mesa/src/compiler/glsl_types.c

3863 lines
130 KiB
C

/*
* Copyright © 2009 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include "glsl_types.h"
#include "util/compiler.h"
#include "util/glheader.h"
#include "util/hash_table.h"
#include "util/macros.h"
#include "util/ralloc.h"
#include "util/u_math.h"
#include "util/u_string.h"
#include "util/simple_mtx.h"
static simple_mtx_t glsl_type_cache_mutex = SIMPLE_MTX_INITIALIZER;
static struct {
void *mem_ctx;
/* Use a linear (arena) allocator for all the new types, since
* they are not meant to be deallocated individually.
*/
linear_ctx *lin_ctx;
/* There might be multiple users for types (e.g. application using OpenGL
* and Vulkan simultaneously or app using multiple Vulkan instances). Counter
* is used to make sure we don't release the types if a user is still present.
*/
uint32_t users;
struct hash_table *explicit_matrix_types;
struct hash_table *array_types;
struct hash_table *cmat_types;
struct hash_table *struct_types;
struct hash_table *interface_types;
struct hash_table *subroutine_types;
} glsl_type_cache;
static const glsl_type *
make_vector_matrix_type(linear_ctx *lin_ctx, uint32_t gl_type,
enum glsl_base_type base_type, unsigned vector_elements,
unsigned matrix_columns, const char *name,
unsigned explicit_stride, bool row_major,
unsigned explicit_alignment)
{
assert(lin_ctx != NULL);
assert(name != NULL);
assert(util_is_power_of_two_or_zero(explicit_alignment));
/* Neither dimension is zero or both dimensions are zero. */
assert((vector_elements == 0) == (matrix_columns == 0));
glsl_type *t = linear_zalloc(lin_ctx, glsl_type);
t->gl_type = gl_type;
t->base_type = base_type;
t->sampled_type = GLSL_TYPE_VOID;
t->interface_row_major = row_major;
t->vector_elements = vector_elements;
t->matrix_columns = matrix_columns;
t->explicit_stride = explicit_stride;
t->explicit_alignment = explicit_alignment;
t->name_id = (uintptr_t)linear_strdup(lin_ctx, name);
return t;
}
static void
fill_struct_type(glsl_type *t, const glsl_struct_field *fields, unsigned num_fields,
const char *name, bool packed, unsigned explicit_alignment)
{
assert(util_is_power_of_two_or_zero(explicit_alignment));
t->base_type = GLSL_TYPE_STRUCT;
t->sampled_type = GLSL_TYPE_VOID;
t->packed = packed;
t->length = num_fields;
t->name_id = (uintptr_t)name;
t->explicit_alignment = explicit_alignment;
t->fields.structure = fields;
}
static const glsl_type *
make_struct_type(linear_ctx *lin_ctx, const glsl_struct_field *fields, unsigned num_fields,
const char *name, bool packed,
unsigned explicit_alignment)
{
assert(lin_ctx != NULL);
assert(name != NULL);
glsl_type *t = linear_zalloc(lin_ctx, glsl_type);
const char *copied_name = linear_strdup(lin_ctx, name);
glsl_struct_field *copied_fields =
linear_zalloc_array(lin_ctx, glsl_struct_field, num_fields);
for (unsigned i = 0; i < num_fields; i++) {
copied_fields[i] = fields[i];
copied_fields[i].name = linear_strdup(lin_ctx, fields[i].name);
}
fill_struct_type(t, copied_fields, num_fields, copied_name, packed, explicit_alignment);
return t;
}
static void
fill_interface_type(glsl_type *t, const glsl_struct_field *fields, unsigned num_fields,
enum glsl_interface_packing packing,
bool row_major, const char *name)
{
t->base_type = GLSL_TYPE_INTERFACE;
t->sampled_type = GLSL_TYPE_VOID;
t->interface_packing = (unsigned)packing;
t->interface_row_major = (unsigned)row_major;
t->length = num_fields;
t->name_id = (uintptr_t)name;
t->fields.structure = fields;
}
static const glsl_type *
make_interface_type(linear_ctx *lin_ctx, const glsl_struct_field *fields, unsigned num_fields,
enum glsl_interface_packing packing,
bool row_major, const char *name)
{
assert(lin_ctx != NULL);
assert(name != NULL);
glsl_type *t = linear_zalloc(lin_ctx, glsl_type);
const char *copied_name = linear_strdup(lin_ctx, name);
glsl_struct_field *copied_fields =
linear_zalloc_array(lin_ctx, glsl_struct_field, num_fields);
for (unsigned i = 0; i < num_fields; i++) {
copied_fields[i] = fields[i];
copied_fields[i].name = linear_strdup(lin_ctx, fields[i].name);
}
fill_interface_type(t, copied_fields, num_fields, packing, row_major, copied_name);
return t;
}
static const glsl_type *
make_subroutine_type(linear_ctx *lin_ctx, const char *subroutine_name)
{
assert(lin_ctx != NULL);
assert(subroutine_name != NULL);
glsl_type *t = linear_zalloc(lin_ctx, glsl_type);
t->base_type = GLSL_TYPE_SUBROUTINE;
t->sampled_type = GLSL_TYPE_VOID;
t->vector_elements = 1;
t->matrix_columns = 1;
t->name_id = (uintptr_t)linear_strdup(lin_ctx, subroutine_name);
return t;
}
bool
glsl_contains_sampler(const glsl_type *t)
{
if (glsl_type_is_array(t)) {
return glsl_contains_sampler(t->fields.array);
} else if (glsl_type_is_struct(t) || glsl_type_is_interface(t)) {
for (unsigned int i = 0; i < t->length; i++) {
if (glsl_contains_sampler(t->fields.structure[i].type))
return true;
}
return false;
} else {
return glsl_type_is_sampler(t);
}
}
bool
glsl_contains_array(const glsl_type *t)
{
if (glsl_type_is_struct(t) || glsl_type_is_interface(t)) {
for (unsigned int i = 0; i < t->length; i++) {
if (glsl_contains_array(t->fields.structure[i].type))
return true;
}
return false;
} else {
return glsl_type_is_array(t);
}
}
bool
glsl_contains_integer(const glsl_type *t)
{
if (glsl_type_is_array(t)) {
return glsl_contains_integer(t->fields.array);
} else if (glsl_type_is_struct(t) || glsl_type_is_interface(t)) {
for (unsigned int i = 0; i < t->length; i++) {
if (glsl_contains_integer(t->fields.structure[i].type))
return true;
}
return false;
} else {
return glsl_type_is_integer(t);
}
}
bool
glsl_contains_double(const glsl_type *t)
{
if (glsl_type_is_array(t)) {
return glsl_contains_double(t->fields.array);
} else if (glsl_type_is_struct(t) || glsl_type_is_interface(t)) {
for (unsigned int i = 0; i < t->length; i++) {
if (glsl_contains_double(t->fields.structure[i].type))
return true;
}
return false;
} else {
return glsl_type_is_double(t);
}
}
bool
glsl_type_contains_32bit(const glsl_type *t)
{
if (glsl_type_is_array(t)) {
return glsl_type_contains_32bit(t->fields.array);
} else if (glsl_type_is_struct(t) || glsl_type_is_interface(t)) {
for (unsigned int i = 0; i < t->length; i++) {
if (glsl_type_contains_32bit(t->fields.structure[i].type))
return true;
}
return false;
} else {
return glsl_type_is_32bit(t);
}
}
bool
glsl_type_contains_64bit(const glsl_type *t)
{
if (glsl_type_is_array(t)) {
return glsl_type_contains_64bit(t->fields.array);
} else if (glsl_type_is_struct(t) || glsl_type_is_interface(t)) {
for (unsigned int i = 0; i < t->length; i++) {
if (glsl_type_contains_64bit(t->fields.structure[i].type))
return true;
}
return false;
} else {
return glsl_type_is_64bit(t);
}
}
bool
glsl_contains_opaque(const glsl_type *t)
{
switch (t->base_type) {
case GLSL_TYPE_SAMPLER:
case GLSL_TYPE_IMAGE:
case GLSL_TYPE_ATOMIC_UINT:
return true;
case GLSL_TYPE_ARRAY:
return glsl_contains_opaque(t->fields.array);
case GLSL_TYPE_STRUCT:
case GLSL_TYPE_INTERFACE:
for (unsigned int i = 0; i < t->length; i++) {
if (glsl_contains_opaque(t->fields.structure[i].type))
return true;
}
return false;
default:
return false;
}
}
bool
glsl_contains_subroutine(const glsl_type *t)
{
if (glsl_type_is_array(t)) {
return glsl_contains_subroutine(t->fields.array);
} else if (glsl_type_is_struct(t) || glsl_type_is_interface(t)) {
for (unsigned int i = 0; i < t->length; i++) {
if (glsl_contains_subroutine(t->fields.structure[i].type))
return true;
}
return false;
} else {
return glsl_type_is_subroutine(t);
}
}
bool
glsl_type_contains_image(const glsl_type *t)
{
if (glsl_type_is_array(t)) {
return glsl_type_contains_image(t->fields.array);
} else if (glsl_type_is_struct(t) || glsl_type_is_interface(t)) {
for (unsigned int i = 0; i < t->length; i++) {
if (glsl_type_contains_image(t->fields.structure[i].type))
return true;
}
return false;
} else {
return glsl_type_is_image(t);
}
}
const glsl_type *
glsl_get_base_glsl_type(const glsl_type *t)
{
switch (t->base_type) {
case GLSL_TYPE_UINT:
return &glsl_type_builtin_uint;
case GLSL_TYPE_UINT16:
return &glsl_type_builtin_uint16_t;
case GLSL_TYPE_UINT8:
return &glsl_type_builtin_uint8_t;
case GLSL_TYPE_INT:
return &glsl_type_builtin_int;
case GLSL_TYPE_INT16:
return &glsl_type_builtin_int16_t;
case GLSL_TYPE_INT8:
return &glsl_type_builtin_int8_t;
case GLSL_TYPE_FLOAT:
return &glsl_type_builtin_float;
case GLSL_TYPE_FLOAT16:
return &glsl_type_builtin_float16_t;
case GLSL_TYPE_DOUBLE:
return &glsl_type_builtin_double;
case GLSL_TYPE_BOOL:
return &glsl_type_builtin_bool;
case GLSL_TYPE_UINT64:
return &glsl_type_builtin_uint64_t;
case GLSL_TYPE_INT64:
return &glsl_type_builtin_int64_t;
default:
return &glsl_type_builtin_error;
}
}
const glsl_type *
glsl_get_scalar_type(const glsl_type *t)
{
const glsl_type *type = t;
/* Handle arrays */
while (type->base_type == GLSL_TYPE_ARRAY)
type = type->fields.array;
const glsl_type *scalar_type = glsl_get_base_glsl_type(type);
if (scalar_type == &glsl_type_builtin_error)
return type;
return scalar_type;
}
const glsl_type *
glsl_get_bare_type(const glsl_type *t)
{
switch (t->base_type) {
case GLSL_TYPE_UINT8:
case GLSL_TYPE_INT8:
case GLSL_TYPE_UINT16:
case GLSL_TYPE_INT16:
case GLSL_TYPE_FLOAT16:
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_BOOL:
case GLSL_TYPE_DOUBLE:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_INT64:
return glsl_simple_type(t->base_type, t->vector_elements,
t->matrix_columns);
case GLSL_TYPE_STRUCT:
case GLSL_TYPE_INTERFACE: {
glsl_struct_field *bare_fields = (glsl_struct_field *)
calloc(t->length, sizeof(glsl_struct_field));
for (unsigned i = 0; i < t->length; i++) {
bare_fields[i].type = glsl_get_bare_type(t->fields.structure[i].type);
bare_fields[i].name = t->fields.structure[i].name;
}
const glsl_type *bare_type =
glsl_struct_type(bare_fields, t->length, glsl_get_type_name(t), false);
free(bare_fields);
return bare_type;
}
case GLSL_TYPE_ARRAY:
return glsl_array_type(glsl_get_bare_type(t->fields.array), t->length,
0);
case GLSL_TYPE_COOPERATIVE_MATRIX:
case GLSL_TYPE_SAMPLER:
case GLSL_TYPE_TEXTURE:
case GLSL_TYPE_IMAGE:
case GLSL_TYPE_ATOMIC_UINT:
case GLSL_TYPE_VOID:
case GLSL_TYPE_SUBROUTINE:
case GLSL_TYPE_ERROR:
return t;
}
unreachable("Invalid base type");
}
const glsl_type *
glsl_float16_type(const glsl_type *t)
{
assert(t->base_type == GLSL_TYPE_FLOAT);
return glsl_simple_explicit_type(GLSL_TYPE_FLOAT16, t->vector_elements,
t->matrix_columns, t->explicit_stride,
t->interface_row_major, 0);
}
const glsl_type *
glsl_int16_type(const glsl_type *t)
{
assert(t->base_type == GLSL_TYPE_INT);
return glsl_simple_explicit_type(GLSL_TYPE_INT16, t->vector_elements,
t->matrix_columns, t->explicit_stride,
t->interface_row_major, 0);
}
const glsl_type *
glsl_uint16_type(const glsl_type *t)
{
assert(t->base_type == GLSL_TYPE_UINT);
return glsl_simple_explicit_type(GLSL_TYPE_UINT16, t->vector_elements,
t->matrix_columns, t->explicit_stride,
t->interface_row_major, 0);
}
void
glsl_type_singleton_init_or_ref()
{
/* Values of these types must fit in the two bits of
* glsl_type::sampled_type.
*/
STATIC_ASSERT((((unsigned)GLSL_TYPE_UINT) & 3) == (unsigned)GLSL_TYPE_UINT);
STATIC_ASSERT((((unsigned)GLSL_TYPE_INT) & 3) == (unsigned)GLSL_TYPE_INT);
STATIC_ASSERT((((unsigned)GLSL_TYPE_FLOAT) & 3) == (unsigned)GLSL_TYPE_FLOAT);
ASSERT_BITFIELD_SIZE(glsl_type, base_type, GLSL_TYPE_ERROR);
ASSERT_BITFIELD_SIZE(glsl_type, sampled_type, GLSL_TYPE_ERROR);
ASSERT_BITFIELD_SIZE(glsl_type, sampler_dimensionality,
GLSL_SAMPLER_DIM_SUBPASS_MS);
simple_mtx_lock(&glsl_type_cache_mutex);
if (glsl_type_cache.users == 0) {
glsl_type_cache.mem_ctx = ralloc_context(NULL);
glsl_type_cache.lin_ctx = linear_context(glsl_type_cache.mem_ctx);
}
glsl_type_cache.users++;
simple_mtx_unlock(&glsl_type_cache_mutex);
}
void
glsl_type_singleton_decref()
{
simple_mtx_lock(&glsl_type_cache_mutex);
assert(glsl_type_cache.users > 0);
/* Do not release glsl_types if they are still used. */
if (--glsl_type_cache.users) {
simple_mtx_unlock(&glsl_type_cache_mutex);
return;
}
ralloc_free(glsl_type_cache.mem_ctx);
memset(&glsl_type_cache, 0, sizeof(glsl_type_cache));
simple_mtx_unlock(&glsl_type_cache_mutex);
}
static const glsl_type *
make_array_type(linear_ctx *lin_ctx, const glsl_type *element_type, unsigned length,
unsigned explicit_stride)
{
assert(lin_ctx != NULL);
glsl_type *t = linear_zalloc(lin_ctx, glsl_type);
t->base_type = GLSL_TYPE_ARRAY;
t->sampled_type = GLSL_TYPE_VOID;
t->length = length;
t->explicit_stride = explicit_stride;
t->explicit_alignment = element_type->explicit_alignment;
t->fields.array = element_type;
/* Inherit the gl type of the base. The GL type is used for
* uniform/statevar handling in Mesa and the arrayness of the type
* is represented by the size rather than the type.
*/
t->gl_type = element_type->gl_type;
const char *element_name = glsl_get_type_name(element_type);
char *n;
if (length == 0)
n = linear_asprintf(lin_ctx, "%s[]", element_name);
else
n = linear_asprintf(lin_ctx, "%s[%u]", element_name, length);
/* Flip the dimensions for a multidimensional array. The type of
* an array of 4 elements of type int[...] is written as int[4][...].
