrib_end = pipeline->attrib_ends[i];
if (num_records < attrib_end)
num_records = 0; /* not enough space for one vertex */
else if (stride == 0)
num_records = 1; /* only one vertex */
else
num_records = (num_records - attrib_end) / stride + 1;
if ((chip == GFX8 && num_records) || (chip >= GFX10 && !stride))
num_records = (num_records - 1) * stride + attrib_end;
} else {
if (chip != GFX8 && stride)
num_records = DIV_ROUND_UP(num_records, stride);
}
uint32_t rsrc_word3 =
S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
if (chip >= GFX10) {
/* OOB_SELECT chooses the out-of-bounds check:
* - 1: index >= NUM_RECORDS (Structured)
* - 3: offset >= NUM_RECORDS (Raw)
*/
int oob_select = stride ? V_008F0C_OOB_SELECT_STRUCTURED : V_008F0C_OOB_SELECT_RAW;
rsrc_word3 |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_UINT) |
S_008F0C_OOB_SELECT(oob_select) | S_008F0C_RESOURCE_LEVEL(1);
} else {
rsrc_word3 |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_UINT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
}
desc[0] = va;
desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) | S_008F04_STRIDE(stride);
desc[2] = num_records;
desc[3] = rsrc_word3;
}
va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
va += vb_offset;
radv_emit_userdata_address(cmd_buffer, pipeline, MESA_SHADER_VERTEX, AC_UD_VS_VERTEX_BUFFERS,
va);
cmd_buffer->state.vb_va = va;
cmd_buffer->state.vb_size = count * 16;
cmd_buffer->state.prefetch_L2_mask |= RADV_PREFETCH_VBO_DESCRIPTORS;
if (unlikely(cmd_buffer->device->trace_bo))
radv_save_vertex_descriptors(cmd_buffer, (uintptr_t)vb_ptr);
}
cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_VERTEX_BUFFER;
}
static void
radv_emit_streamout_buffers(struct radv_cmd_buffer *cmd_buffer, uint64_t va)
{
struct radv_pipeline *pipeline = cmd_buffer->state.pipeline;
struct radv_userdata_info *loc;
uint32_t base_reg;
for (unsigned stage = 0; stage < MESA_SHADER_STAGES; ++stage) {
if (!radv_get_shader(pipeline, stage))
continue;
loc = radv_lookup_user_sgpr(pipeline, stage, AC_UD_STREAMOUT_BUFFERS);
if (loc->sgpr_idx == -1)
continue;
base_reg = pipeline->user_data_0[stage];
radv_emit_shader_pointer(cmd_buffer->device, cmd_buffer->cs, base_reg + loc->sgpr_idx * 4, va,
false);
}
if (radv_pipeline_has_gs_copy_shader(pipeline)) {
loc = &pipeline->gs_copy_shader->info.user_sgprs_locs.shader_data[AC_UD_STREAMOUT_BUFFERS];
if (loc->sgpr_idx != -1) {
base_reg = R_00B130_SPI_SHADER_USER_DATA_VS_0;
radv_emit_shader_pointer(cmd_buffer->device, cmd_buffer->cs, base_reg + loc->sgpr_idx * 4,
va, false);
}
}
}
static void
radv_flush_streamout_descriptors(struct radv_cmd_buffer *cmd_buffer)
{
if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_STREAMOUT_BUFFER) {
struct radv_streamout_binding *sb = cmd_buffer->streamout_bindings;
struct radv_streamout_state *so = &cmd_buffer->state.streamout;
unsigned so_offset;
void *so_ptr;
uint64_t va;
/* Allocate some descriptor state for streamout buffers. */
if (!radv_cmd_buffer_upload_alloc(cmd_buffer, MAX_SO_BUFFERS * 16, &so_offset, &so_ptr))
return;
for (uint32_t i = 0; i < MAX_SO_BUFFERS; i++) {
struct radv_buffer *buffer = sb[i].buffer;
uint32_t *desc = &((uint32_t *)so_ptr)[i * 4];
if (!(so->enabled_mask & (1 << i)))
continue;
va = radv_buffer_get_va(buffer->bo) + buffer->offset;
va += sb[i].offset;
/* Set the descriptor.
*
* On GFX8, the format must be non-INVALID, otherwise
* the buffer will be considered not bound and store
* instructions will be no-ops.
*/
uint32_t size = 0xffffffff;
/* Compute the correct buffer size for NGG streamout
* because it's used to determine the max emit per
* buffer.
*/
if (cmd_buffer->device->physical_device->use_ngg_streamout)
size = buffer->size - sb[i].offset;
uint32_t rsrc_word3 =
S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX10) {
rsrc_word3 |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) | S_008F0C_RESOURCE_LEVEL(1);
} else {
rsrc_word3 |= S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
}
desc[0] = va;
desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32);
desc[2] = size;
desc[3] = rsrc_word3;
}
va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
va += so_offset;
radv_emit_streamout_buffers(cmd_buffer, va);
}
cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_STREAMOUT_BUFFER;
}
static void
radv_flush_ngg_gs_state(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_pipeline *pipeline = cmd_buffer->state.pipeline;
struct radv_userdata_info *loc;
uint32_t ngg_gs_state = 0;
uint32_t base_reg;
if (!radv_pipeline_has_gs(pipeline) || !pipeline->graphics.is_ngg)
return;
/* By default NGG GS queries are disabled but they are enabled if the
* command buffer has active GDS queries or if it's a secondary command
* buffer that inherits the number of generated primitives.
*/
if (cmd_buffer->state.active_pipeline_gds_queries ||
(cmd_buffer->state.inherited_pipeline_statistics &
VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT))
ngg_gs_state = 1;
loc = radv_lookup_user_sgpr(pipeline, MESA_SHADER_GEOMETRY, AC_UD_NGG_GS_STATE);
base_reg = pipeline->user_data_0[MESA_SHADER_GEOMETRY];
assert(loc->sgpr_idx != -1);
radeon_set_sh_reg(cmd_buffer->cs, base_reg + loc->sgpr_idx * 4, ngg_gs_state);
}
static void
radv_upload_graphics_shader_descriptors(struct radv_cmd_buffer *cmd_buffer, bool pipeline_is_dirty)
{
radv_flush_vertex_descriptors(cmd_buffer, pipeline_is_dirty);
radv_flush_streamout_descriptors(cmd_buffer);
radv_flush_descriptors(cmd_buffer, VK_SHADER_STAGE_ALL_GRAPHICS, cmd_buffer->state.pipeline,
VK_PIPELINE_BIND_POINT_GRAPHICS);
radv_flush_constants(cmd_buffer, VK_SHADER_STAGE_ALL_GRAPHICS, cmd_buffer->state.pipeline,
VK_PIPELINE_BIND_POINT_GRAPHICS);
radv_flush_ngg_gs_state(cmd_buffer);
}
struct radv_draw_info {
/**
* Number of vertices.
*/
uint32_t count;
/**
* First instance id.
*/
uint32_t first_instance;
/**
* Number of instances.
*/
uint32_t instance_count;
/**
* First index (indexed draws only).
*/
uint32_t first_index;
/**
* Whether it's an indexed draw.
*/
bool indexed;
/**
* Indirect draw parameters resource.
*/
struct radv_buffer *indirect;
uint64_t indirect_offset;
uint32_t stride;
/**
* Draw count parameters resource.
*/
struct radv_buffer *count_buffer;
uint64_t count_buffer_offset;
/**
* Stream output parameters resource.
*/
struct radv_buffer *strmout_buffer;
uint64_t strmout_buffer_offset;
};
static uint32_t
radv_get_primitive_reset_index(struct radv_cmd_buffer *cmd_buffer)
{
switch (cmd_buffer->state.index_type) {
case V_028A7C_VGT_INDEX_8:
return 0xffu;
case V_028A7C_VGT_INDEX_16:
return 0xffffu;
case V_028A7C_VGT_INDEX_32:
return 0xffffffffu;
default:
unreachable("invalid index type");
}
}
static void
si_emit_ia_multi_vgt_param(struct radv_cmd_buffer *cmd_buffer, bool instanced_draw,
bool indirect_draw, bool count_from_stream_output,
uint32_t draw_vertex_count)
{
struct radeon_info *info = &cmd_buffer->device->physical_device->rad_info;
struct radv_cmd_state *state = &cmd_buffer->state;
unsigned topology = state->dynamic.primitive_topology;
bool prim_restart_enable = state->dynamic.primitive_restart_enable;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
unsigned ia_multi_vgt_param;
ia_multi_vgt_param =
si_get_ia_multi_vgt_param(cmd_buffer, instanced_draw, indirect_draw, count_from_stream_output,
draw_vertex_count, topology, prim_restart_enable);
if (state->last_ia_multi_vgt_param != ia_multi_vgt_param) {
if (info->chip_class == GFX9) {
radeon_set_uconfig_reg_idx(cmd_buffer->device->physical_device, cs,
R_030960_IA_MULTI_VGT_PARAM, 4, ia_multi_vgt_param);
} else if (info->chip_class >= GFX7) {
radeon_set_context_reg_idx(cs, R_028AA8_IA_MULTI_VGT_PARAM, 1, ia_multi_vgt_param);
} else {
radeon_set_context_reg(cs, R_028AA8_IA_MULTI_VGT_PARAM, ia_multi_vgt_param);
}
state->last_ia_multi_vgt_param = ia_multi_vgt_param;
}
}
static void
radv_emit_draw_registers(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *draw_info)
{
struct radeon_info *info = &cmd_buffer->device->physical_device->rad_info;
struct radv_cmd_state *state = &cmd_buffer->state;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
/* Draw state. */
if (info->chip_class < GFX10) {
si_emit_ia_multi_vgt_param(cmd_buffer, draw_info->instance_count > 1, draw_info->indirect,
!!draw_info->strmout_buffer,
draw_info->indirect ? 0 : draw_info->count);
}
if (state->dynamic.primitive_restart_enable) {
uint32_t primitive_reset_index = radv_get_primitive_reset_index(cmd_buffer);
if (primitive_reset_index != state->last_primitive_reset_index) {
radeon_set_context_reg(cs, R_02840C_VGT_MULTI_PRIM_IB_RESET_INDX, primitive_reset_index);
state->last_primitive_reset_index = primitive_reset_index;
}
}
if (draw_info->strmout_buffer) {
uint64_t va = radv_buffer_get_va(draw_info->strmout_buffer->bo);
va += draw_info->strmout_buffer->offset + draw_info->strmout_buffer_offset;
radeon_set_context_reg(cs, R_028B30_VGT_STRMOUT_DRAW_OPAQUE_VERTEX_STRIDE, draw_info->stride);
radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_REG) |
COPY_DATA_WR_CONFIRM);
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit(cs, R_028B2C_VGT_STRMOUT_DRAW_OPAQUE_BUFFER_FILLED_SIZE >> 2);
radeon_emit(cs, 0); /* unused */
radv_cs_add_buffer(cmd_buffer->device->ws, cs, draw_info->strmout_buffer->bo);
}
}
static void
radv_stage_flush(struct radv_cmd_buffer *cmd_buffer, VkPipelineStageFlags src_stage_mask)
{
if (src_stage_mask &
(VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT | VK_PIPELINE_STAGE_TRANSFER_BIT |
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT | VK_PIPELINE_STAGE_ALL_COMMANDS_BIT)) {
cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH;
}
if (src_stage_mask &
(VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT |
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT |
VK_PIPELINE_STAGE_TRANSFER_BIT | VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT |
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT | VK_PIPELINE_STAGE_ALL_COMMANDS_BIT)) {
cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_PS_PARTIAL_FLUSH;
} else if (src_stage_mask &
(VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT | VK_PIPELINE_STAGE_VERTEX_INPUT_BIT |
VK_PIPELINE_STAGE_VERTEX_SHADER_BIT |
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT |
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT |
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT |
VK_PIPELINE_STAGE_TRANSFORM_FEEDBACK_BIT_EXT)) {
cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VS_PARTIAL_FLUSH;
}
}
/* Determine if the image is affected by the pipe misaligned metadata issue
* which requires to invalidate L2.
*/
static bool
radv_image_is_pipe_misaligned(const struct radv_device *device, const struct radv_image *image)
{
struct radeon_info *rad_info = &device->physical_device->rad_info;
unsigned log2_samples = util_logbase2(image->info.samples);
assert(rad_info->chip_class >= GFX10);
for (unsigned i = 0; i < image->plane_count; ++i) {
VkFormat fmt = vk_format_get_plane_format(image->vk_format, i);
unsigned log2_bpp = util_logbase2(vk_format_get_blocksize(fmt));
unsigned log2_bpp_and_samples;
if (rad_info->chip_class >= GFX10_3) {
log2_bpp_and_samples = log2_bpp + log2_samples;
} else {
if (vk_format_has_depth(image->vk_format) && image->info.array_size >= 8) {
log2_bpp = 2;
}
log2_bpp_and_samples = MIN2(6, log2_bpp + log2_samples);
}
unsigned num_pipes = G_0098F8_NUM_PIPES(rad_info->gb_addr_config);
int overlap = MAX2(0, log2_bpp_and_samples + num_pipes - 8);
if (vk_format_has_depth(image->vk_format)) {
if (radv_image_is_tc_compat_htile(image) && overlap) {
return true;
}
} else {
unsigned max_compressed_frags = G_0098F8_MAX_COMPRESSED_FRAGS(rad_info->gb_addr_config);
int log2_samples_frag_diff = MAX2(0, log2_samples - max_compressed_frags);
int samples_overlap = MIN2(log2_samples, overlap);
/* TODO: It shouldn't be necessary if the image has DCC but
* not readable by shader.
*/
if ((radv_image_has_dcc(image) || radv_image_is_tc_compat_cmask(image)) &&
(samples_overlap > log2_samples_frag_diff)) {
return true;
}
}
}
return false;
}
static bool
radv_image_is_l2_coherent(const struct radv_device *device, const struct radv_image *image)
{
if (device->physical_device->rad_info.chip_class >= GFX10) {
return !device->physical_device->rad_info.tcc_rb_non_coherent &&
(image && !radv_image_is_pipe_misaligned(device, image));
} else if (device->physical_device->rad_info.chip_class == GFX9 && image) {
if (image->info.samples == 1 &&
(image->usage &
(VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) &&
!vk_format_has_stencil(image->vk_format)) {
/* Single-sample color and single-sample depth
* (not stencil) are coherent with shaders on
* GFX9.
*/
return true;
}
}
return false;
}
enum radv_cmd_flush_bits
radv_src_access_flush(struct radv_cmd_buffer *cmd_buffer, VkAccessFlags src_flags,
const struct radv_image *image)
{
bool has_CB_meta = true, has_DB_meta = true;
bool image_is_coherent = radv_image_is_l2_coherent(cmd_buffer->device, image);
enum radv_cmd_flush_bits flush_bits = 0;
if (image) {
if (!radv_image_has_CB_metadata(image))
has_CB_meta = false;
if (!radv_image_has_htile(image))
has_DB_meta = false;
}
u_foreach_bit(b, src_flags)
{
switch ((VkAccessFlagBits)(1 << b)) {
case VK_ACCESS_SHADER_WRITE_BIT:
/* since the STORAGE bit isn't set we know that this is a meta operation.
* on the dst flush side we skip CB/DB flushes without the STORAGE bit, so
* set it here. */
if (image && !(image->usage & VK_IMAGE_USAGE_STORAGE_BIT)) {
if (vk_format_is_depth_or_stencil(image->vk_format)) {
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB;
} else {
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB;
}
}
if (!image_is_coherent)
flush_bits |= RADV_CMD_FLAG_WB_L2;
break;
case VK_ACCESS_TRANSFORM_FEEDBACK_WRITE_BIT_EXT:
case VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT:
if (!image_is_coherent)
flush_bits |= RADV_CMD_FLAG_WB_L2;
break;
case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB;
if (has_CB_meta)
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
break;
case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB;
if (has_DB_meta)
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
break;
case VK_ACCESS_TRANSFER_WRITE_BIT:
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB;
if (!image_is_coherent)
flush_bits |= RADV_CMD_FLAG_INV_L2;
if (has_CB_meta)
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
if (has_DB_meta)
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
break;
case VK_ACCESS_MEMORY_WRITE_BIT:
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB;
if (!image_is_coherent)
flush_bits |= RADV_CMD_FLAG_INV_L2;
if (has_CB_meta)
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
if (has_DB_meta)
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
break;
default:
break;
}
}
return flush_bits;
}
enum radv_cmd_flush_bits
radv_dst_access_flush(struct radv_cmd_buffer *cmd_buffer, VkAccessFlags dst_flags,
const struct radv_image *image)
{
bool has_CB_meta = true, has_DB_meta = true;
enum radv_cmd_flush_bits flush_bits = 0;
bool flush_CB = true, flush_DB = true;
bool image_is_coherent = radv_image_is_l2_coherent(cmd_buffer->device, image);
if (image) {
if (!(image->usage & VK_IMAGE_USAGE_STORAGE_BIT)) {
flush_CB = false;
flush_DB = false;
}
if (!radv_image_has_CB_metadata(image))
has_CB_meta = false;
if (!radv_image_has_htile(image))
has_DB_meta = false;
}
u_foreach_bit(b, dst_flags)
{
switch ((VkAccessFlagBits)(1 << b)) {
case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
case VK_ACCESS_INDEX_READ_BIT:
case VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT:
break;
case VK_ACCESS_UNIFORM_READ_BIT:
flush_bits |= RADV_CMD_FLAG_INV_VCACHE | RADV_CMD_FLAG_INV_SCACHE;
break;
case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
case VK_ACCESS_TRANSFER_READ_BIT:
case VK_ACCESS_TRANSFER_WRITE_BIT:
flush_bits |= RADV_CMD_FLAG_INV_VCACHE;
if (has_CB_meta || has_DB_meta)
flush_bits |= RADV_CMD_FLAG_INV_L2_METADATA;
if (!image_is_coherent)
flush_bits |= RADV_CMD_FLAG_INV_L2;
break;
case VK_ACCESS_SHADER_READ_BIT:
flush_bits |= RADV_CMD_FLAG_INV_VCACHE;
/* Unlike LLVM, ACO uses SMEM for SSBOs and we have to
* invalidate the scalar cache. */
if (!cmd_buffer->device->physical_device->use_llvm && !image)
flush_bits |= RADV_CMD_FLAG_INV_SCACHE;
if (has_CB_meta || has_DB_meta)
flush_bits |= RADV_CMD_FLAG_INV_L2_METADATA;
if (!image_is_coherent)
flush_bits |= RADV_CMD_FLAG_INV_L2;
break;
case VK_ACCESS_SHADER_WRITE_BIT:
break;
case VK_ACCESS_COLOR_ATTACHMENT_READ_BIT:
case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
if (flush_CB)
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB;
if (has_CB_meta)
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
break;
case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT:
case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
if (flush_DB)
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB;
if (has_DB_meta)
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
break;
case VK_ACCESS_MEMORY_READ_BIT:
case VK_ACCESS_MEMORY_WRITE_BIT:
flush_bits |= RADV_CMD_FLAG_INV_VCACHE | RADV_CMD_FLAG_INV_SCACHE;
if (!image_is_coherent)
flush_bits |= RADV_CMD_FLAG_INV_L2;
if (flush_CB)
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB;
if (has_CB_meta)
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
if (flush_DB)
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB;
if (has_DB_meta)
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
break;
default:
break;
}
}
return flush_bits;
}
void
radv_subpass_barrier(struct radv_cmd_buffer *cmd_buffer, const struct radv_subpass_barrier *barrier)
{
struct radv_framebuffer *fb = cmd_buffer->state.framebuffer;
if (fb && !fb->imageless) {
for (int i = 0; i < fb->attachment_count; ++i) {
cmd_buffer->state.flush_bits |=
radv_src_access_flush(cmd_buffer, barrier->src_access_mask, fb->attachments[i]->image);
}
} else {
cmd_buffer->state.flush_bits |=
radv_src_access_flush(cmd_buffer, barrier->src_access_mask, NULL);
}
radv_stage_flush(cmd_buffer, barrier->src_stage_mask);
if (fb && !fb->imageless) {
for (int i = 0; i < fb->attachment_count; ++i) {
cmd_buffer->state.flush_bits |=
radv_dst_access_flush(cmd_buffer, barrier->dst_access_mask, fb->attachments[i]->image);
}
} else {
cmd_buffer->state.flush_bits |=
radv_dst_access_flush(cmd_buffer, barrier->dst_access_mask, NULL);
}
}
uint32_t
radv_get_subpass_id(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_cmd_state *state = &cmd_buffer->state;
uint32_t subpass_id = state->subpass - state->pass->subpasses;
/* The id of this subpass shouldn't exceed the number of subpasses in
* this render pass minus 1.
