mesa/src/compiler/spirv/vtn_variables.c

3046 lines
109 KiB
C

/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "vtn_private.h"
#include "spirv_info.h"
#include "nir_deref.h"
#include <vulkan/vulkan_core.h>
static struct vtn_pointer*
vtn_align_pointer(struct vtn_builder *b, struct vtn_pointer *ptr,
unsigned alignment)
{
if (alignment == 0)
return ptr;
if (!util_is_power_of_two_nonzero(alignment)) {
vtn_warn("Provided alignment is not a power of two");
alignment = 1 << (ffs(alignment) - 1);
}
/* If this pointer doesn't have a deref, bail. This either means we're
* using the old offset+alignment pointers which don't support carrying
* alignment information or we're a pointer that is below the block
* boundary in our access chain in which case alignment is meaningless.
*/
if (ptr->deref == NULL)
return ptr;
/* Ignore alignment information on logical pointers. This way, we don't
* trip up drivers with unnecessary casts.
*/
nir_address_format addr_format = vtn_mode_to_address_format(b, ptr->mode);
if (addr_format == nir_address_format_logical)
return ptr;
struct vtn_pointer *copy = vtn_alloc(b, struct vtn_pointer);
*copy = *ptr;
copy->deref = nir_alignment_deref_cast(&b->nb, ptr->deref, alignment, 0);
return copy;
}
static void
ptr_decoration_cb(struct vtn_builder *b, struct vtn_value *val, int member,
const struct vtn_decoration *dec, void *void_ptr)
{
struct vtn_pointer *ptr = void_ptr;
switch (dec->decoration) {
case SpvDecorationNonUniformEXT:
ptr->access |= ACCESS_NON_UNIFORM;
break;
default:
break;
}
}
struct access_align {
enum gl_access_qualifier access;
uint32_t alignment;
};
static void
access_align_cb(struct vtn_builder *b, struct vtn_value *val, int member,
const struct vtn_decoration *dec, void *void_ptr)
{
struct access_align *aa = void_ptr;
switch (dec->decoration) {
case SpvDecorationAlignment:
aa->alignment = dec->operands[0];
break;
case SpvDecorationNonUniformEXT:
aa->access |= ACCESS_NON_UNIFORM;
break;
default:
break;
}
}
static struct vtn_pointer*
vtn_decorate_pointer(struct vtn_builder *b, struct vtn_value *val,
struct vtn_pointer *ptr)
{
struct access_align aa = { 0, };
vtn_foreach_decoration(b, val, access_align_cb, &aa);
ptr = vtn_align_pointer(b, ptr, aa.alignment);
/* If we're adding access flags, make a copy of the pointer. We could
* probably just OR them in without doing so but this prevents us from
* leaking them any further than actually specified in the SPIR-V.
*/
if (aa.access & ~ptr->access) {
struct vtn_pointer *copy = vtn_alloc(b, struct vtn_pointer);
*copy = *ptr;
copy->access |= aa.access;
return copy;
}
return ptr;
}
struct vtn_value *
vtn_push_pointer(struct vtn_builder *b, uint32_t value_id,
struct vtn_pointer *ptr)
{
struct vtn_value *val = vtn_push_value(b, value_id, vtn_value_type_pointer);
val->pointer = vtn_decorate_pointer(b, val, ptr);
return val;
}
void
vtn_copy_value(struct vtn_builder *b, uint32_t src_value_id,
uint32_t dst_value_id)
{
struct vtn_value *src = vtn_untyped_value(b, src_value_id);
struct vtn_value *dst = vtn_untyped_value(b, dst_value_id);
vtn_fail_if(dst->value_type != vtn_value_type_invalid,
"SPIR-V id %u has already been written by another instruction",
dst_value_id);
vtn_fail_if(dst->type->id != src->type->id,
"Result Type must equal Operand type");
if (src->value_type == vtn_value_type_ssa && src->ssa->is_variable) {
nir_variable *dst_var =
nir_local_variable_create(b->nb.impl, src->ssa->type, "var_copy");
nir_deref_instr *dst_deref = nir_build_deref_var(&b->nb, dst_var);
nir_deref_instr *src_deref = vtn_get_deref_for_ssa_value(b, src->ssa);
vtn_local_store(b, vtn_local_load(b, src_deref, 0), dst_deref, 0);
vtn_push_var_ssa(b, dst_value_id, dst_var);
return;
}
struct vtn_value src_copy = *src;
src_copy.name = dst->name;
src_copy.decoration = dst->decoration;
src_copy.type = dst->type;
*dst = src_copy;
if (dst->value_type == vtn_value_type_pointer)
dst->pointer = vtn_decorate_pointer(b, dst, dst->pointer);
}
static struct vtn_access_chain *
vtn_access_chain_create(struct vtn_builder *b, unsigned length)
{
struct vtn_access_chain *chain;
/* Subtract 1 from the length since there's already one built in */
size_t size = sizeof(*chain) +
(MAX2(length, 1) - 1) * sizeof(chain->link[0]);
chain = vtn_zalloc_size(b, size);
chain->length = length;
return chain;
}
static bool
vtn_mode_is_cross_invocation(struct vtn_builder *b,
enum vtn_variable_mode mode)
{
/* TODO: add TCS here once nir_remove_unused_io_vars() can handle vector indexing. */
bool cross_invocation_outputs = b->shader->info.stage == MESA_SHADER_MESH;
return mode == vtn_variable_mode_ssbo ||
mode == vtn_variable_mode_ubo ||
mode == vtn_variable_mode_phys_ssbo ||
mode == vtn_variable_mode_push_constant ||
mode == vtn_variable_mode_workgroup ||
mode == vtn_variable_mode_cross_workgroup ||
mode == vtn_variable_mode_node_payload ||
(cross_invocation_outputs && mode == vtn_variable_mode_output) ||
(b->shader->info.stage == MESA_SHADER_TASK && mode == vtn_variable_mode_task_payload);
}
static bool
vtn_pointer_is_external_block(struct vtn_builder *b,
struct vtn_pointer *ptr)
{
return ptr->mode == vtn_variable_mode_ssbo ||
ptr->mode == vtn_variable_mode_ubo ||
ptr->mode == vtn_variable_mode_phys_ssbo;
}
static nir_def *
vtn_access_link_as_ssa(struct vtn_builder *b, struct vtn_access_link link,
unsigned stride, unsigned bit_size)
{
vtn_assert(stride > 0);
if (link.mode == vtn_access_mode_literal) {
return nir_imm_intN_t(&b->nb, link.id * stride, bit_size);
} else {
nir_def *ssa = vtn_ssa_value(b, link.id)->def;
if (ssa->bit_size != bit_size)
ssa = nir_i2iN(&b->nb, ssa, bit_size);
return nir_imul_imm(&b->nb, ssa, stride);
}
}
static VkDescriptorType
vk_desc_type_for_mode(struct vtn_builder *b, enum vtn_variable_mode mode)
{
switch (mode) {
case vtn_variable_mode_ubo:
return VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
case vtn_variable_mode_ssbo:
return VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
case vtn_variable_mode_accel_struct:
return VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR;
default:
vtn_fail("Invalid mode for vulkan_resource_index");
}
}
static nir_def *
vtn_variable_resource_index(struct vtn_builder *b, struct vtn_variable *var,
nir_def *desc_array_index)
{
vtn_assert(b->options->environment == NIR_SPIRV_VULKAN);
if (!desc_array_index)
desc_array_index = nir_imm_int(&b->nb, 0);
if (b->vars_used_indirectly) {
vtn_assert(var->var);
_mesa_set_add(b->vars_used_indirectly, var->var);
}
nir_intrinsic_instr *instr =
nir_intrinsic_instr_create(b->nb.shader,
nir_intrinsic_vulkan_resource_index);
instr->src[0] = nir_src_for_ssa(desc_array_index);
nir_intrinsic_set_desc_set(instr, var->descriptor_set);
nir_intrinsic_set_binding(instr, var->binding);
nir_intrinsic_set_desc_type(instr, vk_desc_type_for_mode(b, var->mode));
nir_address_format addr_format = vtn_mode_to_address_format(b, var->mode);
nir_def_init(&instr->instr, &instr->def,
nir_address_format_num_components(addr_format),
nir_address_format_bit_size(addr_format));
instr->num_components = instr->def.num_components;
nir_builder_instr_insert(&b->nb, &instr->instr);
return &instr->def;
}
static nir_def *
vtn_resource_reindex(struct vtn_builder *b, enum vtn_variable_mode mode,
nir_def *base_index, nir_def *offset_index)
{
vtn_assert(b->options->environment == NIR_SPIRV_VULKAN);
nir_intrinsic_instr *instr =
nir_intrinsic_instr_create(b->nb.shader,
nir_intrinsic_vulkan_resource_reindex);
instr->src[0] = nir_src_for_ssa(base_index);
instr->src[1] = nir_src_for_ssa(offset_index);
nir_intrinsic_set_desc_type(instr, vk_desc_type_for_mode(b, mode));
nir_address_format addr_format = vtn_mode_to_address_format(b, mode);
nir_def_init(&instr->instr, &instr->def,
nir_address_format_num_components(addr_format),
nir_address_format_bit_size(addr_format));
instr->num_components = instr->def.num_components;
nir_builder_instr_insert(&b->nb, &instr->instr);
return &instr->def;
}
static nir_def *
vtn_descriptor_load(struct vtn_builder *b, enum vtn_variable_mode mode,
nir_def *desc_index)
{
vtn_assert(b->options->environment == NIR_SPIRV_VULKAN);
nir_intrinsic_instr *desc_load =
nir_intrinsic_instr_create(b->nb.shader,
nir_intrinsic_load_vulkan_descriptor);
desc_load->src[0] = nir_src_for_ssa(desc_index);
nir_intrinsic_set_desc_type(desc_load, vk_desc_type_for_mode(b, mode));
nir_address_format addr_format = vtn_mode_to_address_format(b, mode);
nir_def_init(&desc_load->instr, &desc_load->def,
nir_address_format_num_components(addr_format),
nir_address_format_bit_size(addr_format));
desc_load->num_components = desc_load->def.num_components;
nir_builder_instr_insert(&b->nb, &desc_load->instr);
return &desc_load->def;
}
static struct vtn_pointer *
vtn_pointer_dereference(struct vtn_builder *b,
struct vtn_pointer *base,
struct vtn_access_chain *deref_chain)
{
struct vtn_type *type = base->type;
enum gl_access_qualifier access = base->access | deref_chain->access;
unsigned idx = 0;
nir_deref_instr *tail;
if (base->deref) {
tail = base->deref;
} else if (b->options->environment == NIR_SPIRV_VULKAN &&
(vtn_pointer_is_external_block(b, base) ||
base->mode == vtn_variable_mode_accel_struct)) {
nir_def *block_index = base->block_index;
/* We dereferencing an external block pointer. Correctness of this
* operation relies on one particular line in the SPIR-V spec, section
* entitled "Validation Rules for Shader Capabilities":
*
* "Block and BufferBlock decorations cannot decorate a structure
* type that is nested at any level inside another structure type
* decorated with Block or BufferBlock."
*
* This means that we can detect the point where we cross over from
* descriptor indexing to buffer indexing by looking for the block
* decorated struct type. Anything before the block decorated struct
* type is a descriptor indexing operation and anything after the block
* decorated struct is a buffer offset operation.
*/
/* Figure out the descriptor array index if any
*
* Some of the Vulkan CTS tests with hand-rolled SPIR-V have been known
* to forget the Block or BufferBlock decoration from time to time.
* It's more robust if we check for both !block_index and for the type
* to contain a block. This way there's a decent chance that arrays of
* UBOs/SSBOs will work correctly even if variable pointers are
* completley toast.
*/
nir_def *desc_arr_idx = NULL;
if (!block_index || vtn_type_contains_block(b, type) ||
base->mode == vtn_variable_mode_accel_struct) {
/* If our type contains a block, then we're still outside the block
* and we need to process enough levels of dereferences to get inside
* of it. Same applies to acceleration structures.
*/
if (deref_chain->ptr_as_array) {
unsigned aoa_size = glsl_get_aoa_size(type->type);
desc_arr_idx = vtn_access_link_as_ssa(b, deref_chain->link[idx],
MAX2(aoa_size, 1), 32);
idx++;
}
for (; idx < deref_chain->length; idx++) {
if (type->base_type != vtn_base_type_array) {
vtn_assert(type->base_type == vtn_base_type_struct);
break;
}
unsigned aoa_size = glsl_get_aoa_size(type->array_element->type);
nir_def *arr_offset =
vtn_access_link_as_ssa(b, deref_chain->link[idx],
MAX2(aoa_size, 1), 32);
if (desc_arr_idx)
desc_arr_idx = nir_iadd(&b->nb, desc_arr_idx, arr_offset);
else
desc_arr_idx = arr_offset;
type = type->array_element;
access |= type->access;
}
}
if (!block_index) {
vtn_assert(base->var && base->type);
block_index = vtn_variable_resource_index(b, base->var, desc_arr_idx);
} else if (desc_arr_idx) {
block_index = vtn_resource_reindex(b, base->mode,
block_index, desc_arr_idx);
}
if (idx == deref_chain->length) {
/* The entire deref was consumed in finding the block index. Return
* a pointer which just has a block index and a later access chain
* will dereference deeper.
*/
struct vtn_pointer *ptr = vtn_zalloc(b, struct vtn_pointer);
ptr->mode = base->mode;
ptr->type = type;
ptr->block_index = block_index;
ptr->access = access;
return ptr;
}
/* If we got here, there's more access chain to handle and we have the
* final block index. Insert a descriptor load and cast to a deref to
* start the deref chain.
