mesa/src/compiler/spirv/vtn_cfg.c

668 lines
22 KiB
C

/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "vtn_private.h"
#include "spirv_info.h"
#include "nir/nir_vla.h"
#include "util/u_debug.h"
static unsigned
glsl_type_count_function_params(const struct glsl_type *type)
{
if (glsl_type_is_vector_or_scalar(type)) {
return 1;
} else if (glsl_type_is_array_or_matrix(type)) {
return glsl_get_length(type) *
glsl_type_count_function_params(glsl_get_array_element(type));
} else {
assert(glsl_type_is_struct_or_ifc(type));
unsigned count = 0;
unsigned elems = glsl_get_length(type);
for (unsigned i = 0; i < elems; i++) {
const struct glsl_type *elem_type = glsl_get_struct_field(type, i);
count += glsl_type_count_function_params(elem_type);
}
return count;
}
}
static void
glsl_type_add_to_function_params(const struct glsl_type *type,
nir_function *func,
unsigned *param_idx)
{
if (glsl_type_is_vector_or_scalar(type)) {
func->params[(*param_idx)++] = (nir_parameter) {
.num_components = glsl_get_vector_elements(type),
.bit_size = glsl_get_bit_size(type),
};
} else if (glsl_type_is_array_or_matrix(type)) {
unsigned elems = glsl_get_length(type);
const struct glsl_type *elem_type = glsl_get_array_element(type);
for (unsigned i = 0; i < elems; i++)
glsl_type_add_to_function_params(elem_type,func, param_idx);
} else {
assert(glsl_type_is_struct_or_ifc(type));
unsigned elems = glsl_get_length(type);
for (unsigned i = 0; i < elems; i++) {
const struct glsl_type *elem_type = glsl_get_struct_field(type, i);
glsl_type_add_to_function_params(elem_type, func, param_idx);
}
}
}
static void
vtn_ssa_value_add_to_call_params(struct vtn_builder *b,
struct vtn_ssa_value *value,
nir_call_instr *call,
unsigned *param_idx)
{
if (glsl_type_is_vector_or_scalar(value->type)) {
call->params[(*param_idx)++] = nir_src_for_ssa(value->def);
} else {
unsigned elems = glsl_get_length(value->type);
for (unsigned i = 0; i < elems; i++) {
vtn_ssa_value_add_to_call_params(b, value->elems[i],
call, param_idx);
}
}
}
static void
vtn_ssa_value_load_function_param(struct vtn_builder *b,
struct vtn_ssa_value *value,
unsigned *param_idx)
{
if (glsl_type_is_vector_or_scalar(value->type)) {
value->def = nir_load_param(&b->nb, (*param_idx)++);
} else {
unsigned elems = glsl_get_length(value->type);
for (unsigned i = 0; i < elems; i++)
vtn_ssa_value_load_function_param(b, value->elems[i], param_idx);
}
}
void
vtn_handle_function_call(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, unsigned count)
{
struct vtn_function *vtn_callee =
vtn_value(b, w[3], vtn_value_type_function)->func;
vtn_callee->referenced = true;
nir_call_instr *call = nir_call_instr_create(b->nb.shader,
vtn_callee->nir_func);
unsigned param_idx = 0;
nir_deref_instr *ret_deref = NULL;
struct vtn_type *ret_type = vtn_callee->type->return_type;
if (ret_type->base_type != vtn_base_type_void) {
nir_variable *ret_tmp =
nir_local_variable_create(b->nb.impl,
glsl_get_bare_type(ret_type->type),
"return_tmp");
ret_deref = nir_build_deref_var(&b->nb, ret_tmp);
call->params[param_idx++] = nir_src_for_ssa(&ret_deref->def);
}
for (unsigned i = 0; i < vtn_callee->type->length; i++) {
vtn_ssa_value_add_to_call_params(b, vtn_ssa_value(b, w[4 + i]),
call, &param_idx);
}
assert(param_idx == call->num_params);
nir_builder_instr_insert(&b->nb, &call->instr);
if (ret_type->base_type == vtn_base_type_void) {
vtn_push_value(b, w[2], vtn_value_type_undef);
} else {
vtn_push_ssa_value(b, w[2], vtn_local_load(b, ret_deref, 0));
}
}
static void
function_decoration_cb(struct vtn_builder *b, struct vtn_value *val, int member,
const struct vtn_decoration *dec, void *void_func)
{
struct vtn_function *func = void_func;
switch (dec->decoration) {
case SpvDecorationLinkageAttributes: {
unsigned name_words;
const char *name =
vtn_string_literal(b, dec->operands, dec->num_operands, &name_words);
vtn_fail_if(name_words >= dec->num_operands,