*/
assert(subpass_id < state->pass->subpass_count);
return subpass_id;
}
static struct radv_sample_locations_state *
radv_get_attachment_sample_locations(struct radv_cmd_buffer *cmd_buffer, uint32_t att_idx,
bool begin_subpass)
{
struct radv_cmd_state *state = &cmd_buffer->state;
uint32_t subpass_id = radv_get_subpass_id(cmd_buffer);
struct radv_image_view *view = state->attachments[att_idx].iview;
if (view->image->info.samples == 1)
return NULL;
if (state->pass->attachments[att_idx].first_subpass_idx == subpass_id) {
/* Return the initial sample locations if this is the initial
* layout transition of the given subpass attachemnt.
*/
if (state->attachments[att_idx].sample_location.count > 0)
return &state->attachments[att_idx].sample_location;
} else {
/* Otherwise return the subpass sample locations if defined. */
if (state->subpass_sample_locs) {
/* Because the driver sets the current subpass before
* initial layout transitions, we should use the sample
* locations from the previous subpass to avoid an
* off-by-one problem. Otherwise, use the sample
* locations for the current subpass for final layout
* transitions.
*/
if (begin_subpass)
subpass_id--;
for (uint32_t i = 0; i < state->num_subpass_sample_locs; i++) {
if (state->subpass_sample_locs[i].subpass_idx == subpass_id)
return &state->subpass_sample_locs[i].sample_location;
}
}
}
return NULL;
}
static void
radv_handle_subpass_image_transition(struct radv_cmd_buffer *cmd_buffer,
struct radv_subpass_attachment att, bool begin_subpass)
{
unsigned idx = att.attachment;
struct radv_image_view *view = cmd_buffer->state.attachments[idx].iview;
struct radv_sample_locations_state *sample_locs;
VkImageSubresourceRange range;
range.aspectMask = view->aspect_mask;
range.baseMipLevel = view->base_mip;
range.levelCount = 1;
range.baseArrayLayer = view->base_layer;
range.layerCount = cmd_buffer->state.framebuffer->layers;
if (cmd_buffer->state.subpass->view_mask) {
/* If the current subpass uses multiview, the driver might have
* performed a fast color/depth clear to the whole image
* (including all layers). To make sure the driver will
* decompress the image correctly (if needed), we have to
* account for the "real" number of layers. If the view mask is
* sparse, this will decompress more layers than needed.
*/
range.layerCount = util_last_bit(cmd_buffer->state.subpass->view_mask);
}
/* Get the subpass sample locations for the given attachment, if NULL
* is returned the driver will use the default HW locations.
*/
sample_locs = radv_get_attachment_sample_locations(cmd_buffer, idx, begin_subpass);
/* Determine if the subpass uses separate depth/stencil layouts. */
bool uses_separate_depth_stencil_layouts = false;
if ((cmd_buffer->state.attachments[idx].current_layout !=
cmd_buffer->state.attachments[idx].current_stencil_layout) ||
(att.layout != att.stencil_layout)) {
uses_separate_depth_stencil_layouts = true;
}
/* For separate layouts, perform depth and stencil transitions
* separately.
*/
if (uses_separate_depth_stencil_layouts &&
(range.aspectMask == (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT))) {
/* Depth-only transitions. */
range.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
radv_handle_image_transition(cmd_buffer, view->image,
cmd_buffer->state.attachments[idx].current_layout,
cmd_buffer->state.attachments[idx].current_in_render_loop,
att.layout, att.in_render_loop, 0, 0, &range, sample_locs);
/* Stencil-only transitions. */
range.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT;
radv_handle_image_transition(
cmd_buffer, view->image, cmd_buffer->state.attachments[idx].current_stencil_layout,
cmd_buffer->state.attachments[idx].current_in_render_loop, att.stencil_layout,
att.in_render_loop, 0, 0, &range, sample_locs);
} else {
radv_handle_image_transition(cmd_buffer, view->image,
cmd_buffer->state.attachments[idx].current_layout,
cmd_buffer->state.attachments[idx].current_in_render_loop,
att.layout, att.in_render_loop, 0, 0, &range, sample_locs);
}
cmd_buffer->state.attachments[idx].current_layout = att.layout;
cmd_buffer->state.attachments[idx].current_stencil_layout = att.stencil_layout;
cmd_buffer->state.attachments[idx].current_in_render_loop = att.in_render_loop;
}
void
radv_cmd_buffer_set_subpass(struct radv_cmd_buffer *cmd_buffer, const struct radv_subpass *subpass)
{
cmd_buffer->state.subpass = subpass;
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FRAMEBUFFER;
}
static VkResult
radv_cmd_state_setup_sample_locations(struct radv_cmd_buffer *cmd_buffer,
struct radv_render_pass *pass,
const VkRenderPassBeginInfo *info)
{
const struct VkRenderPassSampleLocationsBeginInfoEXT *sample_locs =
vk_find_struct_const(info->pNext, RENDER_PASS_SAMPLE_LOCATIONS_BEGIN_INFO_EXT);
struct radv_cmd_state *state = &cmd_buffer->state;
if (!sample_locs) {
state->subpass_sample_locs = NULL;
return VK_SUCCESS;
}
for (uint32_t i = 0; i < sample_locs->attachmentInitialSampleLocationsCount; i++) {
const VkAttachmentSampleLocationsEXT *att_sample_locs =
&sample_locs->pAttachmentInitialSampleLocations[i];
uint32_t att_idx = att_sample_locs->attachmentIndex;
struct radv_image *image = cmd_buffer->state.attachments[att_idx].iview->image;
assert(vk_format_is_depth_or_stencil(image->vk_format));
/* From the Vulkan spec 1.1.108:
*
* "If the image referenced by the framebuffer attachment at
* index attachmentIndex was not created with
* VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT
* then the values specified in sampleLocationsInfo are
* ignored."
*/
if (!(image->flags & VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT))
continue;
const VkSampleLocationsInfoEXT *sample_locs_info = &att_sample_locs->sampleLocationsInfo;
state->attachments[att_idx].sample_location.per_pixel =
sample_locs_info->sampleLocationsPerPixel;
state->attachments[att_idx].sample_location.grid_size =
sample_locs_info->sampleLocationGridSize;
state->attachments[att_idx].sample_location.count = sample_locs_info->sampleLocationsCount;
typed_memcpy(&state->attachments[att_idx].sample_location.locations[0],
sample_locs_info->pSampleLocations, sample_locs_info->sampleLocationsCount);
}
state->subpass_sample_locs =
vk_alloc(&cmd_buffer->pool->alloc,
sample_locs->postSubpassSampleLocationsCount * sizeof(state->subpass_sample_locs[0]),
8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (state->subpass_sample_locs == NULL) {
cmd_buffer->record_result = VK_ERROR_OUT_OF_HOST_MEMORY;
return cmd_buffer->record_result;
}
state->num_subpass_sample_locs = sample_locs->postSubpassSampleLocationsCount;
for (uint32_t i = 0; i < sample_locs->postSubpassSampleLocationsCount; i++) {
const VkSubpassSampleLocationsEXT *subpass_sample_locs_info =
&sample_locs->pPostSubpassSampleLocations[i];
const VkSampleLocationsInfoEXT *sample_locs_info =
&subpass_sample_locs_info->sampleLocationsInfo;
state->subpass_sample_locs[i].subpass_idx = subpass_sample_locs_info->subpassIndex;
state->subpass_sample_locs[i].sample_location.per_pixel =
sample_locs_info->sampleLocationsPerPixel;
state->subpass_sample_locs[i].sample_location.grid_size =
sample_locs_info->sampleLocationGridSize;
state->subpass_sample_locs[i].sample_location.count = sample_locs_info->sampleLocationsCount;
typed_memcpy(&state->subpass_sample_locs[i].sample_location.locations[0],
sample_locs_info->pSampleLocations, sample_locs_info->sampleLocationsCount);
}
return VK_SUCCESS;
}
static VkResult
radv_cmd_state_setup_attachments(struct radv_cmd_buffer *cmd_buffer, struct radv_render_pass *pass,
const VkRenderPassBeginInfo *info,
const struct radv_extra_render_pass_begin_info *extra)
{
struct radv_cmd_state *state = &cmd_buffer->state;
const struct VkRenderPassAttachmentBeginInfo *attachment_info = NULL;
if (info) {
attachment_info = vk_find_struct_const(info->pNext, RENDER_PASS_ATTACHMENT_BEGIN_INFO);
}
if (pass->attachment_count == 0) {
state->attachments = NULL;
return VK_SUCCESS;
}
state->attachments =
vk_alloc(&cmd_buffer->pool->alloc, pass->attachment_count * sizeof(state->attachments[0]), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (state->attachments == NULL) {
cmd_buffer->record_result = VK_ERROR_OUT_OF_HOST_MEMORY;
return cmd_buffer->record_result;
}
for (uint32_t i = 0; i < pass->attachment_count; ++i) {
struct radv_render_pass_attachment *att = &pass->attachments[i];
VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
VkImageAspectFlags clear_aspects = 0;
if (att_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
/* color attachment */
if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
}
} else {
/* depthstencil attachment */
if ((att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
if ((att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_DONT_CARE)
clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
}
if ((att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
}
}
state->attachments[i].pending_clear_aspects = clear_aspects;
state->attachments[i].cleared_views = 0;
if (clear_aspects && info) {
assert(info->clearValueCount > i);
state->attachments[i].clear_value = info->pClearValues[i];
}
state->attachments[i].current_layout = att->initial_layout;
state->attachments[i].current_in_render_loop = false;
state->attachments[i].current_stencil_layout = att->stencil_initial_layout;
state->attachments[i].disable_dcc = extra && extra->disable_dcc;
state->attachments[i].sample_location.count = 0;
struct radv_image_view *iview;
if (attachment_info && attachment_info->attachmentCount > i) {
iview = radv_image_view_from_handle(attachment_info->pAttachments[i]);
} else {
iview = state->framebuffer->attachments[i];
}
state->attachments[i].iview = iview;
if (iview->aspect_mask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
radv_initialise_ds_surface(cmd_buffer->device, &state->attachments[i].ds, iview);
} else {
radv_initialise_color_surface(cmd_buffer->device, &state->attachments[i].cb, iview);
}
}
return VK_SUCCESS;
}
VkResult
radv_AllocateCommandBuffers(VkDevice _device, const VkCommandBufferAllocateInfo *pAllocateInfo,
VkCommandBuffer *pCommandBuffers)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_cmd_pool, pool, pAllocateInfo->commandPool);
VkResult result = VK_SUCCESS;
uint32_t i;
for (i = 0; i < pAllocateInfo->commandBufferCount; i++) {
if (!list_is_empty(&pool->free_cmd_buffers)) {
struct radv_cmd_buffer *cmd_buffer =
list_first_entry(&pool->free_cmd_buffers, struct radv_cmd_buffer, pool_link);
list_del(&cmd_buffer->pool_link);
list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
result = radv_reset_cmd_buffer(cmd_buffer);
cmd_buffer->level = pAllocateInfo->level;
vk_object_base_reset(&cmd_buffer->base);
pCommandBuffers[i] = radv_cmd_buffer_to_handle(cmd_buffer);
} else {
result = radv_create_cmd_buffer(device, pool, pAllocateInfo->level, &pCommandBuffers[i]);
}
if (result != VK_SUCCESS)
break;
}
if (result != VK_SUCCESS) {
radv_FreeCommandBuffers(_device, pAllocateInfo->commandPool, i, pCommandBuffers);
/* From the Vulkan 1.0.66 spec:
*
* "vkAllocateCommandBuffers can be used to create multiple
* command buffers. If the creation of any of those command
* buffers fails, the implementation must destroy all
* successfully created command buffer objects from this
* command, set all entries of the pCommandBuffers array to
* NULL and return the error."
*/
memset(pCommandBuffers, 0, sizeof(*pCommandBuffers) * pAllocateInfo->commandBufferCount);
}
return result;
}
void
radv_FreeCommandBuffers(VkDevice device, VkCommandPool commandPool, uint32_t commandBufferCount,
const VkCommandBuffer *pCommandBuffers)
{
for (uint32_t i = 0; i < commandBufferCount; i++) {
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, pCommandBuffers[i]);
if (cmd_buffer) {
if (cmd_buffer->pool) {
list_del(&cmd_buffer->pool_link);
list_addtail(&cmd_buffer->pool_link, &cmd_buffer->pool->free_cmd_buffers);
} else
radv_destroy_cmd_buffer(cmd_buffer);
}
}
}
VkResult
radv_ResetCommandBuffer(VkCommandBuffer commandBuffer, VkCommandBufferResetFlags flags)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
return radv_reset_cmd_buffer(cmd_buffer);
}
VkResult
radv_BeginCommandBuffer(VkCommandBuffer commandBuffer, const VkCommandBufferBeginInfo *pBeginInfo)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
VkResult result = VK_SUCCESS;
if (cmd_buffer->status != RADV_CMD_BUFFER_STATUS_INITIAL) {
/* If the command buffer has already been resetted with
* vkResetCommandBuffer, no need to do it again.
*/
result = radv_reset_cmd_buffer(cmd_buffer);
if (result != VK_SUCCESS)
return result;
}
memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state));
cmd_buffer->state.last_primitive_reset_en = -1;
cmd_buffer->state.last_index_type = -1;
cmd_buffer->state.last_num_instances = -1;
cmd_buffer->state.last_vertex_offset = -1;
cmd_buffer->state.last_first_instance = -1;
cmd_buffer->state.last_drawid = -1;
cmd_buffer->state.predication_type = -1;
cmd_buffer->state.last_sx_ps_downconvert = -1;
cmd_buffer->state.last_sx_blend_opt_epsilon = -1;
cmd_buffer->state.last_sx_blend_opt_control = -1;
cmd_buffer->usage_flags = pBeginInfo->flags;
if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY &&
(pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT)) {
assert(pBeginInfo->pInheritanceInfo);
cmd_buffer->state.framebuffer =
radv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer);
cmd_buffer->state.pass =
radv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
struct radv_subpass *subpass =
&cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
if (cmd_buffer->state.framebuffer) {
result = radv_cmd_state_setup_attachments(cmd_buffer, cmd_buffer->state.pass, NULL, NULL);
if (result != VK_SUCCESS)
return result;
}
cmd_buffer->state.inherited_pipeline_statistics =
pBeginInfo->pInheritanceInfo->pipelineStatistics;
radv_cmd_buffer_set_subpass(cmd_buffer, subpass);
}
if (unlikely(cmd_buffer->device->trace_bo))
radv_cmd_buffer_trace_emit(cmd_buffer);
radv_describe_begin_cmd_buffer(cmd_buffer);
cmd_buffer->status = RADV_CMD_BUFFER_STATUS_RECORDING;
return result;
}
void
radv_CmdBindVertexBuffers(VkCommandBuffer commandBuffer, uint32_t firstBinding,
uint32_t bindingCount, const VkBuffer *pBuffers,
const VkDeviceSize *pOffsets)
{
radv_CmdBindVertexBuffers2EXT(commandBuffer, firstBinding, bindingCount, pBuffers, pOffsets,
NULL, NULL);
}
void
radv_CmdBindVertexBuffers2EXT(VkCommandBuffer commandBuffer, uint32_t firstBinding,
uint32_t bindingCount, const VkBuffer *pBuffers,
const VkDeviceSize *pOffsets, const VkDeviceSize *pSizes,
const VkDeviceSize *pStrides)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_vertex_binding *vb = cmd_buffer->vertex_bindings;
bool changed = false;
/* We have to defer setting up vertex buffer since we need the buffer
* stride from the pipeline. */
assert(firstBinding + bindingCount <= MAX_VBS);
for (uint32_t i = 0; i < bindingCount; i++) {
RADV_FROM_HANDLE(radv_buffer, buffer, pBuffers[i]);
uint32_t idx = firstBinding + i;
VkDeviceSize size = pSizes ? pSizes[i] : 0;
VkDeviceSize stride = pStrides ? pStrides[i] : 0;
/* pSizes and pStrides are optional. */
if (!changed && (vb[idx].buffer != buffer || vb[idx].offset != pOffsets[i] ||
vb[idx].size != size || vb[idx].stride != stride)) {
changed = true;
}
vb[idx].buffer = buffer;
vb[idx].offset = pOffsets[i];
vb[idx].size = size;
vb[idx].stride = stride;
if (buffer) {
radv_cs_add_buffer(cmd_buffer->device->ws, cmd_buffer->cs, vb[idx].buffer->bo);
}
}
if (!changed) {
/* No state changes. */
return;
}
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_VERTEX_BUFFER;
}
static uint32_t
vk_to_index_type(VkIndexType type)
{
switch (type) {
case VK_INDEX_TYPE_UINT8_EXT:
return V_028A7C_VGT_INDEX_8;
case VK_INDEX_TYPE_UINT16:
return V_028A7C_VGT_INDEX_16;
case VK_INDEX_TYPE_UINT32:
return V_028A7C_VGT_INDEX_32;
default:
unreachable("invalid index type");
}
}
static uint32_t
radv_get_vgt_index_size(uint32_t type)
{
switch (type) {
case V_028A7C_VGT_INDEX_8:
return 1;
case V_028A7C_VGT_INDEX_16:
return 2;
case V_028A7C_VGT_INDEX_32:
return 4;
default:
unreachable("invalid index type");
}
}
void
radv_CmdBindIndexBuffer(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkIndexType indexType)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_buffer, index_buffer, buffer);
if (cmd_buffer->state.index_buffer == index_buffer && cmd_buffer->state.index_offset == offset &&
cmd_buffer->state.index_type == indexType) {
/* No state changes. */
return;
}
cmd_buffer->state.index_buffer = index_buffer;
cmd_buffer->state.index_offset = offset;
cmd_buffer->state.index_type = vk_to_index_type(indexType);
cmd_buffer->state.index_va = radv_buffer_get_va(index_buffer->bo);
cmd_buffer->state.index_va += index_buffer->offset + offset;
int index_size = radv_get_vgt_index_size(vk_to_index_type(indexType));
cmd_buffer->state.max_index_count = (index_buffer->size - offset) / index_size;
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_INDEX_BUFFER;
radv_cs_add_buffer(cmd_buffer->device->ws, cmd_buffer->cs, index_buffer->bo);
}
static void
radv_bind_descriptor_set(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point,
struct radv_descriptor_set *set, unsigned idx)
{
struct radeon_winsys *ws = cmd_buffer->device->ws;
radv_set_descriptor_set(cmd_buffer, bind_point, set, idx);
assert(set);
assert(!(set->header.layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR));
if (!cmd_buffer->device->use_global_bo_list) {
for (unsigned j = 0; j < set->header.buffer_count; ++j)
if (set->descriptors[j])
radv_cs_add_buffer(ws, cmd_buffer->cs, set->descriptors[j]);
}
if (set->header.bo)
radv_cs_add_buffer(ws, cmd_buffer->cs, set->header.bo);
}
void
radv_CmdBindDescriptorSets(VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint,
VkPipelineLayout _layout, uint32_t firstSet, uint32_t descriptorSetCount,
const VkDescriptorSet *pDescriptorSets, uint32_t dynamicOffsetCount,
const uint32_t *pDynamicOffsets)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_pipeline_layout, layout, _layout);
unsigned dyn_idx = 0;
const bool no_dynamic_bounds =
cmd_buffer->device->instance->debug_flags & RADV_DEBUG_NO_DYNAMIC_BOUNDS;
struct radv_descriptor_state *descriptors_state =
radv_get_descriptors_state(cmd_buffer, pipelineBindPoint);
for (unsigned i = 0; i < descriptorSetCount; ++i) {
unsigned set_idx = i + firstSet;
RADV_FROM_HANDLE(radv_descriptor_set, set, pDescriptorSets[i]);
/* If the set is already bound we only need to update the
* (potentially changed) dynamic offsets. */
if (descriptors_state->sets[set_idx] != set ||
!(descriptors_state->valid & (1u << set_idx))) {
radv_bind_descriptor_set(cmd_buffer, pipelineBindPoint, set, set_idx);
}
for (unsigned j = 0; j < set->header.layout->dynamic_offset_count; ++j, ++dyn_idx) {
unsigned idx = j + layout->set[i + firstSet].dynamic_offset_start;
uint32_t *dst = descriptors_state->dynamic_buffers + idx * 4;
assert(dyn_idx < dynamicOffsetCount);
struct radv_descriptor_range *range = set->header.dynamic_descriptors + j;
if (!range->va) {
memset(dst, 0, 4 * 4);
} else {
uint64_t va = range->va + pDynamicOffsets[dyn_idx];
dst[0] = va;
dst[1] = S_008F04_BASE_ADDRESS_HI(va >> 32);
dst[2] = no_dynamic_bounds ? 0xffffffffu : range->size;
dst[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX10) {
dst[3] |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) | S_008F0C_RESOURCE_LEVEL(1);
} else {
dst[3] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
}
}
cmd_buffer->push_constant_stages |= set->header.layout->dynamic_shader_stages;
}
}
}
static bool
radv_init_push_descriptor_set(struct radv_cmd_buffer *cmd_buffer, struct radv_descriptor_set *set,
struct radv_descriptor_set_layout *layout,
VkPipelineBindPoint bind_point)
{
struct radv_descriptor_state *descriptors_state =
radv_get_descriptors_state(cmd_buffer, bind_point);
set->header.size = layout->size;
set->header.layout = layout;
if (descriptors_state->push_set.capacity < set->header.size) {
size_t new_size = MAX2(set->header.size, 1024);
new_size = MAX2(new_size, 2 * descriptors_state->push_set.capacity);
new_size = MIN2(new_size, 96 * MAX_PUSH_DESCRIPTORS);
free(set->header.mapped_ptr);
set->header.mapped_ptr = malloc(new_size);
if (!set->header.mapped_ptr) {
descriptors_state->push_set.capacity = 0;
cmd_buffer->record_result = VK_ERROR_OUT_OF_HOST_MEMORY;
return false;
}
descriptors_state->push_set.capacity = new_size;
}
return true;
}
void
radv_meta_push_descriptor_set(struct radv_cmd_buffer *cmd_buffer,
VkPipelineBindPoint pipelineBindPoint, VkPipelineLayout _layout,
uint32_t set, uint32_t descriptorWriteCount,
const VkWriteDescriptorSet *pDescriptorWrites)
{
RADV_FROM_HANDLE(radv_pipeline_layout, layout, _layout);
struct radv_descriptor_set *push_set =
(struct radv_descriptor_set *)&cmd_buffer->meta_push_descriptors;
unsigned bo_offset;
assert(set == 0);
assert(layout->set[set].layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR);
push_set->header.size = layout->set[set].layout->size;
push_set->header.layout = layout->set[set].layout;
if (!radv_cmd_buffer_upload_alloc(cmd_buffer, push_set->header.size, &bo_offset,
(void **)&push_set->header.mapped_ptr))
return;
push_set->header.va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
push_set->header.va += bo_offset;
radv_update_descriptor_sets(cmd_buffer->device, cmd_buffer,
radv_descriptor_set_to_handle(push_set), descriptorWriteCount,
pDescriptorWrites, 0, NULL);
radv_set_descriptor_set(cmd_buffer, pipelineBindPoint, push_set, set);
}
void
radv_CmdPushDescriptorSetKHR(VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint,
VkPipelineLayout _layout, uint32_t set, uint32_t descriptorWriteCount,
const VkWriteDescriptorSet *pDescriptorWrites)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_pipeline_layout, layout, _layout);
struct radv_descriptor_state *descriptors_state =
radv_get_descriptors_state(cmd_buffer, pipelineBindPoint);
struct radv_descriptor_set *push_set =
(struct radv_descriptor_set *)&descriptors_state->push_set.set;
assert(layout->set[set].layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR);
if (!radv_init_push_descriptor_set(cmd_buffer, push_set, layout->set[set].layout,
pipelineBindPoint))
return;
/* Check that there are no inline uniform block updates when calling vkCmdPushDescriptorSetKHR()
* because it is invalid, according to Vulkan spec.