*/
const char *pos = strchr(element_name, '[');
if (pos) {
char *base = n + (pos - element_name);
const unsigned element_part = strlen(pos);
const unsigned array_part = strlen(base) - element_part;
/* Move the outer array dimension to the front. */
memmove(base, base + element_part, array_part);
/* Rewrite the element array dimensions from the element name string. */
memcpy(base + array_part, pos, element_part);
}
t->name_id = (uintptr_t)n;
return t;
}
static const char *
glsl_cmat_use_to_string(enum glsl_cmat_use use)
{
switch (use) {
case GLSL_CMAT_USE_NONE: return "NONE";
case GLSL_CMAT_USE_A: return "A";
case GLSL_CMAT_USE_B: return "B";
case GLSL_CMAT_USE_ACCUMULATOR: return "ACCUMULATOR";
default:
unreachable("invalid cooperative matrix use");
}
};
static const glsl_type *
vec(unsigned components, const glsl_type *const ts[])
{
unsigned n = components;
if (components == 8)
n = 6;
else if (components == 16)
n = 7;
if (n == 0 || n > 7)
return &glsl_type_builtin_error;
return ts[n - 1];
}
#define VECN(components, sname, vname) \
const glsl_type * \
glsl_ ## vname ## _type (unsigned components) \
{ \
static const glsl_type *const ts[] = { \
&glsl_type_builtin_ ## sname, \
&glsl_type_builtin_ ## vname ## 2, \
&glsl_type_builtin_ ## vname ## 3, \
&glsl_type_builtin_ ## vname ## 4, \
&glsl_type_builtin_ ## vname ## 5, \
&glsl_type_builtin_ ## vname ## 8, \
&glsl_type_builtin_ ## vname ## 16, \
}; \
return vec(components, ts); \
}
VECN(components, float, vec)
VECN(components, float16_t, f16vec)
VECN(components, double, dvec)
VECN(components, int, ivec)
VECN(components, uint, uvec)
VECN(components, bool, bvec)
VECN(components, int64_t, i64vec)
VECN(components, uint64_t, u64vec)
VECN(components, int16_t, i16vec)
VECN(components, uint16_t, u16vec)
VECN(components, int8_t, i8vec)
VECN(components, uint8_t, u8vec)
static const glsl_type *
get_explicit_matrix_instance(unsigned int base_type, unsigned int rows, unsigned int columns,
unsigned int explicit_stride, bool row_major, unsigned int explicit_alignment);
const glsl_type *
glsl_simple_explicit_type(unsigned base_type, unsigned rows, unsigned columns,
unsigned explicit_stride, bool row_major,
unsigned explicit_alignment)
{
if (base_type == GLSL_TYPE_VOID) {
assert(explicit_stride == 0 && explicit_alignment == 0 && !row_major);
return &glsl_type_builtin_void;
}
/* Matrix and vector types with explicit strides or alignment have to be
* looked up in a table so they're handled separately.
*/
if (explicit_stride > 0 || explicit_alignment > 0) {
return get_explicit_matrix_instance(base_type, rows, columns,
explicit_stride, row_major,
explicit_alignment);
}
assert(!row_major);
/* Treat GLSL vectors as Nx1 matrices.
*/
if (columns == 1) {
switch (base_type) {
case GLSL_TYPE_UINT:
return glsl_uvec_type(rows);
case GLSL_TYPE_INT:
return glsl_ivec_type(rows);
case GLSL_TYPE_FLOAT:
return glsl_vec_type(rows);
case GLSL_TYPE_FLOAT16:
return glsl_f16vec_type(rows);
case GLSL_TYPE_DOUBLE:
return glsl_dvec_type(rows);
case GLSL_TYPE_BOOL:
return glsl_bvec_type(rows);
case GLSL_TYPE_UINT64:
return glsl_u64vec_type(rows);
case GLSL_TYPE_INT64:
return glsl_i64vec_type(rows);
case GLSL_TYPE_UINT16:
return glsl_u16vec_type(rows);
case GLSL_TYPE_INT16:
return glsl_i16vec_type(rows);
case GLSL_TYPE_UINT8:
return glsl_u8vec_type(rows);
case GLSL_TYPE_INT8:
return glsl_i8vec_type(rows);
default:
return &glsl_type_builtin_error;
}
} else {
if ((base_type != GLSL_TYPE_FLOAT &&
base_type != GLSL_TYPE_DOUBLE &&
base_type != GLSL_TYPE_FLOAT16) || (rows == 1))
return &glsl_type_builtin_error;
/* GLSL matrix types are named mat{COLUMNS}x{ROWS}. Only the following
* combinations are valid:
*
* 1 2 3 4
* 1
* 2 x x x
* 3 x x x
* 4 x x x
*/
#define IDX(c,r) (((c-1)*3) + (r-1))
switch (base_type) {
case GLSL_TYPE_DOUBLE: {
switch (IDX(columns, rows)) {
case IDX(2,2): return &glsl_type_builtin_dmat2;
case IDX(2,3): return &glsl_type_builtin_dmat2x3;
case IDX(2,4): return &glsl_type_builtin_dmat2x4;
case IDX(3,2): return &glsl_type_builtin_dmat3x2;
case IDX(3,3): return &glsl_type_builtin_dmat3;
case IDX(3,4): return &glsl_type_builtin_dmat3x4;
case IDX(4,2): return &glsl_type_builtin_dmat4x2;
case IDX(4,3): return &glsl_type_builtin_dmat4x3;
case IDX(4,4): return &glsl_type_builtin_dmat4;
default: return &glsl_type_builtin_error;
}
}
case GLSL_TYPE_FLOAT: {
switch (IDX(columns, rows)) {
case IDX(2,2): return &glsl_type_builtin_mat2;
case IDX(2,3): return &glsl_type_builtin_mat2x3;
case IDX(2,4): return &glsl_type_builtin_mat2x4;
case IDX(3,2): return &glsl_type_builtin_mat3x2;
case IDX(3,3): return &glsl_type_builtin_mat3;
case IDX(3,4): return &glsl_type_builtin_mat3x4;
case IDX(4,2): return &glsl_type_builtin_mat4x2;
case IDX(4,3): return &glsl_type_builtin_mat4x3;
case IDX(4,4): return &glsl_type_builtin_mat4;
default: return &glsl_type_builtin_error;
}
}
case GLSL_TYPE_FLOAT16: {
switch (IDX(columns, rows)) {
case IDX(2,2): return &glsl_type_builtin_f16mat2;
case IDX(2,3): return &glsl_type_builtin_f16mat2x3;
case IDX(2,4): return &glsl_type_builtin_f16mat2x4;
case IDX(3,2): return &glsl_type_builtin_f16mat3x2;
case IDX(3,3): return &glsl_type_builtin_f16mat3;
case IDX(3,4): return &glsl_type_builtin_f16mat3x4;
case IDX(4,2): return &glsl_type_builtin_f16mat4x2;
case IDX(4,3): return &glsl_type_builtin_f16mat4x3;
case IDX(4,4): return &glsl_type_builtin_f16mat4;
default: return &glsl_type_builtin_error;
}
}
default: return &glsl_type_builtin_error;
}
}
assert(!"Should not get here.");
return &glsl_type_builtin_error;
}
struct PACKED explicit_matrix_key {
/* Rows and Columns are implied in the bare type. */
uintptr_t bare_type;
uintptr_t explicit_stride;
uintptr_t explicit_alignment;
uintptr_t row_major;
};
DERIVE_HASH_TABLE(explicit_matrix_key);
static const glsl_type *
get_explicit_matrix_instance(unsigned int base_type, unsigned int rows, unsigned int columns,
unsigned int explicit_stride, bool row_major, unsigned int explicit_alignment)
{
assert(explicit_stride > 0 || explicit_alignment > 0);
assert(base_type != GLSL_TYPE_VOID);
if (explicit_alignment > 0) {
assert(util_is_power_of_two_nonzero(explicit_alignment));
assert(explicit_stride % explicit_alignment == 0);
}
const glsl_type *bare_type = glsl_simple_type(base_type, rows, columns);
assert(columns > 1 || (rows > 1 && !row_major));
/* Ensure there's no internal padding, to avoid multiple hashes for same key. */
STATIC_ASSERT(sizeof(struct explicit_matrix_key) == (4 * sizeof(uintptr_t)));
struct explicit_matrix_key key = { 0 };
key.bare_type = (uintptr_t) bare_type;
key.explicit_stride = explicit_stride;
key.explicit_alignment = explicit_alignment;
key.row_major = row_major;
const uint32_t key_hash = explicit_matrix_key_hash(&key);
simple_mtx_lock(&glsl_type_cache_mutex);
assert(glsl_type_cache.users > 0);
void *mem_ctx = glsl_type_cache.mem_ctx;
if (glsl_type_cache.explicit_matrix_types == NULL) {
glsl_type_cache.explicit_matrix_types =
explicit_matrix_key_table_create(mem_ctx);
}
struct hash_table *explicit_matrix_types = glsl_type_cache.explicit_matrix_types;
const struct hash_entry *entry =
_mesa_hash_table_search_pre_hashed(explicit_matrix_types, key_hash, &key);
if (entry == NULL) {
char name[128];
snprintf(name, sizeof(name), "%sx%ua%uB%s", glsl_get_type_name(bare_type),
explicit_stride, explicit_alignment, row_major ? "RM" : "");
linear_ctx *lin_ctx = glsl_type_cache.lin_ctx;
const glsl_type *t =
make_vector_matrix_type(lin_ctx, bare_type->gl_type,
(enum glsl_base_type)base_type,
rows, columns, name,
explicit_stride, row_major,
explicit_alignment);
struct explicit_matrix_key *stored_key = linear_zalloc(lin_ctx, struct explicit_matrix_key);
memcpy(stored_key, &key, sizeof(key));
entry = _mesa_hash_table_insert_pre_hashed(explicit_matrix_types,
key_hash, stored_key, (void *)t);
}
const glsl_type *t = (const glsl_type *) entry->data;
simple_mtx_unlock(&glsl_type_cache_mutex);
assert(t->base_type == base_type);
assert(t->vector_elements == rows);
assert(t->matrix_columns == columns);
assert(t->explicit_stride == explicit_stride);
assert(t->explicit_alignment == explicit_alignment);
return t;
}
const glsl_type *
glsl_sampler_type(enum glsl_sampler_dim dim, bool shadow,
bool array, enum glsl_base_type type)
{
switch (type) {
case GLSL_TYPE_FLOAT:
switch (dim) {
case GLSL_SAMPLER_DIM_1D:
if (shadow)
return (array ? &glsl_type_builtin_sampler1DArrayShadow : &glsl_type_builtin_sampler1DShadow);
else
return (array ? &glsl_type_builtin_sampler1DArray : &glsl_type_builtin_sampler1D);
case GLSL_SAMPLER_DIM_2D:
if (shadow)
return (array ? &glsl_type_builtin_sampler2DArrayShadow : &glsl_type_builtin_sampler2DShadow);
else
return (array ? &glsl_type_builtin_sampler2DArray : &glsl_type_builtin_sampler2D);
case GLSL_SAMPLER_DIM_3D:
if (shadow || array)
return &glsl_type_builtin_error;
else
return &glsl_type_builtin_sampler3D;
case GLSL_SAMPLER_DIM_CUBE:
if (shadow)
return (array ? &glsl_type_builtin_samplerCubeArrayShadow : &glsl_type_builtin_samplerCubeShadow);
else
return (array ? &glsl_type_builtin_samplerCubeArray : &glsl_type_builtin_samplerCube);
case GLSL_SAMPLER_DIM_RECT:
if (array)
return &glsl_type_builtin_error;
if (shadow)
return &glsl_type_builtin_sampler2DRectShadow;
else
return &glsl_type_builtin_sampler2DRect;
case GLSL_SAMPLER_DIM_BUF:
if (shadow || array)
return &glsl_type_builtin_error;
else
return &glsl_type_builtin_samplerBuffer;
case GLSL_SAMPLER_DIM_MS:
if (shadow)
return &glsl_type_builtin_error;
return (array ? &glsl_type_builtin_sampler2DMSArray : &glsl_type_builtin_sampler2DMS);
case GLSL_SAMPLER_DIM_EXTERNAL:
if (shadow || array)
return &glsl_type_builtin_error;
else
return &glsl_type_builtin_samplerExternalOES;
case GLSL_SAMPLER_DIM_SUBPASS:
case GLSL_SAMPLER_DIM_SUBPASS_MS:
return &glsl_type_builtin_error;
}
break;
case GLSL_TYPE_INT:
if (shadow)
return &glsl_type_builtin_error;
switch (dim) {
case GLSL_SAMPLER_DIM_1D:
return (array ? &glsl_type_builtin_isampler1DArray : &glsl_type_builtin_isampler1D);
case GLSL_SAMPLER_DIM_2D:
return (array ? &glsl_type_builtin_isampler2DArray : &glsl_type_builtin_isampler2D);
case GLSL_SAMPLER_DIM_3D:
if (array)
return &glsl_type_builtin_error;
return &glsl_type_builtin_isampler3D;
case GLSL_SAMPLER_DIM_CUBE:
return (array ? &glsl_type_builtin_isamplerCubeArray : &glsl_type_builtin_isamplerCube);
case GLSL_SAMPLER_DIM_RECT:
if (array)
return &glsl_type_builtin_error;
return &glsl_type_builtin_isampler2DRect;
case GLSL_SAMPLER_DIM_BUF:
if (array)
return &glsl_type_builtin_error;
return &glsl_type_builtin_isamplerBuffer;
case GLSL_SAMPLER_DIM_MS:
return (array ? &glsl_type_builtin_isampler2DMSArray : &glsl_type_builtin_isampler2DMS);
case GLSL_SAMPLER_DIM_EXTERNAL:
return &glsl_type_builtin_error;
case GLSL_SAMPLER_DIM_SUBPASS:
case GLSL_SAMPLER_DIM_SUBPASS_MS:
return &glsl_type_builtin_error;
}
break;
case GLSL_TYPE_UINT:
if (shadow)
return &glsl_type_builtin_error;
switch (dim) {
case GLSL_SAMPLER_DIM_1D:
return (array ? &glsl_type_builtin_usampler1DArray : &glsl_type_builtin_usampler1D);
case GLSL_SAMPLER_DIM_2D:
return (array ? &glsl_type_builtin_usampler2DArray : &glsl_type_builtin_usampler2D);
case GLSL_SAMPLER_DIM_3D:
if (array)
return &glsl_type_builtin_error;
return &glsl_type_builtin_usampler3D;
case GLSL_SAMPLER_DIM_CUBE:
return (array ? &glsl_type_builtin_usamplerCubeArray : &glsl_type_builtin_usamplerCube);
case GLSL_SAMPLER_DIM_RECT:
if (array)
return &glsl_type_builtin_error;
return &glsl_type_builtin_usampler2DRect;
case GLSL_SAMPLER_DIM_BUF:
if (array)
return &glsl_type_builtin_error;
return &glsl_type_builtin_usamplerBuffer;
case GLSL_SAMPLER_DIM_MS:
return (array ? &glsl_type_builtin_usampler2DMSArray : &glsl_type_builtin_usampler2DMS);
case GLSL_SAMPLER_DIM_EXTERNAL:
return &glsl_type_builtin_error;
case GLSL_SAMPLER_DIM_SUBPASS:
case GLSL_SAMPLER_DIM_SUBPASS_MS:
return &glsl_type_builtin_error;
}
break;
case GLSL_TYPE_VOID:
return shadow ? &glsl_type_builtin_samplerShadow : &glsl_type_builtin_sampler;
default:
return &glsl_type_builtin_error;
}
unreachable("switch statement above should be complete");
}
const glsl_type *
glsl_bare_sampler_type()
{
return &glsl_type_builtin_sampler;
}
const glsl_type *
glsl_bare_shadow_sampler_type()
{
return &glsl_type_builtin_samplerShadow;
}
const glsl_type *
glsl_texture_type(enum glsl_sampler_dim dim, bool array, enum glsl_base_type type)
{
switch (type) {
case GLSL_TYPE_FLOAT:
switch (dim) {
case GLSL_SAMPLER_DIM_1D:
return (array ? &glsl_type_builtin_texture1DArray : &glsl_type_builtin_texture1D);
case GLSL_SAMPLER_DIM_2D:
return (array ? &glsl_type_builtin_texture2DArray : &glsl_type_builtin_texture2D);
case GLSL_SAMPLER_DIM_3D:
return &glsl_type_builtin_texture3D;
case GLSL_SAMPLER_DIM_CUBE:
return (array ? &glsl_type_builtin_textureCubeArray : &glsl_type_builtin_textureCube);
case GLSL_SAMPLER_DIM_RECT:
if (array)
return &glsl_type_builtin_error;
else
return &glsl_type_builtin_texture2DRect;
case GLSL_SAMPLER_DIM_BUF:
if (array)
return &glsl_type_builtin_error;
else
return &glsl_type_builtin_textureBuffer;
case GLSL_SAMPLER_DIM_MS:
return (array ? &glsl_type_builtin_texture2DMSArray : &glsl_type_builtin_texture2DMS);
case GLSL_SAMPLER_DIM_SUBPASS:
return &glsl_type_builtin_textureSubpassInput;
case GLSL_SAMPLER_DIM_SUBPASS_MS:
