dxvk/src/dxvk/dxvk_image.cpp

345 lines
14 KiB
C++

#include "dxvk_image.h"
#include "dxvk_device.h"
namespace dxvk {
DxvkImage::DxvkImage(
DxvkDevice* device,
const DxvkImageCreateInfo& createInfo,
DxvkMemoryAllocator& memAlloc,
VkMemoryPropertyFlags memFlags)
: m_vkd(device->vkd()), m_device(device), m_info(createInfo), m_memFlags(memFlags) {
// Copy the compatible view formats to a persistent array
m_viewFormats.resize(createInfo.viewFormatCount);
for (uint32_t i = 0; i < createInfo.viewFormatCount; i++)
m_viewFormats[i] = createInfo.viewFormats[i];
m_info.viewFormats = m_viewFormats.data();
// If defined, we should provide a format list, which
// allows some drivers to enable image compression
VkImageFormatListCreateInfo formatList = { VK_STRUCTURE_TYPE_IMAGE_FORMAT_LIST_CREATE_INFO };
formatList.viewFormatCount = createInfo.viewFormatCount;
formatList.pViewFormats = createInfo.viewFormats;
VkExternalMemoryImageCreateInfo externalInfo = { VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO };
externalInfo.handleTypes = createInfo.sharing.type;
VkImageCreateInfo info = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, &formatList };
info.flags = createInfo.flags;
info.imageType = createInfo.type;
info.format = createInfo.format;
info.extent = createInfo.extent;
info.mipLevels = createInfo.mipLevels;
info.arrayLayers = createInfo.numLayers;
info.samples = createInfo.sampleCount;
info.tiling = createInfo.tiling;
info.usage = createInfo.usage;
info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
info.initialLayout = createInfo.initialLayout;
if ((m_shared = canShareImage(info, createInfo.sharing)))
externalInfo.pNext = std::exchange(info.pNext, &externalInfo);
if (m_vkd->vkCreateImage(m_vkd->device(), &info, nullptr, &m_image.image)) {
throw DxvkError(str::format(
"DxvkImage: Failed to create image:",
"\n Type: ", info.imageType,
"\n Format: ", info.format,
"\n Flags: ", info.flags,
"\n Extent: ", "(", info.extent.width,
",", info.extent.height,
",", info.extent.depth, ")",
"\n Mip levels: ", info.mipLevels,
"\n Array layers: ", info.arrayLayers,
"\n Samples: ", info.samples,
"\n Usage: ", info.usage,
"\n Tiling: ", info.tiling));
}
VkImageMemoryRequirementsInfo2 memoryRequirementInfo = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2 };
memoryRequirementInfo.image = m_image.image;
if (!(info.flags & VK_IMAGE_CREATE_SPARSE_BINDING_BIT)) {
// Get memory requirements for the image and ask driver
// whether we need to use a dedicated allocation.
DxvkMemoryRequirements memoryRequirements = { };
memoryRequirements.dedicated = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS };
memoryRequirements.core = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2, &memoryRequirements.dedicated };
m_vkd->vkGetImageMemoryRequirements2(m_vkd->device(),
&memoryRequirementInfo, &memoryRequirements.core);
// Fill in desired memory properties
DxvkMemoryProperties memoryProperties = { };
memoryProperties.flags = m_memFlags;
if (m_shared) {
memoryRequirements.dedicated.prefersDedicatedAllocation = VK_TRUE;
memoryRequirements.dedicated.requiresDedicatedAllocation = VK_TRUE;
if (createInfo.sharing.mode == DxvkSharedHandleMode::Export) {
memoryProperties.sharedExport = { VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO };
memoryProperties.sharedExport.handleTypes = createInfo.sharing.type;
}
if (createInfo.sharing.mode == DxvkSharedHandleMode::Import) {
memoryProperties.sharedImportWin32 = { VK_STRUCTURE_TYPE_IMPORT_MEMORY_WIN32_HANDLE_INFO_KHR };
memoryProperties.sharedImportWin32.handleType = createInfo.sharing.type;
memoryProperties.sharedImportWin32.handle = createInfo.sharing.handle;
}
}
if (memoryRequirements.dedicated.prefersDedicatedAllocation) {
memoryProperties.dedicated = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO };
memoryProperties.dedicated.image = m_image.image;
}
// If there's a chance we won't create the image with a dedicated
// allocation, enforce strict alignment for tiled images to not
// violate the bufferImageGranularity requirement on some GPUs.