*/
for (int i = 0; i < descriptorWriteCount; i++) {
ASSERTED const VkWriteDescriptorSet *writeset = &pDescriptorWrites[i];
assert(writeset->descriptorType != VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT);
}
radv_update_descriptor_sets(cmd_buffer->device, cmd_buffer,
radv_descriptor_set_to_handle(push_set), descriptorWriteCount,
pDescriptorWrites, 0, NULL);
radv_set_descriptor_set(cmd_buffer, pipelineBindPoint, push_set, set);
descriptors_state->push_dirty = true;
}
void
radv_CmdPushDescriptorSetWithTemplateKHR(VkCommandBuffer commandBuffer,
VkDescriptorUpdateTemplate descriptorUpdateTemplate,
VkPipelineLayout _layout, uint32_t set, const void *pData)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_pipeline_layout, layout, _layout);
RADV_FROM_HANDLE(radv_descriptor_update_template, templ, descriptorUpdateTemplate);
struct radv_descriptor_state *descriptors_state =
radv_get_descriptors_state(cmd_buffer, templ->bind_point);
struct radv_descriptor_set *push_set =
(struct radv_descriptor_set *)&descriptors_state->push_set.set;
assert(layout->set[set].layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR);
if (!radv_init_push_descriptor_set(cmd_buffer, push_set, layout->set[set].layout,
templ->bind_point))
return;
radv_update_descriptor_set_with_template(cmd_buffer->device, cmd_buffer, push_set,
descriptorUpdateTemplate, pData);
radv_set_descriptor_set(cmd_buffer, templ->bind_point, push_set, set);
descriptors_state->push_dirty = true;
}
void
radv_CmdPushConstants(VkCommandBuffer commandBuffer, VkPipelineLayout layout,
VkShaderStageFlags stageFlags, uint32_t offset, uint32_t size,
const void *pValues)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
memcpy(cmd_buffer->push_constants + offset, pValues, size);
cmd_buffer->push_constant_stages |= stageFlags;
}
VkResult
radv_EndCommandBuffer(VkCommandBuffer commandBuffer)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
radv_emit_mip_change_flush_default(cmd_buffer);
if (cmd_buffer->queue_family_index != RADV_QUEUE_TRANSFER) {
if (cmd_buffer->device->physical_device->rad_info.chip_class == GFX6)
cmd_buffer->state.flush_bits |=
RADV_CMD_FLAG_CS_PARTIAL_FLUSH | RADV_CMD_FLAG_PS_PARTIAL_FLUSH | RADV_CMD_FLAG_WB_L2;
/* Make sure to sync all pending active queries at the end of
* command buffer.
*/
cmd_buffer->state.flush_bits |= cmd_buffer->active_query_flush_bits;
/* Since NGG streamout uses GDS, we need to make GDS idle when
* we leave the IB, otherwise another process might overwrite
* it while our shaders are busy.
*/
if (cmd_buffer->gds_needed)
cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_PS_PARTIAL_FLUSH;
si_emit_cache_flush(cmd_buffer);
}
/* Make sure CP DMA is idle at the end of IBs because the kernel
* doesn't wait for it.
*/
si_cp_dma_wait_for_idle(cmd_buffer);
radv_describe_end_cmd_buffer(cmd_buffer);
vk_free(&cmd_buffer->pool->alloc, cmd_buffer->state.attachments);
vk_free(&cmd_buffer->pool->alloc, cmd_buffer->state.subpass_sample_locs);
VkResult result = cmd_buffer->device->ws->cs_finalize(cmd_buffer->cs);
if (result != VK_SUCCESS)
return vk_error(cmd_buffer->device->instance, result);
cmd_buffer->status = RADV_CMD_BUFFER_STATUS_EXECUTABLE;
return cmd_buffer->record_result;
}
static void
radv_emit_compute_pipeline(struct radv_cmd_buffer *cmd_buffer, struct radv_pipeline *pipeline)
{
if (!pipeline || pipeline == cmd_buffer->state.emitted_compute_pipeline)
return;
assert(!pipeline->ctx_cs.cdw);
cmd_buffer->state.emitted_compute_pipeline = pipeline;
radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, pipeline->cs.cdw);
radeon_emit_array(cmd_buffer->cs, pipeline->cs.buf, pipeline->cs.cdw);
cmd_buffer->compute_scratch_size_per_wave_needed =
MAX2(cmd_buffer->compute_scratch_size_per_wave_needed, pipeline->scratch_bytes_per_wave);
cmd_buffer->compute_scratch_waves_wanted =
MAX2(cmd_buffer->compute_scratch_waves_wanted, pipeline->max_waves);
radv_cs_add_buffer(cmd_buffer->device->ws, cmd_buffer->cs,
pipeline->shaders[MESA_SHADER_COMPUTE]->bo);
if (unlikely(cmd_buffer->device->trace_bo))
radv_save_pipeline(cmd_buffer, pipeline);
}
static void
radv_mark_descriptor_sets_dirty(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point)
{
struct radv_descriptor_state *descriptors_state =
radv_get_descriptors_state(cmd_buffer, bind_point);
descriptors_state->dirty |= descriptors_state->valid;
}
void
radv_CmdBindPipeline(VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint,
VkPipeline _pipeline)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
switch (pipelineBindPoint) {
case VK_PIPELINE_BIND_POINT_COMPUTE:
if (cmd_buffer->state.compute_pipeline == pipeline)
return;
radv_mark_descriptor_sets_dirty(cmd_buffer, pipelineBindPoint);
cmd_buffer->state.compute_pipeline = pipeline;
cmd_buffer->push_constant_stages |= VK_SHADER_STAGE_COMPUTE_BIT;
break;
case VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR:
if (cmd_buffer->state.rt_pipeline == pipeline)
return;
radv_mark_descriptor_sets_dirty(cmd_buffer, pipelineBindPoint);
cmd_buffer->state.rt_pipeline = pipeline;
cmd_buffer->push_constant_stages |=
(VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_ANY_HIT_BIT_KHR |
VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_MISS_BIT_KHR |
VK_SHADER_STAGE_INTERSECTION_BIT_KHR | VK_SHADER_STAGE_CALLABLE_BIT_KHR);
break;
case VK_PIPELINE_BIND_POINT_GRAPHICS:
if (cmd_buffer->state.pipeline == pipeline)
return;
radv_mark_descriptor_sets_dirty(cmd_buffer, pipelineBindPoint);
bool vtx_emit_count_changed =
!pipeline || !cmd_buffer->state.pipeline ||
cmd_buffer->state.pipeline->graphics.vtx_emit_num != pipeline->graphics.vtx_emit_num ||
cmd_buffer->state.pipeline->graphics.vtx_base_sgpr != pipeline->graphics.vtx_base_sgpr;
cmd_buffer->state.pipeline = pipeline;
if (!pipeline)
break;
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_PIPELINE;
cmd_buffer->push_constant_stages |= pipeline->active_stages;
/* the new vertex shader might not have the same user regs */
if (vtx_emit_count_changed) {
cmd_buffer->state.last_first_instance = -1;
cmd_buffer->state.last_vertex_offset = -1;
cmd_buffer->state.last_drawid = -1;
}
/* Prefetch all pipeline shaders at first draw time. */
cmd_buffer->state.prefetch_L2_mask |= RADV_PREFETCH_SHADERS;
if (cmd_buffer->device->physical_device->rad_info.has_vgt_flush_ngg_legacy_bug &&
cmd_buffer->state.emitted_pipeline &&
cmd_buffer->state.emitted_pipeline->graphics.is_ngg &&
!cmd_buffer->state.pipeline->graphics.is_ngg) {
/* Transitioning from NGG to legacy GS requires
* VGT_FLUSH on GFX10 and Sienna Cichlid. VGT_FLUSH
* is also emitted at the beginning of IBs when legacy
* GS ring pointers are set.
*/
cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VGT_FLUSH;
}
radv_bind_dynamic_state(cmd_buffer, &pipeline->dynamic_state);
radv_bind_streamout_state(cmd_buffer, pipeline);
if (pipeline->graphics.esgs_ring_size > cmd_buffer->esgs_ring_size_needed)
cmd_buffer->esgs_ring_size_needed = pipeline->graphics.esgs_ring_size;
if (pipeline->graphics.gsvs_ring_size > cmd_buffer->gsvs_ring_size_needed)
cmd_buffer->gsvs_ring_size_needed = pipeline->graphics.gsvs_ring_size;
if (radv_pipeline_has_tess(pipeline))
cmd_buffer->tess_rings_needed = true;
break;
default:
assert(!"invalid bind point");
break;
}
}
void
radv_CmdSetViewport(VkCommandBuffer commandBuffer, uint32_t firstViewport, uint32_t viewportCount,
const VkViewport *pViewports)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
ASSERTED const uint32_t total_count = firstViewport + viewportCount;
assert(firstViewport < MAX_VIEWPORTS);
assert(total_count >= 1 && total_count <= MAX_VIEWPORTS);
if (total_count <= state->dynamic.viewport.count &&
!memcmp(state->dynamic.viewport.viewports + firstViewport, pViewports,
viewportCount * sizeof(*pViewports))) {
return;
}
if (state->dynamic.viewport.count < total_count)
state->dynamic.viewport.count = total_count;
memcpy(state->dynamic.viewport.viewports + firstViewport, pViewports,
viewportCount * sizeof(*pViewports));
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_VIEWPORT;
}
void
radv_CmdSetScissor(VkCommandBuffer commandBuffer, uint32_t firstScissor, uint32_t scissorCount,
const VkRect2D *pScissors)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
ASSERTED const uint32_t total_count = firstScissor + scissorCount;
assert(firstScissor < MAX_SCISSORS);
assert(total_count >= 1 && total_count <= MAX_SCISSORS);
if (total_count <= state->dynamic.scissor.count &&
!memcmp(state->dynamic.scissor.scissors + firstScissor, pScissors,
scissorCount * sizeof(*pScissors))) {
return;
}
if (state->dynamic.scissor.count < total_count)
state->dynamic.scissor.count = total_count;
memcpy(state->dynamic.scissor.scissors + firstScissor, pScissors,
scissorCount * sizeof(*pScissors));
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_SCISSOR;
}
void
radv_CmdSetLineWidth(VkCommandBuffer commandBuffer, float lineWidth)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
if (cmd_buffer->state.dynamic.line_width == lineWidth)
return;
cmd_buffer->state.dynamic.line_width = lineWidth;
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
}
void
radv_CmdSetDepthBias(VkCommandBuffer commandBuffer, float depthBiasConstantFactor,
float depthBiasClamp, float depthBiasSlopeFactor)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
if (state->dynamic.depth_bias.bias == depthBiasConstantFactor &&
state->dynamic.depth_bias.clamp == depthBiasClamp &&
state->dynamic.depth_bias.slope == depthBiasSlopeFactor) {
return;
}
state->dynamic.depth_bias.bias = depthBiasConstantFactor;
state->dynamic.depth_bias.clamp = depthBiasClamp;
state->dynamic.depth_bias.slope = depthBiasSlopeFactor;
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
}
void
radv_CmdSetBlendConstants(VkCommandBuffer commandBuffer, const float blendConstants[4])
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
if (!memcmp(state->dynamic.blend_constants, blendConstants, sizeof(float) * 4))
return;
memcpy(state->dynamic.blend_constants, blendConstants, sizeof(float) * 4);
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
}
void
radv_CmdSetDepthBounds(VkCommandBuffer commandBuffer, float minDepthBounds, float maxDepthBounds)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
if (state->dynamic.depth_bounds.min == minDepthBounds &&
state->dynamic.depth_bounds.max == maxDepthBounds) {
return;
}
state->dynamic.depth_bounds.min = minDepthBounds;
state->dynamic.depth_bounds.max = maxDepthBounds;
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
}
void
radv_CmdSetStencilCompareMask(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask,
uint32_t compareMask)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
bool front_same = state->dynamic.stencil_compare_mask.front == compareMask;
bool back_same = state->dynamic.stencil_compare_mask.back == compareMask;
if ((!(faceMask & VK_STENCIL_FACE_FRONT_BIT) || front_same) &&
(!(faceMask & VK_STENCIL_FACE_BACK_BIT) || back_same)) {
return;
}
if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
state->dynamic.stencil_compare_mask.front = compareMask;
if (faceMask & VK_STENCIL_FACE_BACK_BIT)
state->dynamic.stencil_compare_mask.back = compareMask;
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
}
void
radv_CmdSetStencilWriteMask(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask,
uint32_t writeMask)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
bool front_same = state->dynamic.stencil_write_mask.front == writeMask;
bool back_same = state->dynamic.stencil_write_mask.back == writeMask;
if ((!(faceMask & VK_STENCIL_FACE_FRONT_BIT) || front_same) &&
(!(faceMask & VK_STENCIL_FACE_BACK_BIT) || back_same)) {
return;
}
if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
state->dynamic.stencil_write_mask.front = writeMask;
if (faceMask & VK_STENCIL_FACE_BACK_BIT)
state->dynamic.stencil_write_mask.back = writeMask;
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
}
void
radv_CmdSetStencilReference(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask,
uint32_t reference)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
bool front_same = state->dynamic.stencil_reference.front == reference;
bool back_same = state->dynamic.stencil_reference.back == reference;
if ((!(faceMask & VK_STENCIL_FACE_FRONT_BIT) || front_same) &&
(!(faceMask & VK_STENCIL_FACE_BACK_BIT) || back_same)) {
return;
}
if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
cmd_buffer->state.dynamic.stencil_reference.front = reference;
if (faceMask & VK_STENCIL_FACE_BACK_BIT)
cmd_buffer->state.dynamic.stencil_reference.back = reference;
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
}
void
radv_CmdSetDiscardRectangleEXT(VkCommandBuffer commandBuffer, uint32_t firstDiscardRectangle,
uint32_t discardRectangleCount, const VkRect2D *pDiscardRectangles)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
ASSERTED const uint32_t total_count = firstDiscardRectangle + discardRectangleCount;
assert(firstDiscardRectangle < MAX_DISCARD_RECTANGLES);
assert(total_count >= 1 && total_count <= MAX_DISCARD_RECTANGLES);
if (!memcmp(state->dynamic.discard_rectangle.rectangles + firstDiscardRectangle,
pDiscardRectangles, discardRectangleCount * sizeof(*pDiscardRectangles))) {
return;
}
typed_memcpy(&state->dynamic.discard_rectangle.rectangles[firstDiscardRectangle],
pDiscardRectangles, discardRectangleCount);
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_DISCARD_RECTANGLE;
}
void
radv_CmdSetSampleLocationsEXT(VkCommandBuffer commandBuffer,
const VkSampleLocationsInfoEXT *pSampleLocationsInfo)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
assert(pSampleLocationsInfo->sampleLocationsCount <= MAX_SAMPLE_LOCATIONS);
state->dynamic.sample_location.per_pixel = pSampleLocationsInfo->sampleLocationsPerPixel;
state->dynamic.sample_location.grid_size = pSampleLocationsInfo->sampleLocationGridSize;
state->dynamic.sample_location.count = pSampleLocationsInfo->sampleLocationsCount;
typed_memcpy(&state->dynamic.sample_location.locations[0],
pSampleLocationsInfo->pSampleLocations, pSampleLocationsInfo->sampleLocationsCount);
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_SAMPLE_LOCATIONS;
}
void
radv_CmdSetLineStippleEXT(VkCommandBuffer commandBuffer, uint32_t lineStippleFactor,
uint16_t lineStipplePattern)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
if (state->dynamic.line_stipple.factor == lineStippleFactor &&
state->dynamic.line_stipple.pattern == lineStipplePattern)
return;
state->dynamic.line_stipple.factor = lineStippleFactor;
state->dynamic.line_stipple.pattern = lineStipplePattern;
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
}
void
radv_CmdSetCullModeEXT(VkCommandBuffer commandBuffer, VkCullModeFlags cullMode)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
if (state->dynamic.cull_mode == cullMode)
return;
state->dynamic.cull_mode = cullMode;
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_CULL_MODE;
}
void
radv_CmdSetFrontFaceEXT(VkCommandBuffer commandBuffer, VkFrontFace frontFace)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
if (state->dynamic.front_face == frontFace)
return;
state->dynamic.front_face = frontFace;
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_FRONT_FACE;
}
void
radv_CmdSetPrimitiveTopologyEXT(VkCommandBuffer commandBuffer,
VkPrimitiveTopology primitiveTopology)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
unsigned primitive_topology = si_translate_prim(primitiveTopology);
if (state->dynamic.primitive_topology == primitive_topology)
return;
state->dynamic.primitive_topology = primitive_topology;
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_PRIMITIVE_TOPOLOGY;
}
void
radv_CmdSetViewportWithCountEXT(VkCommandBuffer commandBuffer, uint32_t viewportCount,
const VkViewport *pViewports)
{
radv_CmdSetViewport(commandBuffer, 0, viewportCount, pViewports);
}
void
radv_CmdSetScissorWithCountEXT(VkCommandBuffer commandBuffer, uint32_t scissorCount,
const VkRect2D *pScissors)
{
radv_CmdSetScissor(commandBuffer, 0, scissorCount, pScissors);
}
void
radv_CmdSetDepthTestEnableEXT(VkCommandBuffer commandBuffer, VkBool32 depthTestEnable)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
if (state->dynamic.depth_test_enable == depthTestEnable)
return;
state->dynamic.depth_test_enable = depthTestEnable;
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_DEPTH_TEST_ENABLE;
}
void
radv_CmdSetDepthWriteEnableEXT(VkCommandBuffer commandBuffer, VkBool32 depthWriteEnable)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
if (state->dynamic.depth_write_enable == depthWriteEnable)
return;
state->dynamic.depth_write_enable = depthWriteEnable;