return &glsl_type_builtin_textureSubpassInputMS;
case GLSL_SAMPLER_DIM_EXTERNAL:
if (array)
return &glsl_type_builtin_error;
else
return &glsl_type_builtin_textureExternalOES;
}
break;
case GLSL_TYPE_INT:
switch (dim) {
case GLSL_SAMPLER_DIM_1D:
return (array ? &glsl_type_builtin_itexture1DArray : &glsl_type_builtin_itexture1D);
case GLSL_SAMPLER_DIM_2D:
return (array ? &glsl_type_builtin_itexture2DArray : &glsl_type_builtin_itexture2D);
case GLSL_SAMPLER_DIM_3D:
if (array)
return &glsl_type_builtin_error;
return &glsl_type_builtin_itexture3D;
case GLSL_SAMPLER_DIM_CUBE:
return (array ? &glsl_type_builtin_itextureCubeArray : &glsl_type_builtin_itextureCube);
case GLSL_SAMPLER_DIM_RECT:
if (array)
return &glsl_type_builtin_error;
return &glsl_type_builtin_itexture2DRect;
case GLSL_SAMPLER_DIM_BUF:
if (array)
return &glsl_type_builtin_error;
return &glsl_type_builtin_itextureBuffer;
case GLSL_SAMPLER_DIM_MS:
return (array ? &glsl_type_builtin_itexture2DMSArray : &glsl_type_builtin_itexture2DMS);
case GLSL_SAMPLER_DIM_SUBPASS:
return &glsl_type_builtin_itextureSubpassInput;
case GLSL_SAMPLER_DIM_SUBPASS_MS:
return &glsl_type_builtin_itextureSubpassInputMS;
case GLSL_SAMPLER_DIM_EXTERNAL:
return &glsl_type_builtin_error;
}
break;
case GLSL_TYPE_UINT:
switch (dim) {
case GLSL_SAMPLER_DIM_1D:
return (array ? &glsl_type_builtin_utexture1DArray : &glsl_type_builtin_utexture1D);
case GLSL_SAMPLER_DIM_2D:
return (array ? &glsl_type_builtin_utexture2DArray : &glsl_type_builtin_utexture2D);
case GLSL_SAMPLER_DIM_3D:
if (array)
return &glsl_type_builtin_error;
return &glsl_type_builtin_utexture3D;
case GLSL_SAMPLER_DIM_CUBE:
return (array ? &glsl_type_builtin_utextureCubeArray : &glsl_type_builtin_utextureCube);
case GLSL_SAMPLER_DIM_RECT:
if (array)
return &glsl_type_builtin_error;
return &glsl_type_builtin_utexture2DRect;
case GLSL_SAMPLER_DIM_BUF:
if (array)
return &glsl_type_builtin_error;
return &glsl_type_builtin_utextureBuffer;
case GLSL_SAMPLER_DIM_MS:
return (array ? &glsl_type_builtin_utexture2DMSArray : &glsl_type_builtin_utexture2DMS);
case GLSL_SAMPLER_DIM_SUBPASS:
return &glsl_type_builtin_utextureSubpassInput;
case GLSL_SAMPLER_DIM_SUBPASS_MS:
return &glsl_type_builtin_utextureSubpassInputMS;
case GLSL_SAMPLER_DIM_EXTERNAL:
return &glsl_type_builtin_error;
}
break;
case GLSL_TYPE_VOID:
switch (dim) {
case GLSL_SAMPLER_DIM_1D:
return (array ? &glsl_type_builtin_vtexture1DArray : &glsl_type_builtin_vtexture1D);
case GLSL_SAMPLER_DIM_2D:
return (array ? &glsl_type_builtin_vtexture2DArray : &glsl_type_builtin_vtexture2D);
case GLSL_SAMPLER_DIM_3D:
return (array ? &glsl_type_builtin_error : &glsl_type_builtin_vtexture3D);
case GLSL_SAMPLER_DIM_BUF:
return (array ? &glsl_type_builtin_error : &glsl_type_builtin_vtextureBuffer);
default:
return &glsl_type_builtin_error;
}
default:
return &glsl_type_builtin_error;
}
unreachable("switch statement above should be complete");
}
const glsl_type *
glsl_image_type(enum glsl_sampler_dim dim, bool array, enum glsl_base_type type)
{
switch (type) {
case GLSL_TYPE_FLOAT:
switch (dim) {
case GLSL_SAMPLER_DIM_1D:
return (array ? &glsl_type_builtin_image1DArray : &glsl_type_builtin_image1D);
case GLSL_SAMPLER_DIM_2D:
return (array ? &glsl_type_builtin_image2DArray : &glsl_type_builtin_image2D);
case GLSL_SAMPLER_DIM_3D:
return &glsl_type_builtin_image3D;
case GLSL_SAMPLER_DIM_CUBE:
return (array ? &glsl_type_builtin_imageCubeArray : &glsl_type_builtin_imageCube);
case GLSL_SAMPLER_DIM_RECT:
if (array)
return &glsl_type_builtin_error;
else
return &glsl_type_builtin_image2DRect;
case GLSL_SAMPLER_DIM_BUF:
if (array)
return &glsl_type_builtin_error;
else
return &glsl_type_builtin_imageBuffer;
case GLSL_SAMPLER_DIM_MS:
return (array ? &glsl_type_builtin_image2DMSArray : &glsl_type_builtin_image2DMS);
case GLSL_SAMPLER_DIM_SUBPASS:
return &glsl_type_builtin_subpassInput;
case GLSL_SAMPLER_DIM_SUBPASS_MS:
return &glsl_type_builtin_subpassInputMS;
case GLSL_SAMPLER_DIM_EXTERNAL:
return &glsl_type_builtin_error;
}
break;
case GLSL_TYPE_INT:
switch (dim) {
case GLSL_SAMPLER_DIM_1D:
return (array ? &glsl_type_builtin_iimage1DArray : &glsl_type_builtin_iimage1D);
case GLSL_SAMPLER_DIM_2D:
return (array ? &glsl_type_builtin_iimage2DArray : &glsl_type_builtin_iimage2D);
case GLSL_SAMPLER_DIM_3D:
if (array)
return &glsl_type_builtin_error;
return &glsl_type_builtin_iimage3D;
case GLSL_SAMPLER_DIM_CUBE:
return (array ? &glsl_type_builtin_iimageCubeArray : &glsl_type_builtin_iimageCube);
case GLSL_SAMPLER_DIM_RECT:
if (array)
return &glsl_type_builtin_error;
return &glsl_type_builtin_iimage2DRect;
case GLSL_SAMPLER_DIM_BUF:
if (array)
return &glsl_type_builtin_error;
return &glsl_type_builtin_iimageBuffer;
case GLSL_SAMPLER_DIM_MS:
return (array ? &glsl_type_builtin_iimage2DMSArray : &glsl_type_builtin_iimage2DMS);
case GLSL_SAMPLER_DIM_SUBPASS:
return &glsl_type_builtin_isubpassInput;
case GLSL_SAMPLER_DIM_SUBPASS_MS:
return &glsl_type_builtin_isubpassInputMS;
case GLSL_SAMPLER_DIM_EXTERNAL:
return &glsl_type_builtin_error;
}
break;
case GLSL_TYPE_UINT:
switch (dim) {
case GLSL_SAMPLER_DIM_1D:
return (array ? &glsl_type_builtin_uimage1DArray : &glsl_type_builtin_uimage1D);
case GLSL_SAMPLER_DIM_2D:
return (array ? &glsl_type_builtin_uimage2DArray : &glsl_type_builtin_uimage2D);
case GLSL_SAMPLER_DIM_3D:
if (array)
return &glsl_type_builtin_error;
return &glsl_type_builtin_uimage3D;
case GLSL_SAMPLER_DIM_CUBE:
return (array ? &glsl_type_builtin_uimageCubeArray : &glsl_type_builtin_uimageCube);
case GLSL_SAMPLER_DIM_RECT:
if (array)
return &glsl_type_builtin_error;
return &glsl_type_builtin_uimage2DRect;
case GLSL_SAMPLER_DIM_BUF:
if (array)
return &glsl_type_builtin_error;
return &glsl_type_builtin_uimageBuffer;
case GLSL_SAMPLER_DIM_MS:
return (array ? &glsl_type_builtin_uimage2DMSArray : &glsl_type_builtin_uimage2DMS);
case GLSL_SAMPLER_DIM_SUBPASS:
return &glsl_type_builtin_usubpassInput;
case GLSL_SAMPLER_DIM_SUBPASS_MS:
return &glsl_type_builtin_usubpassInputMS;
case GLSL_SAMPLER_DIM_EXTERNAL:
return &glsl_type_builtin_error;
}
break;
case GLSL_TYPE_INT64:
switch (dim) {
case GLSL_SAMPLER_DIM_1D:
return (array ? &glsl_type_builtin_i64image1DArray : &glsl_type_builtin_i64image1D);
case GLSL_SAMPLER_DIM_2D:
return (array ? &glsl_type_builtin_i64image2DArray : &glsl_type_builtin_i64image2D);
case GLSL_SAMPLER_DIM_3D:
if (array)
return &glsl_type_builtin_error;
return &glsl_type_builtin_i64image3D;
case GLSL_SAMPLER_DIM_CUBE:
return (array ? &glsl_type_builtin_i64imageCubeArray : &glsl_type_builtin_i64imageCube);
case GLSL_SAMPLER_DIM_RECT:
if (array)
return &glsl_type_builtin_error;
return &glsl_type_builtin_i64image2DRect;
case GLSL_SAMPLER_DIM_BUF:
if (array)
return &glsl_type_builtin_error;
return &glsl_type_builtin_i64imageBuffer;
case GLSL_SAMPLER_DIM_MS:
return (array ? &glsl_type_builtin_i64image2DMSArray : &glsl_type_builtin_i64image2DMS);
case GLSL_SAMPLER_DIM_SUBPASS:
case GLSL_SAMPLER_DIM_SUBPASS_MS:
case GLSL_SAMPLER_DIM_EXTERNAL:
return &glsl_type_builtin_error;
}
break;
case GLSL_TYPE_UINT64:
switch (dim) {
case GLSL_SAMPLER_DIM_1D:
return (array ? &glsl_type_builtin_u64image1DArray : &glsl_type_builtin_u64image1D);
case GLSL_SAMPLER_DIM_2D:
return (array ? &glsl_type_builtin_u64image2DArray : &glsl_type_builtin_u64image2D);
case GLSL_SAMPLER_DIM_3D:
if (array)
return &glsl_type_builtin_error;
return &glsl_type_builtin_u64image3D;
case GLSL_SAMPLER_DIM_CUBE:
return (array ? &glsl_type_builtin_u64imageCubeArray : &glsl_type_builtin_u64imageCube);
case GLSL_SAMPLER_DIM_RECT:
if (array)
return &glsl_type_builtin_error;
return &glsl_type_builtin_u64image2DRect;
case GLSL_SAMPLER_DIM_BUF:
if (array)
return &glsl_type_builtin_error;
return &glsl_type_builtin_u64imageBuffer;
case GLSL_SAMPLER_DIM_MS:
return (array ? &glsl_type_builtin_u64image2DMSArray : &glsl_type_builtin_u64image2DMS);
case GLSL_SAMPLER_DIM_SUBPASS:
case GLSL_SAMPLER_DIM_SUBPASS_MS:
case GLSL_SAMPLER_DIM_EXTERNAL:
return &glsl_type_builtin_error;
}
break;
case GLSL_TYPE_VOID:
switch (dim) {
case GLSL_SAMPLER_DIM_1D:
return (array ? &glsl_type_builtin_vimage1DArray : &glsl_type_builtin_vimage1D);
case GLSL_SAMPLER_DIM_2D:
return (array ? &glsl_type_builtin_vimage2DArray : &glsl_type_builtin_vimage2D);
case GLSL_SAMPLER_DIM_3D:
return (array ? &glsl_type_builtin_error : &glsl_type_builtin_vimage3D);
case GLSL_SAMPLER_DIM_BUF:
return (array ? &glsl_type_builtin_error : &glsl_type_builtin_vbuffer);
default:
return &glsl_type_builtin_error;
}
default:
return &glsl_type_builtin_error;
}
unreachable("switch statement above should be complete");
}
struct PACKED array_key {
uintptr_t element;
uintptr_t array_size;
uintptr_t explicit_stride;
};
DERIVE_HASH_TABLE(array_key);
const glsl_type *
glsl_array_type(const glsl_type *element,
unsigned array_size,
unsigned explicit_stride)
{
/* Ensure there's no internal padding, to avoid multiple hashes for same key. */
STATIC_ASSERT(sizeof(struct array_key) == (3 * sizeof(uintptr_t)));
struct array_key key = { 0 };
key.element = (uintptr_t)element;
key.array_size = array_size;
key.explicit_stride = explicit_stride;
const uint32_t key_hash = array_key_hash(&key);
simple_mtx_lock(&glsl_type_cache_mutex);
assert(glsl_type_cache.users > 0);
void *mem_ctx = glsl_type_cache.mem_ctx;
if (glsl_type_cache.array_types == NULL) {
glsl_type_cache.array_types = array_key_table_create(mem_ctx);
}
struct hash_table *array_types = glsl_type_cache.array_types;
const struct hash_entry *entry = _mesa_hash_table_search_pre_hashed(array_types, key_hash, &key);
if (entry == NULL) {
linear_ctx *lin_ctx = glsl_type_cache.lin_ctx;
const glsl_type *t = make_array_type(lin_ctx, element, array_size, explicit_stride);
struct array_key *stored_key = linear_zalloc(lin_ctx, struct array_key);
memcpy(stored_key, &key, sizeof(key));
entry = _mesa_hash_table_insert_pre_hashed(array_types, key_hash,
stored_key,
(void *) t);
}
const glsl_type *t = (const glsl_type *) entry->data;
simple_mtx_unlock(&glsl_type_cache_mutex);
assert(t->base_type == GLSL_TYPE_ARRAY);
assert(t->length == array_size);
assert(t->fields.array == element);
return t;
}
static const glsl_type *
make_cmat_type(linear_ctx *lin_ctx, const struct glsl_cmat_description desc)
{
assert(lin_ctx != NULL);
glsl_type *t = linear_zalloc(lin_ctx, glsl_type);
t->base_type = GLSL_TYPE_COOPERATIVE_MATRIX;
t->sampled_type = GLSL_TYPE_VOID;
t->vector_elements = 1;
t->cmat_desc = desc;
const glsl_type *element_type = glsl_simple_type(desc.element_type, 1, 1);
t->name_id = (uintptr_t ) linear_asprintf(lin_ctx, "coopmat<%s, %s, %u, %u, %s>",
glsl_get_type_name(element_type),
mesa_scope_name((mesa_scope)desc.scope),
desc.rows, desc.cols,
glsl_cmat_use_to_string((enum glsl_cmat_use)desc.use));
return t;
}
const glsl_type *
glsl_cmat_type(const struct glsl_cmat_description *desc)
{
STATIC_ASSERT(sizeof(struct glsl_cmat_description) == 4);
const uint32_t key = desc->element_type | desc->scope << 5 |
desc->rows << 8 | desc->cols << 16 |
desc->use << 24;
const uint32_t key_hash = _mesa_hash_uint(&key);
simple_mtx_lock(&glsl_type_cache_mutex);
assert(glsl_type_cache.users > 0);
void *mem_ctx = glsl_type_cache.mem_ctx;
if (glsl_type_cache.cmat_types == NULL) {
glsl_type_cache.cmat_types =
_mesa_hash_table_create_u32_keys(mem_ctx);
}
struct hash_table *cmat_types = glsl_type_cache.cmat_types;
const struct hash_entry *entry = _mesa_hash_table_search_pre_hashed(
cmat_types, key_hash, (void *) (uintptr_t) key);
if (entry == NULL) {
const glsl_type *t = make_cmat_type(glsl_type_cache.lin_ctx, *desc);
entry = _mesa_hash_table_insert_pre_hashed(cmat_types, key_hash,
(void *) (uintptr_t) key, (void *) t);
}
const glsl_type *t = (const glsl_type *)entry->data;
simple_mtx_unlock(&glsl_type_cache_mutex);
assert(t->base_type == GLSL_TYPE_COOPERATIVE_MATRIX);
assert(t->cmat_desc.element_type == desc->element_type);
assert(t->cmat_desc.scope == desc->scope);
assert(t->cmat_desc.rows == desc->rows);
assert(t->cmat_desc.cols == desc->cols);
assert(t->cmat_desc.use == desc->use);
return t;
}
bool
glsl_type_compare_no_precision(const glsl_type *a, const glsl_type *b)
{
if (a == b)
return true;
if (glsl_type_is_array(a)) {
if (!glsl_type_is_array(b) || a->length != b->length)
return false;
const glsl_type *b_no_array = b->fields.array;
return glsl_type_compare_no_precision(a->fields.array, b_no_array);
}
if (glsl_type_is_struct(a)) {
if (!glsl_type_is_struct(b))
return false;
} else if (glsl_type_is_interface(a)) {
if (!glsl_type_is_interface(b))
return false;
} else {
return false;
}
return glsl_record_compare(a, b,
true, /* match_name */
true, /* match_locations */
false /* match_precision */);
}
bool
glsl_record_compare(const glsl_type *a, const glsl_type *b, bool match_name,
bool match_locations, bool match_precision)
{
if (a->length != b->length)
return false;
if (a->interface_packing != b->interface_packing)
return false;
if (a->interface_row_major != b->interface_row_major)
return false;
if (a->explicit_alignment != b->explicit_alignment)
return false;
if (a->packed != b->packed)
return false;
/* From the GLSL 4.20 specification (Sec 4.2):
*
* "Structures must have the same name, sequence of type names, and
* type definitions, and field names to be considered the same type."