if (info.tiling != VK_IMAGE_TILING_LINEAR && !memoryRequirements.dedicated.requiresDedicatedAllocation) {
VkDeviceSize granularity = memAlloc.bufferImageGranularity();
auto& core = memoryRequirements.core.memoryRequirements;
core.size = align(core.size, granularity);
core.alignment = align(core.alignment, granularity);
}
// Use high memory priority for GPU-writable resources
bool isGpuWritable = (m_info.access & (
VK_ACCESS_SHADER_WRITE_BIT |
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT)) != 0;
DxvkMemoryFlags hints(DxvkMemoryFlag::GpuReadable);
if (isGpuWritable)
hints.set(DxvkMemoryFlag::GpuWritable);
m_image.memory = memAlloc.alloc(memoryRequirements, memoryProperties, hints);
// Try to bind the allocated memory slice to the image
if (m_vkd->vkBindImageMemory(m_vkd->device(), m_image.image,
m_image.memory.memory(), m_image.memory.offset()) != VK_SUCCESS)
throw DxvkError("DxvkImage::DxvkImage: Failed to bind device memory");
} else {
// Initialize sparse info. We do not immediately bind the metadata
// aspects of the image here, the caller needs to explicitly do that.
m_sparsePageTable = DxvkSparsePageTable(device, this);
// Allocate memory for sparse metadata if necessary
auto properties = m_sparsePageTable.getProperties();
if (properties.metadataPageCount) {
DxvkMemoryRequirements memoryRequirements = { };
memoryRequirements.core = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2 };
m_vkd->vkGetImageMemoryRequirements2(m_vkd->device(),
&memoryRequirementInfo, &memoryRequirements.core);
DxvkMemoryProperties memoryProperties = { };
memoryProperties.flags = m_memFlags;
// Set size and alignment to match the metadata requirements
auto& core = memoryRequirements.core.memoryRequirements;
core.size = SparseMemoryPageSize * properties.metadataPageCount;
core.alignment = SparseMemoryPageSize;
m_image.memory = memAlloc.alloc(memoryRequirements,
memoryProperties, DxvkMemoryFlag::GpuReadable);
}
}
}
DxvkImage::DxvkImage(
DxvkDevice* device,
const DxvkImageCreateInfo& info,
VkImage image)
: m_vkd(device->vkd()), m_device(device), m_info(info), m_image({ image }) {
m_viewFormats.resize(info.viewFormatCount);
for (uint32_t i = 0; i < info.viewFormatCount; i++)
m_viewFormats[i] = info.viewFormats[i];
m_info.viewFormats = m_viewFormats.data();
}
DxvkImage::~DxvkImage() {
// This is a bit of a hack to determine whether
// the image is implementation-handled or not
if ((m_image.memory.memory())
|| (m_info.flags & VK_IMAGE_CREATE_SPARSE_BINDING_BIT))
m_vkd->vkDestroyImage(m_vkd->device(), m_image.image, nullptr);
}
bool DxvkImage::canShareImage(const VkImageCreateInfo& createInfo, const DxvkSharedHandleInfo& sharingInfo) const {
if (sharingInfo.mode == DxvkSharedHandleMode::None)
return false;
if (!m_device->features().khrExternalMemoryWin32) {
Logger::err("Failed to create shared resource: VK_KHR_EXTERNAL_MEMORY_WIN32 not supported");
return false;
}
if (createInfo.flags & VK_IMAGE_CREATE_SPARSE_BINDING_BIT) {
Logger::err("Failed to create shared resource: Sharing sparse resources not supported");
return false;
}
DxvkFormatQuery formatQuery = { };
formatQuery.format = createInfo.format;
formatQuery.type = createInfo.imageType;
formatQuery.tiling = createInfo.tiling;
formatQuery.usage = createInfo.usage;
formatQuery.flags = createInfo.flags;
formatQuery.handleType = sharingInfo.type;
auto limits = m_device->getFormatLimits(formatQuery);
if (!limits)
return false;
VkExternalMemoryFeatureFlagBits requiredFeature = sharingInfo.mode == DxvkSharedHandleMode::Export
? VK_EXTERNAL_MEMORY_FEATURE_EXPORTABLE_BIT
: VK_EXTERNAL_MEMORY_FEATURE_IMPORTABLE_BIT;
if (!(limits->externalFeatures & requiredFeature)) {
Logger::err("Failed to create shared resource: Image cannot be shared");
return false;
}
return true;
}
HANDLE DxvkImage::sharedHandle() const {
HANDLE handle = INVALID_HANDLE_VALUE;
if (!m_shared)
return INVALID_HANDLE_VALUE;
#ifdef _WIN32