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_DEPTH_WRITE_ENABLE;
}
void
radv_CmdSetDepthCompareOpEXT(VkCommandBuffer commandBuffer, VkCompareOp depthCompareOp)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
if (state->dynamic.depth_compare_op == depthCompareOp)
return;
state->dynamic.depth_compare_op = depthCompareOp;
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_DEPTH_COMPARE_OP;
}
void
radv_CmdSetDepthBoundsTestEnableEXT(VkCommandBuffer commandBuffer, VkBool32 depthBoundsTestEnable)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
if (state->dynamic.depth_bounds_test_enable == depthBoundsTestEnable)
return;
state->dynamic.depth_bounds_test_enable = depthBoundsTestEnable;
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE;
}
void
radv_CmdSetStencilTestEnableEXT(VkCommandBuffer commandBuffer, VkBool32 stencilTestEnable)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
if (state->dynamic.stencil_test_enable == stencilTestEnable)
return;
state->dynamic.stencil_test_enable = stencilTestEnable;
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_STENCIL_TEST_ENABLE;
}
void
radv_CmdSetStencilOpEXT(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask,
VkStencilOp failOp, VkStencilOp passOp, VkStencilOp depthFailOp,
VkCompareOp compareOp)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
bool front_same = state->dynamic.stencil_op.front.fail_op == failOp &&
state->dynamic.stencil_op.front.pass_op == passOp &&
state->dynamic.stencil_op.front.depth_fail_op == depthFailOp &&
state->dynamic.stencil_op.front.compare_op == compareOp;
bool back_same = state->dynamic.stencil_op.back.fail_op == failOp &&
state->dynamic.stencil_op.back.pass_op == passOp &&
state->dynamic.stencil_op.back.depth_fail_op == depthFailOp &&
state->dynamic.stencil_op.back.compare_op == compareOp;
if ((!(faceMask & VK_STENCIL_FACE_FRONT_BIT) || front_same) &&
(!(faceMask & VK_STENCIL_FACE_BACK_BIT) || back_same))
return;
if (faceMask & VK_STENCIL_FACE_FRONT_BIT) {
state->dynamic.stencil_op.front.fail_op = failOp;
state->dynamic.stencil_op.front.pass_op = passOp;
state->dynamic.stencil_op.front.depth_fail_op = depthFailOp;
state->dynamic.stencil_op.front.compare_op = compareOp;
}
if (faceMask & VK_STENCIL_FACE_BACK_BIT) {
state->dynamic.stencil_op.back.fail_op = failOp;
state->dynamic.stencil_op.back.pass_op = passOp;
state->dynamic.stencil_op.back.depth_fail_op = depthFailOp;
state->dynamic.stencil_op.back.compare_op = compareOp;
}
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_STENCIL_OP;
}
void
radv_CmdSetFragmentShadingRateKHR(VkCommandBuffer commandBuffer, const VkExtent2D *pFragmentSize,
const VkFragmentShadingRateCombinerOpKHR combinerOps[2])
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
if (state->dynamic.fragment_shading_rate.size.width == pFragmentSize->width &&
state->dynamic.fragment_shading_rate.size.height == pFragmentSize->height &&
state->dynamic.fragment_shading_rate.combiner_ops[0] == combinerOps[0] &&
state->dynamic.fragment_shading_rate.combiner_ops[1] == combinerOps[1])
return;
state->dynamic.fragment_shading_rate.size = *pFragmentSize;
for (unsigned i = 0; i < 2; i++)
state->dynamic.fragment_shading_rate.combiner_ops[i] = combinerOps[i];
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_FRAGMENT_SHADING_RATE;
}
void
radv_CmdSetDepthBiasEnableEXT(VkCommandBuffer commandBuffer, VkBool32 depthBiasEnable)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
if (state->dynamic.depth_bias_enable == depthBiasEnable)
return;
state->dynamic.depth_bias_enable = depthBiasEnable;
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS_ENABLE;
}
void
radv_CmdSetPrimitiveRestartEnableEXT(VkCommandBuffer commandBuffer, VkBool32 primitiveRestartEnable)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
if (state->dynamic.primitive_restart_enable == primitiveRestartEnable)
return;
state->dynamic.primitive_restart_enable = primitiveRestartEnable;
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_PRIMITIVE_RESTART_ENABLE;
}
void
radv_CmdSetRasterizerDiscardEnableEXT(VkCommandBuffer commandBuffer,
VkBool32 rasterizerDiscardEnable)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
if (state->dynamic.rasterizer_discard_enable == rasterizerDiscardEnable)
return;
state->dynamic.rasterizer_discard_enable = rasterizerDiscardEnable;
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_RASTERIZER_DISCARD_ENABLE;
}
void
radv_CmdSetPatchControlPointsEXT(VkCommandBuffer commandBuffer, uint32_t patchControlPoints)
{
/* not implemented */
}
void
radv_CmdSetLogicOpEXT(VkCommandBuffer commandBuffer, VkLogicOp logicOp)
{
/* not implemented */
}
void
radv_CmdExecuteCommands(VkCommandBuffer commandBuffer, uint32_t commandBufferCount,
const VkCommandBuffer *pCmdBuffers)
{
RADV_FROM_HANDLE(radv_cmd_buffer, primary, commandBuffer);
assert(commandBufferCount > 0);
radv_emit_mip_change_flush_default(primary);
/* Emit pending flushes on primary prior to executing secondary */
si_emit_cache_flush(primary);
/* Make sure CP DMA is idle on primary prior to executing secondary. */
si_cp_dma_wait_for_idle(primary);
for (uint32_t i = 0; i < commandBufferCount; i++) {
RADV_FROM_HANDLE(radv_cmd_buffer, secondary, pCmdBuffers[i]);
primary->scratch_size_per_wave_needed =
MAX2(primary->scratch_size_per_wave_needed, secondary->scratch_size_per_wave_needed);
primary->scratch_waves_wanted =
MAX2(primary->scratch_waves_wanted, secondary->scratch_waves_wanted);
primary->compute_scratch_size_per_wave_needed =
MAX2(primary->compute_scratch_size_per_wave_needed,
secondary->compute_scratch_size_per_wave_needed);
primary->compute_scratch_waves_wanted =
MAX2(primary->compute_scratch_waves_wanted, secondary->compute_scratch_waves_wanted);
if (secondary->esgs_ring_size_needed > primary->esgs_ring_size_needed)
primary->esgs_ring_size_needed = secondary->esgs_ring_size_needed;
if (secondary->gsvs_ring_size_needed > primary->gsvs_ring_size_needed)
primary->gsvs_ring_size_needed = secondary->gsvs_ring_size_needed;
if (secondary->tess_rings_needed)
primary->tess_rings_needed = true;
if (secondary->sample_positions_needed)
primary->sample_positions_needed = true;
if (secondary->gds_needed)
primary->gds_needed = true;
if (!secondary->state.framebuffer && (primary->state.dirty & RADV_CMD_DIRTY_FRAMEBUFFER)) {
/* Emit the framebuffer state from primary if secondary
* has been recorded without a framebuffer, otherwise
* fast color/depth clears can't work.
*/
radv_emit_fb_mip_change_flush(primary);
radv_emit_framebuffer_state(primary);
}
primary->device->ws->cs_execute_secondary(primary->cs, secondary->cs);
/* When the secondary command buffer is compute only we don't
* need to re-emit the current graphics pipeline.
*/
if (secondary->state.emitted_pipeline) {
primary->state.emitted_pipeline = secondary->state.emitted_pipeline;
}
/* When the secondary command buffer is graphics only we don't
* need to re-emit the current compute pipeline.
*/
if (secondary->state.emitted_compute_pipeline) {
primary->state.emitted_compute_pipeline = secondary->state.emitted_compute_pipeline;
}
/* Only re-emit the draw packets when needed. */
if (secondary->state.last_primitive_reset_en != -1) {
primary->state.last_primitive_reset_en = secondary->state.last_primitive_reset_en;
}
if (secondary->state.last_primitive_reset_index) {
primary->state.last_primitive_reset_index = secondary->state.last_primitive_reset_index;
}
if (secondary->state.last_ia_multi_vgt_param) {
primary->state.last_ia_multi_vgt_param = secondary->state.last_ia_multi_vgt_param;
}
primary->state.last_first_instance = secondary->state.last_first_instance;
primary->state.last_num_instances = secondary->state.last_num_instances;
primary->state.last_drawid = secondary->state.last_drawid;
primary->state.last_vertex_offset = secondary->state.last_vertex_offset;
primary->state.last_sx_ps_downconvert = secondary->state.last_sx_ps_downconvert;
primary->state.last_sx_blend_opt_epsilon = secondary->state.last_sx_blend_opt_epsilon;
primary->state.last_sx_blend_opt_control = secondary->state.last_sx_blend_opt_control;
if (secondary->state.last_index_type != -1) {
primary->state.last_index_type = secondary->state.last_index_type;
}
}
/* After executing commands from secondary buffers we have to dirty
* some states.
*/
primary->state.dirty |=
RADV_CMD_DIRTY_PIPELINE | RADV_CMD_DIRTY_INDEX_BUFFER | RADV_CMD_DIRTY_DYNAMIC_ALL;
radv_mark_descriptor_sets_dirty(primary, VK_PIPELINE_BIND_POINT_GRAPHICS);
radv_mark_descriptor_sets_dirty(primary, VK_PIPELINE_BIND_POINT_COMPUTE);
}
VkResult
radv_CreateCommandPool(VkDevice _device, const VkCommandPoolCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkCommandPool *pCmdPool)
{
RADV_FROM_HANDLE(radv_device, device, _device);
struct radv_cmd_pool *pool;
pool =
vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*pool), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (pool == NULL)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
vk_object_base_init(&device->vk, &pool->base, VK_OBJECT_TYPE_COMMAND_POOL);
if (pAllocator)
pool->alloc = *pAllocator;
else
pool->alloc = device->vk.alloc;
list_inithead(&pool->cmd_buffers);
list_inithead(&pool->free_cmd_buffers);
pool->queue_family_index = pCreateInfo->queueFamilyIndex;
*pCmdPool = radv_cmd_pool_to_handle(pool);
return VK_SUCCESS;
}
void
radv_DestroyCommandPool(VkDevice _device, VkCommandPool commandPool,
const VkAllocationCallbacks *pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_cmd_pool, pool, commandPool);
if (!pool)
return;
list_for_each_entry_safe(struct radv_cmd_buffer, cmd_buffer, &pool->cmd_buffers, pool_link)
{
radv_destroy_cmd_buffer(cmd_buffer);
}
list_for_each_entry_safe(struct radv_cmd_buffer, cmd_buffer, &pool->free_cmd_buffers, pool_link)
{
radv_destroy_cmd_buffer(cmd_buffer);
}
vk_object_base_finish(&pool->base);
vk_free2(&device->vk.alloc, pAllocator, pool);
}
VkResult
radv_ResetCommandPool(VkDevice device, VkCommandPool commandPool, VkCommandPoolResetFlags flags)
{
RADV_FROM_HANDLE(radv_cmd_pool, pool, commandPool);
VkResult result;
list_for_each_entry(struct radv_cmd_buffer, cmd_buffer, &pool->cmd_buffers, pool_link)
{
result = radv_reset_cmd_buffer(cmd_buffer);
if (result != VK_SUCCESS)
return result;
}
return VK_SUCCESS;
}
void
radv_TrimCommandPool(VkDevice device, VkCommandPool commandPool, VkCommandPoolTrimFlags flags)
{
RADV_FROM_HANDLE(radv_cmd_pool, pool, commandPool);
if (!pool)
return;
list_for_each_entry_safe(struct radv_cmd_buffer, cmd_buffer, &pool->free_cmd_buffers, pool_link)
{
radv_destroy_cmd_buffer(cmd_buffer);
}
}
static void
radv_cmd_buffer_begin_subpass(struct radv_cmd_buffer *cmd_buffer, uint32_t subpass_id)
{
struct radv_cmd_state *state = &cmd_buffer->state;
struct radv_subpass *subpass = &state->pass->subpasses[subpass_id];
ASSERTED unsigned cdw_max = radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, 4096);
radv_subpass_barrier(cmd_buffer, &subpass->start_barrier);
radv_cmd_buffer_set_subpass(cmd_buffer, subpass);
radv_describe_barrier_start(cmd_buffer, RGP_BARRIER_EXTERNAL_RENDER_PASS_SYNC);
for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
const uint32_t a = subpass->attachments[i].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
radv_handle_subpass_image_transition(cmd_buffer, subpass->attachments[i], true);
}
if (subpass->vrs_attachment) {
int idx = subpass->vrs_attachment->attachment;
struct radv_image_view *vrs_iview = cmd_buffer->state.attachments[idx].iview;
if (subpass->depth_stencil_attachment) {
/* When a subpass uses a VRS attachment and a depth/stencil attachment, we just need to
* copy the VRS rates to the HTILE buffer of the attachment.
*/
int ds_idx = subpass->depth_stencil_attachment->attachment;
struct radv_image_view *ds_iview = cmd_buffer->state.attachments[ds_idx].iview;
VkExtent2D extent = {
.width = ds_iview->image->info.width,
.height = ds_iview->image->info.height,
};
/* Copy the VRS rates to the HTILE buffer. */
radv_copy_vrs_htile(cmd_buffer, vrs_iview->image, &extent, ds_iview->image);
} else {
/* When a subpass uses a VRS attachment without binding a depth/stencil attachment, we have
* to copy the VRS rates to our internal HTILE buffer.
*/
struct radv_framebuffer *fb = cmd_buffer->state.framebuffer;
struct radv_image *ds_image = radv_cmd_buffer_get_vrs_image(cmd_buffer);
uint32_t htile_value;
if (ds_image) {
htile_value = radv_get_htile_initial_value(cmd_buffer->device, ds_image);
VkExtent2D extent = {
.width = MIN2(fb->width, ds_image->info.width),
.height = MIN2(fb->height, ds_image->info.height),
};
/* Clear the HTILE buffer before copying VRS rates because it's a read-modify-write
* operation.
*/
VkImageSubresourceRange range = {
.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1,
};
cmd_buffer->state.flush_bits |= radv_clear_htile(cmd_buffer, ds_image, &range, htile_value);
/* Copy the VRS rates to the HTILE buffer. */
radv_copy_vrs_htile(cmd_buffer, vrs_iview->image, &extent, ds_image);
}
}
}
radv_describe_barrier_end(cmd_buffer);
radv_cmd_buffer_clear_subpass(cmd_buffer);
assert(cmd_buffer->cs->cdw <= cdw_max);
}
static void
radv_cmd_buffer_end_subpass(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_cmd_state *state = &cmd_buffer->state;
const struct radv_subpass *subpass = state->subpass;
uint32_t subpass_id = radv_get_subpass_id(cmd_buffer);
radv_cmd_buffer_resolve_subpass(cmd_buffer);
radv_describe_barrier_start(cmd_buffer, RGP_BARRIER_EXTERNAL_RENDER_PASS_SYNC);
for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
const uint32_t a = subpass->attachments[i].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
if (state->pass->attachments[a].last_subpass_idx != subpass_id)
continue;
VkImageLayout layout = state->pass->attachments[a].final_layout;
VkImageLayout stencil_layout = state->pass->attachments[a].stencil_final_layout;
struct radv_subpass_attachment att = {a, layout, stencil_layout};
radv_handle_subpass_image_transition(cmd_buffer, att, false);
}
radv_describe_barrier_end(cmd_buffer);
}
void
radv_cmd_buffer_begin_render_pass(struct radv_cmd_buffer *cmd_buffer,
const VkRenderPassBeginInfo *pRenderPassBegin,
const struct radv_extra_render_pass_begin_info *extra_info)
{
RADV_FROM_HANDLE(radv_render_pass, pass, pRenderPassBegin->renderPass);
RADV_FROM_HANDLE(radv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
VkResult result;
cmd_buffer->state.framebuffer = framebuffer;
cmd_buffer->state.pass = pass;
cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
result = radv_cmd_state_setup_attachments(cmd_buffer, pass, pRenderPassBegin, extra_info);
if (result != VK_SUCCESS)
return;
result = radv_cmd_state_setup_sample_locations(cmd_buffer, pass, pRenderPassBegin);
if (result != VK_SUCCESS)
return;
}
void
radv_CmdBeginRenderPass2(VkCommandBuffer commandBuffer,
const VkRenderPassBeginInfo *pRenderPassBeginInfo,
const VkSubpassBeginInfo *pSubpassBeginInfo)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
radv_cmd_buffer_begin_render_pass(cmd_buffer, pRenderPassBeginInfo, NULL);
radv_cmd_buffer_begin_subpass(cmd_buffer, 0);
}
void
radv_CmdNextSubpass2(VkCommandBuffer commandBuffer, const VkSubpassBeginInfo *pSubpassBeginInfo,
const VkSubpassEndInfo *pSubpassEndInfo)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
uint32_t prev_subpass = radv_get_subpass_id(cmd_buffer);
radv_cmd_buffer_end_subpass(cmd_buffer);
radv_cmd_buffer_begin_subpass(cmd_buffer, prev_subpass + 1);
}
static void
radv_emit_view_index(struct radv_cmd_buffer *cmd_buffer, unsigned index)
{
struct radv_pipeline *pipeline = cmd_buffer->state.pipeline;
for (unsigned stage = 0; stage < MESA_SHADER_STAGES; ++stage) {
if (!radv_get_shader(pipeline, stage))
continue;
struct radv_userdata_info *loc = radv_lookup_user_sgpr(pipeline, stage, AC_UD_VIEW_INDEX);
if (loc->sgpr_idx == -1)
continue;
uint32_t base_reg = pipeline->user_data_0[stage];
radeon_set_sh_reg(cmd_buffer->cs, base_reg + loc->sgpr_idx * 4, index);
}
if (radv_pipeline_has_gs_copy_shader(pipeline)) {
struct radv_userdata_info *loc =
&pipeline->gs_copy_shader->info.user_sgprs_locs.shader_data[AC_UD_VIEW_INDEX];
if (loc->sgpr_idx != -1) {
uint32_t base_reg = R_00B130_SPI_SHADER_USER_DATA_VS_0;
radeon_set_sh_reg(cmd_buffer->cs, base_reg + loc->sgpr_idx * 4, index);
}
}
}
static void
radv_cs_emit_draw_packet(struct radv_cmd_buffer *cmd_buffer, uint32_t vertex_count,
uint32_t use_opaque)
{
radeon_emit(cmd_buffer->cs, PKT3(PKT3_DRAW_INDEX_AUTO, 1, cmd_buffer->state.predicating));
radeon_emit(cmd_buffer->cs, vertex_count);
radeon_emit(cmd_buffer->cs, V_0287F0_DI_SRC_SEL_AUTO_INDEX | use_opaque);
}
/**
* Emit a PKT3_DRAW_INDEX_2 packet to render "index_count` vertices.