*
* GLSL ES behaves the same (Ver 1.00 Sec 4.2.4, Ver 3.00 Sec 4.2.5).
*
* Section 7.4.1 (Shader Interface Matching) of the OpenGL 4.30 spec says:
*
* "Variables or block members declared as structures are considered
* to match in type if and only if structure members match in name,
* type, qualification, and declaration order."
*/
if (match_name)
if (strcmp(glsl_get_type_name(a), glsl_get_type_name(b)) != 0)
return false;
for (unsigned i = 0; i < a->length; i++) {
if (match_precision) {
if (a->fields.structure[i].type != b->fields.structure[i].type)
return false;
} else {
const glsl_type *ta = a->fields.structure[i].type;
const glsl_type *tb = b->fields.structure[i].type;
if (!glsl_type_compare_no_precision(ta, tb))
return false;
}
if (strcmp(a->fields.structure[i].name,
b->fields.structure[i].name) != 0)
return false;
if (a->fields.structure[i].matrix_layout
!= b->fields.structure[i].matrix_layout)
return false;
if (match_locations && a->fields.structure[i].location
!= b->fields.structure[i].location)
return false;
if (a->fields.structure[i].component
!= b->fields.structure[i].component)
return false;
if (a->fields.structure[i].offset
!= b->fields.structure[i].offset)
return false;
if (a->fields.structure[i].interpolation
!= b->fields.structure[i].interpolation)
return false;
if (a->fields.structure[i].centroid
!= b->fields.structure[i].centroid)
return false;
if (a->fields.structure[i].sample
!= b->fields.structure[i].sample)
return false;
if (a->fields.structure[i].patch
!= b->fields.structure[i].patch)
return false;
if (a->fields.structure[i].memory_read_only
!= b->fields.structure[i].memory_read_only)
return false;
if (a->fields.structure[i].memory_write_only
!= b->fields.structure[i].memory_write_only)
return false;
if (a->fields.structure[i].memory_coherent
!= b->fields.structure[i].memory_coherent)
return false;
if (a->fields.structure[i].memory_volatile
!= b->fields.structure[i].memory_volatile)
return false;
if (a->fields.structure[i].memory_restrict
!= b->fields.structure[i].memory_restrict)
return false;
if (a->fields.structure[i].image_format
!= b->fields.structure[i].image_format)
return false;
if (match_precision &&
a->fields.structure[i].precision
!= b->fields.structure[i].precision)
return false;
if (a->fields.structure[i].explicit_xfb_buffer
!= b->fields.structure[i].explicit_xfb_buffer)
return false;
if (a->fields.structure[i].xfb_buffer
!= b->fields.structure[i].xfb_buffer)
return false;
if (a->fields.structure[i].xfb_stride
!= b->fields.structure[i].xfb_stride)
return false;
}
return true;
}
static bool
record_key_compare(const void *a, const void *b)
{
const glsl_type *const key1 = (glsl_type *) a;
const glsl_type *const key2 = (glsl_type *) b;
return strcmp(glsl_get_type_name(key1), glsl_get_type_name(key2)) == 0 &&
glsl_record_compare(key1, key2, true, true, true);
}
/**
* Generate an integer hash value for a glsl_type structure type.
*/
static unsigned
record_key_hash(const void *a)
{
const glsl_type *const key = (glsl_type *) a;
uintptr_t hash = key->length;
unsigned retval;
for (unsigned i = 0; i < key->length; i++) {
/* casting pointer to uintptr_t */
hash = (hash * 13 ) + (uintptr_t) key->fields.structure[i].type;
}
if (sizeof(hash) == 8)
retval = (hash & 0xffffffff) ^ ((uint64_t) hash >> 32);
else
retval = hash;
return retval;
}
const glsl_type *
glsl_struct_type_with_explicit_alignment(const glsl_struct_field *fields,
unsigned num_fields,
const char *name,
bool packed, unsigned explicit_alignment)
{
glsl_type key = {0};
fill_struct_type(&key, fields, num_fields, name, packed, explicit_alignment);
const uint32_t key_hash = record_key_hash(&key);
simple_mtx_lock(&glsl_type_cache_mutex);
assert(glsl_type_cache.users > 0);
void *mem_ctx = glsl_type_cache.mem_ctx;
if (glsl_type_cache.struct_types == NULL) {
glsl_type_cache.struct_types =
_mesa_hash_table_create(mem_ctx, record_key_hash, record_key_compare);
}
struct hash_table *struct_types = glsl_type_cache.struct_types;
const struct hash_entry *entry = _mesa_hash_table_search_pre_hashed(struct_types,
key_hash, &key);
if (entry == NULL) {
const glsl_type *t = make_struct_type(glsl_type_cache.lin_ctx, fields, num_fields,
name, packed, explicit_alignment);
entry = _mesa_hash_table_insert_pre_hashed(struct_types, key_hash, t, (void *) t);
}
const glsl_type *t = (const glsl_type *) entry->data;
simple_mtx_unlock(&glsl_type_cache_mutex);
assert(t->base_type == GLSL_TYPE_STRUCT);
assert(t->length == num_fields);
assert(strcmp(glsl_get_type_name(t), name) == 0);
assert(t->packed == packed);
assert(t->explicit_alignment == explicit_alignment);
return t;
}
const glsl_type *
glsl_interface_type(const glsl_struct_field *fields,
unsigned num_fields,
enum glsl_interface_packing packing,
bool row_major,
const char *block_name)
{
glsl_type key = {0};
fill_interface_type(&key, fields, num_fields, packing, row_major, block_name);
const uint32_t key_hash = record_key_hash(&key);
simple_mtx_lock(&glsl_type_cache_mutex);
assert(glsl_type_cache.users > 0);
void *mem_ctx = glsl_type_cache.mem_ctx;
if (glsl_type_cache.interface_types == NULL) {
glsl_type_cache.interface_types =
_mesa_hash_table_create(mem_ctx, record_key_hash, record_key_compare);
}
struct hash_table *interface_types = glsl_type_cache.interface_types;
const struct hash_entry *entry = _mesa_hash_table_search_pre_hashed(interface_types,
key_hash, &key);
if (entry == NULL) {
const glsl_type *t = make_interface_type(glsl_type_cache.lin_ctx, fields, num_fields,
packing, row_major, block_name);
entry = _mesa_hash_table_insert_pre_hashed(interface_types, key_hash, t, (void *) t);
}
const glsl_type *t = (const glsl_type *) entry->data;
simple_mtx_unlock(&glsl_type_cache_mutex);
assert(t->base_type == GLSL_TYPE_INTERFACE);
assert(t->length == num_fields);
assert(strcmp(glsl_get_type_name(t), block_name) == 0);
return t;
}
const glsl_type *
glsl_subroutine_type(const char *subroutine_name)
{
const uint32_t key_hash = _mesa_hash_string(subroutine_name);
simple_mtx_lock(&glsl_type_cache_mutex);
assert(glsl_type_cache.users > 0);
void *mem_ctx = glsl_type_cache.mem_ctx;
if (glsl_type_cache.subroutine_types == NULL) {
glsl_type_cache.subroutine_types =
_mesa_hash_table_create(mem_ctx, _mesa_hash_string, _mesa_key_string_equal);
}
struct hash_table *subroutine_types = glsl_type_cache.subroutine_types;
const struct hash_entry *entry = _mesa_hash_table_search_pre_hashed(subroutine_types,
key_hash, subroutine_name);
if (entry == NULL) {
const glsl_type *t = make_subroutine_type(glsl_type_cache.lin_ctx, subroutine_name);
entry = _mesa_hash_table_insert_pre_hashed(subroutine_types, key_hash, glsl_get_type_name(t), (void *) t);
}
const glsl_type *t = (const glsl_type *) entry->data;
simple_mtx_unlock(&glsl_type_cache_mutex);
assert(t->base_type == GLSL_TYPE_SUBROUTINE);
assert(strcmp(glsl_get_type_name(t), subroutine_name) == 0);
return t;
}
const glsl_type *
glsl_get_mul_type(const glsl_type *type_a, const glsl_type *type_b)
{
if (glsl_type_is_matrix(type_a) && glsl_type_is_matrix(type_b)) {
/* Matrix multiply. The columns of A must match the rows of B. Given
* the other previously tested constraints, this means the vector type
* of a row from A must be the same as the vector type of a column from
* B.
*/
if (glsl_get_row_type(type_a) == glsl_get_column_type(type_b)) {
/* The resulting matrix has the number of columns of matrix B and
* the number of rows of matrix A. We get the row count of A by
* looking at the size of a vector that makes up a column. The
* transpose (size of a row) is done for B.
*/
const glsl_type *const type =
glsl_simple_type(type_a->base_type,
glsl_get_column_type(type_a)->vector_elements,
glsl_get_row_type(type_b)->vector_elements);
assert(type != &glsl_type_builtin_error);
return type;
}
} else if (type_a == type_b) {
return type_a;
} else if (glsl_type_is_matrix(type_a)) {
/* A is a matrix and B is a column vector. Columns of A must match
* rows of B. Given the other previously tested constraints, this
* means the vector type of a row from A must be the same as the
* vector the type of B.
*/
if (glsl_get_row_type(type_a) == type_b) {
/* The resulting vector has a number of elements equal to
* the number of rows of matrix A. */
const glsl_type *const type =
glsl_simple_type(type_a->base_type,
glsl_get_column_type(type_a)->vector_elements, 1);
assert(type != &glsl_type_builtin_error);
return type;
}
} else {
assert(glsl_type_is_matrix(type_b));
/* A is a row vector and B is a matrix. Columns of A must match rows
* of B. Given the other previously tested constraints, this means
* the type of A must be the same as the vector type of a column from
* B.
*/
if (type_a == glsl_get_column_type(type_b)) {
/* The resulting vector has a number of elements equal to
* the number of columns of matrix B. */
const glsl_type *const type =
glsl_simple_type(type_a->base_type,
glsl_get_row_type(type_b)->vector_elements, 1);
assert(type != &glsl_type_builtin_error);
return type;
}
}
return &glsl_type_builtin_error;
}
int
glsl_get_field_index(const glsl_type *t, const char *name)
{
if (t->base_type != GLSL_TYPE_STRUCT &&
t->base_type != GLSL_TYPE_INTERFACE)
return -1;
for (unsigned i = 0; i < t->length; i++) {
if (strcmp(name, t->fields.structure[i].name) == 0)
return i;
}
return -1;
}
const glsl_type *
glsl_get_field_type(const glsl_type *t, const char *name)
{
const int idx = glsl_get_field_index(t, name);
if (idx == -1)
return &glsl_type_builtin_error;
return glsl_get_struct_field(t, (unsigned)idx);
}
unsigned
glsl_get_component_slots(const glsl_type *t)
{
switch (t->base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_UINT8:
case GLSL_TYPE_INT8:
case GLSL_TYPE_UINT16:
case GLSL_TYPE_INT16:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_FLOAT16:
case GLSL_TYPE_BOOL:
return glsl_get_components(t);
case GLSL_TYPE_DOUBLE:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_INT64:
return 2 * glsl_get_components(t);
case GLSL_TYPE_STRUCT:
case GLSL_TYPE_INTERFACE: {
unsigned size = 0;
for (unsigned i = 0; i < t->length; i++)
size += glsl_get_component_slots(t->fields.structure[i].type);
return size;
}
case GLSL_TYPE_ARRAY:
return t->length * glsl_get_component_slots(t->fields.array);
case GLSL_TYPE_SAMPLER:
case GLSL_TYPE_TEXTURE:
case GLSL_TYPE_IMAGE:
return 2;
case GLSL_TYPE_SUBROUTINE:
return 1;
case GLSL_TYPE_COOPERATIVE_MATRIX:
case GLSL_TYPE_ATOMIC_UINT:
case GLSL_TYPE_VOID:
case GLSL_TYPE_ERROR:
break;
}
return 0;
}
unsigned
glsl_get_component_slots_aligned(const glsl_type *t, unsigned offset)
{
/* Align 64bit type only if it crosses attribute slot boundary. */
switch (t->base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_UINT8:
case GLSL_TYPE_INT8:
case GLSL_TYPE_UINT16:
case GLSL_TYPE_INT16:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_FLOAT16:
case GLSL_TYPE_BOOL:
return glsl_get_components(t);
case GLSL_TYPE_DOUBLE:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_INT64: {
unsigned size = 2 * glsl_get_components(t);
if (offset % 2 == 1 && (offset % 4 + size) > 4) {
size++;
}
return size;
}
case GLSL_TYPE_STRUCT:
case GLSL_TYPE_INTERFACE: {
unsigned size = 0;
for (unsigned i = 0; i < t->length; i++) {
const glsl_type *member = t->fields.structure[i].type;
size += glsl_get_component_slots_aligned(member, size + offset);
}
return size;
}
case GLSL_TYPE_ARRAY: {
unsigned size = 0;
for (unsigned i = 0; i < t->length; i++) {
size += glsl_get_component_slots_aligned(t->fields.array,
size + offset);
}
return size;
}
case GLSL_TYPE_SAMPLER:
case GLSL_TYPE_TEXTURE:
case GLSL_TYPE_IMAGE:
return 2 + ((offset % 4) == 3 ? 1 : 0);
case GLSL_TYPE_SUBROUTINE:
return 1;
case GLSL_TYPE_COOPERATIVE_MATRIX:
case GLSL_TYPE_ATOMIC_UINT:
case GLSL_TYPE_VOID:
case GLSL_TYPE_ERROR:
break;
}
return 0;
}
unsigned
glsl_get_struct_location_offset(const glsl_type *t, unsigned length)
{
unsigned offset = 0;
t = glsl_without_array(t);
if (glsl_type_is_struct(t)) {
assert(length <= t->length);
for (unsigned i = 0; i < length; i++) {
const glsl_type *st = t->fields.structure[i].type;
const glsl_type *wa = glsl_without_array(st);
if (glsl_type_is_struct(wa)) {
unsigned r_offset = glsl_get_struct_location_offset(wa, wa->length);
offset += glsl_type_is_array(st) ?
glsl_get_aoa_size(st) * r_offset : r_offset;
} else if (glsl_type_is_array(st) && glsl_type_is_array(st->fields.array)) {
unsigned outer_array_size = st->length;
const glsl_type *base_type = st->fields.array;
/* For arrays of arrays the outer arrays take up a uniform
* slot for each element. The innermost array elements share a
* single slot so we ignore the innermost array when calculating
* the offset.