*/
nir_def *desc = vtn_descriptor_load(b, base->mode, block_index);
assert(base->mode == vtn_variable_mode_ssbo ||
base->mode == vtn_variable_mode_ubo);
nir_variable_mode nir_mode =
base->mode == vtn_variable_mode_ssbo ? nir_var_mem_ssbo : nir_var_mem_ubo;
const uint32_t align = base->mode == vtn_variable_mode_ssbo ?
b->options->min_ssbo_alignment : b->options->min_ubo_alignment;
tail = nir_build_deref_cast(&b->nb, desc, nir_mode,
vtn_type_get_nir_type(b, type, base->mode),
base->ptr_type->stride);
tail->cast.align_mul = align;
tail->cast.align_offset = 0;
} else if (base->mode == vtn_variable_mode_shader_record) {
/* For ShaderRecordBufferKHR variables, we don't have a nir_variable.
* It's just a fancy handle around a pointer to the shader record for
* the current shader.
*/
tail = nir_build_deref_cast(&b->nb, nir_load_shader_record_ptr(&b->nb),
nir_var_mem_constant,
vtn_type_get_nir_type(b, base->type,
base->mode),
0 /* ptr_as_array stride */);
} else {
assert(base->var && base->var->var);
tail = nir_build_deref_var(&b->nb, base->var->var);
if (base->ptr_type && base->ptr_type->type) {
tail->def.num_components =
glsl_get_vector_elements(base->ptr_type->type);
tail->def.bit_size = glsl_get_bit_size(base->ptr_type->type);
}
}
if (idx == 0 && deref_chain->ptr_as_array) {
/* We start with a deref cast to get the stride. Hopefully, we'll be
* able to delete that cast eventually.
*/
tail = nir_build_deref_cast(&b->nb, &tail->def, tail->modes,
tail->type, base->ptr_type->stride);
nir_def *index = vtn_access_link_as_ssa(b, deref_chain->link[0], 1,
tail->def.bit_size);
tail = nir_build_deref_ptr_as_array(&b->nb, tail, index);
idx++;
}
for (; idx < deref_chain->length; idx++) {
if (glsl_type_is_struct_or_ifc(type->type)) {
vtn_assert(deref_chain->link[idx].mode == vtn_access_mode_literal);
unsigned field = deref_chain->link[idx].id;
tail = nir_build_deref_struct(&b->nb, tail, field);
type = type->members[field];
} else {
nir_def *arr_index =
vtn_access_link_as_ssa(b, deref_chain->link[idx], 1,
tail->def.bit_size);
if (type->base_type == vtn_base_type_cooperative_matrix) {
const struct glsl_type *element_type = glsl_get_cmat_element(type->type);
tail = nir_build_deref_cast(&b->nb, &tail->def, tail->modes,
glsl_array_type(element_type, 0, 0), 0);
type = type->component_type;
} else {
type = type->array_element;
}
tail = nir_build_deref_array(&b->nb, tail, arr_index);
}
tail->arr.in_bounds = deref_chain->in_bounds;
access |= type->access;
}
struct vtn_pointer *ptr = vtn_zalloc(b, struct vtn_pointer);
ptr->mode = base->mode;
ptr->type = type;
ptr->var = base->var;
ptr->deref = tail;
ptr->access = access;
return ptr;
}
nir_deref_instr *
vtn_pointer_to_deref(struct vtn_builder *b, struct vtn_pointer *ptr)
{
if (!ptr->deref) {
struct vtn_access_chain chain = {
.length = 0,
};
ptr = vtn_pointer_dereference(b, ptr, &chain);
}
return ptr->deref;
}
static void
_vtn_local_load_store(struct vtn_builder *b, bool load, nir_deref_instr *deref,
struct vtn_ssa_value *inout,
enum gl_access_qualifier access)
{
if (glsl_type_is_cmat(deref->type)) {
if (load) {
nir_deref_instr *temp = vtn_create_cmat_temporary(b, deref->type, "cmat_ssa");
nir_cmat_copy(&b->nb, &temp->def, &deref->def);
vtn_set_ssa_value_var(b, inout, temp->var);
} else {
nir_deref_instr *src_deref = vtn_get_deref_for_ssa_value(b, inout);
nir_cmat_copy(&b->nb, &deref->def, &src_deref->def);
}
} else if (glsl_type_is_vector_or_scalar(deref->type)) {
if (load) {
inout->def = nir_load_deref_with_access(&b->nb, deref, access);
} else {
nir_store_deref_with_access(&b->nb, deref, inout->def, ~0, access);
}
} else if (glsl_type_is_array(deref->type) ||
glsl_type_is_matrix(deref->type)) {
unsigned elems = glsl_get_length(deref->type);
for (unsigned i = 0; i < elems; i++) {
nir_deref_instr *child =
nir_build_deref_array_imm(&b->nb, deref, i);
_vtn_local_load_store(b, load, child, inout->elems[i], access);
}
} else {
vtn_assert(glsl_type_is_struct_or_ifc(deref->type));
unsigned elems = glsl_get_length(deref->type);
for (unsigned i = 0; i < elems; i++) {
nir_deref_instr *child = nir_build_deref_struct(&b->nb, deref, i);
_vtn_local_load_store(b, load, child, inout->elems[i], access);
}
}
}
nir_deref_instr *
vtn_nir_deref(struct vtn_builder *b, uint32_t id)
{
struct vtn_pointer *ptr = vtn_pointer(b, id);
return vtn_pointer_to_deref(b, ptr);
}
/*
* Gets the NIR-level deref tail, which may have as a child an array deref
* selecting which component due to OpAccessChain supporting per-component
* indexing in SPIR-V.
*/
static nir_deref_instr *
get_deref_tail(nir_deref_instr *deref)
{
if (deref->deref_type != nir_deref_type_array)
return deref;
nir_deref_instr *parent =
nir_instr_as_deref(deref->parent.ssa->parent_instr);
if (parent->deref_type == nir_deref_type_cast &&
parent->parent.ssa->parent_instr->type == nir_instr_type_deref) {
nir_deref_instr *grandparent =
nir_instr_as_deref(parent->parent.ssa->parent_instr);
if (glsl_type_is_cmat(grandparent->type))
return grandparent;
}
if (glsl_type_is_vector(parent->type) ||
glsl_type_is_cmat(parent->type))
return parent;
else
return deref;
}
struct vtn_ssa_value *
vtn_local_load(struct vtn_builder *b, nir_deref_instr *src,
enum gl_access_qualifier access)
{
nir_deref_instr *src_tail = get_deref_tail(src);
struct vtn_ssa_value *val = vtn_create_ssa_value(b, src_tail->type);
_vtn_local_load_store(b, true, src_tail, val, access);
if (src_tail != src) {
val->type = src->type;
if (glsl_type_is_cmat(src_tail->type)) {
assert(val->is_variable);
nir_deref_instr *mat = vtn_get_deref_for_ssa_value(b, val);
/* Reset is_variable because we are repurposing val. */
val->is_variable = false;
val->def = nir_cmat_extract(&b->nb,
glsl_get_bit_size(src->type),
&mat->def, src->arr.index.ssa);
} else {
val->def = nir_vector_extract(&b->nb, val->def, src->arr.index.ssa);
}
}
return val;
}
void
vtn_local_store(struct vtn_builder *b, struct vtn_ssa_value *src,
nir_deref_instr *dest, enum gl_access_qualifier access)
{
nir_deref_instr *dest_tail = get_deref_tail(dest);
if (dest_tail != dest) {
struct vtn_ssa_value *val = vtn_create_ssa_value(b, dest_tail->type);
_vtn_local_load_store(b, true, dest_tail, val, access);
if (glsl_type_is_cmat(dest_tail->type)) {
nir_deref_instr *mat = vtn_get_deref_for_ssa_value(b, val);
nir_deref_instr *dst = vtn_create_cmat_temporary(b, dest_tail->type, "cmat_insert");
nir_cmat_insert(&b->nb, &dst->def, src->def, &mat->def, dest->arr.index.ssa);
vtn_set_ssa_value_var(b, val, dst->var);
} else {
val->def = nir_vector_insert(&b->nb, val->def, src->def,
dest->arr.index.ssa);
}
_vtn_local_load_store(b, false, dest_tail, val, access);
} else {
_vtn_local_load_store(b, false, dest_tail, src, access);
}
}
static nir_def *
vtn_pointer_to_descriptor(struct vtn_builder *b, struct vtn_pointer *ptr)
{
assert(ptr->mode == vtn_variable_mode_accel_struct);
if (!ptr->block_index) {
struct vtn_access_chain chain = {
.length = 0,
};
ptr = vtn_pointer_dereference(b, ptr, &chain);
}
vtn_assert(ptr->deref == NULL && ptr->block_index != NULL);
return vtn_descriptor_load(b, ptr->mode, ptr->block_index);
}
static void
_vtn_variable_load_store(struct vtn_builder *b, bool load,
struct vtn_pointer *ptr,
enum gl_access_qualifier access,
struct vtn_ssa_value **inout)
{
if (ptr->mode == vtn_variable_mode_uniform ||
ptr->mode == vtn_variable_mode_image) {
if (ptr->type->base_type == vtn_base_type_image ||
ptr->type->base_type == vtn_base_type_sampler) {
/* See also our handling of OpTypeSampler and OpTypeImage */
vtn_assert(load);
(*inout)->def = vtn_pointer_to_ssa(b, ptr);
return;
} else if (ptr->type->base_type == vtn_base_type_sampled_image) {
/* See also our handling of OpTypeSampledImage */
vtn_assert(load);
struct vtn_sampled_image si = {
.image = vtn_pointer_to_deref(b, ptr),
.sampler = vtn_pointer_to_deref(b, ptr),
};
(*inout)->def = vtn_sampled_image_to_nir_ssa(b, si);
return;
}
} else if (ptr->mode == vtn_variable_mode_accel_struct) {
vtn_assert(load);
(*inout)->def = vtn_pointer_to_descriptor(b, ptr);
return;
}
enum glsl_base_type base_type = glsl_get_base_type(ptr->type->type);
switch (base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_UINT16:
case GLSL_TYPE_INT16:
case GLSL_TYPE_UINT8:
case GLSL_TYPE_INT8:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_INT64:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_FLOAT16:
case GLSL_TYPE_BOOL:
case GLSL_TYPE_DOUBLE:
case GLSL_TYPE_COOPERATIVE_MATRIX:
if (glsl_type_is_vector_or_scalar(ptr->type->type)) {
/* We hit a vector or scalar; go ahead and emit the load[s] */
nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
if (vtn_mode_is_cross_invocation(b, ptr->mode)) {
/* If it's cross-invocation, we call nir_load/store_deref
* directly. The vtn_local_load/store helpers are too clever and
* do magic to avoid array derefs of vectors. That magic is both
* less efficient than the direct load/store and, in the case of
* stores, is broken because it creates a race condition if two
* threads are writing to different components of the same vector
* due to the load+insert+store it uses to emulate the array
* deref.
*/
if (load) {
(*inout)->def = nir_load_deref_with_access(&b->nb, deref,
ptr->type->access | access);
} else {
nir_store_deref_with_access(&b->nb, deref, (*inout)->def, ~0,
ptr->type->access | access);
}
} else {
if (load) {
*inout = vtn_local_load(b, deref, ptr->type->access | access);
} else {
vtn_local_store(b, *inout, deref, ptr->type->access | access);
}
}
return;
}
FALLTHROUGH;
case GLSL_TYPE_INTERFACE:
case GLSL_TYPE_ARRAY:
case GLSL_TYPE_STRUCT: {
unsigned elems = glsl_get_length(ptr->type->type);
struct vtn_access_chain chain = {
.length = 1,
.link = {
{ .mode = vtn_access_mode_literal, },
}
};
for (unsigned i = 0; i < elems; i++) {
chain.link[0].id = i;
struct vtn_pointer *elem = vtn_pointer_dereference(b, ptr, &chain);
_vtn_variable_load_store(b, load, elem, ptr->type->access | access,
&(*inout)->elems[i]);
}
return;
}
default:
vtn_fail("Invalid access chain type");
}
}
struct vtn_ssa_value *
vtn_variable_load(struct vtn_builder *b, struct vtn_pointer *src,
enum gl_access_qualifier access)
{
struct vtn_ssa_value *val = vtn_create_ssa_value(b, src->type->type);
_vtn_variable_load_store(b, true, src, src->access | access, &val);
return val;
}
void
vtn_variable_store(struct vtn_builder *b, struct vtn_ssa_value *src,
struct vtn_pointer *dest, enum gl_access_qualifier access)
{
_vtn_variable_load_store(b, false, dest, dest->access | access, &src);
}
static void
_vtn_variable_copy(struct vtn_builder *b, struct vtn_pointer *dest,
struct vtn_pointer *src, enum gl_access_qualifier dest_access,
enum gl_access_qualifier src_access)
{
vtn_assert(glsl_get_bare_type(src->type->type) ==
glsl_get_bare_type(dest->type->type));
enum glsl_base_type base_type = glsl_get_base_type(src->type->type);
switch (base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_UINT16:
case GLSL_TYPE_INT16:
case GLSL_TYPE_UINT8:
case GLSL_TYPE_INT8:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_INT64:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_FLOAT16:
case GLSL_TYPE_DOUBLE:
case GLSL_TYPE_BOOL:
/* At this point, we have a scalar, vector, or matrix so we know that
* there cannot be any structure splitting still in the way. By
* stopping at the matrix level rather than the vector level, we
* ensure that matrices get loaded in the optimal way even if they
* are storred row-major in a UBO.