*
* The starting address "index_va" may point anywhere within the index buffer. The number of
* indexes allocated in the index buffer *past that point* is specified by "max_index_count".
* Hardware uses this information to return 0 for out-of-bounds reads.
*/
static void
radv_cs_emit_draw_indexed_packet(struct radv_cmd_buffer *cmd_buffer, uint64_t index_va,
uint32_t max_index_count, uint32_t index_count)
{
radeon_emit(cmd_buffer->cs, PKT3(PKT3_DRAW_INDEX_2, 4, cmd_buffer->state.predicating));
radeon_emit(cmd_buffer->cs, max_index_count);
radeon_emit(cmd_buffer->cs, index_va);
radeon_emit(cmd_buffer->cs, index_va >> 32);
radeon_emit(cmd_buffer->cs, index_count);
radeon_emit(cmd_buffer->cs, V_0287F0_DI_SRC_SEL_DMA);
}
/* MUST inline this function to avoid massive perf loss in drawoverhead */
ALWAYS_INLINE static void
radv_cs_emit_indirect_draw_packet(struct radv_cmd_buffer *cmd_buffer, bool indexed,
uint32_t draw_count, uint64_t count_va, uint32_t stride)
{
struct radeon_cmdbuf *cs = cmd_buffer->cs;
const unsigned di_src_sel = indexed ? V_0287F0_DI_SRC_SEL_DMA : V_0287F0_DI_SRC_SEL_AUTO_INDEX;
bool draw_id_enable = cmd_buffer->state.pipeline->graphics.uses_drawid;
uint32_t base_reg = cmd_buffer->state.pipeline->graphics.vtx_base_sgpr;
uint32_t vertex_offset_reg, start_instance_reg = 0, draw_id_reg = 0;
bool predicating = cmd_buffer->state.predicating;
assert(base_reg);
/* just reset draw state for vertex data */
cmd_buffer->state.last_first_instance = -1;
cmd_buffer->state.last_num_instances = -1;
cmd_buffer->state.last_drawid = -1;
cmd_buffer->state.last_vertex_offset = -1;
vertex_offset_reg = (base_reg - SI_SH_REG_OFFSET) >> 2;
if (cmd_buffer->state.pipeline->graphics.uses_baseinstance)
start_instance_reg = ((base_reg + (draw_id_enable ? 8 : 4)) - SI_SH_REG_OFFSET) >> 2;
if (draw_id_enable)
draw_id_reg = ((base_reg + 4) - SI_SH_REG_OFFSET) >> 2;
if (draw_count == 1 && !count_va && !draw_id_enable) {
radeon_emit(cs,
PKT3(indexed ? PKT3_DRAW_INDEX_INDIRECT : PKT3_DRAW_INDIRECT, 3, predicating));
radeon_emit(cs, 0);
radeon_emit(cs, vertex_offset_reg);
radeon_emit(cs, start_instance_reg);
radeon_emit(cs, di_src_sel);
} else {
radeon_emit(cs, PKT3(indexed ? PKT3_DRAW_INDEX_INDIRECT_MULTI : PKT3_DRAW_INDIRECT_MULTI, 8,
predicating));
radeon_emit(cs, 0);
radeon_emit(cs, vertex_offset_reg);
radeon_emit(cs, start_instance_reg);
radeon_emit(cs, draw_id_reg | S_2C3_DRAW_INDEX_ENABLE(draw_id_enable) |
S_2C3_COUNT_INDIRECT_ENABLE(!!count_va));
radeon_emit(cs, draw_count); /* count */
radeon_emit(cs, count_va); /* count_addr */
radeon_emit(cs, count_va >> 32);
radeon_emit(cs, stride); /* stride */
radeon_emit(cs, di_src_sel);
}
}
static inline void
radv_emit_userdata_vertex_internal(struct radv_cmd_buffer *cmd_buffer,
const struct radv_draw_info *info, const uint32_t vertex_offset)
{
struct radv_cmd_state *state = &cmd_buffer->state;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
const bool uses_baseinstance = state->pipeline->graphics.uses_baseinstance;
const bool uses_drawid = state->pipeline->graphics.uses_drawid;
radeon_set_sh_reg_seq(cs, state->pipeline->graphics.vtx_base_sgpr,
state->pipeline->graphics.vtx_emit_num);
radeon_emit(cs, vertex_offset);
state->last_vertex_offset = vertex_offset;
if (uses_drawid) {
radeon_emit(cs, 0);
state->last_drawid = 0;
}
if (uses_baseinstance) {
radeon_emit(cs, info->first_instance);
state->last_first_instance = info->first_instance;
}
}
static inline void
radv_emit_userdata_vertex(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info,
const uint32_t vertex_offset)
{
const struct radv_cmd_state *state = &cmd_buffer->state;
const bool uses_baseinstance = state->pipeline->graphics.uses_baseinstance;
const bool uses_drawid = state->pipeline->graphics.uses_drawid;
/* this looks very dumb, but it allows the compiler to optimize better and yields
* ~3-4% perf increase in drawoverhead
*/
if (vertex_offset != state->last_vertex_offset) {
radv_emit_userdata_vertex_internal(cmd_buffer, info, vertex_offset);
} else if (uses_drawid && 0 != state->last_drawid) {
radv_emit_userdata_vertex_internal(cmd_buffer, info, vertex_offset);
} else if (uses_baseinstance && info->first_instance != state->last_first_instance) {
radv_emit_userdata_vertex_internal(cmd_buffer, info, vertex_offset);
}
}
ALWAYS_INLINE static void
radv_emit_draw_packets_indexed(struct radv_cmd_buffer *cmd_buffer,
const struct radv_draw_info *info, uint32_t count,
uint32_t first_index)
{
const struct radv_cmd_state *state = &cmd_buffer->state;
const int index_size = radv_get_vgt_index_size(state->index_type);
uint64_t index_va;
uint32_t remaining_indexes = cmd_buffer->state.max_index_count;
remaining_indexes = MAX2(remaining_indexes, info->first_index) - info->first_index;
/* Skip draw calls with 0-sized index buffers if the GPU can't handle them */
if (!remaining_indexes &&
cmd_buffer->device->physical_device->rad_info.has_zero_index_buffer_bug)
return;
index_va = state->index_va;
index_va += first_index * index_size;
if (!state->subpass->view_mask) {
radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, count);
} else {
u_foreach_bit(i, state->subpass->view_mask)
{
radv_emit_view_index(cmd_buffer, i);
radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, count);
}
}
}
ALWAYS_INLINE static void
radv_emit_direct_draw_packets(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info,
uint32_t count, uint32_t use_opaque)
{
const struct radv_cmd_state *state = &cmd_buffer->state;
if (!state->subpass->view_mask) {
radv_cs_emit_draw_packet(cmd_buffer, count, use_opaque);
} else {
u_foreach_bit(i, state->subpass->view_mask)
{
radv_emit_view_index(cmd_buffer, i);
radv_cs_emit_draw_packet(cmd_buffer, count, use_opaque);
}
}
}
static void
radv_emit_indirect_draw_packets(struct radv_cmd_buffer *cmd_buffer,
const struct radv_draw_info *info)
{
const struct radv_cmd_state *state = &cmd_buffer->state;
struct radeon_winsys *ws = cmd_buffer->device->ws;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
const uint64_t va =
radv_buffer_get_va(info->indirect->bo) + info->indirect->offset + info->indirect_offset;
const uint64_t count_va = info->count_buffer
? radv_buffer_get_va(info->count_buffer->bo) +
info->count_buffer->offset + info->count_buffer_offset
: 0;
radv_cs_add_buffer(ws, cs, info->indirect->bo);
radeon_emit(cs, PKT3(PKT3_SET_BASE, 2, 0));
radeon_emit(cs, 1);
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
if (info->count_buffer) {
radv_cs_add_buffer(ws, cs, info->count_buffer->bo);
}
if (!state->subpass->view_mask) {
radv_cs_emit_indirect_draw_packet(cmd_buffer, info->indexed, info->count, count_va,
info->stride);
} else {
u_foreach_bit(i, state->subpass->view_mask)
{
radv_emit_view_index(cmd_buffer, i);
radv_cs_emit_indirect_draw_packet(cmd_buffer, info->indexed, info->count, count_va,
info->stride);
}
}
}
/*
* Vega and raven have a bug which triggers if there are multiple context
* register contexts active at the same time with different scissor values.
*
* There are two possible workarounds:
* 1) Wait for PS_PARTIAL_FLUSH every time the scissor is changed. That way
* there is only ever 1 active set of scissor values at the same time.
*
* 2) Whenever the hardware switches contexts we have to set the scissor
* registers again even if it is a noop. That way the new context gets
* the correct scissor values.
*
* This implements option 2. radv_need_late_scissor_emission needs to
* return true on affected HW if radv_emit_all_graphics_states sets
* any context registers.
*/
static bool
radv_need_late_scissor_emission(struct radv_cmd_buffer *cmd_buffer,
const struct radv_draw_info *info)
{
struct radv_cmd_state *state = &cmd_buffer->state;
if (!cmd_buffer->device->physical_device->rad_info.has_gfx9_scissor_bug)
return false;
if (cmd_buffer->state.context_roll_without_scissor_emitted || info->strmout_buffer)
return true;
uint64_t used_states =
cmd_buffer->state.pipeline->graphics.needed_dynamic_state | ~RADV_CMD_DIRTY_DYNAMIC_ALL;
/* Index, vertex and streamout buffers don't change context regs, and
* pipeline is already handled.
*/
used_states &= ~(RADV_CMD_DIRTY_INDEX_BUFFER | RADV_CMD_DIRTY_VERTEX_BUFFER |
RADV_CMD_DIRTY_STREAMOUT_BUFFER | RADV_CMD_DIRTY_PIPELINE);
if (cmd_buffer->state.dirty & used_states)
return true;
uint32_t primitive_reset_index = radv_get_primitive_reset_index(cmd_buffer);
if (info->indexed && state->dynamic.primitive_restart_enable &&
primitive_reset_index != state->last_primitive_reset_index)
return true;
return false;
}
static void
radv_emit_all_graphics_states(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info)
{
bool late_scissor_emission;
if ((cmd_buffer->state.dirty & RADV_CMD_DIRTY_FRAMEBUFFER) ||
cmd_buffer->state.emitted_pipeline != cmd_buffer->state.pipeline)
radv_emit_rbplus_state(cmd_buffer);
if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_PIPELINE)
radv_emit_graphics_pipeline(cmd_buffer);
/* This should be before the cmd_buffer->state.dirty is cleared
* (excluding RADV_CMD_DIRTY_PIPELINE) and after
* cmd_buffer->state.context_roll_without_scissor_emitted is set. */
late_scissor_emission = radv_need_late_scissor_emission(cmd_buffer, info);
if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_FRAMEBUFFER)
radv_emit_framebuffer_state(cmd_buffer);
if (info->indexed) {
if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_INDEX_BUFFER)
radv_emit_index_buffer(cmd_buffer, info->indirect);
} else {
/* On GFX7 and later, non-indexed draws overwrite VGT_INDEX_TYPE,
* so the state must be re-emitted before the next indexed
* draw.
*/
if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX7) {
cmd_buffer->state.last_index_type = -1;
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_INDEX_BUFFER;
}
}
radv_cmd_buffer_flush_dynamic_state(cmd_buffer);
radv_emit_draw_registers(cmd_buffer, info);
if (late_scissor_emission)
radv_emit_scissor(cmd_buffer);
}
/* MUST inline this function to avoid massive perf loss in drawoverhead */
ALWAYS_INLINE static bool
radv_before_draw(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info,
uint32_t vertex_offset)
{
const bool has_prefetch = cmd_buffer->device->physical_device->rad_info.chip_class >= GFX7;
const bool pipeline_is_dirty = (cmd_buffer->state.dirty & RADV_CMD_DIRTY_PIPELINE) &&
cmd_buffer->state.pipeline != cmd_buffer->state.emitted_pipeline;
ASSERTED const unsigned cdw_max =
radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, 4096);
if (likely(!info->indirect)) {
/* GFX6-GFX7 treat instance_count==0 as instance_count==1. There is
* no workaround for indirect draws, but we can at least skip
* direct draws.
*/
if (unlikely(!info->instance_count))
return false;
/* Handle count == 0. */
if (unlikely(!info->count && !info->strmout_buffer))
return false;
}
/* Need to apply this workaround early as it can set flush flags. */
if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_FRAMEBUFFER)
radv_emit_fb_mip_change_flush(cmd_buffer);
/* Use optimal packet order based on whether we need to sync the
* pipeline.
*/
if (cmd_buffer->state.flush_bits &
(RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB |
RADV_CMD_FLAG_PS_PARTIAL_FLUSH | RADV_CMD_FLAG_CS_PARTIAL_FLUSH)) {
/* If we have to wait for idle, set all states first, so that
* all SET packets are processed in parallel with previous draw
* calls. Then upload descriptors, set shader pointers, and
* draw, and prefetch at the end. This ensures that the time
* the CUs are idle is very short. (there are only SET_SH
* packets between the wait and the draw)
*/
radv_emit_all_graphics_states(cmd_buffer, info);
si_emit_cache_flush(cmd_buffer);
/* <-- CUs are idle here --> */
radv_upload_graphics_shader_descriptors(cmd_buffer, pipeline_is_dirty);
} else {
/* If we don't wait for idle, start prefetches first, then set
* states, and draw at the end.
*/
si_emit_cache_flush(cmd_buffer);
if (has_prefetch && cmd_buffer->state.prefetch_L2_mask) {
/* Only prefetch the vertex shader and VBO descriptors
* in order to start the draw as soon as possible.
*/
radv_emit_prefetch_L2(cmd_buffer, cmd_buffer->state.pipeline, true);
}
radv_upload_graphics_shader_descriptors(cmd_buffer, pipeline_is_dirty);
radv_emit_all_graphics_states(cmd_buffer, info);
}
radv_describe_draw(cmd_buffer);
if (likely(!info->indirect)) {
struct radv_cmd_state *state = &cmd_buffer->state;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
assert(state->pipeline->graphics.vtx_base_sgpr);
if (state->last_num_instances != info->instance_count) {
radeon_emit(cs, PKT3(PKT3_NUM_INSTANCES, 0, false));
radeon_emit(cs, info->instance_count);
state->last_num_instances = info->instance_count;
}
radv_emit_userdata_vertex(cmd_buffer, info, vertex_offset);
}
assert(cmd_buffer->cs->cdw <= cdw_max);
return true;
}
static void
radv_after_draw(struct radv_cmd_buffer *cmd_buffer)
{
const struct radeon_info *rad_info = &cmd_buffer->device->physical_device->rad_info;
bool has_prefetch = cmd_buffer->device->physical_device->rad_info.chip_class >= GFX7;
/* Start prefetches after the draw has been started. Both will
* run in parallel, but starting the draw first is more
* important.
*/
if (has_prefetch && cmd_buffer->state.prefetch_L2_mask) {
radv_emit_prefetch_L2(cmd_buffer, cmd_buffer->state.pipeline, false);
}
/* Workaround for a VGT hang when streamout is enabled.
* It must be done after drawing.
*/
if (cmd_buffer->state.streamout.streamout_enabled &&
(rad_info->family == CHIP_HAWAII || rad_info->family == CHIP_TONGA ||
rad_info->family == CHIP_FIJI)) {
cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VGT_STREAMOUT_SYNC;
}
radv_cmd_buffer_after_draw(cmd_buffer, RADV_CMD_FLAG_PS_PARTIAL_FLUSH);
}
void
radv_CmdDraw(VkCommandBuffer commandBuffer, uint32_t vertexCount, uint32_t instanceCount,
uint32_t firstVertex, uint32_t firstInstance)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_draw_info info;
info.count = vertexCount;
info.instance_count = instanceCount;
info.first_instance = firstInstance;
info.strmout_buffer = NULL;
info.indirect = NULL;
info.indexed = false;
if (!radv_before_draw(cmd_buffer, &info, firstVertex))
return;
radv_emit_direct_draw_packets(cmd_buffer, &info, vertexCount, 0);
radv_after_draw(cmd_buffer);
}
void
radv_CmdDrawIndexed(VkCommandBuffer commandBuffer, uint32_t indexCount, uint32_t instanceCount,
uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_draw_info info;
info.indexed = true;
info.count = indexCount;
info.instance_count = instanceCount;
info.first_index = firstIndex;
info.first_instance = firstInstance;
info.strmout_buffer = NULL;
info.indirect = NULL;
if (!radv_before_draw(cmd_buffer, &info, vertexOffset))
return;
radv_emit_draw_packets_indexed(cmd_buffer, &info, indexCount, firstIndex);
radv_after_draw(cmd_buffer);
}
void
radv_CmdDrawIndirect(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset,
uint32_t drawCount, uint32_t stride)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
struct radv_draw_info info;
info.count = drawCount;
info.indirect = buffer;
info.indirect_offset = offset;
info.stride = stride;
info.strmout_buffer = NULL;
info.count_buffer = NULL;
info.indexed = false;
info.instance_count = 0;
if (!radv_before_draw(cmd_buffer, &info, 0))
return;
radv_emit_indirect_draw_packets(cmd_buffer, &info);
radv_after_draw(cmd_buffer);
}
void
radv_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset,
uint32_t drawCount, uint32_t stride)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
struct radv_draw_info info;
info.indexed = true;
info.count = drawCount;
info.indirect = buffer;
info.indirect_offset = offset;
info.stride = stride;
info.count_buffer = NULL;
info.strmout_buffer = NULL;
info.instance_count = 0;
if (!radv_before_draw(cmd_buffer, &info, 0))
return;
radv_emit_indirect_draw_packets(cmd_buffer, &info);
radv_after_draw(cmd_buffer);
}
void
radv_CmdDrawIndirectCount(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset,
VkBuffer _countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
RADV_FROM_HANDLE(radv_buffer, count_buffer, _countBuffer);
struct radv_draw_info info;
info.count = maxDrawCount;
info.indirect = buffer;
info.indirect_offset = offset;
info.count_buffer = count_buffer;
info.count_buffer_offset = countBufferOffset;
info.stride = stride;
info.strmout_buffer = NULL;
info.indexed = false;
info.instance_count = 0;
if (!radv_before_draw(cmd_buffer, &info, 0))
return;
radv_emit_indirect_draw_packets(cmd_buffer, &info);
radv_after_draw(cmd_buffer);
}
void
radv_CmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer, VkBuffer _buffer,
VkDeviceSize offset, VkBuffer _countBuffer,
VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
RADV_FROM_HANDLE(radv_buffer, count_buffer, _countBuffer);
struct radv_draw_info info;
info.indexed = true;
info.count = maxDrawCount;
info.indirect = buffer;
info.indirect_offset = offset;
info.count_buffer = count_buffer;
info.count_buffer_offset = countBufferOffset;
info.stride = stride;
info.strmout_buffer = NULL;
info.instance_count = 0;
if (!radv_before_draw(cmd_buffer, &info, 0))
return;
radv_emit_indirect_draw_packets(cmd_buffer, &info);
radv_after_draw(cmd_buffer);
}
struct radv_dispatch_info {
/**
* Determine the layout of the grid (in block units) to be used.