"Malformed LinkageAttributes decoration");
(void)name; /* TODO: What is this? */
func->linkage = dec->operands[name_words];
break;
}
default:
break;
}
}
bool
vtn_cfg_handle_prepass_instruction(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, unsigned count)
{
switch (opcode) {
case SpvOpFunction: {
vtn_assert(b->func == NULL);
b->func = vtn_zalloc(b, struct vtn_function);
list_inithead(&b->func->body);
b->func->linkage = SpvLinkageTypeMax;
b->func->control = w[3];
list_inithead(&b->func->constructs);
UNUSED const struct glsl_type *result_type = vtn_get_type(b, w[1])->type;
struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_function);
val->func = b->func;
vtn_foreach_decoration(b, val, function_decoration_cb, b->func);
b->func->type = vtn_get_type(b, w[4]);
const struct vtn_type *func_type = b->func->type;
vtn_assert(func_type->return_type->type == result_type);
nir_function *func =
nir_function_create(b->shader, ralloc_strdup(b->shader, val->name));
unsigned num_params = 0;
for (unsigned i = 0; i < func_type->length; i++)
num_params += glsl_type_count_function_params(func_type->params[i]->type);
/* Add one parameter for the function return value */
if (func_type->return_type->base_type != vtn_base_type_void)
num_params++;
func->should_inline = b->func->control & SpvFunctionControlInlineMask;
func->dont_inline = b->func->control & SpvFunctionControlDontInlineMask;
func->is_exported = b->func->linkage == SpvLinkageTypeExport;
func->num_params = num_params;
func->params = ralloc_array(b->shader, nir_parameter, num_params);
unsigned idx = 0;
if (func_type->return_type->base_type != vtn_base_type_void) {
nir_address_format addr_format =
vtn_mode_to_address_format(b, vtn_variable_mode_function);
/* The return value is a regular pointer */
func->params[idx++] = (nir_parameter) {
.num_components = nir_address_format_num_components(addr_format),
.bit_size = nir_address_format_bit_size(addr_format),
};
}
for (unsigned i = 0; i < func_type->length; i++)
glsl_type_add_to_function_params(func_type->params[i]->type, func, &idx);
assert(idx == num_params);
b->func->nir_func = func;
/* Set up a nir_function_impl and the builder so we can load arguments
* directly in our OpFunctionParameter handler.
*/
nir_function_impl *impl = nir_function_impl_create(func);
b->nb = nir_builder_at(nir_before_impl(impl));
b->nb.exact = b->exact;
b->func_param_idx = 0;
/* The return value is the first parameter */
if (func_type->return_type->base_type != vtn_base_type_void)
b->func_param_idx++;
break;
}
case SpvOpFunctionEnd:
b->func->end = w;
if (b->func->start_block == NULL) {
vtn_fail_if(b->func->linkage != SpvLinkageTypeImport,
"A function declaration (an OpFunction with no basic "
"blocks), must have a Linkage Attributes Decoration "
"with the Import Linkage Type.");
/* In this case, the function didn't have any actual blocks. It's
* just a prototype so delete the function_impl.
*/
b->func->nir_func->impl = NULL;
} else {
vtn_fail_if(b->func->linkage == SpvLinkageTypeImport,
"A function definition (an OpFunction with basic blocks) "
"cannot be decorated with the Import Linkage Type.");
}
b->func = NULL;
break;
case SpvOpFunctionParameter: {
vtn_assert(b->func_param_idx < b->func->nir_func->num_params);
struct vtn_type *type = vtn_get_type(b, w[1]);
struct vtn_ssa_value *value = vtn_create_ssa_value(b, type->type);
vtn_ssa_value_load_function_param(b, value, &b->func_param_idx);
vtn_push_ssa_value(b, w[2], value);
break;
}
case SpvOpLabel: {
vtn_assert(b->block == NULL);
b->block = vtn_zalloc(b, struct vtn_block);
b->block->label = w;
vtn_push_value(b, w[1], vtn_value_type_block)->block = b->block;
b->func->block_count++;
if (b->func->start_block == NULL) {
/* This is the first block encountered for this function. In this
* case, we set the start block and add it to the list of
* implemented functions that we'll walk later.