*/
vtn_variable_store(b, vtn_variable_load(b, src, src_access), dest, dest_access);
return;
case GLSL_TYPE_INTERFACE:
case GLSL_TYPE_ARRAY:
case GLSL_TYPE_STRUCT: {
struct vtn_access_chain chain = {
.length = 1,
.link = {
{ .mode = vtn_access_mode_literal, },
}
};
unsigned elems = glsl_get_length(src->type->type);
for (unsigned i = 0; i < elems; i++) {
chain.link[0].id = i;
struct vtn_pointer *src_elem =
vtn_pointer_dereference(b, src, &chain);
struct vtn_pointer *dest_elem =
vtn_pointer_dereference(b, dest, &chain);
_vtn_variable_copy(b, dest_elem, src_elem, dest_access, src_access);
}
return;
}
default:
vtn_fail("Invalid access chain type");
}
}
static void
vtn_variable_copy(struct vtn_builder *b, struct vtn_pointer *dest,
struct vtn_pointer *src, enum gl_access_qualifier dest_access,
enum gl_access_qualifier src_access)
{
/* TODO: At some point, we should add a special-case for when we can
* just emit a copy_var intrinsic.
*/
_vtn_variable_copy(b, dest, src, dest_access, src_access);
}
static void
set_mode_system_value(struct vtn_builder *b, nir_variable_mode *mode)
{
vtn_assert(*mode == nir_var_system_value || *mode == nir_var_shader_in ||
/* Hack for NV_mesh_shader due to lack of dedicated storage class. */
*mode == nir_var_mem_task_payload ||
/* Hack for DPCPP, see https://github.com/intel/llvm/issues/6703 */
*mode == nir_var_mem_global);
*mode = nir_var_system_value;
}
static void
vtn_get_builtin_location(struct vtn_builder *b,
SpvBuiltIn builtin, int *location,
nir_variable_mode *mode)
{
switch (builtin) {
case SpvBuiltInPosition:
case SpvBuiltInPositionPerViewNV:
*location = VARYING_SLOT_POS;
break;
case SpvBuiltInPointSize:
*location = VARYING_SLOT_PSIZ;
break;
case SpvBuiltInClipDistance:
case SpvBuiltInClipDistancePerViewNV:
*location = VARYING_SLOT_CLIP_DIST0;
break;
case SpvBuiltInCullDistance:
case SpvBuiltInCullDistancePerViewNV:
*location = VARYING_SLOT_CULL_DIST0;
break;
case SpvBuiltInVertexId:
case SpvBuiltInVertexIndex:
/* The Vulkan spec defines VertexIndex to be non-zero-based and doesn't
* allow VertexId. The ARB_gl_spirv spec defines VertexId to be the
* same as gl_VertexID, which is non-zero-based, and removes
* VertexIndex. Since they're both defined to be non-zero-based, we use
* SYSTEM_VALUE_VERTEX_ID for both.
*/
*location = SYSTEM_VALUE_VERTEX_ID;
set_mode_system_value(b, mode);
break;
case SpvBuiltInInstanceIndex:
*location = SYSTEM_VALUE_INSTANCE_INDEX;
set_mode_system_value(b, mode);
break;
case SpvBuiltInInstanceId:
*location = SYSTEM_VALUE_INSTANCE_ID;
set_mode_system_value(b, mode);
break;
case SpvBuiltInPrimitiveId:
if (b->shader->info.stage == MESA_SHADER_FRAGMENT) {
vtn_assert(*mode == nir_var_shader_in);
*location = VARYING_SLOT_PRIMITIVE_ID;
} else if (*mode == nir_var_shader_out) {
*location = VARYING_SLOT_PRIMITIVE_ID;
} else {
*location = SYSTEM_VALUE_PRIMITIVE_ID;
set_mode_system_value(b, mode);
}
break;
case SpvBuiltInInvocationId:
*location = SYSTEM_VALUE_INVOCATION_ID;
set_mode_system_value(b, mode);
break;
case SpvBuiltInLayer:
case SpvBuiltInLayerPerViewNV:
*location = VARYING_SLOT_LAYER;
if (b->shader->info.stage == MESA_SHADER_FRAGMENT)
*mode = nir_var_shader_in;
else if (b->shader->info.stage == MESA_SHADER_GEOMETRY)
*mode = nir_var_shader_out;
else if (b->supported_capabilities.ShaderViewportIndexLayerEXT &&
(b->shader->info.stage == MESA_SHADER_VERTEX ||
b->shader->info.stage == MESA_SHADER_TESS_EVAL ||
b->shader->info.stage == MESA_SHADER_MESH))
*mode = nir_var_shader_out;
else
vtn_fail("invalid stage for SpvBuiltInLayer");
break;
case SpvBuiltInViewportIndex:
*location = VARYING_SLOT_VIEWPORT;
if (b->shader->info.stage == MESA_SHADER_GEOMETRY)
*mode = nir_var_shader_out;
else if (b->supported_capabilities.ShaderViewportIndexLayerEXT &&
(b->shader->info.stage == MESA_SHADER_VERTEX ||
b->shader->info.stage == MESA_SHADER_TESS_EVAL ||
b->shader->info.stage == MESA_SHADER_MESH))
*mode = nir_var_shader_out;
else if (b->shader->info.stage == MESA_SHADER_FRAGMENT)
*mode = nir_var_shader_in;
else
vtn_fail("invalid stage for SpvBuiltInViewportIndex");
break;
case SpvBuiltInViewportMaskNV:
case SpvBuiltInViewportMaskPerViewNV:
*location = VARYING_SLOT_VIEWPORT_MASK;
*mode = nir_var_shader_out;
break;
case SpvBuiltInTessLevelOuter:
*location = VARYING_SLOT_TESS_LEVEL_OUTER;
break;
case SpvBuiltInTessLevelInner:
*location = VARYING_SLOT_TESS_LEVEL_INNER;
break;
case SpvBuiltInTessCoord:
*location = SYSTEM_VALUE_TESS_COORD;
set_mode_system_value(b, mode);
break;
case SpvBuiltInPatchVertices:
*location = SYSTEM_VALUE_VERTICES_IN;
set_mode_system_value(b, mode);
break;
case SpvBuiltInFragCoord:
vtn_assert(*mode == nir_var_shader_in);
*mode = nir_var_system_value;
*location = SYSTEM_VALUE_FRAG_COORD;
break;
case SpvBuiltInPointCoord:
vtn_assert(*mode == nir_var_shader_in);
set_mode_system_value(b, mode);
*location = SYSTEM_VALUE_POINT_COORD;
break;
case SpvBuiltInFrontFacing:
*location = SYSTEM_VALUE_FRONT_FACE;
set_mode_system_value(b, mode);
break;
case SpvBuiltInSampleId:
*location = SYSTEM_VALUE_SAMPLE_ID;
set_mode_system_value(b, mode);
break;
case SpvBuiltInSamplePosition:
*location = SYSTEM_VALUE_SAMPLE_POS;
set_mode_system_value(b, mode);
break;
case SpvBuiltInSampleMask:
if (*mode == nir_var_shader_out) {
*location = FRAG_RESULT_SAMPLE_MASK;
} else {
*location = SYSTEM_VALUE_SAMPLE_MASK_IN;
set_mode_system_value(b, mode);
}
break;
case SpvBuiltInFragDepth:
*location = FRAG_RESULT_DEPTH;
vtn_assert(*mode == nir_var_shader_out);
break;
case SpvBuiltInHelperInvocation:
*location = SYSTEM_VALUE_HELPER_INVOCATION;
set_mode_system_value(b, mode);
break;
case SpvBuiltInNumWorkgroups:
*location = SYSTEM_VALUE_NUM_WORKGROUPS;
set_mode_system_value(b, mode);
break;
case SpvBuiltInWorkgroupSize:
case SpvBuiltInEnqueuedWorkgroupSize:
*location = SYSTEM_VALUE_WORKGROUP_SIZE;
set_mode_system_value(b, mode);
break;
case SpvBuiltInWorkgroupId:
*location = SYSTEM_VALUE_WORKGROUP_ID;
set_mode_system_value(b, mode);
break;
case SpvBuiltInLocalInvocationId:
*location = SYSTEM_VALUE_LOCAL_INVOCATION_ID;
set_mode_system_value(b, mode);
break;
case SpvBuiltInLocalInvocationIndex:
*location = SYSTEM_VALUE_LOCAL_INVOCATION_INDEX;
set_mode_system_value(b, mode);
break;
case SpvBuiltInGlobalInvocationId:
*location = SYSTEM_VALUE_GLOBAL_INVOCATION_ID;
set_mode_system_value(b, mode);
break;
case SpvBuiltInGlobalLinearId:
*location = SYSTEM_VALUE_GLOBAL_INVOCATION_INDEX;
set_mode_system_value(b, mode);
break;
case SpvBuiltInGlobalOffset:
*location = SYSTEM_VALUE_BASE_GLOBAL_INVOCATION_ID;
set_mode_system_value(b, mode);
break;
case SpvBuiltInBaseVertex:
/* OpenGL gl_BaseVertex (SYSTEM_VALUE_BASE_VERTEX) is not the same
* semantic as Vulkan BaseVertex (SYSTEM_VALUE_FIRST_VERTEX).
*/
if (b->options->environment == NIR_SPIRV_OPENGL)
*location = SYSTEM_VALUE_BASE_VERTEX;
else
*location = SYSTEM_VALUE_FIRST_VERTEX;
set_mode_system_value(b, mode);
break;
case SpvBuiltInBaseInstance:
*location = SYSTEM_VALUE_BASE_INSTANCE;
set_mode_system_value(b, mode);
break;
case SpvBuiltInDrawIndex:
*location = SYSTEM_VALUE_DRAW_ID;
set_mode_system_value(b, mode);
break;
case SpvBuiltInSubgroupSize:
/* TODO once we support non uniform work groups we have to fix this */
case SpvBuiltInSubgroupMaxSize:
*location = SYSTEM_VALUE_SUBGROUP_SIZE;
set_mode_system_value(b, mode);
break;
case SpvBuiltInSubgroupId:
*location = SYSTEM_VALUE_SUBGROUP_ID;
set_mode_system_value(b, mode);
break;
case SpvBuiltInSubgroupLocalInvocationId:
*location = SYSTEM_VALUE_SUBGROUP_INVOCATION;
set_mode_system_value(b, mode);
break;
case SpvBuiltInNumSubgroups:
/* TODO once we support non uniform work groups we have to fix this */
case SpvBuiltInNumEnqueuedSubgroups:
*location = SYSTEM_VALUE_NUM_SUBGROUPS;
set_mode_system_value(b, mode);
break;
case SpvBuiltInDeviceIndex:
*location = SYSTEM_VALUE_DEVICE_INDEX;
set_mode_system_value(b, mode);
break;
case SpvBuiltInViewIndex:
if (b->options && b->options->view_index_is_input) {
*location = VARYING_SLOT_VIEW_INDEX;
vtn_assert(*mode == nir_var_shader_in);
} else {
*location = SYSTEM_VALUE_VIEW_INDEX;
set_mode_system_value(b, mode);
}
break;
case SpvBuiltInSubgroupEqMask:
*location = SYSTEM_VALUE_SUBGROUP_EQ_MASK,
set_mode_system_value(b, mode);
break;
case SpvBuiltInSubgroupGeMask:
*location = SYSTEM_VALUE_SUBGROUP_GE_MASK,
set_mode_system_value(b, mode);
break;
case SpvBuiltInSubgroupGtMask:
*location = SYSTEM_VALUE_SUBGROUP_GT_MASK,
set_mode_system_value(b, mode);
break;
case SpvBuiltInSubgroupLeMask:
*location = SYSTEM_VALUE_SUBGROUP_LE_MASK,
set_mode_system_value(b, mode);
break;
case SpvBuiltInSubgroupLtMask:
*location = SYSTEM_VALUE_SUBGROUP_LT_MASK,
set_mode_system_value(b, mode);
break;
case SpvBuiltInFragStencilRefEXT:
*location = FRAG_RESULT_STENCIL;
vtn_assert(*mode == nir_var_shader_out);
break;
case SpvBuiltInWorkDim:
*location = SYSTEM_VALUE_WORK_DIM;
set_mode_system_value(b, mode);
break;
case SpvBuiltInGlobalSize:
*location = SYSTEM_VALUE_GLOBAL_GROUP_SIZE;
set_mode_system_value(b, mode);
break;
case SpvBuiltInBaryCoordNoPerspAMD:
*location = SYSTEM_VALUE_BARYCENTRIC_LINEAR_PIXEL;
set_mode_system_value(b, mode);
break;
case SpvBuiltInBaryCoordNoPerspCentroidAMD:
*location = SYSTEM_VALUE_BARYCENTRIC_LINEAR_CENTROID;
set_mode_system_value(b, mode);
break;
case SpvBuiltInBaryCoordNoPerspSampleAMD:
*location = SYSTEM_VALUE_BARYCENTRIC_LINEAR_SAMPLE;
set_mode_system_value(b, mode);
break;
case SpvBuiltInBaryCoordSmoothAMD:
*location = SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL;
set_mode_system_value(b, mode);
break;
case SpvBuiltInBaryCoordSmoothCentroidAMD:
*location = SYSTEM_VALUE_BARYCENTRIC_PERSP_CENTROID;
set_mode_system_value(b, mode);
break;
case SpvBuiltInBaryCoordSmoothSampleAMD:
*location = SYSTEM_VALUE_BARYCENTRIC_PERSP_SAMPLE;
set_mode_system_value(b, mode);
break;
case SpvBuiltInBaryCoordPullModelAMD:
*location = SYSTEM_VALUE_BARYCENTRIC_PULL_MODEL;
set_mode_system_value(b, mode);
break;
case SpvBuiltInLaunchIdKHR:
*location = SYSTEM_VALUE_RAY_LAUNCH_ID;
set_mode_system_value(b, mode);
break;
case SpvBuiltInLaunchSizeKHR:
*location = SYSTEM_VALUE_RAY_LAUNCH_SIZE;
set_mode_system_value(b, mode);
break;
case SpvBuiltInWorldRayOriginKHR:
*location = SYSTEM_VALUE_RAY_WORLD_ORIGIN;
set_mode_system_value(b, mode);
break;
case SpvBuiltInWorldRayDirectionKHR:
*location = SYSTEM_VALUE_RAY_WORLD_DIRECTION;
set_mode_system_value(b, mode);
break;
case SpvBuiltInObjectRayOriginKHR:
*location = SYSTEM_VALUE_RAY_OBJECT_ORIGIN;
set_mode_system_value(b, mode);
break;
case SpvBuiltInObjectRayDirectionKHR:
*location = SYSTEM_VALUE_RAY_OBJECT_DIRECTION;
set_mode_system_value(b, mode);
break;