*/
uint32_t blocks[3];
/**
* A starting offset for the grid. If unaligned is set, the offset
* must still be aligned.
*/
uint32_t offsets[3];
/**
* Whether it's an unaligned compute dispatch.
*/
bool unaligned;
/**
* Indirect compute parameters resource.
*/
struct radv_buffer *indirect;
uint64_t indirect_offset;
};
static void
radv_emit_dispatch_packets(struct radv_cmd_buffer *cmd_buffer, struct radv_pipeline *pipeline,
const struct radv_dispatch_info *info)
{
struct radv_shader_variant *compute_shader = pipeline->shaders[MESA_SHADER_COMPUTE];
unsigned dispatch_initiator = cmd_buffer->device->dispatch_initiator;
struct radeon_winsys *ws = cmd_buffer->device->ws;
bool predicating = cmd_buffer->state.predicating;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
struct radv_userdata_info *loc;
radv_describe_dispatch(cmd_buffer, info->blocks[0], info->blocks[1], info->blocks[2]);
loc = radv_lookup_user_sgpr(pipeline, MESA_SHADER_COMPUTE, AC_UD_CS_GRID_SIZE);
ASSERTED unsigned cdw_max = radeon_check_space(ws, cs, 25);
if (compute_shader->info.wave_size == 32) {
assert(cmd_buffer->device->physical_device->rad_info.chip_class >= GFX10);
dispatch_initiator |= S_00B800_CS_W32_EN(1);
}
if (info->indirect) {
uint64_t va = radv_buffer_get_va(info->indirect->bo);
va += info->indirect->offset + info->indirect_offset;
radv_cs_add_buffer(ws, cs, info->indirect->bo);
if (loc->sgpr_idx != -1) {
for (unsigned i = 0; i < 3; ++i) {
radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
radeon_emit(cs,
COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_REG));
radeon_emit(cs, (va + 4 * i));
radeon_emit(cs, (va + 4 * i) >> 32);
radeon_emit(cs, ((R_00B900_COMPUTE_USER_DATA_0 + loc->sgpr_idx * 4) >> 2) + i);
radeon_emit(cs, 0);
}
}
if (radv_cmd_buffer_uses_mec(cmd_buffer)) {
radeon_emit(cs, PKT3(PKT3_DISPATCH_INDIRECT, 2, predicating) | PKT3_SHADER_TYPE_S(1));
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit(cs, dispatch_initiator);
} else {
radeon_emit(cs, PKT3(PKT3_SET_BASE, 2, 0) | PKT3_SHADER_TYPE_S(1));
radeon_emit(cs, 1);
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit(cs, PKT3(PKT3_DISPATCH_INDIRECT, 1, predicating) | PKT3_SHADER_TYPE_S(1));
radeon_emit(cs, 0);
radeon_emit(cs, dispatch_initiator);
}
} else {
unsigned blocks[3] = {info->blocks[0], info->blocks[1], info->blocks[2]};
unsigned offsets[3] = {info->offsets[0], info->offsets[1], info->offsets[2]};
if (info->unaligned) {
unsigned *cs_block_size = compute_shader->info.cs.block_size;
unsigned remainder[3];
/* If aligned, these should be an entire block size,
* not 0.
*/
remainder[0] = blocks[0] + cs_block_size[0] - align_u32_npot(blocks[0], cs_block_size[0]);
remainder[1] = blocks[1] + cs_block_size[1] - align_u32_npot(blocks[1], cs_block_size[1]);
remainder[2] = blocks[2] + cs_block_size[2] - align_u32_npot(blocks[2], cs_block_size[2]);
blocks[0] = round_up_u32(blocks[0], cs_block_size[0]);
blocks[1] = round_up_u32(blocks[1], cs_block_size[1]);
blocks[2] = round_up_u32(blocks[2], cs_block_size[2]);
for (unsigned i = 0; i < 3; ++i) {
assert(offsets[i] % cs_block_size[i] == 0);
offsets[i] /= cs_block_size[i];
}
radeon_set_sh_reg_seq(cs, R_00B81C_COMPUTE_NUM_THREAD_X, 3);
radeon_emit(cs, S_00B81C_NUM_THREAD_FULL(cs_block_size[0]) |
S_00B81C_NUM_THREAD_PARTIAL(remainder[0]));
radeon_emit(cs, S_00B81C_NUM_THREAD_FULL(cs_block_size[1]) |
S_00B81C_NUM_THREAD_PARTIAL(remainder[1]));
radeon_emit(cs, S_00B81C_NUM_THREAD_FULL(cs_block_size[2]) |
S_00B81C_NUM_THREAD_PARTIAL(remainder[2]));
dispatch_initiator |= S_00B800_PARTIAL_TG_EN(1);
}
if (loc->sgpr_idx != -1) {
assert(loc->num_sgprs == 3);
radeon_set_sh_reg_seq(cs, R_00B900_COMPUTE_USER_DATA_0 + loc->sgpr_idx * 4, 3);
radeon_emit(cs, blocks[0]);
radeon_emit(cs, blocks[1]);
radeon_emit(cs, blocks[2]);
}
if (offsets[0] || offsets[1] || offsets[2]) {
radeon_set_sh_reg_seq(cs, R_00B810_COMPUTE_START_X, 3);
radeon_emit(cs, offsets[0]);
radeon_emit(cs, offsets[1]);
radeon_emit(cs, offsets[2]);
/* The blocks in the packet are not counts but end values. */
for (unsigned i = 0; i < 3; ++i)
blocks[i] += offsets[i];
} else {
dispatch_initiator |= S_00B800_FORCE_START_AT_000(1);
}
radeon_emit(cs, PKT3(PKT3_DISPATCH_DIRECT, 3, predicating) | PKT3_SHADER_TYPE_S(1));
radeon_emit(cs, blocks[0]);
radeon_emit(cs, blocks[1]);
radeon_emit(cs, blocks[2]);
radeon_emit(cs, dispatch_initiator);
}
assert(cmd_buffer->cs->cdw <= cdw_max);
}
static void
radv_upload_compute_shader_descriptors(struct radv_cmd_buffer *cmd_buffer,
struct radv_pipeline *pipeline,
VkPipelineBindPoint bind_point)
{
radv_flush_descriptors(cmd_buffer, VK_SHADER_STAGE_COMPUTE_BIT, pipeline, bind_point);
radv_flush_constants(cmd_buffer,
bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR
? RADV_RT_STAGE_BITS
: VK_SHADER_STAGE_COMPUTE_BIT,
pipeline, bind_point);
}
static void
radv_dispatch(struct radv_cmd_buffer *cmd_buffer, const struct radv_dispatch_info *info,
struct radv_pipeline *pipeline, VkPipelineBindPoint bind_point)
{
bool has_prefetch = cmd_buffer->device->physical_device->rad_info.chip_class >= GFX7;
bool pipeline_is_dirty = pipeline && pipeline != cmd_buffer->state.emitted_compute_pipeline;
if (cmd_buffer->state.flush_bits &
(RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB |
RADV_CMD_FLAG_PS_PARTIAL_FLUSH | RADV_CMD_FLAG_CS_PARTIAL_FLUSH)) {
/* If we have to wait for idle, set all states first, so that
* all SET packets are processed in parallel with previous draw
* calls. Then upload descriptors, set shader pointers, and
* dispatch, and prefetch at the end. This ensures that the
* time the CUs are idle is very short. (there are only SET_SH
* packets between the wait and the draw)
*/
radv_emit_compute_pipeline(cmd_buffer, pipeline);
si_emit_cache_flush(cmd_buffer);
/* <-- CUs are idle here --> */
radv_upload_compute_shader_descriptors(cmd_buffer, pipeline, bind_point);
radv_emit_dispatch_packets(cmd_buffer, pipeline, info);
/* <-- CUs are busy here --> */
/* Start prefetches after the dispatch has been started. Both
* will run in parallel, but starting the dispatch first is
* more important.
*/
if (has_prefetch && pipeline_is_dirty) {
radv_emit_shader_prefetch(cmd_buffer, pipeline->shaders[MESA_SHADER_COMPUTE]);
}
} else {
/* If we don't wait for idle, start prefetches first, then set
* states, and dispatch at the end.
*/
si_emit_cache_flush(cmd_buffer);
if (has_prefetch && pipeline_is_dirty) {
radv_emit_shader_prefetch(cmd_buffer, pipeline->shaders[MESA_SHADER_COMPUTE]);
}
radv_upload_compute_shader_descriptors(cmd_buffer, pipeline, bind_point);
radv_emit_compute_pipeline(cmd_buffer, pipeline);
radv_emit_dispatch_packets(cmd_buffer, pipeline, info);
}
if (pipeline_is_dirty) {
/* Raytracing uses compute shaders but has separate bind points and pipelines.
* So if we set compute userdata & shader registers we should dirty the raytracing
* ones and the other way around.
*
* We only need to do this when the pipeline is dirty because when we switch between
* the two we always need to switch pipelines.
*/
radv_mark_descriptor_sets_dirty(cmd_buffer, bind_point == VK_PIPELINE_BIND_POINT_COMPUTE
? VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR
: VK_PIPELINE_BIND_POINT_COMPUTE);
}
radv_cmd_buffer_after_draw(cmd_buffer, RADV_CMD_FLAG_CS_PARTIAL_FLUSH);
}
static void
radv_compute_dispatch(struct radv_cmd_buffer *cmd_buffer, const struct radv_dispatch_info *info)
{
radv_dispatch(cmd_buffer, info, cmd_buffer->state.compute_pipeline,
VK_PIPELINE_BIND_POINT_COMPUTE);
}
void
radv_CmdDispatchBase(VkCommandBuffer commandBuffer, uint32_t base_x, uint32_t base_y,
uint32_t base_z, uint32_t x, uint32_t y, uint32_t z)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_dispatch_info info = {0};
info.blocks[0] = x;
info.blocks[1] = y;
info.blocks[2] = z;
info.offsets[0] = base_x;
info.offsets[1] = base_y;
info.offsets[2] = base_z;
radv_compute_dispatch(cmd_buffer, &info);
}
void
radv_CmdDispatch(VkCommandBuffer commandBuffer, uint32_t x, uint32_t y, uint32_t z)
{
radv_CmdDispatchBase(commandBuffer, 0, 0, 0, x, y, z);
}
void
radv_CmdDispatchIndirect(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
struct radv_dispatch_info info = {0};
info.indirect = buffer;
info.indirect_offset = offset;
radv_compute_dispatch(cmd_buffer, &info);
}
void
radv_unaligned_dispatch(struct radv_cmd_buffer *cmd_buffer, uint32_t x, uint32_t y, uint32_t z)
{
struct radv_dispatch_info info = {0};
info.blocks[0] = x;
info.blocks[1] = y;
info.blocks[2] = z;
info.unaligned = 1;
radv_compute_dispatch(cmd_buffer, &info);
}
static void
radv_rt_dispatch(struct radv_cmd_buffer *cmd_buffer, const struct radv_dispatch_info *info)
{
radv_dispatch(cmd_buffer, info, cmd_buffer->state.rt_pipeline,
VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR);
}
static bool
radv_rt_bind_tables(struct radv_cmd_buffer *cmd_buffer,
const VkStridedDeviceAddressRegionKHR *tables)
{
struct radv_pipeline *pipeline = cmd_buffer->state.rt_pipeline;
uint32_t base_reg;
void *ptr;
uint32_t *desc_ptr;
uint32_t offset;
if (!radv_cmd_buffer_upload_alloc(cmd_buffer, 64, &offset, &ptr))
return false;
/* For the descriptor format. */
assert(cmd_buffer->device->physical_device->rad_info.chip_class >= GFX10);
desc_ptr = ptr;
for (unsigned i = 0; i < 4; ++i, desc_ptr += 4) {
uint32_t rsrc_word3 =
S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_UINT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_STRUCTURED) | S_008F0C_RESOURCE_LEVEL(1);
desc_ptr[0] = tables[i].deviceAddress;
desc_ptr[1] = S_008F04_BASE_ADDRESS_HI(tables[i].deviceAddress >> 32) |
S_008F04_STRIDE(tables[i].stride);
desc_ptr[2] = 0xffffffffu;
desc_ptr[3] = rsrc_word3;
}
uint64_t va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + offset;
struct radv_userdata_info *loc =
radv_lookup_user_sgpr(pipeline, MESA_SHADER_COMPUTE, AC_UD_CS_SBT_DESCRIPTORS);
if (loc->sgpr_idx == -1)
return true;
base_reg = pipeline->user_data_0[MESA_SHADER_COMPUTE];
radv_emit_shader_pointer(cmd_buffer->device, cmd_buffer->cs, base_reg + loc->sgpr_idx * 4, va,
false);
return true;
}
void
radv_CmdTraceRaysKHR(VkCommandBuffer commandBuffer,
const VkStridedDeviceAddressRegionKHR *pRaygenShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pMissShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pHitShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pCallableShaderBindingTable,
uint32_t width, uint32_t height, uint32_t depth)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_dispatch_info info = {0};
info.blocks[0] = width;
info.blocks[1] = height;
info.blocks[2] = depth;
info.unaligned = 1;
const VkStridedDeviceAddressRegionKHR tables[] = {
*pRaygenShaderBindingTable,
*pMissShaderBindingTable,
*pHitShaderBindingTable,
*pCallableShaderBindingTable,
};
if (!radv_rt_bind_tables(cmd_buffer, tables)) {
return;
}
radv_rt_dispatch(cmd_buffer, &info);
}
void
radv_cmd_buffer_end_render_pass(struct radv_cmd_buffer *cmd_buffer)
{
vk_free(&cmd_buffer->pool->alloc, cmd_buffer->state.attachments);
vk_free(&cmd_buffer->pool->alloc, cmd_buffer->state.subpass_sample_locs);
cmd_buffer->state.pass = NULL;
cmd_buffer->state.subpass = NULL;
cmd_buffer->state.attachments = NULL;
cmd_buffer->state.framebuffer = NULL;
cmd_buffer->state.subpass_sample_locs = NULL;
}
void
radv_CmdEndRenderPass2(VkCommandBuffer commandBuffer, const VkSubpassEndInfo *pSubpassEndInfo)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
radv_subpass_barrier(cmd_buffer, &cmd_buffer->state.pass->end_barrier);
radv_cmd_buffer_end_subpass(cmd_buffer);
radv_cmd_buffer_end_render_pass(cmd_buffer);
}
/*
* For HTILE we have the following interesting clear words:
* 0xfffff30f: Uncompressed, full depth range, for depth+stencil HTILE
* 0xfffc000f: Uncompressed, full depth range, for depth only HTILE.
* 0xfffffff0: Clear depth to 1.0
* 0x00000000: Clear depth to 0.0
*/
static void
radv_initialize_htile(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
const VkImageSubresourceRange *range)
{
VkImageAspectFlags aspects = VK_IMAGE_ASPECT_DEPTH_BIT;
struct radv_cmd_state *state = &cmd_buffer->state;
uint32_t htile_value = radv_get_htile_initial_value(cmd_buffer->device, image);
VkClearDepthStencilValue value = {0};
struct radv_barrier_data barrier = {0};
barrier.layout_transitions.init_mask_ram = 1;
radv_describe_layout_transition(cmd_buffer, &barrier);
/* Transitioning from LAYOUT_UNDEFINED layout not everyone is consistent
* in considering previous rendering work for WAW hazards. */
state->flush_bits |=
radv_src_access_flush(cmd_buffer, VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, image);
state->flush_bits |= radv_clear_htile(cmd_buffer, image, range, htile_value);
if (vk_format_has_stencil(image->vk_format))
aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
radv_set_ds_clear_metadata(cmd_buffer, image, range, value, aspects);
if (radv_image_is_tc_compat_htile(image)) {
/* Initialize the TC-compat metada value to 0 because by
* default DB_Z_INFO.RANGE_PRECISION is set to 1, and we only
* need have to conditionally update its value when performing
* a fast depth clear.
*/
radv_set_tc_compat_zrange_metadata(cmd_buffer, image, range, 0);
}
}
static void
radv_handle_depth_image_transition(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
VkImageLayout src_layout, bool src_render_loop,
VkImageLayout dst_layout, bool dst_render_loop,
unsigned src_queue_mask, unsigned dst_queue_mask,
const VkImageSubresourceRange *range,
struct radv_sample_locations_state *sample_locs)
{
struct radv_device *device = cmd_buffer->device;
if (!radv_htile_enabled(image, range->baseMipLevel))
return;
if (src_layout == VK_IMAGE_LAYOUT_UNDEFINED) {
radv_initialize_htile(cmd_buffer, image, range);
} else if (!radv_layout_is_htile_compressed(device, image, src_layout, src_render_loop,
src_queue_mask) &&
radv_layout_is_htile_compressed(device, image, dst_layout, dst_render_loop,
dst_queue_mask)) {
radv_initialize_htile(cmd_buffer, image, range);
} else if (radv_layout_is_htile_compressed(device, image, src_layout, src_render_loop,
src_queue_mask) &&
!radv_layout_is_htile_compressed(device, image, dst_layout, dst_render_loop,
dst_queue_mask)) {
cmd_buffer->state.flush_bits |=
RADV_CMD_FLAG_FLUSH_AND_INV_DB | RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
radv_decompress_depth_stencil(cmd_buffer, image, range, sample_locs);
cmd_buffer->state.flush_bits |=
RADV_CMD_FLAG_FLUSH_AND_INV_DB | RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
}
}
static uint32_t
radv_init_cmask(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
const VkImageSubresourceRange *range, uint32_t value)
{
struct radv_barrier_data barrier = {0};
barrier.layout_transitions.init_mask_ram = 1;
radv_describe_layout_transition(cmd_buffer, &barrier);
return radv_clear_cmask(cmd_buffer, image, range, value);
}
uint32_t
radv_init_fmask(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
const VkImageSubresourceRange *range)
{
static const uint32_t fmask_clear_values[4] = {0x00000000, 0x02020202, 0xE4E4E4E4, 0x76543210};
uint32_t log2_samples = util_logbase2(image->info.samples);
uint32_t value = fmask_clear_values[log2_samples];
struct radv_barrier_data barrier = {0};
barrier.layout_transitions.init_mask_ram = 1;
radv_describe_layout_transition(cmd_buffer, &barrier);
return radv_clear_fmask(cmd_buffer, image, range, value);
}
uint32_t
radv_init_dcc(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
const VkImageSubresourceRange *range, uint32_t value)
{
struct radv_barrier_data barrier = {0};
uint32_t flush_bits = 0;
unsigned size = 0;
barrier.layout_transitions.init_mask_ram = 1;
radv_describe_layout_transition(cmd_buffer, &barrier);
flush_bits |= radv_clear_dcc(cmd_buffer, image, range, value);
if (cmd_buffer->device->physical_device->rad_info.chip_class == GFX8) {
/* When DCC is enabled with mipmaps, some levels might not
* support fast clears and we have to initialize them as "fully
* expanded".