*/
while (glsl_type_is_array(base_type->fields.array)) {
outer_array_size = outer_array_size * base_type->length;
base_type = base_type->fields.array;
}
offset += outer_array_size;
} else {
/* We dont worry about arrays here because unless the array
* contains a structure or another array it only takes up a single
* uniform slot.
*/
offset += 1;
}
}
}
return offset;
}
unsigned
glsl_type_uniform_locations(const glsl_type *t)
{
unsigned size = 0;
switch (t->base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_FLOAT16:
case GLSL_TYPE_DOUBLE:
case GLSL_TYPE_UINT16:
case GLSL_TYPE_UINT8:
case GLSL_TYPE_INT16:
case GLSL_TYPE_INT8:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_INT64:
case GLSL_TYPE_BOOL:
case GLSL_TYPE_SAMPLER:
case GLSL_TYPE_TEXTURE:
case GLSL_TYPE_IMAGE:
case GLSL_TYPE_SUBROUTINE:
return 1;
case GLSL_TYPE_STRUCT:
case GLSL_TYPE_INTERFACE:
for (unsigned i = 0; i < t->length; i++)
size += glsl_type_uniform_locations(t->fields.structure[i].type);
return size;
case GLSL_TYPE_ARRAY:
return t->length * glsl_type_uniform_locations(t->fields.array);
default:
return 0;
}
}
unsigned
glsl_varying_count(const glsl_type *t)
{
unsigned size = 0;
switch (t->base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_FLOAT16:
case GLSL_TYPE_DOUBLE:
case GLSL_TYPE_BOOL:
case GLSL_TYPE_UINT16:
case GLSL_TYPE_UINT8:
case GLSL_TYPE_INT16:
case GLSL_TYPE_INT8:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_INT64:
return 1;
case GLSL_TYPE_STRUCT:
case GLSL_TYPE_INTERFACE:
for (unsigned i = 0; i < t->length; i++)
size += glsl_varying_count(t->fields.structure[i].type);
return size;
case GLSL_TYPE_ARRAY:
/* Don't count innermost array elements */
if (glsl_type_is_struct(glsl_without_array(t)) ||
glsl_type_is_interface(glsl_without_array(t)) ||
glsl_type_is_array(t->fields.array))
return t->length * glsl_varying_count(t->fields.array);
else
return glsl_varying_count(t->fields.array);
default:
assert(!"unsupported varying type");
return 0;
}
}
unsigned
glsl_get_std140_base_alignment(const glsl_type *t, bool row_major)
{
unsigned N = glsl_type_is_64bit(t) ? 8 : (glsl_type_is_16bit(t) ? 2 : 4);
/* (1) If the member is a scalar consuming <N> basic machine units, the
* base alignment is <N>.
*
* (2) If the member is a two- or four-component vector with components
* consuming <N> basic machine units, the base alignment is 2<N> or
* 4<N>, respectively.
*
* (3) If the member is a three-component vector with components consuming
* <N> basic machine units, the base alignment is 4<N>.
*/
if (glsl_type_is_scalar(t) || glsl_type_is_vector(t)) {
switch (t->vector_elements) {
case 1:
return N;
case 2:
return 2 * N;
case 3:
case 4:
return 4 * N;
}
}
/* (4) If the member is an array of scalars or vectors, the base alignment
* and array stride are set to match the base alignment of a single
* array element, according to rules (1), (2), and (3), and rounded up
* to the base alignment of a vec4. The array may have padding at the
* end; the base offset of the member following the array is rounded up
* to the next multiple of the base alignment.
*
* (6) If the member is an array of <S> column-major matrices with <C>
* columns and <R> rows, the matrix is stored identically to a row of
* <S>*<C> column vectors with <R> components each, according to rule
* (4).
*
* (8) If the member is an array of <S> row-major matrices with <C> columns
* and <R> rows, the matrix is stored identically to a row of <S>*<R>
* row vectors with <C> components each, according to rule (4).
*
* (10) If the member is an array of <S> structures, the <S> elements of
* the array are laid out in order, according to rule (9).
*/
if (glsl_type_is_array(t)) {
if (glsl_type_is_scalar(t->fields.array) ||
glsl_type_is_vector(t->fields.array) ||
glsl_type_is_matrix(t->fields.array)) {
return MAX2(glsl_get_std140_base_alignment(t->fields.array, row_major),
16);
} else {
assert(glsl_type_is_struct(t->fields.array) ||
glsl_type_is_array(t->fields.array));
return glsl_get_std140_base_alignment(t->fields.array, row_major);
}
}
/* (5) If the member is a column-major matrix with <C> columns and
* <R> rows, the matrix is stored identically to an array of
* <C> column vectors with <R> components each, according to
* rule (4).
*
* (7) If the member is a row-major matrix with <C> columns and <R>
* rows, the matrix is stored identically to an array of <R>
* row vectors with <C> components each, according to rule (4).
*/
if (glsl_type_is_matrix(t)) {
const glsl_type *vec_type, *array_type;
int c = t->matrix_columns;
int r = t->vector_elements;
if (row_major) {
vec_type = glsl_simple_type(t->base_type, c, 1);
array_type = glsl_array_type(vec_type, r, 0);
} else {
vec_type = glsl_simple_type(t->base_type, r, 1);
array_type = glsl_array_type(vec_type, c, 0);
}
return glsl_get_std140_base_alignment(array_type, false);
}
/* (9) If the member is a structure, the base alignment of the
* structure is <N>, where <N> is the largest base alignment
* value of any of its members, and rounded up to the base
* alignment of a vec4. The individual members of this
* sub-structure are then assigned offsets by applying this set
* of rules recursively, where the base offset of the first
* member of the sub-structure is equal to the aligned offset
* of the structure. The structure may have padding at the end;
* the base offset of the member following the sub-structure is
* rounded up to the next multiple of the base alignment of the
* structure.
*/
if (glsl_type_is_struct(t)) {
unsigned base_alignment = 16;
for (unsigned i = 0; i < t->length; i++) {
bool field_row_major = row_major;
const enum glsl_matrix_layout matrix_layout =
(enum glsl_matrix_layout)t->fields.structure[i].matrix_layout;
if (matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
field_row_major = true;
} else if (matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR) {
field_row_major = false;
}
const glsl_type *field_type = t->fields.structure[i].type;
base_alignment = MAX2(base_alignment,
glsl_get_std140_base_alignment(field_type, field_row_major));
}
return base_alignment;
}
assert(!"not reached");
return -1;
}
unsigned
glsl_get_std140_size(const glsl_type *t, bool row_major)
{
unsigned N = glsl_type_is_64bit(t) ? 8 : (glsl_type_is_16bit(t) ? 2 : 4);
/* (1) If the member is a scalar consuming <N> basic machine units, the
* base alignment is <N>.
*
* (2) If the member is a two- or four-component vector with components
* consuming <N> basic machine units, the base alignment is 2<N> or
* 4<N>, respectively.
*
* (3) If the member is a three-component vector with components consuming
* <N> basic machine units, the base alignment is 4<N>.
*/
if (glsl_type_is_scalar(t) || glsl_type_is_vector(t)) {
assert(t->explicit_stride == 0);
return t->vector_elements * N;
}
/* (5) If the member is a column-major matrix with <C> columns and
* <R> rows, the matrix is stored identically to an array of
* <C> column vectors with <R> components each, according to
* rule (4).
*
* (6) If the member is an array of <S> column-major matrices with <C>
* columns and <R> rows, the matrix is stored identically to a row of
* <S>*<C> column vectors with <R> components each, according to rule
* (4).
*
* (7) If the member is a row-major matrix with <C> columns and <R>
* rows, the matrix is stored identically to an array of <R>
* row vectors with <C> components each, according to rule (4).
*
* (8) If the member is an array of <S> row-major matrices with <C> columns
* and <R> rows, the matrix is stored identically to a row of <S>*<R>
* row vectors with <C> components each, according to rule (4).
*/
if (glsl_type_is_matrix(glsl_without_array(t))) {
const glsl_type *element_type;
const glsl_type *vec_type;
unsigned int array_len;
if (glsl_type_is_array(t)) {
element_type = glsl_without_array(t);
array_len = glsl_get_aoa_size(t);
} else {
element_type = t;
array_len = 1;
}
if (row_major) {
vec_type = glsl_simple_type(element_type->base_type,
element_type->matrix_columns, 1);
array_len *= element_type->vector_elements;
} else {
vec_type = glsl_simple_type(element_type->base_type,
element_type->vector_elements, 1);
array_len *= element_type->matrix_columns;
}
const glsl_type *array_type =
glsl_array_type(vec_type, array_len, 0);
return glsl_get_std140_size(array_type, false);
}
/* (4) If the member is an array of scalars or vectors, the base alignment
* and array stride are set to match the base alignment of a single
* array element, according to rules (1), (2), and (3), and rounded up
* to the base alignment of a vec4. The array may have padding at the
* end; the base offset of the member following the array is rounded up
* to the next multiple of the base alignment.
*
* (10) If the member is an array of <S> structures, the <S> elements of
* the array are laid out in order, according to rule (9).
*/
if (glsl_type_is_array(t)) {
unsigned stride;
if (glsl_type_is_struct(glsl_without_array(t))) {
stride = glsl_get_std140_size(glsl_without_array(t), row_major);
} else {
unsigned element_base_align =
glsl_get_std140_base_alignment(glsl_without_array(t), row_major);
stride = MAX2(element_base_align, 16);
}
unsigned size = glsl_get_aoa_size(t) * stride;
assert(t->explicit_stride == 0 ||
size == t->length * t->explicit_stride);
return size;
}
/* (9) If the member is a structure, the base alignment of the
* structure is <N>, where <N> is the largest base alignment
* value of any of its members, and rounded up to the base
* alignment of a vec4. The individual members of this
* sub-structure are then assigned offsets by applying this set
* of rules recursively, where the base offset of the first
* member of the sub-structure is equal to the aligned offset
* of the structure. The structure may have padding at the end;
* the base offset of the member following the sub-structure is
* rounded up to the next multiple of the base alignment of the
* structure.
*/
if (glsl_type_is_struct(t) || glsl_type_is_interface(t)) {
unsigned size = 0;
unsigned max_align = 0;
for (unsigned i = 0; i < t->length; i++) {
bool field_row_major = row_major;
const enum glsl_matrix_layout matrix_layout =
(enum glsl_matrix_layout)t->fields.structure[i].matrix_layout;
if (matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
field_row_major = true;
} else if (matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR) {
field_row_major = false;
}
const glsl_type *field_type = t->fields.structure[i].type;
unsigned base_alignment = glsl_get_std140_base_alignment(field_type,
field_row_major);
/* Ignore unsized arrays when calculating size */
if (glsl_type_is_unsized_array(field_type))
continue;
size = align(size, base_alignment);
size += glsl_get_std140_size(field_type, field_row_major);
max_align = MAX2(base_alignment, max_align);
if (glsl_type_is_struct(field_type) && (i + 1 < t->length))
size = align(size, 16);
}
size = align(size, MAX2(max_align, 16));
return size;
}
assert(!"not reached");
return -1;
}
const glsl_type *
glsl_get_explicit_std140_type(const glsl_type *t, bool row_major)
{
if (glsl_type_is_vector(t) || glsl_type_is_scalar(t)) {
return t;
} else if (glsl_type_is_matrix(t)) {
const glsl_type *vec_type;
if (row_major)
vec_type = glsl_simple_type(t->base_type, t->matrix_columns, 1);
else
vec_type = glsl_simple_type(t->base_type, t->vector_elements, 1);
unsigned elem_size = glsl_get_std140_size(vec_type, false);
unsigned stride = align(elem_size, 16);
return glsl_simple_explicit_type(t->base_type, t->vector_elements,
t->matrix_columns, stride, row_major,
0);
} else if (glsl_type_is_array(t)) {
unsigned elem_size = glsl_get_std140_size(t->fields.array, row_major);
const glsl_type *elem_type =
glsl_get_explicit_std140_type(t->fields.array, row_major);
unsigned stride = align(elem_size, 16);
return glsl_array_type(elem_type, t->length, stride);
} else if (glsl_type_is_struct(t) || glsl_type_is_interface(t)) {
glsl_struct_field *fields = (glsl_struct_field *)
calloc(t->length, sizeof(glsl_struct_field));
unsigned offset = 0;
for (unsigned i = 0; i < t->length; i++) {
fields[i] = t->fields.structure[i];
bool field_row_major = row_major;
if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR) {
field_row_major = false;
} else if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
field_row_major = true;
}
fields[i].type =
glsl_get_explicit_std140_type(fields[i].type, field_row_major);
unsigned fsize = glsl_get_std140_size(fields[i].type,
field_row_major);
unsigned falign = glsl_get_std140_base_alignment(fields[i].type,
field_row_major);
/* From the GLSL 460 spec section "Uniform and Shader Storage Block
* Layout Qualifiers":
*
* "The actual offset of a member is computed as follows: If
* offset was declared, start with that offset, otherwise start
* with the next available offset. If the resulting offset is not
* a multiple of the actual alignment, increase it to the first
* offset that is a multiple of the actual alignment. This results
* in the actual offset the member will have."
*/
if (fields[i].offset >= 0) {
assert((unsigned)fields[i].offset >= offset);
offset = fields[i].offset;
}
offset = align(offset, falign);
fields[i].offset = offset;
offset += fsize;
}
const glsl_type *type;
if (glsl_type_is_struct(t))
type = glsl_struct_type(fields, t->length, glsl_get_type_name(t), false);
else
type = glsl_interface_type(fields, t->length,
(enum glsl_interface_packing)t->interface_packing,
t->interface_row_major, glsl_get_type_name(t));
free(fields);
return type;
} else {
unreachable("Invalid type for UBO or SSBO");
}
}
unsigned
glsl_get_std430_base_alignment(const glsl_type *t, bool row_major)
{
unsigned N = glsl_type_is_64bit(t) ? 8 : (glsl_type_is_16bit(t) ? 2 : 4);
/* (1) If the member is a scalar consuming <N> basic machine units, the
* base alignment is <N>.
*
* (2) If the member is a two- or four-component vector with components
* consuming <N> basic machine units, the base alignment is 2<N> or
* 4<N>, respectively.
*
* (3) If the member is a three-component vector with components consuming
* <N> basic machine units, the base alignment is 4<N>.
*/
if (glsl_type_is_scalar(t) || glsl_type_is_vector(t)) {
switch (t->vector_elements) {
case 1:
return N;
case 2:
return 2 * N;
case 3:
case 4:
return 4 * N;
}
}
/* OpenGL 4.30 spec, section 7.6.2.2 "Standard Uniform Block Layout":
*
* "When using the std430 storage layout, shader storage blocks will be
* laid out in buffer storage identically to uniform and shader storage
* blocks using the std140 layout, except that the base alignment and
* stride of arrays of scalars and vectors in rule 4 and of structures
* in rule 9 are not rounded up a multiple of the base alignment of a vec4.
*/
/* (1) If the member is a scalar consuming <N> basic machine units, the
* base alignment is <N>.