case SpvBuiltInObjectToWorldKHR:
*location = SYSTEM_VALUE_RAY_OBJECT_TO_WORLD;
set_mode_system_value(b, mode);
break;
case SpvBuiltInWorldToObjectKHR:
*location = SYSTEM_VALUE_RAY_WORLD_TO_OBJECT;
set_mode_system_value(b, mode);
break;
case SpvBuiltInRayTminKHR:
*location = SYSTEM_VALUE_RAY_T_MIN;
set_mode_system_value(b, mode);
break;
case SpvBuiltInRayTmaxKHR:
case SpvBuiltInHitTNV:
*location = SYSTEM_VALUE_RAY_T_MAX;
set_mode_system_value(b, mode);
break;
case SpvBuiltInInstanceCustomIndexKHR:
*location = SYSTEM_VALUE_RAY_INSTANCE_CUSTOM_INDEX;
set_mode_system_value(b, mode);
break;
case SpvBuiltInHitKindKHR:
*location = SYSTEM_VALUE_RAY_HIT_KIND;
set_mode_system_value(b, mode);
break;
case SpvBuiltInIncomingRayFlagsKHR:
*location = SYSTEM_VALUE_RAY_FLAGS;
set_mode_system_value(b, mode);
break;
case SpvBuiltInRayGeometryIndexKHR:
*location = SYSTEM_VALUE_RAY_GEOMETRY_INDEX;
set_mode_system_value(b, mode);
break;
case SpvBuiltInCullMaskKHR:
*location = SYSTEM_VALUE_CULL_MASK;
set_mode_system_value(b, mode);
break;
case SpvBuiltInShadingRateKHR:
*location = SYSTEM_VALUE_FRAG_SHADING_RATE;
set_mode_system_value(b, mode);
break;
case SpvBuiltInPrimitiveShadingRateKHR:
if (b->shader->info.stage == MESA_SHADER_VERTEX ||
b->shader->info.stage == MESA_SHADER_GEOMETRY ||
b->shader->info.stage == MESA_SHADER_MESH) {
*location = VARYING_SLOT_PRIMITIVE_SHADING_RATE;
*mode = nir_var_shader_out;
} else {
vtn_fail("invalid stage for SpvBuiltInPrimitiveShadingRateKHR");
}
break;
case SpvBuiltInPrimitiveCountNV:
*location = VARYING_SLOT_PRIMITIVE_COUNT;
break;
case SpvBuiltInPrimitivePointIndicesEXT:
case SpvBuiltInPrimitiveLineIndicesEXT:
case SpvBuiltInPrimitiveTriangleIndicesEXT:
case SpvBuiltInPrimitiveIndicesNV:
*location = VARYING_SLOT_PRIMITIVE_INDICES;
break;
case SpvBuiltInTaskCountNV:
/* NV_mesh_shader only. */
*location = VARYING_SLOT_TASK_COUNT;
*mode = nir_var_shader_out;
break;
case SpvBuiltInMeshViewCountNV:
*location = SYSTEM_VALUE_MESH_VIEW_COUNT;
set_mode_system_value(b, mode);
break;
case SpvBuiltInMeshViewIndicesNV:
*location = SYSTEM_VALUE_MESH_VIEW_INDICES;
set_mode_system_value(b, mode);
break;
case SpvBuiltInCullPrimitiveEXT:
*location = VARYING_SLOT_CULL_PRIMITIVE;
break;
case SpvBuiltInFullyCoveredEXT:
*location = SYSTEM_VALUE_FULLY_COVERED;
set_mode_system_value(b, mode);
break;
case SpvBuiltInFragSizeEXT:
*location = SYSTEM_VALUE_FRAG_SIZE;
set_mode_system_value(b, mode);
break;
case SpvBuiltInFragInvocationCountEXT:
*location = SYSTEM_VALUE_FRAG_INVOCATION_COUNT;
set_mode_system_value(b, mode);
break;
case SpvBuiltInHitTriangleVertexPositionsKHR:
*location = SYSTEM_VALUE_RAY_TRIANGLE_VERTEX_POSITIONS;
set_mode_system_value(b, mode);
break;
case SpvBuiltInBaryCoordKHR:
*location = SYSTEM_VALUE_BARYCENTRIC_PERSP_COORD;
set_mode_system_value(b, mode);
break;
case SpvBuiltInBaryCoordNoPerspKHR:
*location = SYSTEM_VALUE_BARYCENTRIC_LINEAR_COORD;
set_mode_system_value(b, mode);
break;
case SpvBuiltInShaderIndexAMDX:
*location = SYSTEM_VALUE_SHADER_INDEX;
set_mode_system_value(b, mode);
break;
case SpvBuiltInCoalescedInputCountAMDX:
*location = SYSTEM_VALUE_COALESCED_INPUT_COUNT;
set_mode_system_value(b, mode);
break;
case SpvBuiltInWarpsPerSMNV:
*location = SYSTEM_VALUE_WARPS_PER_SM_NV;
set_mode_system_value(b, mode);
break;
case SpvBuiltInSMCountNV:
*location = SYSTEM_VALUE_SM_COUNT_NV;
set_mode_system_value(b, mode);
break;
case SpvBuiltInWarpIDNV:
*location = SYSTEM_VALUE_WARP_ID_NV;
set_mode_system_value(b, mode);
break;
case SpvBuiltInSMIDNV:
*location = SYSTEM_VALUE_SM_ID_NV;
set_mode_system_value(b, mode);
break;
default:
vtn_fail("Unsupported builtin: %s (%u)",
spirv_builtin_to_string(builtin), builtin);
}
}
static void
apply_var_decoration(struct vtn_builder *b,
struct nir_variable_data *var_data,
const struct vtn_decoration *dec)
{
switch (dec->decoration) {
case SpvDecorationRelaxedPrecision:
var_data->precision = GLSL_PRECISION_MEDIUM;
break;
case SpvDecorationNoPerspective:
var_data->interpolation = INTERP_MODE_NOPERSPECTIVE;
break;
case SpvDecorationFlat:
var_data->interpolation = INTERP_MODE_FLAT;
break;
case SpvDecorationExplicitInterpAMD:
var_data->interpolation = INTERP_MODE_EXPLICIT;
break;
case SpvDecorationCentroid:
var_data->centroid = true;
break;
case SpvDecorationSample:
var_data->sample = true;
break;
case SpvDecorationInvariant:
var_data->invariant = true;
break;
case SpvDecorationConstant:
var_data->read_only = true;
break;
case SpvDecorationNonReadable:
var_data->access |= ACCESS_NON_READABLE;
break;
case SpvDecorationNonWritable:
var_data->read_only = true;
var_data->access |= ACCESS_NON_WRITEABLE;
break;
case SpvDecorationRestrict:
var_data->access |= ACCESS_RESTRICT;
break;
case SpvDecorationAliased:
var_data->access &= ~ACCESS_RESTRICT;
break;
case SpvDecorationVolatile:
var_data->access |= ACCESS_VOLATILE;
break;
case SpvDecorationCoherent:
var_data->access |= ACCESS_COHERENT;
break;
case SpvDecorationComponent:
var_data->location_frac = dec->operands[0];
break;
case SpvDecorationIndex:
var_data->index = dec->operands[0];
break;
case SpvDecorationBuiltIn: {
SpvBuiltIn builtin = dec->operands[0];
nir_variable_mode mode = var_data->mode;
vtn_get_builtin_location(b, builtin, &var_data->location, &mode);
var_data->mode = mode;
switch (builtin) {
case SpvBuiltInTessLevelOuter:
case SpvBuiltInTessLevelInner:
case SpvBuiltInClipDistance:
case SpvBuiltInClipDistancePerViewNV:
case SpvBuiltInCullDistance:
case SpvBuiltInCullDistancePerViewNV:
var_data->compact = true;
break;
case SpvBuiltInPrimitivePointIndicesEXT:
case SpvBuiltInPrimitiveLineIndicesEXT:
case SpvBuiltInPrimitiveTriangleIndicesEXT:
/* Not defined as per-primitive in the EXT, but they behave
* like per-primitive outputs so it's easier to treat them like that.
* They may still require special treatment in the backend in order to
* control where and how they are stored.
*
* EXT_mesh_shader: write-only array of vectors indexed by the primitive index
* NV_mesh_shader: read/write flat array
*/
var_data->per_primitive = true;
break;
default:
break;
}
break;
}
case SpvDecorationSpecId:
case SpvDecorationRowMajor:
case SpvDecorationColMajor:
case SpvDecorationMatrixStride:
case SpvDecorationUniform:
case SpvDecorationUniformId:
case SpvDecorationLinkageAttributes:
break; /* Do nothing with these here */
case SpvDecorationPatch:
var_data->patch = true;
break;
case SpvDecorationLocation:
vtn_fail("Should be handled earlier by var_decoration_cb()");
case SpvDecorationBlock:
case SpvDecorationBufferBlock:
case SpvDecorationArrayStride:
case SpvDecorationGLSLShared:
case SpvDecorationGLSLPacked:
break; /* These can apply to a type but we don't care about them */
case SpvDecorationBinding:
case SpvDecorationDescriptorSet:
case SpvDecorationNoContraction:
case SpvDecorationInputAttachmentIndex:
vtn_warn("Decoration not allowed for variable or structure member: %s",
spirv_decoration_to_string(dec->decoration));
break;
case SpvDecorationXfbBuffer:
var_data->explicit_xfb_buffer = true;
var_data->xfb.buffer = dec->operands[0];
var_data->always_active_io = true;
break;
case SpvDecorationXfbStride:
var_data->explicit_xfb_stride = true;
var_data->xfb.stride = dec->operands[0];
break;
case SpvDecorationOffset:
var_data->explicit_offset = true;
var_data->offset = dec->operands[0];
break;
case SpvDecorationStream:
var_data->stream = dec->operands[0];
break;
case SpvDecorationCPacked:
case SpvDecorationSaturatedConversion:
case SpvDecorationFuncParamAttr:
case SpvDecorationFPRoundingMode:
case SpvDecorationFPFastMathMode:
case SpvDecorationAlignment:
if (b->shader->info.stage != MESA_SHADER_KERNEL) {
vtn_warn("Decoration only allowed for CL-style kernels: %s",
spirv_decoration_to_string(dec->decoration));
}
break;
case SpvDecorationUserSemantic:
case SpvDecorationUserTypeGOOGLE:
/* User semantic decorations can safely be ignored by the driver. */
break;
case SpvDecorationRestrictPointerEXT:
case SpvDecorationAliasedPointerEXT:
/* TODO: We should actually plumb alias information through NIR. */
break;
case SpvDecorationPerPrimitiveNV:
vtn_fail_if(
!(b->shader->info.stage == MESA_SHADER_MESH && var_data->mode == nir_var_shader_out) &&
!(b->shader->info.stage == MESA_SHADER_FRAGMENT && var_data->mode == nir_var_shader_in),
"PerPrimitiveNV decoration only allowed for Mesh shader outputs or Fragment shader inputs");
var_data->per_primitive = true;
break;
case SpvDecorationPerTaskNV:
vtn_fail_if(
(b->shader->info.stage != MESA_SHADER_MESH &&
b->shader->info.stage != MESA_SHADER_TASK) ||
var_data->mode != nir_var_mem_task_payload,
"PerTaskNV decoration only allowed on Task/Mesh payload variables.");
break;
case SpvDecorationPerViewNV:
vtn_fail_if(b->shader->info.stage != MESA_SHADER_MESH,
"PerViewNV decoration only allowed in Mesh shaders");
var_data->per_view = true;
break;
case SpvDecorationPerVertexKHR:
vtn_fail_if(b->shader->info.stage != MESA_SHADER_FRAGMENT,
"PerVertexKHR decoration only allowed in Fragment shaders");
var_data->per_vertex = true;
break;
case SpvDecorationNodeMaxPayloadsAMDX:
vtn_fail_if(b->shader->info.stage != MESA_SHADER_COMPUTE,
"NodeMaxPayloadsAMDX decoration only allowed in compute shaders");
break;
case SpvDecorationNodeSharesPayloadLimitsWithAMDX:
vtn_fail_if(b->shader->info.stage != MESA_SHADER_COMPUTE,
"NodeMaxPayloadsAMDX decoration only allowed in compute shaders");
break;
case SpvDecorationPayloadNodeNameAMDX:
vtn_fail_if(b->shader->info.stage != MESA_SHADER_COMPUTE,
"NodeMaxPayloadsAMDX decoration only allowed in compute shaders");
var_data->node_name = vtn_string_literal(b, dec->operands, dec->num_operands, NULL);
break;
case SpvDecorationTrackFinishWritingAMDX:
vtn_fail_if(b->shader->info.stage != MESA_SHADER_COMPUTE,
"NodeMaxPayloadsAMDX decoration only allowed in compute shaders");
break;
default:
vtn_fail_with_decoration("Unhandled decoration", dec->decoration);
}
}
static void
gather_var_kind_cb(struct vtn_builder *b, struct vtn_value *val, int member,
const struct vtn_decoration *dec, void *void_var)
{
struct vtn_variable *vtn_var = void_var;
switch (dec->decoration) {
case SpvDecorationPatch:
vtn_var->var->data.patch = true;
break;
case SpvDecorationPerPrimitiveNV:
vtn_var->var->data.per_primitive = true;
break;
case SpvDecorationPerViewNV:
vtn_var->var->data.per_view = true;
break;
default:
/* Nothing to do. */
break;
}
}
static void
var_set_alignment(struct vtn_builder *b, struct vtn_variable *vtn_var,
uint32_t alignment)
{
if (alignment == 0) {
vtn_warn("Specified alignment is zero, ignoring");
return;
}
if (!util_is_power_of_two_or_zero(alignment)) {
/* This isn't actually a requirement anywhere in any spec but it seems
* reasonable to enforce.