*/
/* Compute the size of all fast clearable DCC levels. */
for (unsigned i = 0; i < image->planes[0].surface.num_meta_levels; i++) {
struct legacy_surf_dcc_level *dcc_level = &image->planes[0].surface.u.legacy.color.dcc_level[i];
unsigned dcc_fast_clear_size =
dcc_level->dcc_slice_fast_clear_size * image->info.array_size;
if (!dcc_fast_clear_size)
break;
size = dcc_level->dcc_offset + dcc_fast_clear_size;
}
/* Initialize the mipmap levels without DCC. */
if (size != image->planes[0].surface.meta_size) {
flush_bits |= radv_fill_buffer(cmd_buffer, image, image->bo,
image->offset + image->planes[0].surface.meta_offset + size,
image->planes[0].surface.meta_size - size, 0xffffffff);
}
}
return flush_bits;
}
/**
* Initialize DCC/FMASK/CMASK metadata for a color image.
*/
static void
radv_init_color_image_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
VkImageLayout src_layout, bool src_render_loop,
VkImageLayout dst_layout, bool dst_render_loop,
unsigned src_queue_mask, unsigned dst_queue_mask,
const VkImageSubresourceRange *range)
{
uint32_t flush_bits = 0;
/* Transitioning from LAYOUT_UNDEFINED layout not everyone is
* consistent in considering previous rendering work for WAW hazards.
*/
cmd_buffer->state.flush_bits |=
radv_src_access_flush(cmd_buffer, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, image);
if (radv_image_has_cmask(image)) {
uint32_t value;
if (cmd_buffer->device->physical_device->rad_info.chip_class == GFX9) {
/* TODO: Fix clearing CMASK layers on GFX9. */
if (radv_image_is_tc_compat_cmask(image) ||
(radv_image_has_fmask(image) &&
radv_layout_can_fast_clear(cmd_buffer->device, image, dst_layout,
dst_render_loop, dst_queue_mask))) {
value = 0xccccccccu;
} else {
value = 0xffffffffu;
}
} else {
static const uint32_t cmask_clear_values[4] = {0xffffffff, 0xdddddddd, 0xeeeeeeee, 0xffffffff};
uint32_t log2_samples = util_logbase2(image->info.samples);
value = cmask_clear_values[log2_samples];
}
flush_bits |= radv_init_cmask(cmd_buffer, image, range, value);
}
if (radv_image_has_fmask(image)) {
flush_bits |= radv_init_fmask(cmd_buffer, image, range);
}
if (radv_dcc_enabled(image, range->baseMipLevel)) {
uint32_t value = 0xffffffffu; /* Fully expanded mode. */
if (radv_layout_dcc_compressed(cmd_buffer->device, image, dst_layout, dst_render_loop,
dst_queue_mask)) {
value = 0u;
}
flush_bits |= radv_init_dcc(cmd_buffer, image, range, value);
}
if (radv_image_has_cmask(image) || radv_dcc_enabled(image, range->baseMipLevel)) {
radv_update_fce_metadata(cmd_buffer, image, range, false);
uint32_t color_values[2] = {0};
radv_set_color_clear_metadata(cmd_buffer, image, range, color_values);
}
cmd_buffer->state.flush_bits |= flush_bits;
}
static void
radv_retile_transition(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
VkImageLayout src_layout, VkImageLayout dst_layout, unsigned dst_queue_mask)
{
if (src_layout != VK_IMAGE_LAYOUT_PRESENT_SRC_KHR &&
(dst_layout == VK_IMAGE_LAYOUT_PRESENT_SRC_KHR ||
(dst_queue_mask & (1u << RADV_QUEUE_FOREIGN))))
radv_retile_dcc(cmd_buffer, image);
}
static bool
radv_image_need_retile(const struct radv_image *image)
{
return image->planes[0].surface.display_dcc_offset &&
image->planes[0].surface.display_dcc_offset != image->planes[0].surface.meta_offset;
}
/**
* Handle color image transitions for DCC/FMASK/CMASK.
*/
static void
radv_handle_color_image_transition(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
VkImageLayout src_layout, bool src_render_loop,
VkImageLayout dst_layout, bool dst_render_loop,
unsigned src_queue_mask, unsigned dst_queue_mask,
const VkImageSubresourceRange *range)
{
bool dcc_decompressed = false, fast_clear_flushed = false;
if (!radv_image_has_cmask(image) && !radv_image_has_fmask(image) &&
!radv_dcc_enabled(image, range->baseMipLevel))
return;
if (src_layout == VK_IMAGE_LAYOUT_UNDEFINED) {
radv_init_color_image_metadata(cmd_buffer, image, src_layout, src_render_loop, dst_layout,
dst_render_loop, src_queue_mask, dst_queue_mask, range);
if (radv_image_need_retile(image))
radv_retile_transition(cmd_buffer, image, src_layout, dst_layout, dst_queue_mask);
return;
}
if (radv_dcc_enabled(image, range->baseMipLevel)) {
if (src_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) {
cmd_buffer->state.flush_bits |= radv_init_dcc(cmd_buffer, image, range, 0xffffffffu);
} else if (radv_layout_dcc_compressed(cmd_buffer->device, image, src_layout, src_render_loop,
src_queue_mask) &&
!radv_layout_dcc_compressed(cmd_buffer->device, image, dst_layout, dst_render_loop,
dst_queue_mask)) {
radv_decompress_dcc(cmd_buffer, image, range);
dcc_decompressed = true;
} else if (radv_layout_can_fast_clear(cmd_buffer->device, image, src_layout, src_render_loop,
src_queue_mask) &&
!radv_layout_can_fast_clear(cmd_buffer->device, image, dst_layout, dst_render_loop,
dst_queue_mask)) {
radv_fast_clear_flush_image_inplace(cmd_buffer, image, range);
fast_clear_flushed = true;
}
if (radv_image_need_retile(image))
radv_retile_transition(cmd_buffer, image, src_layout, dst_layout, dst_queue_mask);
} else if (radv_image_has_cmask(image) || radv_image_has_fmask(image)) {
if (radv_layout_can_fast_clear(cmd_buffer->device, image, src_layout, src_render_loop,
src_queue_mask) &&
!radv_layout_can_fast_clear(cmd_buffer->device, image, dst_layout, dst_render_loop,
dst_queue_mask)) {
radv_fast_clear_flush_image_inplace(cmd_buffer, image, range);
fast_clear_flushed = true;
}
}
/* MSAA color decompress. */
if (radv_image_has_fmask(image) &&
(image->usage & (VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT)) &&
radv_layout_fmask_compressed(cmd_buffer->device, image, src_layout, src_queue_mask) &&
!radv_layout_fmask_compressed(cmd_buffer->device, image, dst_layout, dst_queue_mask)) {
if (radv_dcc_enabled(image, range->baseMipLevel) &&
!radv_image_use_dcc_image_stores(cmd_buffer->device, image) && !dcc_decompressed) {
/* A DCC decompress is required before expanding FMASK
* when DCC stores aren't supported to avoid being in
* a state where DCC is compressed and the main
* surface is uncompressed.
*/
radv_decompress_dcc(cmd_buffer, image, range);
} else if (!fast_clear_flushed) {
/* A FMASK decompress is required before expanding
* FMASK.
*/
radv_fast_clear_flush_image_inplace(cmd_buffer, image, range);
}
struct radv_barrier_data barrier = {0};
barrier.layout_transitions.fmask_color_expand = 1;
radv_describe_layout_transition(cmd_buffer, &barrier);
radv_expand_fmask_image_inplace(cmd_buffer, image, range);
}
}
static void
radv_handle_image_transition(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
VkImageLayout src_layout, bool src_render_loop,
VkImageLayout dst_layout, bool dst_render_loop, uint32_t src_family,
uint32_t dst_family, const VkImageSubresourceRange *range,
struct radv_sample_locations_state *sample_locs)
{
if (image->exclusive && src_family != dst_family) {
/* This is an acquire or a release operation and there will be
* a corresponding release/acquire. Do the transition in the
* most flexible queue. */
assert(src_family == cmd_buffer->queue_family_index ||
dst_family == cmd_buffer->queue_family_index);
if (src_family == VK_QUEUE_FAMILY_EXTERNAL || src_family == VK_QUEUE_FAMILY_FOREIGN_EXT)
return;
if (cmd_buffer->queue_family_index == RADV_QUEUE_TRANSFER)
return;
if (cmd_buffer->queue_family_index == RADV_QUEUE_COMPUTE &&
(src_family == RADV_QUEUE_GENERAL || dst_family == RADV_QUEUE_GENERAL))
return;
}
if (src_layout == dst_layout && src_render_loop == dst_render_loop)
return;
unsigned src_queue_mask =
radv_image_queue_family_mask(image, src_family, cmd_buffer->queue_family_index);
unsigned dst_queue_mask =
radv_image_queue_family_mask(image, dst_family, cmd_buffer->queue_family_index);
if (vk_format_has_depth(image->vk_format)) {
radv_handle_depth_image_transition(cmd_buffer, image, src_layout, src_render_loop, dst_layout,
dst_render_loop, src_queue_mask, dst_queue_mask, range,
sample_locs);
} else {
radv_handle_color_image_transition(cmd_buffer, image, src_layout, src_render_loop, dst_layout,
dst_render_loop, src_queue_mask, dst_queue_mask, range);
}
}
struct radv_barrier_info {
enum rgp_barrier_reason reason;
uint32_t eventCount;
const VkEvent *pEvents;
VkPipelineStageFlags srcStageMask;
VkPipelineStageFlags dstStageMask;
};
static void
radv_barrier(struct radv_cmd_buffer *cmd_buffer, uint32_t memoryBarrierCount,
const VkMemoryBarrier *pMemoryBarriers, uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier *pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers, const struct radv_barrier_info *info)
{
struct radeon_cmdbuf *cs = cmd_buffer->cs;
enum radv_cmd_flush_bits src_flush_bits = 0;
enum radv_cmd_flush_bits dst_flush_bits = 0;
radv_describe_barrier_start(cmd_buffer, info->reason);
for (unsigned i = 0; i < info->eventCount; ++i) {
RADV_FROM_HANDLE(radv_event, event, info->pEvents[i]);
uint64_t va = radv_buffer_get_va(event->bo);
radv_cs_add_buffer(cmd_buffer->device->ws, cs, event->bo);
ASSERTED unsigned cdw_max = radeon_check_space(cmd_buffer->device->ws, cs, 7);
radv_cp_wait_mem(cs, WAIT_REG_MEM_EQUAL, va, 1, 0xffffffff);
assert(cmd_buffer->cs->cdw <= cdw_max);
}
for (uint32_t i = 0; i < memoryBarrierCount; i++) {
src_flush_bits |= radv_src_access_flush(cmd_buffer, pMemoryBarriers[i].srcAccessMask, NULL);
dst_flush_bits |= radv_dst_access_flush(cmd_buffer, pMemoryBarriers[i].dstAccessMask, NULL);
}
for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
src_flush_bits |=
radv_src_access_flush(cmd_buffer, pBufferMemoryBarriers[i].srcAccessMask, NULL);
dst_flush_bits |=
radv_dst_access_flush(cmd_buffer, pBufferMemoryBarriers[i].dstAccessMask, NULL);
}
for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
RADV_FROM_HANDLE(radv_image, image, pImageMemoryBarriers[i].image);
src_flush_bits |=
radv_src_access_flush(cmd_buffer, pImageMemoryBarriers[i].srcAccessMask, image);
dst_flush_bits |=
radv_dst_access_flush(cmd_buffer, pImageMemoryBarriers[i].dstAccessMask, image);
}
/* The Vulkan spec 1.1.98 says:
*
* "An execution dependency with only
* VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT in the destination stage mask
* will only prevent that stage from executing in subsequently
* submitted commands. As this stage does not perform any actual
* execution, this is not observable - in effect, it does not delay
* processing of subsequent commands. Similarly an execution dependency
* with only VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT in the source stage mask
* will effectively not wait for any prior commands to complete."
*/
if (info->dstStageMask != VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT)
radv_stage_flush(cmd_buffer, info->srcStageMask);
cmd_buffer->state.flush_bits |= src_flush_bits;
for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
RADV_FROM_HANDLE(radv_image, image, pImageMemoryBarriers[i].image);
const struct VkSampleLocationsInfoEXT *sample_locs_info =
vk_find_struct_const(pImageMemoryBarriers[i].pNext, SAMPLE_LOCATIONS_INFO_EXT);
struct radv_sample_locations_state sample_locations = {0};
if (sample_locs_info) {
assert(image->flags & VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT);
sample_locations.per_pixel = sample_locs_info->sampleLocationsPerPixel;
sample_locations.grid_size = sample_locs_info->sampleLocationGridSize;
sample_locations.count = sample_locs_info->sampleLocationsCount;
typed_memcpy(&sample_locations.locations[0], sample_locs_info->pSampleLocations,
sample_locs_info->sampleLocationsCount);
}
radv_handle_image_transition(
cmd_buffer, image, pImageMemoryBarriers[i].oldLayout,
false, /* Outside of a renderpass we are never in a renderloop */
pImageMemoryBarriers[i].newLayout,
false, /* Outside of a renderpass we are never in a renderloop */
pImageMemoryBarriers[i].srcQueueFamilyIndex, pImageMemoryBarriers[i].dstQueueFamilyIndex,
&pImageMemoryBarriers[i].subresourceRange, sample_locs_info ? &sample_locations : NULL);
}
/* Make sure CP DMA is idle because the driver might have performed a
* DMA operation for copying or filling buffers/images.
*/
if (info->srcStageMask & (VK_PIPELINE_STAGE_TRANSFER_BIT | VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT))
si_cp_dma_wait_for_idle(cmd_buffer);
cmd_buffer->state.flush_bits |= dst_flush_bits;
radv_describe_barrier_end(cmd_buffer);
}
void
radv_CmdPipelineBarrier(VkCommandBuffer commandBuffer, VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags destStageMask, VkBool32 byRegion,
uint32_t memoryBarrierCount, const VkMemoryBarrier *pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier *pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_barrier_info info;
info.reason = RGP_BARRIER_EXTERNAL_CMD_PIPELINE_BARRIER;
info.eventCount = 0;
info.pEvents = NULL;
info.srcStageMask = srcStageMask;
info.dstStageMask = destStageMask;
radv_barrier(cmd_buffer, memoryBarrierCount, pMemoryBarriers, bufferMemoryBarrierCount,
pBufferMemoryBarriers, imageMemoryBarrierCount, pImageMemoryBarriers, &info);
}
static void
write_event(struct radv_cmd_buffer *cmd_buffer, struct radv_event *event,
VkPipelineStageFlags stageMask, unsigned value)
{
struct radeon_cmdbuf *cs = cmd_buffer->cs;
uint64_t va = radv_buffer_get_va(event->bo);
si_emit_cache_flush(cmd_buffer);
radv_cs_add_buffer(cmd_buffer->device->ws, cs, event->bo);
ASSERTED unsigned cdw_max = radeon_check_space(cmd_buffer->device->ws, cs, 28);
/* Flags that only require a top-of-pipe event. */
VkPipelineStageFlags top_of_pipe_flags = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
/* Flags that only require a post-index-fetch event. */
VkPipelineStageFlags post_index_fetch_flags =
top_of_pipe_flags | VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT | VK_PIPELINE_STAGE_VERTEX_INPUT_BIT;
/* Flags that only require signaling post PS. */
VkPipelineStageFlags post_ps_flags =
post_index_fetch_flags | VK_PIPELINE_STAGE_VERTEX_SHADER_BIT |
VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT |
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT | VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT |
VK_PIPELINE_STAGE_TRANSFORM_FEEDBACK_BIT_EXT |
VK_PIPELINE_STAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR |
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
/* Flags that only require signaling post CS. */
VkPipelineStageFlags post_cs_flags = VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT;
/* Make sure CP DMA is idle because the driver might have performed a
* DMA operation for copying or filling buffers/images.
*/
if (stageMask & (VK_PIPELINE_STAGE_TRANSFER_BIT | VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT))
si_cp_dma_wait_for_idle(cmd_buffer);
if (!(stageMask & ~top_of_pipe_flags)) {
/* Just need to sync the PFP engine. */
radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 3, 0));
radeon_emit(cs, S_370_DST_SEL(V_370_MEM) | S_370_WR_CONFIRM(1) | S_370_ENGINE_SEL(V_370_PFP));
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit(cs, value);
} else if (!(stageMask & ~post_index_fetch_flags)) {
/* Sync ME because PFP reads index and indirect buffers. */
radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 3, 0));
radeon_emit(cs, S_370_DST_SEL(V_370_MEM) | S_370_WR_CONFIRM(1) | S_370_ENGINE_SEL(V_370_ME));
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit(cs, value);
} else {
unsigned event_type;
if (!(stageMask & ~post_ps_flags)) {
/* Sync previous fragment shaders. */
event_type = V_028A90_PS_DONE;
} else if (!(stageMask & ~post_cs_flags)) {
/* Sync previous compute shaders. */
event_type = V_028A90_CS_DONE;
} else {
/* Otherwise, sync all prior GPU work. */
event_type = V_028A90_BOTTOM_OF_PIPE_TS;
}
si_cs_emit_write_event_eop(cs, cmd_buffer->device->physical_device->rad_info.chip_class,
radv_cmd_buffer_uses_mec(cmd_buffer), event_type, 0,
EOP_DST_SEL_MEM, EOP_DATA_SEL_VALUE_32BIT, va, value,
cmd_buffer->gfx9_eop_bug_va);
}
assert(cmd_buffer->cs->cdw <= cdw_max);
}
void
radv_CmdSetEvent(VkCommandBuffer commandBuffer, VkEvent _event, VkPipelineStageFlags stageMask)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_event, event, _event);
write_event(cmd_buffer, event, stageMask, 1);
}
void
radv_CmdResetEvent(VkCommandBuffer commandBuffer, VkEvent _event, VkPipelineStageFlags stageMask)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_event, event, _event);
write_event(cmd_buffer, event, stageMask, 0);
}
void
radv_CmdWaitEvents(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent *pEvents,
VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask,
uint32_t memoryBarrierCount, const VkMemoryBarrier *pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier *pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_barrier_info info;
info.reason = RGP_BARRIER_EXTERNAL_CMD_WAIT_EVENTS;
info.eventCount = eventCount;
info.pEvents = pEvents;
info.srcStageMask = 0;
radv_barrier(cmd_buffer, memoryBarrierCount, pMemoryBarriers, bufferMemoryBarrierCount,
pBufferMemoryBarriers, imageMemoryBarrierCount, pImageMemoryBarriers, &info);
}
void
radv_CmdSetDeviceMask(VkCommandBuffer commandBuffer, uint32_t deviceMask)
{
/* No-op */
}
/* VK_EXT_conditional_rendering */
void
radv_CmdBeginConditionalRenderingEXT(
VkCommandBuffer commandBuffer,
const VkConditionalRenderingBeginInfoEXT *pConditionalRenderingBegin)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_buffer, buffer, pConditionalRenderingBegin->buffer);
struct radeon_cmdbuf *cs = cmd_buffer->cs;
unsigned pred_op = PREDICATION_OP_BOOL32;
bool draw_visible = true;
uint64_t va;
va = radv_buffer_get_va(buffer->bo) + pConditionalRenderingBegin->offset;
/* By default, if the 32-bit value at offset in buffer memory is zero,
* then the rendering commands are discarded, otherwise they are
* executed as normal. If the inverted flag is set, all commands are
* discarded if the value is non zero.