VkMemoryGetWin32HandleInfoKHR handleInfo = { VK_STRUCTURE_TYPE_MEMORY_GET_WIN32_HANDLE_INFO_KHR };
handleInfo.handleType = m_info.sharing.type;
handleInfo.memory = m_image.memory.memory();
if (m_vkd->vkGetMemoryWin32HandleKHR(m_vkd->device(), &handleInfo, &handle) != VK_SUCCESS)
Logger::warn("DxvkImage::DxvkImage: Failed to get shared handle for image");
#endif
return handle;
}
DxvkImageView::DxvkImageView(
const Rc<vk::DeviceFn>& vkd,
const Rc<DxvkImage>& image,
const DxvkImageViewCreateInfo& info)
: m_vkd(vkd), m_image(image), m_info(info) {
for (uint32_t i = 0; i < ViewCount; i++)
m_views[i] = VK_NULL_HANDLE;
switch (m_info.type) {
case VK_IMAGE_VIEW_TYPE_1D:
case VK_IMAGE_VIEW_TYPE_1D_ARRAY: {
this->createView(VK_IMAGE_VIEW_TYPE_1D, 1);
this->createView(VK_IMAGE_VIEW_TYPE_1D_ARRAY, m_info.numLayers);
} break;
case VK_IMAGE_VIEW_TYPE_2D:
case VK_IMAGE_VIEW_TYPE_2D_ARRAY:
this->createView(VK_IMAGE_VIEW_TYPE_2D, 1);
[[fallthrough]];
case VK_IMAGE_VIEW_TYPE_CUBE:
case VK_IMAGE_VIEW_TYPE_CUBE_ARRAY: {
this->createView(VK_IMAGE_VIEW_TYPE_2D_ARRAY, m_info.numLayers);
if (m_image->info().flags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT) {
uint32_t cubeCount = m_info.numLayers / 6;
if (cubeCount > 0) {
this->createView(VK_IMAGE_VIEW_TYPE_CUBE, 6);
this->createView(VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, 6 * cubeCount);
}
}
} break;
case VK_IMAGE_VIEW_TYPE_3D: {
this->createView(VK_IMAGE_VIEW_TYPE_3D, 1);
if (m_image->info().flags & VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT && m_info.numLevels == 1) {
this->createView(VK_IMAGE_VIEW_TYPE_2D, 1);
this->createView(VK_IMAGE_VIEW_TYPE_2D_ARRAY, m_image->mipLevelExtent(m_info.minLevel).depth);
}
} break;
default:
throw DxvkError(str::format("DxvkImageView: Invalid view type: ", m_info.type));
}
}
DxvkImageView::~DxvkImageView() {
for (uint32_t i = 0; i < ViewCount; i++)
m_vkd->vkDestroyImageView(m_vkd->device(), m_views[i], nullptr);
}
void DxvkImageView::createView(VkImageViewType type, uint32_t numLayers) {
VkImageSubresourceRange subresourceRange;
subresourceRange.aspectMask = m_info.aspect;
subresourceRange.baseMipLevel = m_info.minLevel;
subresourceRange.levelCount = m_info.numLevels;
subresourceRange.baseArrayLayer = m_info.minLayer;
subresourceRange.layerCount = numLayers;
VkImageViewUsageCreateInfo viewUsage = { VK_STRUCTURE_TYPE_IMAGE_VIEW_USAGE_CREATE_INFO };
viewUsage.usage = m_info.usage;
VkImageViewCreateInfo viewInfo = { VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, &viewUsage };
viewInfo.image = m_image->handle();
viewInfo.viewType = type;
viewInfo.format = m_info.format;
viewInfo.components = m_info.swizzle;
viewInfo.subresourceRange = subresourceRange;
if (m_info.usage == VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) {
viewInfo.components = {
VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY,
VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY };
}
if (m_vkd->vkCreateImageView(m_vkd->device(),
&viewInfo, nullptr, &m_views[type]) != VK_SUCCESS) {
throw DxvkError(str::format(
"DxvkImageView: Failed to create image view:"
"\n View type: ", viewInfo.viewType,
"\n View format: ", viewInfo.format,
"\n Subresources: ",
"\n Aspect mask: ", std::hex, viewInfo.subresourceRange.aspectMask,
"\n Mip levels: ", viewInfo.subresourceRange.baseMipLevel, " - ",
viewInfo.subresourceRange.levelCount,
"\n Array layers: ", viewInfo.subresourceRange.baseArrayLayer, " - ",
viewInfo.subresourceRange.layerCount,
"\n Image properties:",
"\n Type: ", m_image->info().type,
"\n Format: ", m_image->info().format,
"\n Extent: ", "(", m_image->info().extent.width,
",", m_image->info().extent.height,
",", m_image->info().extent.depth, ")",
"\n Mip levels: ", m_image->info().mipLevels,
"\n Array layers: ", m_image->info().numLayers,
"\n Samples: ", m_image->info().sampleCount,
"\n Usage: ", std::hex, m_image->info().usage,
"\n Tiling: ", m_image->info().tiling));
}
}
}