*
* (2) If the member is a two- or four-component vector with components
* consuming <N> basic machine units, the base alignment is 2<N> or
* 4<N>, respectively.
*
* (3) If the member is a three-component vector with components consuming
* <N> basic machine units, the base alignment is 4<N>.
*/
if (glsl_type_is_array(t))
return glsl_get_std430_base_alignment(t->fields.array, row_major);
/* (5) If the member is a column-major matrix with <C> columns and
* <R> rows, the matrix is stored identically to an array of
* <C> column vectors with <R> components each, according to
* rule (4).
*
* (7) If the member is a row-major matrix with <C> columns and <R>
* rows, the matrix is stored identically to an array of <R>
* row vectors with <C> components each, according to rule (4).
*/
if (glsl_type_is_matrix(t)) {
const glsl_type *vec_type, *array_type;
int c = t->matrix_columns;
int r = t->vector_elements;
if (row_major) {
vec_type = glsl_simple_type(t->base_type, c, 1);
array_type = glsl_array_type(vec_type, r, 0);
} else {
vec_type = glsl_simple_type(t->base_type, r, 1);
array_type = glsl_array_type(vec_type, c, 0);
}
return glsl_get_std430_base_alignment(array_type, false);
}
/* (9) If the member is a structure, the base alignment of the
* structure is <N>, where <N> is the largest base alignment
* value of any of its members, and rounded up to the base
* alignment of a vec4. The individual members of this
* sub-structure are then assigned offsets by applying this set
* of rules recursively, where the base offset of the first
* member of the sub-structure is equal to the aligned offset
* of the structure. The structure may have padding at the end;
* the base offset of the member following the sub-structure is
* rounded up to the next multiple of the base alignment of the
* structure.
*/
if (glsl_type_is_struct(t)) {
unsigned base_alignment = 0;
for (unsigned i = 0; i < t->length; i++) {
bool field_row_major = row_major;
const enum glsl_matrix_layout matrix_layout =
(enum glsl_matrix_layout)t->fields.structure[i].matrix_layout;
if (matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
field_row_major = true;
} else if (matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR) {
field_row_major = false;
}
const glsl_type *field_type = t->fields.structure[i].type;
base_alignment = MAX2(base_alignment,
glsl_get_std430_base_alignment(field_type, field_row_major));
}
assert(base_alignment > 0);
return base_alignment;
}
assert(!"not reached");
return -1;
}
unsigned
glsl_get_std430_array_stride(const glsl_type *t, bool row_major)
{
unsigned N = glsl_type_is_64bit(t) ? 8 : (glsl_type_is_16bit(t) ? 2 : 4);
/* Notice that the array stride of a vec3 is not 3 * N but 4 * N.
* See OpenGL 4.30 spec, section 7.6.2.2 "Standard Uniform Block Layout"
*
* (3) If the member is a three-component vector with components consuming
* <N> basic machine units, the base alignment is 4<N>.
*/
if (glsl_type_is_vector(t) && t->vector_elements == 3)
return 4 * N;
/* By default use std430_size(row_major) */
unsigned stride = glsl_get_std430_size(t, row_major);
assert(t->explicit_stride == 0 || t->explicit_stride == stride);
return stride;
}
/* Note that the value returned by this method is only correct if the
* explit offset, and stride values are set, so only with SPIR-V shaders.
* Should not be used with GLSL shaders.
*/
unsigned
glsl_get_explicit_size(const glsl_type *t, bool align_to_stride)
{
if (glsl_type_is_struct(t) || glsl_type_is_interface(t)) {
if (t->length > 0) {
unsigned size = 0;
for (unsigned i = 0; i < t->length; i++) {
assert(t->fields.structure[i].offset >= 0);
unsigned last_byte = t->fields.structure[i].offset +
glsl_get_explicit_size(t->fields.structure[i].type, false);
size = MAX2(size, last_byte);
}
return size;
} else {
return 0;
}
} else if (glsl_type_is_array(t)) {
/* From ARB_program_interface_query spec:
*
* "For the property of BUFFER_DATA_SIZE, then the implementation-dependent
* minimum total buffer object size, in basic machine units, required to
* hold all active variables associated with an active uniform block, shader
* storage block, or atomic counter buffer is written to <params>. If the
* final member of an active shader storage block is array with no declared
* size, the minimum buffer size is computed assuming the array was declared
* as an array with one element."
*
*/
if (glsl_type_is_unsized_array(t))
return t->explicit_stride;
assert(t->length > 0);
unsigned elem_size = align_to_stride ? t->explicit_stride : glsl_get_explicit_size(t->fields.array,
false);
assert(t->explicit_stride == 0 || t->explicit_stride >= elem_size);
return t->explicit_stride * (t->length - 1) + elem_size;
} else if (glsl_type_is_matrix(t)) {
const glsl_type *elem_type;
unsigned length;
if (t->interface_row_major) {
elem_type = glsl_simple_type(t->base_type, t->matrix_columns, 1);
length = t->vector_elements;
} else {
elem_type = glsl_simple_type(t->base_type, t->vector_elements, 1);
length = t->matrix_columns;
}
unsigned elem_size = align_to_stride ? t->explicit_stride : glsl_get_explicit_size(elem_type,
false);
assert(t->explicit_stride);
return t->explicit_stride * (length - 1) + elem_size;
}
unsigned N = glsl_base_type_bit_size(t->base_type) / 8;
return t->vector_elements * N;
}
unsigned
glsl_get_std430_size(const glsl_type *t, bool row_major)
{
unsigned N = glsl_type_is_64bit(t) ? 8 : (glsl_type_is_16bit(t) ? 2 : 4);
/* OpenGL 4.30 spec, section 7.6.2.2 "Standard Uniform Block Layout":
*
* "When using the std430 storage layout, shader storage blocks will be
* laid out in buffer storage identically to uniform and shader storage
* blocks using the std140 layout, except that the base alignment and
* stride of arrays of scalars and vectors in rule 4 and of structures
* in rule 9 are not rounded up a multiple of the base alignment of a vec4.
*/
if (glsl_type_is_scalar(t) || glsl_type_is_vector(t)) {
assert(t->explicit_stride == 0);
return t->vector_elements * N;
}
if (glsl_type_is_matrix(glsl_without_array(t))) {
const glsl_type *element_type;
const glsl_type *vec_type;
unsigned int array_len;
if (glsl_type_is_array(t)) {
element_type = glsl_without_array(t);
array_len = glsl_get_aoa_size(t);
} else {
element_type = t;
array_len = 1;
}
if (row_major) {
vec_type = glsl_simple_type(element_type->base_type,
element_type->matrix_columns, 1);
array_len *= element_type->vector_elements;
} else {
vec_type = glsl_simple_type(element_type->base_type,
element_type->vector_elements, 1);
array_len *= element_type->matrix_columns;
}
const glsl_type *array_type =
glsl_array_type(vec_type, array_len, 0);
return glsl_get_std430_size(array_type, false);
}
if (glsl_type_is_array(t)) {
unsigned stride;
if (glsl_type_is_struct(glsl_without_array(t)))
stride = glsl_get_std430_size(glsl_without_array(t), row_major);
else
stride = glsl_get_std430_base_alignment(glsl_without_array(t),
row_major);
unsigned size = glsl_get_aoa_size(t) * stride;
assert(t->explicit_stride == 0 ||
size == t->length * t->explicit_stride);
return size;
}
if (glsl_type_is_struct(t) || glsl_type_is_interface(t)) {
unsigned size = 0;
unsigned max_align = 0;
for (unsigned i = 0; i < t->length; i++) {
bool field_row_major = row_major;
const enum glsl_matrix_layout matrix_layout =
(enum glsl_matrix_layout)t->fields.structure[i].matrix_layout;
if (matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
field_row_major = true;
} else if (matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR) {
field_row_major = false;
}
const glsl_type *field_type = t->fields.structure[i].type;
unsigned base_alignment = glsl_get_std430_base_alignment(field_type,
field_row_major);
size = align(size, base_alignment);
size += glsl_get_std430_size(field_type, field_row_major);
max_align = MAX2(base_alignment, max_align);
}
size = align(size, max_align);
return size;
}
assert(!"not reached");
return -1;
}
const glsl_type *
glsl_get_explicit_std430_type(const glsl_type *t, bool row_major)
{
if (glsl_type_is_vector(t) || glsl_type_is_scalar(t)) {
return t;
} else if (glsl_type_is_matrix(t)) {
const glsl_type *vec_type;
if (row_major)
vec_type = glsl_simple_type(t->base_type, t->matrix_columns, 1);
else
vec_type = glsl_simple_type(t->base_type, t->vector_elements, 1);
unsigned stride = glsl_get_std430_array_stride(vec_type, false);
return glsl_simple_explicit_type(t->base_type, t->vector_elements,
t->matrix_columns, stride, row_major,
0);
} else if (glsl_type_is_array(t)) {
const glsl_type *elem_type =
glsl_get_explicit_std430_type(t->fields.array, row_major);
unsigned stride = glsl_get_std430_array_stride(t->fields.array,
row_major);
return glsl_array_type(elem_type, t->length, stride);
} else if (glsl_type_is_struct(t) || glsl_type_is_interface(t)) {
glsl_struct_field *fields = (glsl_struct_field *)
calloc(t->length, sizeof(glsl_struct_field));
unsigned offset = 0;
for (unsigned i = 0; i < t->length; i++) {
fields[i] = t->fields.structure[i];
bool field_row_major = row_major;
if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR) {
field_row_major = false;
} else if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
field_row_major = true;
}
fields[i].type =
glsl_get_explicit_std430_type(fields[i].type, field_row_major);
unsigned fsize = glsl_get_std430_size(fields[i].type,
field_row_major);
unsigned falign = glsl_get_std430_base_alignment(fields[i].type,
field_row_major);
/* From the GLSL 460 spec section "Uniform and Shader Storage Block
* Layout Qualifiers":
*
* "The actual offset of a member is computed as follows: If
* offset was declared, start with that offset, otherwise start
* with the next available offset. If the resulting offset is not
* a multiple of the actual alignment, increase it to the first
* offset that is a multiple of the actual alignment. This results
* in the actual offset the member will have."
*/
if (fields[i].offset >= 0) {
assert((unsigned)fields[i].offset >= offset);
offset = fields[i].offset;
}
offset = align(offset, falign);
fields[i].offset = offset;
offset += fsize;
}
const glsl_type *type;
if (glsl_type_is_struct(t))
type = glsl_struct_type(fields, t->length, glsl_get_type_name(t), false);
else
type = glsl_interface_type(fields, t->length,
(enum glsl_interface_packing)t->interface_packing,
t->interface_row_major, glsl_get_type_name(t));
free(fields);
return type;
} else {
unreachable("Invalid type for SSBO");
}
}
static unsigned
explicit_type_scalar_byte_size(const glsl_type *type)
{
if (type->base_type == GLSL_TYPE_BOOL)
return 4;
else
return glsl_base_type_get_bit_size(type->base_type) / 8;
}
/* This differs from get_explicit_std430_type() in that it:
* - can size arrays slightly smaller ("stride * (len - 1) + elem_size" instead
* of "stride * len")
* - consumes a glsl_type_size_align_func which allows 8 and 16-bit values to be
* packed more tightly
* - overrides any struct field offsets but get_explicit_std430_type() tries to
* respect any existing ones
*/
const glsl_type *
glsl_get_explicit_type_for_size_align(const glsl_type *t,
glsl_type_size_align_func type_info,
unsigned *size, unsigned *alignment)
{
if (glsl_type_is_image(t) || glsl_type_is_sampler(t)) {
type_info(t, size, alignment);
assert(*alignment > 0);
return t;
} else if (glsl_type_is_cmat(t)) {
*size = 0;
*alignment = 0;
return t;
} else if (glsl_type_is_scalar(t)) {
type_info(t, size, alignment);
assert(*size == explicit_type_scalar_byte_size(t));
assert(*alignment == explicit_type_scalar_byte_size(t));
return t;
} else if (glsl_type_is_vector(t)) {
type_info(t, size, alignment);
assert(*alignment > 0);
assert(*alignment % explicit_type_scalar_byte_size(t) == 0);
return glsl_simple_explicit_type(t->base_type, t->vector_elements, 1, 0,
false, *alignment);
} else if (glsl_type_is_array(t)) {
unsigned elem_size, elem_align;
const glsl_type *explicit_element =
glsl_get_explicit_type_for_size_align(t->fields.array, type_info,
&elem_size, &elem_align);
unsigned stride = align(elem_size, elem_align);
*size = stride * (t->length - 1) + elem_size;
*alignment = elem_align;
return glsl_array_type(explicit_element, t->length, stride);
} else if (glsl_type_is_struct(t) || glsl_type_is_interface(t)) {
glsl_struct_field *fields = (glsl_struct_field *)
malloc(sizeof(glsl_struct_field) * t->length);
*size = 0;
*alignment = 1;
for (unsigned i = 0; i < t->length; i++) {
fields[i] = t->fields.structure[i];
assert(fields[i].matrix_layout != GLSL_MATRIX_LAYOUT_ROW_MAJOR);
unsigned field_size, field_align;
fields[i].type =
glsl_get_explicit_type_for_size_align(fields[i].type, type_info,
&field_size, &field_align);
field_align = t->packed ? 1 : field_align;
fields[i].offset = align(*size, field_align);
*size = fields[i].offset + field_size;
*alignment = MAX2(*alignment, field_align);
}
/*
* "The alignment of the struct is the alignment of the most-aligned
* field in it."
*
* "Finally, the size of the struct is the current offset rounded up to
* the nearest multiple of the struct's alignment."
*
* https://doc.rust-lang.org/reference/type-layout.html#reprc-structs
*/
*size = align(*size, *alignment);
const glsl_type *type;
if (glsl_type_is_struct(t)) {
type = glsl_struct_type_with_explicit_alignment(fields, t->length,
glsl_get_type_name(t), t->packed,
*alignment);
} else {
assert(!t->packed);
type = glsl_interface_type(fields, t->length,
(enum glsl_interface_packing)t->interface_packing,
t->interface_row_major, glsl_get_type_name(t));
}
free(fields);
return type;
} else if (glsl_type_is_matrix(t)) {
unsigned col_size, col_align;
type_info(glsl_get_column_type(t), &col_size, &col_align);
unsigned stride = align(col_size, col_align);
*size = t->matrix_columns * stride;
/* Matrix and column alignments match. See glsl_type::column_type() */
assert(col_align > 0);
*alignment = col_align;
return glsl_simple_explicit_type(t->base_type, t->vector_elements,
t->matrix_columns, stride, false,
*alignment);
} else {
unreachable("Unhandled type.");
}
}
const glsl_type *
glsl_type_replace_vec3_with_vec4(const glsl_type *t)
{
if (glsl_type_is_scalar(t) || glsl_type_is_vector(t) || glsl_type_is_matrix(t)) {
if (t->interface_row_major) {
if (t->matrix_columns == 3) {
return glsl_simple_explicit_type(t->base_type, t->vector_elements,
4, t->explicit_stride,
t->interface_row_major,
t->explicit_alignment);
} else {
return t;
}
} else {
if (t->vector_elements == 3) {
return glsl_simple_explicit_type(t->base_type, 4,
t->matrix_columns,
t->explicit_stride,
t->interface_row_major,
t->explicit_alignment);
} else {
return t;
}
}
} else if (glsl_type_is_array(t)) {
const glsl_type *vec4_elem_type =
glsl_type_replace_vec3_with_vec4(t->fields.array);
if (vec4_elem_type == t->fields.array)
return t;
return glsl_array_type(vec4_elem_type, t->length, t->explicit_stride);
} else if (glsl_type_is_struct(t) || glsl_type_is_interface(t)) {
glsl_struct_field *fields = (glsl_struct_field *)
malloc(sizeof(glsl_struct_field) * t->length);
bool needs_new_type = false;
for (unsigned i = 0; i < t->length; i++) {
fields[i] = t->fields.structure[i];
assert(fields[i].matrix_layout != GLSL_MATRIX_LAYOUT_ROW_MAJOR);
fields[i].type = glsl_type_replace_vec3_with_vec4(fields[i].type);
if (fields[i].type != t->fields.structure[i].type)
needs_new_type = true;
}
const glsl_type *type;
if (!needs_new_type) {
type = t;
} else if (glsl_type_is_struct(t)) {
type = glsl_struct_type_with_explicit_alignment(fields, t->length,
glsl_get_type_name(t), t->packed,
t->explicit_alignment);
} else {
assert(!t->packed);
type = glsl_interface_type(fields, t->length,
(enum glsl_interface_packing)t->interface_packing,
t->interface_row_major, glsl_get_type_name(t));
}
free(fields);
return type;
} else {
unreachable("Unhandled type.");
}
}
unsigned
glsl_count_vec4_slots(const glsl_type *t, bool is_gl_vertex_input, bool is_bindless)
{
/* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
*
* "A scalar input counts the same amount against this limit as a vec4,
* so applications may want to consider packing groups of four
* unrelated float inputs together into a vector to better utilize the
* capabilities of the underlying hardware. A matrix input will use up
* multiple locations. The number of locations used will equal the
* number of columns in the matrix."