*/
b->func->start_block = b->block;
list_addtail(&b->func->link, &b->functions);
}
break;
}
case SpvOpSelectionMerge:
case SpvOpLoopMerge:
vtn_assert(b->block && b->block->merge == NULL);
b->block->merge = w;
break;
case SpvOpBranch:
case SpvOpBranchConditional:
case SpvOpSwitch:
case SpvOpKill:
case SpvOpTerminateInvocation:
case SpvOpIgnoreIntersectionKHR:
case SpvOpTerminateRayKHR:
case SpvOpEmitMeshTasksEXT:
case SpvOpReturn:
case SpvOpReturnValue:
case SpvOpUnreachable:
if (b->wa_ignore_return_after_emit_mesh_tasks &&
opcode == SpvOpReturn && !b->block) {
/* At this point block was already reset by
* SpvOpEmitMeshTasksEXT. */
break;
}
vtn_assert(b->block && b->block->branch == NULL);
b->block->branch = w;
b->block = NULL;
break;
default:
/* Continue on as per normal */
return true;
}
return true;
}
/* returns the default block */
void
vtn_parse_switch(struct vtn_builder *b,
const uint32_t *branch,
struct list_head *case_list)
{
const uint32_t *branch_end = branch + (branch[0] >> SpvWordCountShift);
struct vtn_value *sel_val = vtn_untyped_value(b, branch[1]);
vtn_fail_if(!sel_val->type ||
sel_val->type->base_type != vtn_base_type_scalar,
"Selector of OpSwitch must have a type of OpTypeInt");
nir_alu_type sel_type =
nir_get_nir_type_for_glsl_type(sel_val->type->type);
vtn_fail_if(nir_alu_type_get_base_type(sel_type) != nir_type_int &&
nir_alu_type_get_base_type(sel_type) != nir_type_uint,
"Selector of OpSwitch must have a type of OpTypeInt");
struct hash_table *block_to_case = _mesa_pointer_hash_table_create(b);
bool is_default = true;
const unsigned bitsize = nir_alu_type_get_type_size(sel_type);
for (const uint32_t *w = branch + 2; w < branch_end;) {
uint64_t literal = 0;
if (!is_default) {
if (bitsize <= 32) {
literal = *(w++);
} else {
assert(bitsize == 64);
literal = vtn_u64_literal(w);
w += 2;
}
}
struct vtn_block *case_block = vtn_block(b, *(w++));
struct hash_entry *case_entry =
_mesa_hash_table_search(block_to_case, case_block);
struct vtn_case *cse;
if (case_entry) {
cse = case_entry->data;
} else {
cse = vtn_zalloc(b, struct vtn_case);
cse->block = case_block;
cse->block->switch_case = cse;
util_dynarray_init(&cse->values, b);
list_addtail(&cse->link, case_list);
_mesa_hash_table_insert(block_to_case, case_block, cse);
}
if (is_default) {
cse->is_default = true;
} else {
util_dynarray_append(&cse->values, uint64_t, literal);
}
is_default = false;
}
_mesa_hash_table_destroy(block_to_case, NULL);
}
void
vtn_build_cfg(struct vtn_builder *b, const uint32_t *words, const uint32_t *end)
{
vtn_foreach_instruction(b, words, end,
vtn_cfg_handle_prepass_instruction);
if (b->shader->info.stage == MESA_SHADER_KERNEL)
return;
vtn_build_structured_cfg(b, words, end);
}
bool
vtn_handle_phis_first_pass(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, unsigned count)
{
if (opcode == SpvOpLabel)
return true; /* Nothing to do */
/* If this isn't a phi node, stop. */
if (opcode != SpvOpPhi)
return false;
/* For handling phi nodes, we do a poor-man's out-of-ssa on the spot.