*/
if (pConditionalRenderingBegin->flags & VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT) {
draw_visible = false;
}
si_emit_cache_flush(cmd_buffer);
if (cmd_buffer->queue_family_index == RADV_QUEUE_GENERAL &&
!cmd_buffer->device->physical_device->rad_info.has_32bit_predication) {
uint64_t pred_value = 0, pred_va;
unsigned pred_offset;
/* From the Vulkan spec 1.1.107:
*
* "If the 32-bit value at offset in buffer memory is zero,
* then the rendering commands are discarded, otherwise they
* are executed as normal. If the value of the predicate in
* buffer memory changes while conditional rendering is
* active, the rendering commands may be discarded in an
* implementation-dependent way. Some implementations may
* latch the value of the predicate upon beginning conditional
* rendering while others may read it before every rendering
* command."
*
* But, the AMD hardware treats the predicate as a 64-bit
* value which means we need a workaround in the driver.
* Luckily, it's not required to support if the value changes
* when predication is active.
*
* The workaround is as follows:
* 1) allocate a 64-value in the upload BO and initialize it
* to 0
* 2) copy the 32-bit predicate value to the upload BO
* 3) use the new allocated VA address for predication
*
* Based on the conditionalrender demo, it's faster to do the
* COPY_DATA in ME (+ sync PFP) instead of PFP.
*/
radv_cmd_buffer_upload_data(cmd_buffer, 8, &pred_value, &pred_offset);
pred_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + pred_offset;
radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) |
COPY_DATA_WR_CONFIRM);
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit(cs, pred_va);
radeon_emit(cs, pred_va >> 32);
radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
radeon_emit(cs, 0);
va = pred_va;
pred_op = PREDICATION_OP_BOOL64;
}
/* Enable predication for this command buffer. */
si_emit_set_predication_state(cmd_buffer, draw_visible, pred_op, va);
cmd_buffer->state.predicating = true;
/* Store conditional rendering user info. */
cmd_buffer->state.predication_type = draw_visible;
cmd_buffer->state.predication_op = pred_op;
cmd_buffer->state.predication_va = va;
}
void
radv_CmdEndConditionalRenderingEXT(VkCommandBuffer commandBuffer)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
/* Disable predication for this command buffer. */
si_emit_set_predication_state(cmd_buffer, false, 0, 0);
cmd_buffer->state.predicating = false;
/* Reset conditional rendering user info. */
cmd_buffer->state.predication_type = -1;
cmd_buffer->state.predication_op = 0;
cmd_buffer->state.predication_va = 0;
}
/* VK_EXT_transform_feedback */
void
radv_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer, uint32_t firstBinding,
uint32_t bindingCount, const VkBuffer *pBuffers,
const VkDeviceSize *pOffsets, const VkDeviceSize *pSizes)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_streamout_binding *sb = cmd_buffer->streamout_bindings;
uint8_t enabled_mask = 0;
assert(firstBinding + bindingCount <= MAX_SO_BUFFERS);
for (uint32_t i = 0; i < bindingCount; i++) {
uint32_t idx = firstBinding + i;
sb[idx].buffer = radv_buffer_from_handle(pBuffers[i]);
sb[idx].offset = pOffsets[i];
if (!pSizes || pSizes[i] == VK_WHOLE_SIZE) {
sb[idx].size = sb[idx].buffer->size - sb[idx].offset;
} else {
sb[idx].size = pSizes[i];
}
radv_cs_add_buffer(cmd_buffer->device->ws, cmd_buffer->cs, sb[idx].buffer->bo);
enabled_mask |= 1 << idx;
}
cmd_buffer->state.streamout.enabled_mask |= enabled_mask;
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_STREAMOUT_BUFFER;
}
static void
radv_emit_streamout_enable(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_streamout_state *so = &cmd_buffer->state.streamout;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
radeon_set_context_reg_seq(cs, R_028B94_VGT_STRMOUT_CONFIG, 2);
radeon_emit(cs, S_028B94_STREAMOUT_0_EN(so->streamout_enabled) | S_028B94_RAST_STREAM(0) |
S_028B94_STREAMOUT_1_EN(so->streamout_enabled) |
S_028B94_STREAMOUT_2_EN(so->streamout_enabled) |
S_028B94_STREAMOUT_3_EN(so->streamout_enabled));
radeon_emit(cs, so->hw_enabled_mask & so->enabled_stream_buffers_mask);
cmd_buffer->state.context_roll_without_scissor_emitted = true;
}
static void
radv_set_streamout_enable(struct radv_cmd_buffer *cmd_buffer, bool enable)
{
struct radv_streamout_state *so = &cmd_buffer->state.streamout;
bool old_streamout_enabled = so->streamout_enabled;
uint32_t old_hw_enabled_mask = so->hw_enabled_mask;
so->streamout_enabled = enable;
so->hw_enabled_mask = so->enabled_mask | (so->enabled_mask << 4) | (so->enabled_mask << 8) |
(so->enabled_mask << 12);
if (!cmd_buffer->device->physical_device->use_ngg_streamout &&
((old_streamout_enabled != so->streamout_enabled) ||
(old_hw_enabled_mask != so->hw_enabled_mask)))
radv_emit_streamout_enable(cmd_buffer);
if (cmd_buffer->device->physical_device->use_ngg_streamout) {
cmd_buffer->gds_needed = true;
cmd_buffer->gds_oa_needed = true;
}
}
static void
radv_flush_vgt_streamout(struct radv_cmd_buffer *cmd_buffer)
{
struct radeon_cmdbuf *cs = cmd_buffer->cs;
unsigned reg_strmout_cntl;
/* The register is at different places on different ASICs. */
if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX7) {
reg_strmout_cntl = R_0300FC_CP_STRMOUT_CNTL;
radeon_set_uconfig_reg(cs, reg_strmout_cntl, 0);
} else {
reg_strmout_cntl = R_0084FC_CP_STRMOUT_CNTL;
radeon_set_config_reg(cs, reg_strmout_cntl, 0);
}
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_SO_VGTSTREAMOUT_FLUSH) | EVENT_INDEX(0));
radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, 0));
radeon_emit(cs,
WAIT_REG_MEM_EQUAL); /* wait until the register is equal to the reference value */
radeon_emit(cs, reg_strmout_cntl >> 2); /* register */
radeon_emit(cs, 0);
radeon_emit(cs, S_0084FC_OFFSET_UPDATE_DONE(1)); /* reference value */
radeon_emit(cs, S_0084FC_OFFSET_UPDATE_DONE(1)); /* mask */
radeon_emit(cs, 4); /* poll interval */
}
static void
radv_emit_streamout_begin(struct radv_cmd_buffer *cmd_buffer, uint32_t firstCounterBuffer,
uint32_t counterBufferCount, const VkBuffer *pCounterBuffers,
const VkDeviceSize *pCounterBufferOffsets)
{
struct radv_streamout_binding *sb = cmd_buffer->streamout_bindings;
struct radv_streamout_state *so = &cmd_buffer->state.streamout;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
radv_flush_vgt_streamout(cmd_buffer);
assert(firstCounterBuffer + counterBufferCount <= MAX_SO_BUFFERS);
u_foreach_bit(i, so->enabled_mask)
{
int32_t counter_buffer_idx = i - firstCounterBuffer;
if (counter_buffer_idx >= 0 && counter_buffer_idx >= counterBufferCount)
counter_buffer_idx = -1;
/* AMD GCN binds streamout buffers as shader resources.
* VGT only counts primitives and tells the shader through
* SGPRs what to do.
*/
radeon_set_context_reg_seq(cs, R_028AD0_VGT_STRMOUT_BUFFER_SIZE_0 + 16 * i, 2);
radeon_emit(cs, sb[i].size >> 2); /* BUFFER_SIZE (in DW) */
radeon_emit(cs, so->stride_in_dw[i]); /* VTX_STRIDE (in DW) */
cmd_buffer->state.context_roll_without_scissor_emitted = true;
if (counter_buffer_idx >= 0 && pCounterBuffers && pCounterBuffers[counter_buffer_idx]) {
/* The array of counter buffers is optional. */
RADV_FROM_HANDLE(radv_buffer, buffer, pCounterBuffers[counter_buffer_idx]);
uint64_t va = radv_buffer_get_va(buffer->bo);
uint64_t counter_buffer_offset = 0;
if (pCounterBufferOffsets)
counter_buffer_offset = pCounterBufferOffsets[counter_buffer_idx];
va += buffer->offset + counter_buffer_offset;
/* Append */
radeon_emit(cs, PKT3(PKT3_STRMOUT_BUFFER_UPDATE, 4, 0));
radeon_emit(cs, STRMOUT_SELECT_BUFFER(i) | STRMOUT_DATA_TYPE(1) | /* offset in bytes */
STRMOUT_OFFSET_SOURCE(STRMOUT_OFFSET_FROM_MEM)); /* control */
radeon_emit(cs, 0); /* unused */
radeon_emit(cs, 0); /* unused */
radeon_emit(cs, va); /* src address lo */
radeon_emit(cs, va >> 32); /* src address hi */
radv_cs_add_buffer(cmd_buffer->device->ws, cs, buffer->bo);
} else {
/* Start from the beginning. */
radeon_emit(cs, PKT3(PKT3_STRMOUT_BUFFER_UPDATE, 4, 0));
radeon_emit(cs, STRMOUT_SELECT_BUFFER(i) | STRMOUT_DATA_TYPE(1) | /* offset in bytes */
STRMOUT_OFFSET_SOURCE(STRMOUT_OFFSET_FROM_PACKET)); /* control */
radeon_emit(cs, 0); /* unused */
radeon_emit(cs, 0); /* unused */
radeon_emit(cs, 0); /* unused */
radeon_emit(cs, 0); /* unused */
}
}
radv_set_streamout_enable(cmd_buffer, true);
}
static void
gfx10_emit_streamout_begin(struct radv_cmd_buffer *cmd_buffer, uint32_t firstCounterBuffer,
uint32_t counterBufferCount, const VkBuffer *pCounterBuffers,
const VkDeviceSize *pCounterBufferOffsets)
{
struct radv_streamout_state *so = &cmd_buffer->state.streamout;
unsigned last_target = util_last_bit(so->enabled_mask) - 1;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
assert(cmd_buffer->device->physical_device->rad_info.chip_class >= GFX10);
assert(firstCounterBuffer + counterBufferCount <= MAX_SO_BUFFERS);
/* Sync because the next streamout operation will overwrite GDS and we
* have to make sure it's idle.
* TODO: Improve by tracking if there is a streamout operation in
* flight.
*/
cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VS_PARTIAL_FLUSH;
si_emit_cache_flush(cmd_buffer);
u_foreach_bit(i, so->enabled_mask)
{
int32_t counter_buffer_idx = i - firstCounterBuffer;
if (counter_buffer_idx >= 0 && counter_buffer_idx >= counterBufferCount)
counter_buffer_idx = -1;
bool append =
counter_buffer_idx >= 0 && pCounterBuffers && pCounterBuffers[counter_buffer_idx];
uint64_t va = 0;
if (append) {
RADV_FROM_HANDLE(radv_buffer, buffer, pCounterBuffers[counter_buffer_idx]);
uint64_t counter_buffer_offset = 0;
if (pCounterBufferOffsets)
counter_buffer_offset = pCounterBufferOffsets[counter_buffer_idx];
va += radv_buffer_get_va(buffer->bo);
va += buffer->offset + counter_buffer_offset;
radv_cs_add_buffer(cmd_buffer->device->ws, cs, buffer->bo);
}
radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, 0));
radeon_emit(cs, S_411_SRC_SEL(append ? V_411_SRC_ADDR_TC_L2 : V_411_DATA) |
S_411_DST_SEL(V_411_GDS) | S_411_CP_SYNC(i == last_target));
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit(cs, 4 * i); /* destination in GDS */
radeon_emit(cs, 0);
radeon_emit(cs, S_415_BYTE_COUNT_GFX9(4) | S_415_DISABLE_WR_CONFIRM_GFX9(i != last_target));
}
radv_set_streamout_enable(cmd_buffer, true);
}
void
radv_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer, uint32_t firstCounterBuffer,
uint32_t counterBufferCount, const VkBuffer *pCounterBuffers,
const VkDeviceSize *pCounterBufferOffsets)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
if (cmd_buffer->device->physical_device->use_ngg_streamout) {
gfx10_emit_streamout_begin(cmd_buffer, firstCounterBuffer, counterBufferCount,
pCounterBuffers, pCounterBufferOffsets);
} else {
radv_emit_streamout_begin(cmd_buffer, firstCounterBuffer, counterBufferCount, pCounterBuffers,
pCounterBufferOffsets);
}
}
static void
radv_emit_streamout_end(struct radv_cmd_buffer *cmd_buffer, uint32_t firstCounterBuffer,
uint32_t counterBufferCount, const VkBuffer *pCounterBuffers,
const VkDeviceSize *pCounterBufferOffsets)
{
struct radv_streamout_state *so = &cmd_buffer->state.streamout;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
radv_flush_vgt_streamout(cmd_buffer);
assert(firstCounterBuffer + counterBufferCount <= MAX_SO_BUFFERS);
u_foreach_bit(i, so->enabled_mask)
{
int32_t counter_buffer_idx = i - firstCounterBuffer;
if (counter_buffer_idx >= 0 && counter_buffer_idx >= counterBufferCount)
counter_buffer_idx = -1;
if (counter_buffer_idx >= 0 && pCounterBuffers && pCounterBuffers[counter_buffer_idx]) {
/* The array of counters buffer is optional. */
RADV_FROM_HANDLE(radv_buffer, buffer, pCounterBuffers[counter_buffer_idx]);
uint64_t va = radv_buffer_get_va(buffer->bo);
uint64_t counter_buffer_offset = 0;
if (pCounterBufferOffsets)
counter_buffer_offset = pCounterBufferOffsets[counter_buffer_idx];
va += buffer->offset + counter_buffer_offset;
radeon_emit(cs, PKT3(PKT3_STRMOUT_BUFFER_UPDATE, 4, 0));
radeon_emit(cs, STRMOUT_SELECT_BUFFER(i) | STRMOUT_DATA_TYPE(1) | /* offset in bytes */
STRMOUT_OFFSET_SOURCE(STRMOUT_OFFSET_NONE) |
STRMOUT_STORE_BUFFER_FILLED_SIZE); /* control */
radeon_emit(cs, va); /* dst address lo */
radeon_emit(cs, va >> 32); /* dst address hi */
radeon_emit(cs, 0); /* unused */
radeon_emit(cs, 0); /* unused */
radv_cs_add_buffer(cmd_buffer->device->ws, cs, buffer->bo);
}
/* Deactivate transform feedback by zeroing the buffer size.
* The counters (primitives generated, primitives emitted) may
* be enabled even if there is not buffer bound. This ensures
* that the primitives-emitted query won't increment.
*/
radeon_set_context_reg(cs, R_028AD0_VGT_STRMOUT_BUFFER_SIZE_0 + 16 * i, 0);
cmd_buffer->state.context_roll_without_scissor_emitted = true;
}
radv_set_streamout_enable(cmd_buffer, false);
}
static void
gfx10_emit_streamout_end(struct radv_cmd_buffer *cmd_buffer, uint32_t firstCounterBuffer,
uint32_t counterBufferCount, const VkBuffer *pCounterBuffers,
const VkDeviceSize *pCounterBufferOffsets)
{
struct radv_streamout_state *so = &cmd_buffer->state.streamout;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
assert(cmd_buffer->device->physical_device->rad_info.chip_class >= GFX10);
assert(firstCounterBuffer + counterBufferCount <= MAX_SO_BUFFERS);
u_foreach_bit(i, so->enabled_mask)
{
int32_t counter_buffer_idx = i - firstCounterBuffer;
if (counter_buffer_idx >= 0 && counter_buffer_idx >= counterBufferCount)
counter_buffer_idx = -1;
if (counter_buffer_idx >= 0 && pCounterBuffers && pCounterBuffers[counter_buffer_idx]) {
/* The array of counters buffer is optional. */
RADV_FROM_HANDLE(radv_buffer, buffer, pCounterBuffers[counter_buffer_idx]);
uint64_t va = radv_buffer_get_va(buffer->bo);
uint64_t counter_buffer_offset = 0;
if (pCounterBufferOffsets)
counter_buffer_offset = pCounterBufferOffsets[counter_buffer_idx];
va += buffer->offset + counter_buffer_offset;
si_cs_emit_write_event_eop(cs, cmd_buffer->device->physical_device->rad_info.chip_class,
radv_cmd_buffer_uses_mec(cmd_buffer), V_028A90_PS_DONE, 0,
EOP_DST_SEL_TC_L2, EOP_DATA_SEL_GDS, va, EOP_DATA_GDS(i, 1), 0);
radv_cs_add_buffer(cmd_buffer->device->ws, cs, buffer->bo);
}
}
radv_set_streamout_enable(cmd_buffer, false);
}
void
radv_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer, uint32_t firstCounterBuffer,
uint32_t counterBufferCount, const VkBuffer *pCounterBuffers,
const VkDeviceSize *pCounterBufferOffsets)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
if (cmd_buffer->device->physical_device->use_ngg_streamout) {
gfx10_emit_streamout_end(cmd_buffer, firstCounterBuffer, counterBufferCount, pCounterBuffers,
pCounterBufferOffsets);
} else {
radv_emit_streamout_end(cmd_buffer, firstCounterBuffer, counterBufferCount, pCounterBuffers,
pCounterBufferOffsets);
}
}
void
radv_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer, uint32_t instanceCount,
uint32_t firstInstance, VkBuffer _counterBuffer,
VkDeviceSize counterBufferOffset, uint32_t counterOffset,
uint32_t vertexStride)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_buffer, counterBuffer, _counterBuffer);
struct radv_draw_info info;
info.count = 0;
info.instance_count = instanceCount;
info.first_instance = firstInstance;
info.strmout_buffer = counterBuffer;
info.strmout_buffer_offset = counterBufferOffset;
info.stride = vertexStride;
info.indexed = false;
info.indirect = NULL;
if (!radv_before_draw(cmd_buffer, &info, 0))
return;
radv_emit_direct_draw_packets(cmd_buffer, &info, 0, S_0287F0_USE_OPAQUE(1));
radv_after_draw(cmd_buffer);
}
/* VK_AMD_buffer_marker */
void
radv_CmdWriteBufferMarkerAMD(VkCommandBuffer commandBuffer, VkPipelineStageFlagBits pipelineStage,
VkBuffer dstBuffer, VkDeviceSize dstOffset, uint32_t marker)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_buffer, buffer, dstBuffer);
struct radeon_cmdbuf *cs = cmd_buffer->cs;
uint64_t va = radv_buffer_get_va(buffer->bo) + dstOffset;
si_emit_cache_flush(cmd_buffer);
ASSERTED unsigned cdw_max = radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, 12);
if (!(pipelineStage & ~VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT)) {
radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) |
COPY_DATA_WR_CONFIRM);
radeon_emit(cs, marker);
radeon_emit(cs, 0);
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
} else {
si_cs_emit_write_event_eop(cs, cmd_buffer->device->physical_device->rad_info.chip_class,
radv_cmd_buffer_uses_mec(cmd_buffer), V_028A90_BOTTOM_OF_PIPE_TS,
0, EOP_DST_SEL_MEM, EOP_DATA_SEL_VALUE_32BIT, va, marker,
cmd_buffer->gfx9_eop_bug_va);
}
assert(cmd_buffer->cs->cdw <= cdw_max);
}