*
* The spec does not explicitly say how arrays are counted. However, it
* should be safe to assume the total number of slots consumed by an array
* is the number of entries in the array multiplied by the number of slots
* consumed by a single element of the array.
*
* The spec says nothing about how structs are counted, because vertex
* attributes are not allowed to be (or contain) structs. However, Mesa
* allows varying structs, the number of varying slots taken up by a
* varying struct is simply equal to the sum of the number of slots taken
* up by each element.
*
* Doubles are counted different depending on whether they are vertex
* inputs or everything else. Vertex inputs from ARB_vertex_attrib_64bit
* take one location no matter what size they are, otherwise dvec3/4
* take two locations.
*/
switch (t->base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_UINT8:
case GLSL_TYPE_INT8:
case GLSL_TYPE_UINT16:
case GLSL_TYPE_INT16:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_FLOAT16:
case GLSL_TYPE_BOOL:
return t->matrix_columns;
case GLSL_TYPE_DOUBLE:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_INT64:
if (t->vector_elements > 2 && !is_gl_vertex_input)
return t->matrix_columns * 2;
else
return t->matrix_columns;
case GLSL_TYPE_STRUCT:
case GLSL_TYPE_INTERFACE: {
unsigned size = 0;
for (unsigned i = 0; i < t->length; i++) {
const glsl_type *member_type = t->fields.structure[i].type;
size += glsl_count_vec4_slots(member_type, is_gl_vertex_input,
is_bindless);
}
return size;
}
case GLSL_TYPE_ARRAY: {
const glsl_type *element = t->fields.array;
return t->length * glsl_count_vec4_slots(element, is_gl_vertex_input,
is_bindless);
}
case GLSL_TYPE_SAMPLER:
case GLSL_TYPE_TEXTURE:
case GLSL_TYPE_IMAGE:
if (!is_bindless)
return 0;
else
return 1;
case GLSL_TYPE_SUBROUTINE:
return 1;
case GLSL_TYPE_COOPERATIVE_MATRIX:
case GLSL_TYPE_ATOMIC_UINT:
case GLSL_TYPE_VOID:
case GLSL_TYPE_ERROR:
break;
}
assert(!"Unexpected type in count_attribute_slots()");
return 0;
}
unsigned
glsl_count_dword_slots(const glsl_type *t, bool is_bindless)
{
switch (t->base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_BOOL:
return glsl_get_components(t);
case GLSL_TYPE_UINT16:
case GLSL_TYPE_INT16:
case GLSL_TYPE_FLOAT16:
return DIV_ROUND_UP(t->vector_elements, 2) * t->matrix_columns;
case GLSL_TYPE_UINT8:
case GLSL_TYPE_INT8:
return DIV_ROUND_UP(glsl_get_components(t), 4);
case GLSL_TYPE_IMAGE:
case GLSL_TYPE_SAMPLER:
case GLSL_TYPE_TEXTURE:
if (!is_bindless)
return 0;
FALLTHROUGH;
case GLSL_TYPE_DOUBLE:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_INT64:
return glsl_get_components(t) * 2;
case GLSL_TYPE_ARRAY:
return glsl_count_dword_slots(t->fields.array, is_bindless) *
t->length;
case GLSL_TYPE_INTERFACE:
case GLSL_TYPE_STRUCT: {
unsigned size = 0;
for (unsigned i = 0; i < t->length; i++) {
size += glsl_count_dword_slots(t->fields.structure[i].type,
is_bindless);
}
return size;
}
case GLSL_TYPE_ATOMIC_UINT:
return 0;
case GLSL_TYPE_SUBROUTINE:
return 1;
case GLSL_TYPE_VOID:
case GLSL_TYPE_ERROR:
default:
unreachable("invalid type in st_glsl_type_dword_size()");
}
return 0;
}
int
glsl_get_sampler_coordinate_components(const glsl_type *t)
{
assert(glsl_type_is_sampler(t) ||
glsl_type_is_texture(t) ||
glsl_type_is_image(t));
enum glsl_sampler_dim dim = (enum glsl_sampler_dim)t->sampler_dimensionality;
int size = glsl_get_sampler_dim_coordinate_components(dim);
/* Array textures need an additional component for the array index, except
* for cubemap array images that behave like a 2D array of interleaved
* cubemap faces.
*/
if (t->sampler_array &&
!(glsl_type_is_image(t) && t->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE))
size += 1;
return size;
}
union packed_type {
uint32_t u32;
struct {
unsigned base_type:5;
unsigned interface_row_major:1;
unsigned vector_elements:3;
unsigned matrix_columns:3;
unsigned explicit_stride:16;
unsigned explicit_alignment:4;
} basic;
struct {
unsigned base_type:5;
unsigned dimensionality:4;
unsigned shadow:1;
unsigned array:1;
unsigned sampled_type:5;
unsigned _pad:16;
} sampler;
struct {
unsigned base_type:5;
unsigned length:13;
unsigned explicit_stride:14;
} array;
struct glsl_cmat_description cmat_desc;
struct {
unsigned base_type:5;
unsigned interface_packing_or_packed:2;
unsigned interface_row_major:1;
unsigned length:20;
unsigned explicit_alignment:4;
} strct;
};
static void
encode_glsl_struct_field(struct blob *blob, const glsl_struct_field *struct_field)
{
encode_type_to_blob(blob, struct_field->type);
blob_write_string(blob, struct_field->name);
blob_write_uint32(blob, struct_field->location);
blob_write_uint32(blob, struct_field->component);
blob_write_uint32(blob, struct_field->offset);
blob_write_uint32(blob, struct_field->xfb_buffer);
blob_write_uint32(blob, struct_field->xfb_stride);
blob_write_uint32(blob, struct_field->image_format);
blob_write_uint32(blob, struct_field->flags);
}
static void
decode_glsl_struct_field_from_blob(struct blob_reader *blob, glsl_struct_field *struct_field)
{
struct_field->type = decode_type_from_blob(blob);
struct_field->name = blob_read_string(blob);
struct_field->location = blob_read_uint32(blob);
struct_field->component = blob_read_uint32(blob);
struct_field->offset = blob_read_uint32(blob);
struct_field->xfb_buffer = blob_read_uint32(blob);
struct_field->xfb_stride = blob_read_uint32(blob);
struct_field->image_format = (enum pipe_format)blob_read_uint32(blob);
struct_field->flags = blob_read_uint32(blob);
}
void
encode_type_to_blob(struct blob *blob, const glsl_type *type)
{
if (!type) {
blob_write_uint32(blob, 0);
return;
}
STATIC_ASSERT(sizeof(union packed_type) == 4);
union packed_type encoded;
encoded.u32 = 0;
encoded.basic.base_type = type->base_type;
switch (type->base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_FLOAT16:
case GLSL_TYPE_DOUBLE:
case GLSL_TYPE_UINT8:
case GLSL_TYPE_INT8:
case GLSL_TYPE_UINT16:
case GLSL_TYPE_INT16:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_INT64:
case GLSL_TYPE_BOOL:
encoded.basic.interface_row_major = type->interface_row_major;
assert(type->matrix_columns < 8);
if (type->vector_elements <= 5)
encoded.basic.vector_elements = type->vector_elements;
else if (type->vector_elements == 8)
encoded.basic.vector_elements = 6;
else if (type->vector_elements == 16)
encoded.basic.vector_elements = 7;
encoded.basic.matrix_columns = type->matrix_columns;
encoded.basic.explicit_stride = MIN2(type->explicit_stride, 0xffff);
encoded.basic.explicit_alignment =
MIN2(ffs(type->explicit_alignment), 0xf);
blob_write_uint32(blob, encoded.u32);
/* If we don't have enough bits for explicit_stride, store it
* separately.
*/
if (encoded.basic.explicit_stride == 0xffff)
blob_write_uint32(blob, type->explicit_stride);
if (encoded.basic.explicit_alignment == 0xf)
blob_write_uint32(blob, type->explicit_alignment);
return;
case GLSL_TYPE_SAMPLER:
case GLSL_TYPE_TEXTURE:
case GLSL_TYPE_IMAGE:
encoded.sampler.dimensionality = type->sampler_dimensionality;
if (type->base_type == GLSL_TYPE_SAMPLER)
encoded.sampler.shadow = type->sampler_shadow;
else
assert(!type->sampler_shadow);
encoded.sampler.array = type->sampler_array;
encoded.sampler.sampled_type = type->sampled_type;
break;
case GLSL_TYPE_SUBROUTINE:
blob_write_uint32(blob, encoded.u32);
blob_write_string(blob, glsl_get_type_name(type));
return;
case GLSL_TYPE_ATOMIC_UINT:
break;
case GLSL_TYPE_ARRAY:
encoded.array.length = MIN2(type->length, 0x1fff);
encoded.array.explicit_stride = MIN2(type->explicit_stride, 0x3fff);
blob_write_uint32(blob, encoded.u32);
/* If we don't have enough bits for length or explicit_stride, store it
* separately.
*/
if (encoded.array.length == 0x1fff)
blob_write_uint32(blob, type->length);
if (encoded.array.explicit_stride == 0x3fff)
blob_write_uint32(blob, type->explicit_stride);
encode_type_to_blob(blob, type->fields.array);
return;
case GLSL_TYPE_COOPERATIVE_MATRIX:
/* The first 5 bits of encoded/decoded are used to identify the
* actual type, but cmat_desc already is 32-bit without that tag, so
* encode just the cmat base type first, then the actual cmat desc.
*/
blob_write_uint32(blob, encoded.u32);
encoded.cmat_desc = type->cmat_desc;
blob_write_uint32(blob, encoded.u32);
return;
case GLSL_TYPE_STRUCT:
case GLSL_TYPE_INTERFACE:
encoded.strct.length = MIN2(type->length, 0xfffff);
encoded.strct.explicit_alignment =
MIN2(ffs(type->explicit_alignment), 0xf);
if (glsl_type_is_interface(type)) {
encoded.strct.interface_packing_or_packed = type->interface_packing;
encoded.strct.interface_row_major = type->interface_row_major;
} else {
encoded.strct.interface_packing_or_packed = type->packed;
}
blob_write_uint32(blob, encoded.u32);
blob_write_string(blob, glsl_get_type_name(type));
/* If we don't have enough bits for length, store it separately. */
if (encoded.strct.length == 0xfffff)
blob_write_uint32(blob, type->length);
if (encoded.strct.explicit_alignment == 0xf)
blob_write_uint32(blob, type->explicit_alignment);
for (unsigned i = 0; i < type->length; i++)
encode_glsl_struct_field(blob, &type->fields.structure[i]);
return;
case GLSL_TYPE_VOID:
break;
case GLSL_TYPE_ERROR:
default:
assert(!"Cannot encode type!");
encoded.u32 = 0;
break;
}
blob_write_uint32(blob, encoded.u32);
}
const glsl_type *
decode_type_from_blob(struct blob_reader *blob)
{
union packed_type encoded;
encoded.u32 = blob_read_uint32(blob);
if (encoded.u32 == 0) {
return NULL;
}
enum glsl_base_type base_type = (enum glsl_base_type)encoded.basic.base_type;
switch (base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_FLOAT16:
case GLSL_TYPE_DOUBLE:
case GLSL_TYPE_UINT8:
case GLSL_TYPE_INT8:
case GLSL_TYPE_UINT16:
case GLSL_TYPE_INT16:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_INT64:
case GLSL_TYPE_BOOL: {
unsigned explicit_stride = encoded.basic.explicit_stride;
if (explicit_stride == 0xffff)
explicit_stride = blob_read_uint32(blob);
unsigned explicit_alignment = encoded.basic.explicit_alignment;
if (explicit_alignment == 0xf)
explicit_alignment = blob_read_uint32(blob);
else if (explicit_alignment > 0)
explicit_alignment = 1 << (explicit_alignment - 1);
uint32_t vector_elements = encoded.basic.vector_elements;
if (vector_elements == 6)
vector_elements = 8;
else if (vector_elements == 7)
vector_elements = 16;
return glsl_simple_explicit_type(base_type, vector_elements,
encoded.basic.matrix_columns,
explicit_stride,
encoded.basic.interface_row_major,
explicit_alignment);
}
case GLSL_TYPE_SAMPLER:
return glsl_sampler_type((enum glsl_sampler_dim)encoded.sampler.dimensionality,
encoded.sampler.shadow,
encoded.sampler.array,
(enum glsl_base_type) encoded.sampler.sampled_type);
case GLSL_TYPE_TEXTURE:
return glsl_texture_type((enum glsl_sampler_dim)encoded.sampler.dimensionality,
encoded.sampler.array,
(enum glsl_base_type) encoded.sampler.sampled_type);
case GLSL_TYPE_SUBROUTINE:
return glsl_subroutine_type(blob_read_string(blob));
case GLSL_TYPE_IMAGE:
return glsl_image_type((enum glsl_sampler_dim)encoded.sampler.dimensionality,
encoded.sampler.array,
(enum glsl_base_type) encoded.sampler.sampled_type);
case GLSL_TYPE_ATOMIC_UINT:
return &glsl_type_builtin_atomic_uint;
case GLSL_TYPE_ARRAY: {
unsigned length = encoded.array.length;
if (length == 0x1fff)
length = blob_read_uint32(blob);
unsigned explicit_stride = encoded.array.explicit_stride;
if (explicit_stride == 0x3fff)
explicit_stride = blob_read_uint32(blob);
return glsl_array_type(decode_type_from_blob(blob), length,
explicit_stride);
}
case GLSL_TYPE_COOPERATIVE_MATRIX: {
encoded.u32 = blob_read_uint32(blob);
return glsl_cmat_type(&encoded.cmat_desc);
}
case GLSL_TYPE_STRUCT:
case GLSL_TYPE_INTERFACE: {
char *name = blob_read_string(blob);
unsigned num_fields = encoded.strct.length;
if (num_fields == 0xfffff)
num_fields = blob_read_uint32(blob);
unsigned explicit_alignment = encoded.strct.explicit_alignment;
if (explicit_alignment == 0xf)
explicit_alignment = blob_read_uint32(blob);
else if (explicit_alignment > 0)
explicit_alignment = 1 << (explicit_alignment - 1);
glsl_struct_field *fields = (glsl_struct_field *)
malloc(sizeof(glsl_struct_field) * num_fields);
for (unsigned i = 0; i < num_fields; i++)
decode_glsl_struct_field_from_blob(blob, &fields[i]);
const glsl_type *t;
if (base_type == GLSL_TYPE_INTERFACE) {
assert(explicit_alignment == 0);
enum glsl_interface_packing packing =
(enum glsl_interface_packing) encoded.strct.interface_packing_or_packed;
bool row_major = encoded.strct.interface_row_major;
t = glsl_interface_type(fields, num_fields, packing, row_major, name);
} else {
unsigned packed = encoded.strct.interface_packing_or_packed;
t = glsl_struct_type_with_explicit_alignment(fields, num_fields,
name, packed,
explicit_alignment);
}
free(fields);
return t;
}
case GLSL_TYPE_VOID:
return &glsl_type_builtin_void;
case GLSL_TYPE_ERROR:
default:
assert(!"Cannot decode type!");
return NULL;
}
}
unsigned
glsl_get_cl_alignment(const glsl_type *t)
{