* For each phi, we create a variable with the appropreate type and
* do a load from that variable. Then, in a second pass, we add
* stores to that variable to each of the predecessor blocks.
*
* We could do something more intelligent here. However, in order to
* handle loops and things properly, we really need dominance
* information. It would end up basically being the into-SSA
* algorithm all over again. It's easier if we just let
* lower_vars_to_ssa do that for us instead of repeating it here.
*/
struct vtn_type *type = vtn_get_type(b, w[1]);
nir_variable *phi_var =
nir_local_variable_create(b->nb.impl, type->type, "phi");
struct vtn_value *phi_val = vtn_untyped_value(b, w[2]);
if (vtn_value_is_relaxed_precision(b, phi_val))
phi_var->data.precision = GLSL_PRECISION_MEDIUM;
_mesa_hash_table_insert(b->phi_table, w, phi_var);
vtn_push_ssa_value(b, w[2],
vtn_local_load(b, nir_build_deref_var(&b->nb, phi_var), 0));
return true;
}
static bool
vtn_handle_phi_second_pass(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, unsigned count)
{
if (opcode != SpvOpPhi)
return true;
struct hash_entry *phi_entry = _mesa_hash_table_search(b->phi_table, w);
/* It's possible that this phi is in an unreachable block in which case it
* may never have been emitted and therefore may not be in the hash table.
* In this case, there's no var for it and it's safe to just bail.
*/
if (phi_entry == NULL)
return true;
nir_variable *phi_var = phi_entry->data;
for (unsigned i = 3; i < count; i += 2) {
struct vtn_block *pred = vtn_block(b, w[i + 1]);
/* If block does not have end_nop, that is because it is an unreacheable
* block, and hence it is not worth to handle it */
if (!pred->end_nop)
continue;
b->nb.cursor = nir_after_instr(&pred->end_nop->instr);
struct vtn_ssa_value *src = vtn_ssa_value(b, w[i]);
vtn_local_store(b, src, nir_build_deref_var(&b->nb, phi_var), 0);
}
return true;
}
void
vtn_emit_ret_store(struct vtn_builder *b, const struct vtn_block *block)
{
if ((*block->branch & SpvOpCodeMask) != SpvOpReturnValue)
return;
vtn_fail_if(b->func->type->return_type->base_type == vtn_base_type_void,
"Return with a value from a function returning void");
struct vtn_ssa_value *src = vtn_ssa_value(b, block->branch[1]);
const struct glsl_type *ret_type =
glsl_get_bare_type(b->func->type->return_type->type);
nir_deref_instr *ret_deref =
nir_build_deref_cast(&b->nb, nir_load_param(&b->nb, 0),
nir_var_function_temp, ret_type, 0);
vtn_local_store(b, src, ret_deref, 0);
}
static struct nir_block *
vtn_new_unstructured_block(struct vtn_builder *b, struct vtn_function *func)
{
struct nir_block *n = nir_block_create(b->shader);
exec_list_push_tail(&func->nir_func->impl->body, &n->cf_node.node);
n->cf_node.parent = &func->nir_func->impl->cf_node;
return n;
}
static void
vtn_add_unstructured_block(struct vtn_builder *b,
struct vtn_function *func,
struct list_head *work_list,
struct vtn_block *block)
{
if (!block->block) {
block->block = vtn_new_unstructured_block(b, func);
list_addtail(&block->link, work_list);
}
}
static void
vtn_emit_cf_func_unstructured(struct vtn_builder *b, struct vtn_function *func,
vtn_instruction_handler handler)
{
struct list_head work_list;
list_inithead(&work_list);
func->start_block->block = nir_start_block(func->nir_func->impl);
list_addtail(&func->start_block->link, &work_list);
while (!list_is_empty(&work_list)) {
struct vtn_block *block =
list_first_entry(&work_list, struct vtn_block, link);
list_del(&block->link);
vtn_assert(block->block);
const uint32_t *block_start = block->label;
const uint32_t *block_end = block->branch;