*/
unsigned real_align = 1 << (ffs(alignment) - 1);
vtn_warn("Alignment of %u specified, which not a power of two, "
"using %u instead", alignment, real_align);
alignment = real_align;
}
vtn_var->var->data.alignment = alignment;
}
static void
var_decoration_cb(struct vtn_builder *b, struct vtn_value *val, int member,
const struct vtn_decoration *dec, void *void_var)
{
struct vtn_variable *vtn_var = void_var;
/* Handle decorations that apply to a vtn_variable as a whole */
switch (dec->decoration) {
case SpvDecorationBinding:
vtn_var->binding = dec->operands[0];
vtn_var->explicit_binding = true;
return;
case SpvDecorationDescriptorSet:
vtn_var->descriptor_set = dec->operands[0];
return;
case SpvDecorationInputAttachmentIndex:
vtn_var->input_attachment_index = dec->operands[0];
vtn_var->access |= ACCESS_NON_WRITEABLE;
return;
case SpvDecorationAlignment:
var_set_alignment(b, vtn_var, dec->operands[0]);
break;
case SpvDecorationAlignmentId:
var_set_alignment(b, vtn_var, vtn_constant_uint(b, dec->operands[0]));
break;
case SpvDecorationPatch:
vtn_var->var->data.patch = true;
break;
case SpvDecorationOffset:
vtn_var->offset = dec->operands[0];
break;
case SpvDecorationNonWritable:
vtn_var->access |= ACCESS_NON_WRITEABLE;
break;
case SpvDecorationNonReadable:
vtn_var->access |= ACCESS_NON_READABLE;
break;
case SpvDecorationVolatile:
vtn_var->access |= ACCESS_VOLATILE;
break;
case SpvDecorationCoherent:
vtn_var->access |= ACCESS_COHERENT;
break;
case SpvDecorationCounterBuffer:
/* Counter buffer decorations can safely be ignored by the driver. */
return;
default:
break;
}
if (val->value_type == vtn_value_type_pointer) {
assert(val->pointer->var == void_var);
assert(member == -1);
} else {
assert(val->value_type == vtn_value_type_type);
}
/* Location is odd. If applied to a split structure, we have to walk the
* whole thing and accumulate the location. It's easier to handle as a
* special case.
*/
if (dec->decoration == SpvDecorationLocation) {
unsigned location = dec->operands[0];
if (b->shader->info.stage == MESA_SHADER_FRAGMENT &&
vtn_var->mode == vtn_variable_mode_output) {
location += FRAG_RESULT_DATA0;
} else if (b->shader->info.stage == MESA_SHADER_VERTEX &&
vtn_var->mode == vtn_variable_mode_input) {
location += VERT_ATTRIB_GENERIC0;
} else if (vtn_var->mode == vtn_variable_mode_input ||
vtn_var->mode == vtn_variable_mode_output) {
location += VARYING_SLOT_VAR0;
} else if (vtn_var->mode == vtn_variable_mode_call_data ||
vtn_var->mode == vtn_variable_mode_ray_payload) {
/* This location is fine as-is */
} else if (vtn_var->mode != vtn_variable_mode_uniform &&
vtn_var->mode != vtn_variable_mode_image) {
vtn_warn("Location must be on input, output, uniform, sampler or "
"image variable");
return;
}
if (vtn_var->var->num_members == 0) {
/* This handles the member and lone variable cases */
vtn_var->var->data.location = location;
} else {
/* This handles the structure member case */
assert(vtn_var->var->members);
if (member == -1)
vtn_var->base_location = location;
else
vtn_var->var->members[member].location = location;
}
return;
} else {
if (vtn_var->var) {
if (vtn_var->var->num_members == 0) {
/* We call this function on types as well as variables and not all
* struct types get split so we can end up having stray member
* decorations; just ignore them.
*/
if (member == -1)
apply_var_decoration(b, &vtn_var->var->data, dec);
} else if (member >= 0) {
/* Member decorations must come from a type */
assert(val->value_type == vtn_value_type_type);
apply_var_decoration(b, &vtn_var->var->members[member], dec);
} else {
unsigned length =
glsl_get_length(glsl_without_array(vtn_var->type->type));
for (unsigned i = 0; i < length; i++)
apply_var_decoration(b, &vtn_var->var->members[i], dec);
}
} else {
/* A few variables, those with external storage, have no actual
* nir_variables associated with them. Fortunately, all decorations
* we care about for those variables are on the type only.
*/
vtn_assert(vtn_var->mode == vtn_variable_mode_ubo ||
vtn_var->mode == vtn_variable_mode_ssbo ||
vtn_var->mode == vtn_variable_mode_push_constant);
}
}
}
enum vtn_variable_mode
vtn_storage_class_to_mode(struct vtn_builder *b,
SpvStorageClass class,
struct vtn_type *interface_type,
nir_variable_mode *nir_mode_out)
{
enum vtn_variable_mode mode;
nir_variable_mode nir_mode;
switch (class) {
case SpvStorageClassUniform:
/* Assume it's an UBO if we lack the interface_type. */
if (!interface_type || interface_type->block) {
mode = vtn_variable_mode_ubo;
nir_mode = nir_var_mem_ubo;
} else if (interface_type->buffer_block) {
mode = vtn_variable_mode_ssbo;
nir_mode = nir_var_mem_ssbo;
} else {
/* Default-block uniforms, coming from gl_spirv */
mode = vtn_variable_mode_uniform;
nir_mode = nir_var_uniform;
}
break;
case SpvStorageClassStorageBuffer:
mode = vtn_variable_mode_ssbo;
nir_mode = nir_var_mem_ssbo;
break;
case SpvStorageClassPhysicalStorageBuffer:
mode = vtn_variable_mode_phys_ssbo;
nir_mode = nir_var_mem_global;
break;
case SpvStorageClassUniformConstant:
/* interface_type is only NULL when OpTypeForwardPointer is used and
* OpTypeForwardPointer can only be used for struct types, not images or
* acceleration structures.
*/
if (interface_type)
interface_type = vtn_type_without_array(interface_type);
if (interface_type &&
interface_type->base_type == vtn_base_type_image &&
glsl_type_is_image(interface_type->glsl_image)) {
mode = vtn_variable_mode_image;
nir_mode = nir_var_image;
} else if (b->shader->info.stage == MESA_SHADER_KERNEL) {
mode = vtn_variable_mode_constant;
nir_mode = nir_var_mem_constant;
} else {
/* interface_type is only NULL when OpTypeForwardPointer is used and
* OpTypeForwardPointer cannot be used with the UniformConstant
* storage class.
*/
assert(interface_type != NULL);
if (interface_type->base_type == vtn_base_type_accel_struct) {
mode = vtn_variable_mode_accel_struct;
nir_mode = nir_var_uniform;
} else {
mode = vtn_variable_mode_uniform;
nir_mode = nir_var_uniform;
}
}
break;
case SpvStorageClassPushConstant:
mode = vtn_variable_mode_push_constant;
nir_mode = nir_var_mem_push_const;
break;
case SpvStorageClassInput:
mode = vtn_variable_mode_input;
nir_mode = nir_var_shader_in;
/* NV_mesh_shader: fixup due to lack of dedicated storage class */
if (b->shader->info.stage == MESA_SHADER_MESH) {
mode = vtn_variable_mode_task_payload;
nir_mode = nir_var_mem_task_payload;
}
break;
case SpvStorageClassOutput:
mode = vtn_variable_mode_output;
nir_mode = nir_var_shader_out;
/* NV_mesh_shader: fixup due to lack of dedicated storage class */
if (b->shader->info.stage == MESA_SHADER_TASK) {
mode = vtn_variable_mode_task_payload;
nir_mode = nir_var_mem_task_payload;
}
break;
case SpvStorageClassPrivate:
mode = vtn_variable_mode_private;
nir_mode = nir_var_shader_temp;
break;
case SpvStorageClassFunction:
mode = vtn_variable_mode_function;
nir_mode = nir_var_function_temp;
break;
case SpvStorageClassWorkgroup:
mode = vtn_variable_mode_workgroup;
nir_mode = nir_var_mem_shared;
break;
case SpvStorageClassTaskPayloadWorkgroupEXT:
mode = vtn_variable_mode_task_payload;
nir_mode = nir_var_mem_task_payload;
break;
case SpvStorageClassAtomicCounter:
mode = vtn_variable_mode_atomic_counter;
nir_mode = nir_var_uniform;
break;
case SpvStorageClassCrossWorkgroup:
mode = vtn_variable_mode_cross_workgroup;
nir_mode = nir_var_mem_global;
break;
case SpvStorageClassImage:
mode = vtn_variable_mode_image;
nir_mode = nir_var_image;
break;
case SpvStorageClassCallableDataKHR:
mode = vtn_variable_mode_call_data;
nir_mode = nir_var_shader_temp;
break;
case SpvStorageClassIncomingCallableDataKHR:
mode = vtn_variable_mode_call_data_in;
nir_mode = nir_var_shader_call_data;
break;
case SpvStorageClassRayPayloadKHR:
mode = vtn_variable_mode_ray_payload;
nir_mode = nir_var_shader_temp;
break;
case SpvStorageClassIncomingRayPayloadKHR:
mode = vtn_variable_mode_ray_payload_in;
nir_mode = nir_var_shader_call_data;
break;
case SpvStorageClassHitAttributeKHR:
mode = vtn_variable_mode_hit_attrib;
nir_mode = nir_var_ray_hit_attrib;
break;
case SpvStorageClassShaderRecordBufferKHR:
mode = vtn_variable_mode_shader_record;
nir_mode = nir_var_mem_constant;
break;
case SpvStorageClassNodePayloadAMDX:
mode = vtn_variable_mode_node_payload;
nir_mode = nir_var_mem_node_payload_in;
break;
case SpvStorageClassNodeOutputPayloadAMDX:
mode = vtn_variable_mode_node_payload;
nir_mode = nir_var_mem_node_payload;
break;
case SpvStorageClassGeneric:
mode = vtn_variable_mode_generic;
nir_mode = nir_var_mem_generic;
break;
default:
vtn_fail("Unhandled variable storage class: %s (%u)",
spirv_storageclass_to_string(class), class);
}
if (nir_mode_out)
*nir_mode_out = nir_mode;
return mode;
}
nir_address_format
vtn_mode_to_address_format(struct vtn_builder *b, enum vtn_variable_mode mode)
{
switch (mode) {
case vtn_variable_mode_ubo:
return b->options->ubo_addr_format;
case vtn_variable_mode_ssbo:
return b->options->ssbo_addr_format;
case vtn_variable_mode_phys_ssbo:
return b->options->phys_ssbo_addr_format;
case vtn_variable_mode_push_constant:
return b->options->push_const_addr_format;
case vtn_variable_mode_workgroup:
return b->options->shared_addr_format;
case vtn_variable_mode_generic:
case vtn_variable_mode_cross_workgroup:
return b->options->global_addr_format;
case vtn_variable_mode_shader_record:
case vtn_variable_mode_constant:
return b->options->constant_addr_format;
case vtn_variable_mode_accel_struct:
case vtn_variable_mode_node_payload:
return nir_address_format_64bit_global;
case vtn_variable_mode_task_payload:
return b->options->task_payload_addr_format;
case vtn_variable_mode_function:
if (b->physical_ptrs)
return b->options->temp_addr_format;
FALLTHROUGH;
case vtn_variable_mode_private:
case vtn_variable_mode_uniform:
case vtn_variable_mode_atomic_counter:
case vtn_variable_mode_input:
case vtn_variable_mode_output:
case vtn_variable_mode_image:
case vtn_variable_mode_call_data:
case vtn_variable_mode_call_data_in:
case vtn_variable_mode_ray_payload:
case vtn_variable_mode_ray_payload_in:
case vtn_variable_mode_hit_attrib:
return nir_address_format_logical;
}
unreachable("Invalid variable mode");
}
nir_def *
vtn_pointer_to_ssa(struct vtn_builder *b, struct vtn_pointer *ptr)
{
if ((vtn_pointer_is_external_block(b, ptr) &&
vtn_type_contains_block(b, ptr->type) &&
ptr->mode != vtn_variable_mode_phys_ssbo) ||
ptr->mode == vtn_variable_mode_accel_struct) {
/* In this case, we're looking for a block index and not an actual
* deref.
*
* For PhysicalStorageBuffer pointers, we don't have a block index
* at all because we get the pointer directly from the client. This
* assumes that there will never be a SSBO binding variable using the
* PhysicalStorageBuffer storage class. This assumption appears
* to be correct according to the Vulkan spec because the table,
* "Shader Resource and Storage Class Correspondence," the only the
* Uniform storage class with BufferBlock or the StorageBuffer
* storage class with Block can be used.
*/
if (!ptr->block_index) {
/* If we don't have a block_index then we must be a pointer to the
* variable itself.