/* vectors unlike arrays are aligned to their size */
if (glsl_type_is_scalar(t) || glsl_type_is_vector(t))
return glsl_get_cl_size(t);
else if (glsl_type_is_array(t))
return glsl_get_cl_alignment(t->fields.array);
else if (glsl_type_is_struct(t)) {
/* Packed Structs are 0x1 aligned despite their size. */
if (t->packed)
return 1;
unsigned res = 1;
for (unsigned i = 0; i < t->length; ++i) {
const glsl_struct_field *field = &t->fields.structure[i];
res = MAX2(res, glsl_get_cl_alignment(field->type));
}
return res;
}
return 1;
}
unsigned
glsl_get_cl_size(const glsl_type *t)
{
if (glsl_type_is_scalar(t) || glsl_type_is_vector(t)) {
return util_next_power_of_two(t->vector_elements) *
explicit_type_scalar_byte_size(t);
} else if (glsl_type_is_array(t)) {
unsigned size = glsl_get_cl_size(t->fields.array);
return size * t->length;
} else if (glsl_type_is_struct(t)) {
unsigned size = 0;
unsigned max_alignment = 1;
for (unsigned i = 0; i < t->length; ++i) {
const glsl_struct_field *field = &t->fields.structure[i];
/* if a struct is packed, members don't get aligned */
if (!t->packed) {
unsigned alignment = glsl_get_cl_alignment(field->type);
max_alignment = MAX2(max_alignment, alignment);
size = align(size, alignment);
}
size += glsl_get_cl_size(field->type);
}
/* Size of C structs are aligned to the biggest alignment of its fields */
size = align(size, max_alignment);
return size;
}
return 1;
}
extern const char glsl_type_builtin_names[];
const char *
glsl_get_type_name(const glsl_type *type)
{
if (type->has_builtin_name) {
return &glsl_type_builtin_names[type->name_id];
} else {
return (const char *) type->name_id;
}
}
void
glsl_get_cl_type_size_align(const glsl_type *t,
unsigned *size, unsigned *align)
{
*size = glsl_get_cl_size(t);
*align = glsl_get_cl_alignment(t);
}
int
glsl_get_sampler_dim_coordinate_components(enum glsl_sampler_dim dim)
{
switch (dim) {
case GLSL_SAMPLER_DIM_1D:
case GLSL_SAMPLER_DIM_BUF:
return 1;
case GLSL_SAMPLER_DIM_2D:
case GLSL_SAMPLER_DIM_RECT:
case GLSL_SAMPLER_DIM_MS:
case GLSL_SAMPLER_DIM_EXTERNAL:
case GLSL_SAMPLER_DIM_SUBPASS:
case GLSL_SAMPLER_DIM_SUBPASS_MS:
return 2;
case GLSL_SAMPLER_DIM_3D:
case GLSL_SAMPLER_DIM_CUBE:
return 3;
default:
unreachable("Unknown sampler dim");
}
}
bool
glsl_type_is_vector(const glsl_type *t)
{
return t->vector_elements > 1 &&
t->matrix_columns == 1 &&
t->base_type >= GLSL_TYPE_UINT &&
t->base_type <= GLSL_TYPE_BOOL;
}
bool
glsl_type_is_scalar(const glsl_type *t)
{
return t->vector_elements == 1 &&
t->base_type >= GLSL_TYPE_UINT &&
t->base_type <= GLSL_TYPE_IMAGE;
}
bool
glsl_type_is_vector_or_scalar(const glsl_type *t)
{
return glsl_type_is_vector(t) || glsl_type_is_scalar(t);
}
bool
glsl_type_is_matrix(const glsl_type *t)
{
/* GLSL only has float matrices. */
return t->matrix_columns > 1 && (t->base_type == GLSL_TYPE_FLOAT ||
t->base_type == GLSL_TYPE_DOUBLE ||
t->base_type == GLSL_TYPE_FLOAT16);
}
bool
glsl_type_is_array_or_matrix(const glsl_type *t)
{
return glsl_type_is_array(t) || glsl_type_is_matrix(t);
}
bool
glsl_type_is_dual_slot(const glsl_type *t)
{
return glsl_type_is_64bit(t) && t->vector_elements > 2;
}
const glsl_type *
glsl_get_array_element(const glsl_type *t)
{
if (glsl_type_is_matrix(t))
return glsl_get_column_type(t);
else if (glsl_type_is_vector(t))
return glsl_get_scalar_type(t);
return t->fields.array;
}
bool
glsl_type_is_leaf(const glsl_type *t)
{
if (glsl_type_is_struct_or_ifc(t) ||
(glsl_type_is_array(t) &&
(glsl_type_is_array(glsl_get_array_element(t)) ||
glsl_type_is_struct_or_ifc(glsl_get_array_element(t))))) {
return false;
} else {
return true;
}
}
bool
glsl_contains_atomic(const glsl_type *t)
{
return glsl_atomic_size(t) > 0;
}
const glsl_type *
glsl_without_array(const glsl_type *t)
{
while (glsl_type_is_array(t))
t = t->fields.array;
return t;
}
const glsl_type *
glsl_without_array_or_matrix(const glsl_type *t)
{
t = glsl_without_array(t);
if (glsl_type_is_matrix(t))
t = glsl_get_column_type(t);
return t;
}
const glsl_type *
glsl_type_wrap_in_arrays(const glsl_type *t,
const glsl_type *arrays)
{
if (!glsl_type_is_array(arrays))
return t;
const glsl_type *elem_type =
glsl_type_wrap_in_arrays(t, glsl_get_array_element(arrays));
return glsl_array_type(elem_type, glsl_get_length(arrays),
glsl_get_explicit_stride(arrays));
}
const glsl_type *
glsl_get_cmat_element(const glsl_type *t)
{
assert(t->base_type == GLSL_TYPE_COOPERATIVE_MATRIX);
return glsl_simple_type(t->cmat_desc.element_type, 1, 1);
}
const struct glsl_cmat_description *
glsl_get_cmat_description(const glsl_type *t)
{
assert(t->base_type == GLSL_TYPE_COOPERATIVE_MATRIX);
return &t->cmat_desc;
}
unsigned
glsl_get_length(const glsl_type *t)
{
if (glsl_type_is_matrix(t))
return t->matrix_columns;
else if (glsl_type_is_vector(t))
return t->vector_elements;
return t->length;
}
unsigned
glsl_get_aoa_size(const glsl_type *t)
{
if (!glsl_type_is_array(t))
return 0;
unsigned size = t->length;
const glsl_type *array_base_type = t->fields.array;
while (glsl_type_is_array(array_base_type)) {
size = size * array_base_type->length;
array_base_type = array_base_type->fields.array;
}
return size;
}
const glsl_type *
glsl_get_struct_field(const glsl_type *t, unsigned index)
{
assert(glsl_type_is_struct(t) || glsl_type_is_interface(t));
assert(index < t->length);
return t->fields.structure[index].type;
}
const glsl_struct_field *
glsl_get_struct_field_data(const glsl_type *t, unsigned index)
{
assert(glsl_type_is_struct(t) || glsl_type_is_interface(t));
assert(index < t->length);
return &t->fields.structure[index];
}
enum glsl_interface_packing
glsl_get_internal_ifc_packing(const glsl_type *t,
bool std430_supported)
{
enum glsl_interface_packing packing = glsl_get_ifc_packing(t);
if (packing == GLSL_INTERFACE_PACKING_STD140 ||
(!std430_supported &&
(packing == GLSL_INTERFACE_PACKING_SHARED ||
packing == GLSL_INTERFACE_PACKING_PACKED))) {
return GLSL_INTERFACE_PACKING_STD140;
} else {
assert(packing == GLSL_INTERFACE_PACKING_STD430 ||
(std430_supported &&
(packing == GLSL_INTERFACE_PACKING_SHARED ||
packing == GLSL_INTERFACE_PACKING_PACKED)));
return GLSL_INTERFACE_PACKING_STD430;
}
}
const glsl_type *
glsl_get_row_type(const glsl_type *t)
{
if (!glsl_type_is_matrix(t))
return &glsl_type_builtin_error;
if (t->explicit_stride && !t->interface_row_major)
return glsl_simple_explicit_type(t->base_type, t->matrix_columns, 1,
t->explicit_stride, false, 0);
else
return glsl_simple_type(t->base_type, t->matrix_columns, 1);
}
const glsl_type *
glsl_get_column_type(const glsl_type *t)
{
if (!glsl_type_is_matrix(t))
return &glsl_type_builtin_error;
if (t->interface_row_major) {
/* If we're row-major, the vector element stride is the same as the
* matrix stride and we have no alignment (i.e. component-aligned).
*/
return glsl_simple_explicit_type(t->base_type, t->vector_elements, 1,
t->explicit_stride, false, 0);
} else {
/* Otherwise, the vector is tightly packed (stride=0). For
* alignment, we treat a matrix as an array of columns make the same
* assumption that the alignment of the column is the same as the
* alignment of the whole matrix.
*/
return glsl_simple_explicit_type(t->base_type, t->vector_elements, 1, 0,
false, t->explicit_alignment);
}
}
unsigned
glsl_atomic_size(const glsl_type *t)
{
if (glsl_type_is_atomic_uint(t))
return 4; /* ATOMIC_COUNTER_SIZE */
else if (glsl_type_is_array(t))
return t->length * glsl_atomic_size(t->fields.array);
else
return 0;
}
const glsl_type *
glsl_type_to_16bit(const glsl_type *old_type)
{
if (glsl_type_is_array(old_type)) {
return glsl_array_type(glsl_type_to_16bit(glsl_get_array_element(old_type)),
glsl_get_length(old_type),
glsl_get_explicit_stride(old_type));
}
if (glsl_type_is_vector_or_scalar(old_type)) {
switch (glsl_get_base_type(old_type)) {
case GLSL_TYPE_FLOAT:
return glsl_float16_type(old_type);
case GLSL_TYPE_UINT:
return glsl_uint16_type(old_type);
case GLSL_TYPE_INT:
return glsl_int16_type(old_type);
default:
break;
}
}
return old_type;
}
const glsl_type *
glsl_replace_vector_type(const glsl_type *t, unsigned components)
{
if (glsl_type_is_array(t)) {
return glsl_array_type(
glsl_replace_vector_type(t->fields.array, components), t->length,
t->explicit_stride);
} else if (glsl_type_is_vector_or_scalar(t)) {
return glsl_vector_type(t->base_type, components);
} else {
unreachable("Unhandled base type glsl_replace_vector_type()");
}
}
const glsl_type *
glsl_channel_type(const glsl_type *t)
{
switch (t->base_type) {
case GLSL_TYPE_ARRAY:
return glsl_array_type(glsl_channel_type(t->fields.array), t->length,
t->explicit_stride);
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_FLOAT16:
case GLSL_TYPE_DOUBLE:
case GLSL_TYPE_UINT8:
case GLSL_TYPE_INT8:
case GLSL_TYPE_UINT16:
case GLSL_TYPE_INT16:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_INT64:
case GLSL_TYPE_BOOL:
return glsl_simple_type(t->base_type, 1, 1);
default:
unreachable("Unhandled base type glsl_channel_type()");
}
}
static void
glsl_size_align_handle_array_and_structs(const glsl_type *type,
glsl_type_size_align_func size_align,
unsigned *size, unsigned *align)
{
if (type->base_type == GLSL_TYPE_ARRAY) {
unsigned elem_size = 0, elem_align = 0;
size_align(type->fields.array, &elem_size, &elem_align);
*align = elem_align;
*size = type->length * ALIGN_POT(elem_size, elem_align);
} else {
assert(type->base_type == GLSL_TYPE_STRUCT ||
type->base_type == GLSL_TYPE_INTERFACE);
*size = 0;
*align = 0;
for (unsigned i = 0; i < type->length; i++) {
unsigned elem_size = 0, elem_align = 0;
size_align(type->fields.structure[i].type, &elem_size, &elem_align);
*align = MAX2(*align, elem_align);
*size = ALIGN_POT(*size, elem_align) + elem_size;
}
}
}
void
glsl_get_natural_size_align_bytes(const glsl_type *type,
unsigned *size, unsigned *align)
{
switch (type->base_type) {
case GLSL_TYPE_BOOL:
/* We special-case Booleans to 32 bits to not cause heartburn for
* drivers that suddenly get an 8-bit load.
*/
*size = 4 * glsl_get_components(type);
*align = 4;
break;
case GLSL_TYPE_UINT8:
case GLSL_TYPE_INT8:
case GLSL_TYPE_UINT16:
case GLSL_TYPE_INT16:
case GLSL_TYPE_FLOAT16:
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_DOUBLE:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_INT64: {
unsigned N = glsl_get_bit_size(type) / 8;
*size = N * glsl_get_components(type);
*align = N;
break;
}
case GLSL_TYPE_ARRAY:
case GLSL_TYPE_INTERFACE:
case GLSL_TYPE_STRUCT:
glsl_size_align_handle_array_and_structs(type,
glsl_get_natural_size_align_bytes,
size, align);
break;
case GLSL_TYPE_SAMPLER:
case GLSL_TYPE_TEXTURE:
case GLSL_TYPE_IMAGE:
/* Bindless samplers and images. */
*size = 8;
*align = 8;
break;
case GLSL_TYPE_COOPERATIVE_MATRIX:
case GLSL_TYPE_ATOMIC_UINT:
case GLSL_TYPE_SUBROUTINE:
case GLSL_TYPE_VOID:
case GLSL_TYPE_ERROR:
unreachable("type does not have a natural size");
}
}
/**
* Returns a byte size/alignment for a type where each array element or struct
* field is aligned to 16 bytes.
*/
void
glsl_get_vec4_size_align_bytes(const glsl_type *type,
unsigned *size, unsigned *align)
{
switch (type->base_type) {
case GLSL_TYPE_BOOL:
/* We special-case Booleans to 32 bits to not cause heartburn for
* drivers that suddenly get an 8-bit load.
*/
*size = 4 * glsl_get_components(type);
*align = 16;
break;
case GLSL_TYPE_UINT8:
case GLSL_TYPE_INT8:
case GLSL_TYPE_UINT16:
case GLSL_TYPE_INT16:
case GLSL_TYPE_FLOAT16:
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_DOUBLE:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_INT64: {
unsigned N = glsl_get_bit_size(type) / 8;
*size = 16 * (type->matrix_columns - 1) + N * type->vector_elements;
*align = 16;
break;
}
case GLSL_TYPE_ARRAY:
case GLSL_TYPE_INTERFACE:
case GLSL_TYPE_STRUCT:
glsl_size_align_handle_array_and_structs(type,
glsl_get_vec4_size_align_bytes,
size, align);
break;
case GLSL_TYPE_SAMPLER:
case GLSL_TYPE_TEXTURE:
case GLSL_TYPE_IMAGE:
case GLSL_TYPE_COOPERATIVE_MATRIX:
case GLSL_TYPE_ATOMIC_UINT:
case GLSL_TYPE_SUBROUTINE:
case GLSL_TYPE_VOID:
case GLSL_TYPE_ERROR:
unreachable("type does not make sense for glsl_get_vec4_size_align_bytes()");
}
}
static unsigned
glsl_type_count(const glsl_type *type, enum glsl_base_type base_type)
{
if (glsl_type_is_array(type)) {
return glsl_get_length(type) *
glsl_type_count(glsl_get_array_element(type), base_type);
}
/* Ignore interface blocks - they can only contain bindless samplers,
* which we shouldn't count.
*/
if (glsl_type_is_struct(type)) {
unsigned count = 0;
for (unsigned i = 0; i < glsl_get_length(type); i++)
count += glsl_type_count(glsl_get_struct_field(type, i), base_type);
return count;
}
if (glsl_get_base_type(type) == base_type)
return 1;
return 0;
}
unsigned
glsl_type_get_sampler_count(const glsl_type *type)
{
return glsl_type_count(type, GLSL_TYPE_SAMPLER);
}
unsigned
glsl_type_get_texture_count(const glsl_type *type)
{
return glsl_type_count(type, GLSL_TYPE_TEXTURE);
}
unsigned
glsl_type_get_image_count(const glsl_type *type)
{
return glsl_type_count(type, GLSL_TYPE_IMAGE);
}