b->nb.cursor = nir_after_block(block->block);
block_start = vtn_foreach_instruction(b, block_start, block_end,
vtn_handle_phis_first_pass);
vtn_foreach_instruction(b, block_start, block_end, handler);
block->end_nop = nir_nop(&b->nb);
SpvOp op = *block_end & SpvOpCodeMask;
switch (op) {
case SpvOpBranch: {
struct vtn_block *branch_block = vtn_block(b, block->branch[1]);
vtn_add_unstructured_block(b, func, &work_list, branch_block);
nir_goto(&b->nb, branch_block->block);
break;
}
case SpvOpBranchConditional: {
nir_def *cond = vtn_ssa_value(b, block->branch[1])->def;
struct vtn_block *then_block = vtn_block(b, block->branch[2]);
struct vtn_block *else_block = vtn_block(b, block->branch[3]);
vtn_add_unstructured_block(b, func, &work_list, then_block);
if (then_block == else_block) {
nir_goto(&b->nb, then_block->block);
} else {
vtn_add_unstructured_block(b, func, &work_list, else_block);
nir_goto_if(&b->nb, then_block->block, cond, else_block->block);
}
break;
}
case SpvOpSwitch: {
struct list_head cases;
list_inithead(&cases);
vtn_parse_switch(b, block->branch, &cases);
nir_def *sel = vtn_get_nir_ssa(b, block->branch[1]);
struct vtn_case *def = NULL;
vtn_foreach_case(cse, &cases) {
if (cse->is_default) {
assert(def == NULL);
def = cse;
continue;
}
nir_def *cond = nir_imm_false(&b->nb);
util_dynarray_foreach(&cse->values, uint64_t, val)
cond = nir_ior(&b->nb, cond, nir_ieq_imm(&b->nb, sel, *val));
/* block for the next check */
nir_block *e = vtn_new_unstructured_block(b, func);
vtn_add_unstructured_block(b, func, &work_list, cse->block);
/* add branching */
nir_goto_if(&b->nb, cse->block->block, cond, e);
b->nb.cursor = nir_after_block(e);
}
vtn_assert(def != NULL);
vtn_add_unstructured_block(b, func, &work_list, def->block);
/* now that all cases are handled, branch into the default block */
nir_goto(&b->nb, def->block->block);
break;
}
case SpvOpKill: {
nir_discard(&b->nb);
nir_goto(&b->nb, b->func->nir_func->impl->end_block);
break;
}
case SpvOpUnreachable:
case SpvOpReturn:
case SpvOpReturnValue: {
vtn_emit_ret_store(b, block);
nir_goto(&b->nb, b->func->nir_func->impl->end_block);
break;
}
default:
vtn_fail("Unhandled opcode %s", spirv_op_to_string(op));
}
}
}
void
vtn_function_emit(struct vtn_builder *b, struct vtn_function *func,
vtn_instruction_handler instruction_handler)
{
static int force_unstructured = -1;
if (force_unstructured < 0) {
force_unstructured =
debug_get_bool_option("MESA_SPIRV_FORCE_UNSTRUCTURED", false);
}
nir_function_impl *impl = func->nir_func->impl;
b->nb = nir_builder_at(nir_after_impl(impl));
b->func = func;
b->nb.exact = b->exact;
b->phi_table = _mesa_pointer_hash_table_create(b);
if (b->shader->info.stage == MESA_SHADER_KERNEL || force_unstructured) {
impl->structured = false;
vtn_emit_cf_func_unstructured(b, func, instruction_handler);
} else {
vtn_emit_cf_func_structured(b, func, instruction_handler);
}
vtn_foreach_instruction(b, func->start_block->label, func->end,
vtn_handle_phi_second_pass);
if (func->nir_func->impl->structured)
nir_copy_prop_impl(impl);
nir_rematerialize_derefs_in_use_blocks_impl(impl);
/*
* There are some cases where we need to repair SSA to insert
* the needed phi nodes:
*
* - Early termination instructions `OpKill` and `OpTerminateInvocation`,
* in NIR. They're represented by regular intrinsics with no control-flow
* semantics. This means that the SSA form from the SPIR-V may not
* 100% match NIR.
*
* - Switches with only default case may also define SSA which may
* subsequently be used out of the switch.
*/
if (func->nir_func->impl->structured)
nir_repair_ssa_impl(impl);
func->emitted = true;
}