*/
vtn_assert(!ptr->deref);
struct vtn_access_chain chain = {
.length = 0,
};
ptr = vtn_pointer_dereference(b, ptr, &chain);
}
return ptr->block_index;
} else {
return &vtn_pointer_to_deref(b, ptr)->def;
}
}
struct vtn_pointer *
vtn_pointer_from_ssa(struct vtn_builder *b, nir_def *ssa,
struct vtn_type *ptr_type)
{
vtn_assert(ptr_type->base_type == vtn_base_type_pointer);
struct vtn_pointer *ptr = vtn_zalloc(b, struct vtn_pointer);
struct vtn_type *without_array =
vtn_type_without_array(ptr_type->deref);
nir_variable_mode nir_mode;
ptr->mode = vtn_storage_class_to_mode(b, ptr_type->storage_class,
without_array, &nir_mode);
ptr->type = ptr_type->deref;
ptr->ptr_type = ptr_type;
const struct glsl_type *deref_type =
vtn_type_get_nir_type(b, ptr_type->deref, ptr->mode);
if (!vtn_pointer_is_external_block(b, ptr) &&
ptr->mode != vtn_variable_mode_accel_struct) {
ptr->deref = nir_build_deref_cast(&b->nb, ssa, nir_mode,
deref_type, ptr_type->stride);
} else if ((vtn_type_contains_block(b, ptr->type) &&
ptr->mode != vtn_variable_mode_phys_ssbo) ||
ptr->mode == vtn_variable_mode_accel_struct) {
/* This is a pointer to somewhere in an array of blocks, not a
* pointer to somewhere inside the block. Set the block index
* instead of making a cast.
*/
ptr->block_index = ssa;
} else {
/* This is a pointer to something internal or a pointer inside a
* block. It's just a regular cast.
*
* For PhysicalStorageBuffer pointers, we don't have a block index
* at all because we get the pointer directly from the client. This
* assumes that there will never be a SSBO binding variable using the
* PhysicalStorageBuffer storage class. This assumption appears
* to be correct according to the Vulkan spec because the table,
* "Shader Resource and Storage Class Correspondence," the only the
* Uniform storage class with BufferBlock or the StorageBuffer
* storage class with Block can be used.
*/
ptr->deref = nir_build_deref_cast(&b->nb, ssa, nir_mode,
deref_type, ptr_type->stride);
ptr->deref->def.num_components =
glsl_get_vector_elements(ptr_type->type);
ptr->deref->def.bit_size = glsl_get_bit_size(ptr_type->type);
}
return ptr;
}
static void
assign_missing_member_locations(struct vtn_variable *var)
{
unsigned length =
glsl_get_length(glsl_without_array(var->type->type));
int location = var->base_location;
for (unsigned i = 0; i < length; i++) {
/* From the Vulkan spec:
*
* “If the structure type is a Block but without a Location, then each
* of its members must have a Location decoration.”
*
*/
if (var->type->block) {
assert(var->base_location != -1 ||
var->var->members[i].location != -1);
}
/* From the Vulkan spec:
*
* “Any member with its own Location decoration is assigned that
* location. Each remaining member is assigned the location after the
* immediately preceding member in declaration order.”
*/
if (var->var->members[i].location != -1)
location = var->var->members[i].location;
else
var->var->members[i].location = location;
/* Below we use type instead of interface_type, because interface_type
* is only available when it is a Block. This code also supports
* input/outputs that are just structs
*/
const struct glsl_type *member_type =
glsl_get_struct_field(glsl_without_array(var->type->type), i);
location +=
glsl_count_attribute_slots(member_type,
false /* is_gl_vertex_input */);
}
}
static void
adjust_patch_locations(struct vtn_builder *b, struct vtn_variable *var)
{
uint16_t num_data = 1;
struct nir_variable_data *data = &var->var->data;
if (var->var->members) {
num_data = var->var->num_members;
data = var->var->members;
}
for (uint16_t i = 0; i < num_data; i++) {
vtn_assert(data[i].location < VARYING_SLOT_PATCH0);
if (data[i].patch &&
(data[i].mode == nir_var_shader_in || data[i].mode == nir_var_shader_out) &&
data[i].location >= VARYING_SLOT_VAR0)
data[i].location += VARYING_SLOT_PATCH0 - VARYING_SLOT_VAR0;
}
}
nir_deref_instr *
vtn_get_call_payload_for_location(struct vtn_builder *b, uint32_t location_id)
{
uint32_t location = vtn_constant_uint(b, location_id);
nir_foreach_variable_with_modes(var, b->nb.shader, nir_var_shader_temp) {
if (var->data.explicit_location &&
var->data.location == location)
return nir_build_deref_var(&b->nb, var);
}
vtn_fail("Couldn't find variable with a storage class of CallableDataKHR "
"or RayPayloadKHR and location %d", location);
}
static bool
vtn_type_is_ray_query(struct vtn_type *type)
{
return vtn_type_without_array(type)->base_type == vtn_base_type_ray_query;
}
static void
vtn_create_variable(struct vtn_builder *b, struct vtn_value *val,
struct vtn_type *ptr_type, SpvStorageClass storage_class,
struct vtn_value *initializer)
{
vtn_assert(ptr_type->base_type == vtn_base_type_pointer);
struct vtn_type *type = ptr_type->deref;
struct vtn_type *without_array = vtn_type_without_array(ptr_type->deref);
enum vtn_variable_mode mode;
nir_variable_mode nir_mode;
mode = vtn_storage_class_to_mode(b, storage_class, without_array, &nir_mode);
switch (mode) {
case vtn_variable_mode_ubo:
/* There's no other way to get vtn_variable_mode_ubo */
vtn_assert(without_array->block);
break;
case vtn_variable_mode_ssbo:
if (storage_class == SpvStorageClassStorageBuffer &&
!without_array->block) {
if (!b->enabled_capabilities.VariablePointers &&
!b->enabled_capabilities.VariablePointersStorageBuffer) {
vtn_fail("Variables in the StorageBuffer storage class must "
"have a struct type with the Block decoration");
} else {
/* If variable pointers are not present, it's still malformed
* SPIR-V but we can parse it and do the right thing anyway.
* Since some of the 8-bit storage tests have bugs in this are,
* just make it a warning for now.
*/
vtn_warn("Variables in the StorageBuffer storage class must "
"have a struct type with the Block decoration");
}
}
break;
case vtn_variable_mode_generic:
vtn_fail("Cannot create a variable with the Generic storage class");
break;
case vtn_variable_mode_image:
if (storage_class == SpvStorageClassImage)
vtn_fail("Cannot create a variable with the Image storage class");
else
vtn_assert(storage_class == SpvStorageClassUniformConstant);
break;
case vtn_variable_mode_phys_ssbo:
vtn_fail("Cannot create a variable with the "
"PhysicalStorageBuffer storage class");
break;
default:
/* No tallying is needed */
break;
}
struct vtn_variable *var = vtn_zalloc(b, struct vtn_variable);
var->type = type;
var->mode = mode;
var->base_location = -1;
val->pointer = vtn_zalloc(b, struct vtn_pointer);
val->pointer->mode = var->mode;
val->pointer->type = var->type;
val->pointer->ptr_type = ptr_type;
val->pointer->var = var;
val->pointer->access = var->type->access;
switch (var->mode) {
case vtn_variable_mode_function:
case vtn_variable_mode_private:
case vtn_variable_mode_uniform:
case vtn_variable_mode_atomic_counter:
case vtn_variable_mode_constant:
case vtn_variable_mode_call_data:
case vtn_variable_mode_call_data_in:
case vtn_variable_mode_image:
case vtn_variable_mode_ray_payload:
case vtn_variable_mode_ray_payload_in:
case vtn_variable_mode_hit_attrib:
case vtn_variable_mode_node_payload:
/* For these, we create the variable normally */
var->var = rzalloc(b->shader, nir_variable);
var->var->name = ralloc_strdup(var->var, val->name);
var->var->type = vtn_type_get_nir_type(b, var->type, var->mode);
/* This is a total hack but we need some way to flag variables which are
* going to be call payloads. See get_call_payload_deref.
*/
if (storage_class == SpvStorageClassCallableDataKHR ||
storage_class == SpvStorageClassRayPayloadKHR)
var->var->data.explicit_location = true;
var->var->data.mode = nir_mode;
var->var->data.location = -1;
var->var->data.ray_query = vtn_type_is_ray_query(var->type);
var->var->interface_type = NULL;
break;
case vtn_variable_mode_ubo:
case vtn_variable_mode_ssbo:
case vtn_variable_mode_push_constant:
case vtn_variable_mode_accel_struct:
case vtn_variable_mode_shader_record:
var->var = rzalloc(b->shader, nir_variable);
var->var->name = ralloc_strdup(var->var, val->name);
var->var->type = vtn_type_get_nir_type(b, var->type, var->mode);
var->var->interface_type = var->var->type;
var->var->data.mode = nir_mode;
var->var->data.location = -1;
var->var->data.driver_location = 0;
var->var->data.access = var->type->access;
break;
case vtn_variable_mode_workgroup:
case vtn_variable_mode_cross_workgroup:
case vtn_variable_mode_task_payload:
/* Create the variable normally */
var->var = rzalloc(b->shader, nir_variable);
var->var->name = ralloc_strdup(var->var, val->name);
var->var->type = vtn_type_get_nir_type(b, var->type, var->mode);
var->var->data.mode = nir_mode;
break;
case vtn_variable_mode_input:
case vtn_variable_mode_output: {
var->var = rzalloc(b->shader, nir_variable);
var->var->name = ralloc_strdup(var->var, val->name);
var->var->type = vtn_type_get_nir_type(b, var->type, var->mode);
var->var->data.mode = nir_mode;
/* In order to know whether or not we're a per-vertex inout, we need
* the patch qualifier. This means walking the variable decorations
* early before we actually create any variables. Not a big deal.
*
* GLSLang really likes to place decorations in the most interior
* thing it possibly can. In particular, if you have a struct, it
* will place the patch decorations on the struct members. This
* should be handled by the variable splitting below just fine.
*
* If you have an array-of-struct, things get even more weird as it
* will place the patch decorations on the struct even though it's
* inside an array and some of the members being patch and others not
* makes no sense whatsoever. Since the only sensible thing is for
* it to be all or nothing, we'll call it patch if any of the members
* are declared patch.
*/
vtn_foreach_decoration(b, val, gather_var_kind_cb, var);
if (glsl_type_is_array(var->type->type) &&
glsl_type_is_struct_or_ifc(without_array->type)) {
vtn_foreach_decoration(b, vtn_value(b, without_array->id,
vtn_value_type_type),
gather_var_kind_cb, var);
}
struct vtn_type *per_vertex_type = var->type;
if (nir_is_arrayed_io(var->var, b->shader->info.stage))
per_vertex_type = var->type->array_element;
/* Figure out the interface block type. */
struct vtn_type *iface_type = per_vertex_type;
if (var->mode == vtn_variable_mode_output &&
(b->shader->info.stage == MESA_SHADER_VERTEX ||
b->shader->info.stage == MESA_SHADER_TESS_EVAL ||
b->shader->info.stage == MESA_SHADER_GEOMETRY)) {
/* For vertex data outputs, we can end up with arrays of blocks for
* transform feedback where each array element corresponds to a
* different XFB output buffer.
*/
while (iface_type->base_type == vtn_base_type_array)
iface_type = iface_type->array_element;
}
if (iface_type->base_type == vtn_base_type_struct && iface_type->block)
var->var->interface_type = vtn_type_get_nir_type(b, iface_type,
var->mode);
/* If it's a block, set it up as per-member so can be splitted later by
* nir_split_per_member_structs.
*
* This is for a couple of reasons. For one, builtins may all come in a
* block and we really want those split out into separate variables.
* For another, interpolation qualifiers can be applied to members of
* the top-level struct and we need to be able to preserve that
* information.
*/
if (per_vertex_type->base_type == vtn_base_type_struct &&
per_vertex_type->block) {
var->var->num_members = glsl_get_length(per_vertex_type->type);
var->var->members = rzalloc_array(var->var, struct nir_variable_data,
var->var->num_members);
for (unsigned i = 0; i < var->var->num_members; i++) {
var->var->members[i].mode = nir_mode;
var->var->members[i].patch = var->var->data.patch;
var->var->members[i].location = -1;
}
}
/* For inputs and outputs, we need to grab locations and builtin
* information from the per-vertex type.
*/
vtn_foreach_decoration(b, vtn_value(b, per_vertex_type->id,
vtn_value_type_type),
var_decoration_cb, var);
break;
}
case vtn_variable_mode_phys_ssbo:
case vtn_variable_mode_generic:
unreachable("Should have been caught before");
}
/* Ignore incorrectly generated Undef initializers. */
if (b->wa_llvm_spirv_ignore_workgroup_initializer &&
initializer &&
storage_class == SpvStorageClassWorkgroup)
initializer = NULL;
/* Only initialize variable when there is an initializer and it's not
* undef.
*/
if (initializer && !initializer->is_undef_constant) {
switch (storage_class) {
case SpvStorageClassWorkgroup:
/* VK_KHR_zero_initialize_workgroup_memory. */
vtn_fail_if(b->options->environment != NIR_SPIRV_VULKAN,
"Only Vulkan supports variable initializer "
"for Workgroup variable %u",
vtn_id_for_value(b, val));
vtn_fail_if(initializer->value_type != vtn_value_type_constant ||
!initializer->is_null_constant,
"Workgroup variable %u can only have OpConstantNull "
"as initializer, but have %u instead",
vtn_id_for_value(b, val),
vtn_id_for_value(b, initializer));
b->shader->info.zero_initialize_shared_memory = true;
break;
case SpvStorageClassUniformConstant:
vtn_fail_if(b->options->environment != NIR_SPIRV_OPENGL &&
b->options->environment != NIR_SPIRV_OPENCL,
"Only OpenGL and OpenCL support variable initializer "
"for UniformConstant variable %u\n",
vtn_id_for_value(b, val));
vtn_fail_if(initializer->value_type != vtn_value_type_constant,
"UniformConstant variable %u can only have a constant "
"initializer, but have %u instead",
vtn_id_for_value(b, val),
vtn_id_for_value(b, initializer));
break;
case SpvStorageClassOutput:
case SpvStorageClassPrivate:
vtn_assert(b->options->environment != NIR_SPIRV_OPENCL);
/* These can have any initializer. */
break;
case SpvStorageClassFunction:
/* These can have any initializer. */
break;
case SpvStorageClassCrossWorkgroup:
vtn_assert(b->options->environment == NIR_SPIRV_OPENCL);
vtn_fail("Initializer for CrossWorkgroup variable %u "
"not yet supported in Mesa.",
vtn_id_for_value(b, val));
break;
default: {
const enum nir_spirv_execution_environment env =
b->options->environment;
const char *env_name =
env == NIR_SPIRV_VULKAN ? "Vulkan" :
env == NIR_SPIRV_OPENCL ? "OpenCL" :
env == NIR_SPIRV_OPENGL ? "OpenGL" :
NULL;
vtn_assert(env_name);
vtn_fail("In %s, any OpVariable with an Initializer operand "
"must have %s%s%s, or Function as "
"its Storage Class operand. Variable %u has an "
"Initializer but its Storage Class is %s.",
env_name,
env == NIR_SPIRV_VULKAN ? "Private, Output, Workgroup" : "",
env == NIR_SPIRV_OPENCL ? "CrossWorkgroup, UniformConstant" : "",
env == NIR_SPIRV_OPENGL ? "Private, Output, UniformConstant" : "",
vtn_id_for_value(b, val),
spirv_storageclass_to_string(storage_class));
}
}
switch (initializer->value_type) {
case vtn_value_type_constant:
var->var->constant_initializer =
nir_constant_clone(initializer->constant, var->var);
break;
case vtn_value_type_pointer:
var->var->pointer_initializer = initializer->pointer->var->var;
break;
default:
vtn_fail("SPIR-V variable initializer %u must be constant or pointer",
vtn_id_for_value(b, initializer));
}
}
if (var->mode == vtn_variable_mode_uniform ||
var->mode == vtn_variable_mode_image ||
var->mode == vtn_variable_mode_ssbo) {
/* SSBOs and images are assumed to not alias in the Simple, GLSL and Vulkan memory models */
var->var->data.access |= b->mem_model != SpvMemoryModelOpenCL ? ACCESS_RESTRICT : 0;
}
vtn_foreach_decoration(b, val, var_decoration_cb, var);
vtn_foreach_decoration(b, val, ptr_decoration_cb, val->pointer);
/* Propagate access flags from the OpVariable decorations. */
val->pointer->access |= var->access;
if ((var->mode == vtn_variable_mode_input ||
var->mode == vtn_variable_mode_output) &&
var->var->members) {
assign_missing_member_locations(var);
}
if ((b->shader->info.stage == MESA_SHADER_TESS_CTRL &&
var->mode == vtn_variable_mode_output) ||
(b->shader->info.stage == MESA_SHADER_TESS_EVAL &&
var->mode == vtn_variable_mode_input))
adjust_patch_locations(b, var);
if (var->mode == vtn_variable_mode_uniform ||
var->mode == vtn_variable_mode_image ||
var->mode == vtn_variable_mode_ubo ||
var->mode == vtn_variable_mode_ssbo ||
var->mode == vtn_variable_mode_atomic_counter) {
/* XXX: We still need the binding information in the nir_variable
* for these. We should fix that.
*/
var->var->data.binding = var->binding;
var->var->data.explicit_binding = var->explicit_binding;
var->var->data.descriptor_set = var->descriptor_set;
var->var->data.index = var->input_attachment_index;
var->var->data.offset = var->offset;
if (glsl_type_is_image(glsl_without_array(var->var->type)))
var->var->data.image.format = without_array->image_format;
}
if (var->mode == vtn_variable_mode_function) {
vtn_assert(var->var != NULL && var->var->members == NULL);
nir_function_impl_add_variable(b->nb.impl, var->var);
} else if (var->var) {
nir_shader_add_variable(b->shader, var->var);
} else {
vtn_assert(vtn_pointer_is_external_block(b, val->pointer) ||
var->mode == vtn_variable_mode_accel_struct ||
var->mode == vtn_variable_mode_shader_record);
}
}
static void
vtn_assert_types_equal(struct vtn_builder *b, SpvOp opcode,
struct vtn_type *dst_type,
struct vtn_type *src_type)
{
if (dst_type->id == src_type->id)
return;
if (vtn_types_compatible(b, dst_type, src_type)) {
/* Early versions of GLSLang would re-emit types unnecessarily and you
* would end up with OpLoad, OpStore, or OpCopyMemory opcodes which have
* mismatched source and destination types.
*
* https://github.com/KhronosGroup/glslang/issues/304
* https://github.com/KhronosGroup/glslang/issues/307
* https://bugs.freedesktop.org/show_bug.cgi?id=104338
* https://bugs.freedesktop.org/show_bug.cgi?id=104424
*/
vtn_warn("Source and destination types of %s do not have the same "
"ID (but are compatible): %u vs %u",
spirv_op_to_string(opcode), dst_type->id, src_type->id);
return;
}
vtn_fail("Source and destination types of %s do not match: %s (%%%u) vs. %s (%%%u)",
spirv_op_to_string(opcode),
glsl_get_type_name(dst_type->type), dst_type->id,
glsl_get_type_name(src_type->type), src_type->id);
}
static nir_def *
nir_shrink_zero_pad_vec(nir_builder *b, nir_def *val,
unsigned num_components)
{
if (val->num_components == num_components)
return val;
nir_def *comps[NIR_MAX_VEC_COMPONENTS];
for (unsigned i = 0; i < num_components; i++) {
if (i < val->num_components)
comps[i] = nir_channel(b, val, i);
else
comps[i] = nir_imm_intN_t(b, 0, val->bit_size);
}
return nir_vec(b, comps, num_components);
}
static nir_def *
nir_sloppy_bitcast(nir_builder *b, nir_def *val,
const struct glsl_type *type)
{
const unsigned num_components = glsl_get_vector_elements(type);
const unsigned bit_size = glsl_get_bit_size(type);
/* First, zero-pad to ensure that the value is big enough that when we
* bit-cast it, we don't loose anything.
*/
if (val->bit_size < bit_size) {
const unsigned src_num_components_needed =
vtn_align_u32(val->num_components, bit_size / val->bit_size);
val = nir_shrink_zero_pad_vec(b, val, src_num_components_needed);
}
val = nir_bitcast_vector(b, val, bit_size);
return nir_shrink_zero_pad_vec(b, val, num_components);
}
bool
vtn_get_mem_operands(struct vtn_builder *b, const uint32_t *w, unsigned count,
unsigned *idx, SpvMemoryAccessMask *access, unsigned *alignment,
SpvScope *dest_scope, SpvScope *src_scope)
{
*access = 0;
*alignment = 0;
if (*idx >= count)
return false;
*access = w[(*idx)++];
if (*access & SpvMemoryAccessAlignedMask) {
vtn_assert(*idx < count);
*alignment = w[(*idx)++];
}
if (*access & SpvMemoryAccessMakePointerAvailableMask) {
vtn_assert(*idx < count);
vtn_assert(dest_scope);
*dest_scope = vtn_constant_uint(b, w[(*idx)++]);
}
if (*access & SpvMemoryAccessMakePointerVisibleMask) {
vtn_assert(*idx < count);
vtn_assert(src_scope);
*src_scope = vtn_constant_uint(b, w[(*idx)++]);
}
return true;
}
static enum gl_access_qualifier
spv_access_to_gl_access(SpvMemoryAccessMask access)
{
unsigned result = 0;
if (access & SpvMemoryAccessVolatileMask)
result |= ACCESS_VOLATILE;
if (access & SpvMemoryAccessNontemporalMask)
result |= ACCESS_NON_TEMPORAL;
return result;
}
SpvMemorySemanticsMask
vtn_mode_to_memory_semantics(enum vtn_variable_mode mode)
{
switch (mode) {
case vtn_variable_mode_ssbo:
case vtn_variable_mode_phys_ssbo:
return SpvMemorySemanticsUniformMemoryMask;
case vtn_variable_mode_workgroup:
return SpvMemorySemanticsWorkgroupMemoryMask;
case vtn_variable_mode_cross_workgroup:
return SpvMemorySemanticsCrossWorkgroupMemoryMask;
case vtn_variable_mode_atomic_counter:
return SpvMemorySemanticsAtomicCounterMemoryMask;
case vtn_variable_mode_image:
return SpvMemorySemanticsImageMemoryMask;
case vtn_variable_mode_output:
return SpvMemorySemanticsOutputMemoryMask;
default:
return SpvMemorySemanticsMaskNone;
}
}
void
vtn_emit_make_visible_barrier(struct vtn_builder *b, SpvMemoryAccessMask access,
SpvScope scope, enum vtn_variable_mode mode)
{
if (!(access & SpvMemoryAccessMakePointerVisibleMask))
return;
vtn_emit_memory_barrier(b, scope, SpvMemorySemanticsMakeVisibleMask |
SpvMemorySemanticsAcquireMask |
vtn_mode_to_memory_semantics(mode));
}
void
vtn_emit_make_available_barrier(struct vtn_builder *b, SpvMemoryAccessMask access,
SpvScope scope, enum vtn_variable_mode mode)
{
if (!(access & SpvMemoryAccessMakePointerAvailableMask))
return;
vtn_emit_memory_barrier(b, scope, SpvMemorySemanticsMakeAvailableMask |
SpvMemorySemanticsReleaseMask |
vtn_mode_to_memory_semantics(mode));
}
static void
ptr_nonuniform_workaround_cb(struct vtn_builder *b, struct vtn_value *val,
int member, const struct vtn_decoration *dec, void *void_ptr)
{
enum gl_access_qualifier *access = void_ptr;
switch (dec->decoration) {
case SpvDecorationNonUniformEXT:
*access |= ACCESS_NON_UNIFORM;
break;
default:
break;
}
}
void
vtn_handle_variables(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, unsigned count)
{
switch (opcode) {
case SpvOpUndef: {
struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_undef);
val->type = vtn_get_type(b, w[1]);
val->is_undef_constant = true;
break;
}
case SpvOpVariable: {
struct vtn_type *ptr_type = vtn_get_type(b, w[1]);
SpvStorageClass storage_class = w[3];
const bool is_global = storage_class != SpvStorageClassFunction;
const bool is_io = storage_class == SpvStorageClassInput ||
storage_class == SpvStorageClassOutput;
/* Skip global variables that are not used by the entrypoint. Before
* SPIR-V 1.4 the interface is only used for I/O variables, so extra
* variables will still need to be removed later.
*/
if (!b->options->create_library &&
(is_io || (b->version >= 0x10400 && is_global))) {
if (!bsearch(&w[2], b->interface_ids, b->interface_ids_count, 4, cmp_uint32_t))
break;
}
struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_pointer);
struct vtn_value *initializer = count > 4 ? vtn_untyped_value(b, w[4]) : NULL;
vtn_create_variable(b, val, ptr_type, storage_class, initializer);
break;
}
case SpvOpConstantSampler: {
/* Synthesize a pointer-to-sampler type, create a variable of that type,
* and give the variable a constant initializer with the sampler params */
struct vtn_type *sampler_type = vtn_value(b, w[1], vtn_value_type_type)->type;
struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_pointer);
struct vtn_type *ptr_type = vtn_zalloc(b, struct vtn_type);
ptr_type->base_type = vtn_base_type_pointer;
ptr_type->deref = sampler_type;
ptr_type->storage_class = SpvStorageClassUniform;
ptr_type->type = nir_address_format_to_glsl_type(
vtn_mode_to_address_format(b, vtn_variable_mode_function));
vtn_create_variable(b, val, ptr_type, ptr_type->storage_class, NULL);
nir_variable *nir_var = val->pointer->var->var;
nir_var->data.sampler.is_inline_sampler = true;
nir_var->data.sampler.addressing_mode = w[3];
nir_var->data.sampler.normalized_coordinates = w[4];
nir_var->data.sampler.filter_mode = w[5];
break;
}
case SpvOpAccessChain:
case SpvOpPtrAccessChain:
case SpvOpInBoundsAccessChain:
case SpvOpInBoundsPtrAccessChain: {
struct vtn_access_chain *chain = vtn_access_chain_create(b, count - 4);
enum gl_access_qualifier access = 0;
chain->ptr_as_array = (opcode == SpvOpPtrAccessChain || opcode == SpvOpInBoundsPtrAccessChain);
unsigned idx = 0;
for (int i = 4; i < count; i++) {
struct vtn_value *link_val = vtn_untyped_value(b, w[i]);
if (link_val->value_type == vtn_value_type_constant) {
chain->link[idx].mode = vtn_access_mode_literal;
chain->link[idx].id = vtn_constant_int(b, w[i]);
} else {
chain->link[idx].mode = vtn_access_mode_id;
chain->link[idx].id = w[i];
}
/* Workaround for https://gitlab.freedesktop.org/mesa/mesa/-/issues/3406 */
vtn_foreach_decoration(b, link_val, ptr_nonuniform_workaround_cb, &access);
idx++;
}
struct vtn_type *ptr_type = vtn_get_type(b, w[1]);
struct vtn_pointer *base = vtn_pointer(b, w[3]);
chain->in_bounds = (opcode == SpvOpInBoundsAccessChain || opcode == SpvOpInBoundsPtrAccessChain);
/* Workaround for https://gitlab.freedesktop.org/mesa/mesa/-/issues/3406 */
access |= base->access & ACCESS_NON_UNIFORM;
if (base->mode == vtn_variable_mode_ssbo && b->options->force_ssbo_non_uniform)
access |= ACCESS_NON_UNIFORM;
struct vtn_pointer *ptr = vtn_pointer_dereference(b, base, chain);
ptr->ptr_type = ptr_type;
ptr->access |= access;
vtn_push_pointer(b, w[2], ptr);
break;
}
case SpvOpCopyMemory: {
struct vtn_value *dest_val = vtn_pointer_value(b, w[1]);
struct vtn_value *src_val = vtn_pointer_value(b, w[2]);
struct vtn_pointer *dest = vtn_value_to_pointer(b, dest_val);
struct vtn_pointer *src = vtn_value_to_pointer(b, src_val);
vtn_assert_types_equal(b, opcode, dest_val->type->deref,
src_val->type->deref);
unsigned idx = 3, dest_alignment, src_alignment;
SpvMemoryAccessMask dest_access, src_access;
SpvScope dest_scope, src_scope;
vtn_get_mem_operands(b, w, count, &idx, &dest_access, &dest_alignment,
&dest_scope, &src_scope);
if (!vtn_get_mem_operands(b, w, count, &idx, &src_access, &src_alignment,
NULL, &src_scope)) {
src_alignment = dest_alignment;
src_access = dest_access;
}
src = vtn_align_pointer(b, src, src_alignment);
dest = vtn_align_pointer(b, dest, dest_alignment);
vtn_emit_make_visible_barrier(b, src_access, src_scope, src->mode);
vtn_variable_copy(b, dest, src,
spv_access_to_gl_access(dest_access),
spv_access_to_gl_access(src_access));
vtn_emit_make_available_barrier(b, dest_access, dest_scope, dest->mode);
break;
}
case SpvOpCopyMemorySized: {
struct vtn_value *dest_val = vtn_pointer_value(b, w[1]);
struct vtn_value *src_val = vtn_pointer_value(b, w[2]);
nir_def *size = vtn_get_nir_ssa(b, w[3]);
struct vtn_pointer *dest = vtn_value_to_pointer(b, dest_val);
struct vtn_pointer *src = vtn_value_to_pointer(b, src_val);
unsigned idx = 4, dest_alignment, src_alignment;
SpvMemoryAccessMask dest_access, src_access;
SpvScope dest_scope, src_scope;
vtn_get_mem_operands(b, w, count, &idx, &dest_access, &dest_alignment,
&dest_scope, &src_scope);
if (!vtn_get_mem_operands(b, w, count, &idx, &src_access, &src_alignment,
NULL, &src_scope)) {
src_alignment = dest_alignment;
src_access = dest_access;
}
src = vtn_align_pointer(b, src, src_alignment);
dest = vtn_align_pointer(b, dest, dest_alignment);
vtn_emit_make_visible_barrier(b, src_access, src_scope, src->mode);
nir_memcpy_deref_with_access(&b->nb,
vtn_pointer_to_deref(b, dest),
vtn_pointer_to_deref(b, src),
size,
spv_access_to_gl_access(dest_access),
spv_access_to_gl_access(src_access));
vtn_emit_make_available_barrier(b, dest_access, dest_scope, dest->mode);
break;
}
case SpvOpLoad: {
struct vtn_type *res_type = vtn_get_type(b, w[1]);
struct vtn_value *src_val = vtn_value(b, w[3], vtn_value_type_pointer);
struct vtn_pointer *src = vtn_value_to_pointer(b, src_val);
vtn_assert_types_equal(b, opcode, res_type, src_val->type->deref);
unsigned idx = 4, alignment;
SpvMemoryAccessMask access;
SpvScope scope;
vtn_get_mem_operands(b, w, count, &idx, &access, &alignment, NULL, &scope);
src = vtn_align_pointer(b, src, alignment);
vtn_emit_make_visible_barrier(b, access, scope, src->mode);
vtn_push_ssa_value(b, w[2], vtn_variable_load(b, src, spv_access_to_gl_access(access)));
break;
}
case SpvOpStore: {
struct vtn_value *dest_val = vtn_pointer_value(b, w[1]);
struct vtn_pointer *dest = vtn_value_to_pointer(b, dest_val);
struct vtn_value *src_val = vtn_untyped_value(b, w[2]);
/* OpStore requires us to actually have a storage type */
vtn_fail_if(dest->type->type == NULL,
"Invalid destination type for OpStore");
if (glsl_get_base_type(dest->type->type) == GLSL_TYPE_BOOL &&
glsl_get_base_type(src_val->type->type) == GLSL_TYPE_UINT) {
/* Early versions of GLSLang would use uint types for UBOs/SSBOs but
* would then store them to a local variable as bool. Work around
* the issue by doing an implicit conversion.
*
* https://github.com/KhronosGroup/glslang/issues/170
* https://bugs.freedesktop.org/show_bug.cgi?id=104424
*/
vtn_warn("OpStore of value of type OpTypeInt to a pointer to type "
"OpTypeBool. Doing an implicit conversion to work around "
"the problem.");
struct vtn_ssa_value *bool_ssa =
vtn_create_ssa_value(b, dest->type->type);
bool_ssa->def = nir_i2b(&b->nb, vtn_ssa_value(b, w[2])->def);
vtn_variable_store(b, bool_ssa, dest, 0);
break;
}
vtn_assert_types_equal(b, opcode, dest_val->type->deref, src_val->type);
unsigned idx = 3, alignment;
SpvMemoryAccessMask access;
SpvScope scope;
vtn_get_mem_operands(b, w, count, &idx, &access, &alignment, &scope, NULL);
dest = vtn_align_pointer(b, dest, alignment);
struct vtn_ssa_value *src = vtn_ssa_value(b, w[2]);
vtn_variable_store(b, src, dest, spv_access_to_gl_access(access));
vtn_emit_make_available_barrier(b, access, scope, dest->mode);
break;
}
case SpvOpArrayLength: {
struct vtn_pointer *ptr = vtn_pointer(b, w[3]);
const uint32_t field = w[4];
vtn_fail_if(ptr->type->base_type != vtn_base_type_struct,
"OpArrayLength must take a pointer to a structure type");
vtn_fail_if(field != ptr->type->length - 1 ||
ptr->type->members[field]->base_type != vtn_base_type_array,
"OpArrayLength must reference the last member of the "
"structure and that must be an array");
struct vtn_access_chain chain = {
.length = 1,
.link = {
{ .mode = vtn_access_mode_literal, .id = field },
}
};
struct vtn_pointer *array = vtn_pointer_dereference(b, ptr, &chain);
nir_def *array_length =
nir_deref_buffer_array_length(&b->nb, 32,
vtn_pointer_to_ssa(b, array),
.access=ptr->access | ptr->type->access);
vtn_push_nir_ssa(b, w[2], array_length);
break;
}
case SpvOpConvertPtrToU: {
struct vtn_type *u_type = vtn_get_type(b, w[1]);
struct vtn_type *ptr_type = vtn_get_value_type(b, w[3]);
vtn_fail_if(ptr_type->base_type != vtn_base_type_pointer ||
ptr_type->type == NULL,
"OpConvertPtrToU can only be used on physical pointers");
vtn_fail_if(u_type->base_type != vtn_base_type_vector &&
u_type->base_type != vtn_base_type_scalar,
"OpConvertPtrToU can only be used to cast to a vector or "
"scalar type");
/* The pointer will be converted to an SSA value automatically */
nir_def *ptr = vtn_get_nir_ssa(b, w[3]);
nir_def *u = nir_sloppy_bitcast(&b->nb, ptr, u_type->type);
vtn_push_nir_ssa(b, w[2], u);
break;
}
case SpvOpConvertUToPtr: {
struct vtn_type *ptr_type = vtn_get_type(b, w[1]);
struct vtn_type *u_type = vtn_get_value_type(b, w[3]);
vtn_fail_if(ptr_type->base_type != vtn_base_type_pointer ||
ptr_type->type == NULL,
"OpConvertUToPtr can only be used on physical pointers");
vtn_fail_if(u_type->base_type != vtn_base_type_vector &&
u_type->base_type != vtn_base_type_scalar,
"OpConvertUToPtr can only be used to cast from a vector or "
"scalar type");
nir_def *u = vtn_get_nir_ssa(b, w[3]);
nir_def *ptr = nir_sloppy_bitcast(&b->nb, u, ptr_type->type);
vtn_push_pointer(b, w[2], vtn_pointer_from_ssa(b, ptr, ptr_type));
break;
}
case SpvOpGenericCastToPtrExplicit: {
struct vtn_type *dst_type = vtn_get_type(b, w[1]);
struct vtn_type *src_type = vtn_get_value_type(b, w[3]);
SpvStorageClass storage_class = w[4];
vtn_fail_if(dst_type->base_type != vtn_base_type_pointer ||
dst_type->storage_class != storage_class,
"Result type of an SpvOpGenericCastToPtrExplicit must be "
"an OpTypePointer. Its Storage Class must match the "
"storage class specified in the instruction");
vtn_fail_if(src_type->base_type != vtn_base_type_pointer ||
src_type->deref->id != dst_type->deref->id,
"Source pointer of an SpvOpGenericCastToPtrExplicit must "
"have a type of OpTypePointer whose Type is the same as "
"the Type of Result Type");
vtn_fail_if(src_type->storage_class != SpvStorageClassGeneric,
"Source pointer of an SpvOpGenericCastToPtrExplicit must "
"point to the Generic Storage Class.");
vtn_fail_if(storage_class != SpvStorageClassWorkgroup &&
storage_class != SpvStorageClassCrossWorkgroup &&
storage_class != SpvStorageClassFunction,
"Storage must be one of the following literal values from "
"Storage Class: Workgroup, CrossWorkgroup, or Function.");
nir_deref_instr *src_deref = vtn_nir_deref(b, w[3]);
nir_variable_mode nir_mode;
enum vtn_variable_mode mode =
vtn_storage_class_to_mode(b, storage_class, dst_type->deref, &nir_mode);
nir_address_format addr_format = vtn_mode_to_address_format(b, mode);
nir_def *null_value =
nir_build_imm(&b->nb, nir_address_format_num_components(addr_format),
nir_address_format_bit_size(addr_format),
nir_address_format_null_value(addr_format));
nir_def *valid = nir_build_deref_mode_is(&b->nb, 1, &src_deref->def, nir_mode);
vtn_push_nir_ssa(b, w[2], nir_bcsel(&b->nb, valid,
&src_deref->def,
null_value));
break;
}
case SpvOpGenericPtrMemSemantics: {
struct vtn_type *dst_type = vtn_get_type(b, w[1]);
struct vtn_type *src_type = vtn_get_value_type(b, w[3]);
vtn_fail_if(dst_type->base_type != vtn_base_type_scalar ||
dst_type->type != glsl_uint_type(),
"Result type of an SpvOpGenericPtrMemSemantics must be "
"an OpTypeInt with 32-bit Width and 0 Signedness.");
vtn_fail_if(src_type->base_type != vtn_base_type_pointer ||
src_type->storage_class != SpvStorageClassGeneric,
"Source pointer of an SpvOpGenericPtrMemSemantics must "
"point to the Generic Storage Class");
nir_deref_instr *src_deref = vtn_nir_deref(b, w[3]);
nir_def *global_bit =
nir_bcsel(&b->nb, nir_build_deref_mode_is(&b->nb, 1, &src_deref->def,
nir_var_mem_global),
nir_imm_int(&b->nb, SpvMemorySemanticsCrossWorkgroupMemoryMask),
nir_imm_int(&b->nb, 0));
nir_def *shared_bit =
nir_bcsel(&b->nb, nir_build_deref_mode_is(&b->nb, 1, &src_deref->def,
nir_var_mem_shared),
nir_imm_int(&b->nb, SpvMemorySemanticsWorkgroupMemoryMask),
nir_imm_int(&b->nb, 0));
vtn_push_nir_ssa(b, w[2], nir_iand(&b->nb, global_bit, shared_bit));
break;
}
case SpvOpSubgroupBlockReadINTEL: {
struct vtn_type *res_type = vtn_get_type(b, w[1]);
nir_deref_instr *src = vtn_nir_deref(b, w[3]);
nir_intrinsic_instr *load =
nir_intrinsic_instr_create(b->nb.shader,
nir_intrinsic_load_deref_block_intel);
load->src[0] = nir_src_for_ssa(&src->def);
nir_def_init_for_type(&load->instr, &load->def, res_type->type);
load->num_components = load->def.num_components;
nir_builder_instr_insert(&b->nb, &load->instr);
vtn_push_nir_ssa(b, w[2], &load->def);
break;
}
case SpvOpSubgroupBlockWriteINTEL: {
nir_deref_instr *dest = vtn_nir_deref(b, w[1]);
nir_def *data = vtn_ssa_value(b, w[2])->def;
nir_intrinsic_instr *store =
nir_intrinsic_instr_create(b->nb.shader,
nir_intrinsic_store_deref_block_intel);
store->src[0] = nir_src_for_ssa(&dest->def);
store->src[1] = nir_src_for_ssa(data);
store->num_components = data->num_components;
nir_builder_instr_insert(&b->nb, &store->instr);
break;
}
case SpvOpConvertUToAccelerationStructureKHR: {
struct vtn_type *as_type = vtn_get_type(b, w[1]);
struct vtn_type *u_type = vtn_get_value_type(b, w[3]);
vtn_fail_if(!((u_type->base_type == vtn_base_type_vector &&
u_type->type == glsl_vector_type(GLSL_TYPE_UINT, 2)) ||
(u_type->base_type == vtn_base_type_scalar &&
u_type->type == glsl_uint64_t_type())),
"OpConvertUToAccelerationStructure may only be used to "
"cast from a 64-bit scalar integer or a 2-component vector "
"of 32-bit integers");
vtn_fail_if(as_type->base_type != vtn_base_type_accel_struct,
"The result type of an OpConvertUToAccelerationStructure "
"must be OpTypeAccelerationStructure");
nir_def *u = vtn_get_nir_ssa(b, w[3]);
vtn_push_nir_ssa(b, w[2], nir_sloppy_bitcast(&b->nb, u, as_type->type));
break;
}
default:
vtn_fail_with_opcode("Unhandled opcode", opcode);
}
}