dxvk/src/d3d11/d3d11_context.cpp

3363 lines
115 KiB
C++

#include <cstring>
#include "d3d11_context.h"
#include "d3d11_device.h"
#include "d3d11_query.h"
#include "d3d11_texture.h"
#include "../dxbc/dxbc_util.h"
namespace dxvk {
D3D11DeviceContext::D3D11DeviceContext(
D3D11Device* pParent,
const Rc<DxvkDevice>& Device)
: m_parent (pParent),
m_annotation(this),
m_device (Device),
m_csChunk (AllocCsChunk()) {
// Create default state objects. We won't ever return them
// to the application, but we'll use them to apply state.
Com<ID3D11BlendState> defaultBlendState;
Com<ID3D11DepthStencilState> defaultDepthStencilState;
Com<ID3D11RasterizerState> defaultRasterizerState;
if (FAILED(m_parent->CreateBlendState (nullptr, &defaultBlendState))
|| FAILED(m_parent->CreateDepthStencilState(nullptr, &defaultDepthStencilState))
|| FAILED(m_parent->CreateRasterizerState (nullptr, &defaultRasterizerState)))
throw DxvkError("D3D11DeviceContext: Failed to create default state objects");
// Apply default state to the context. This is required
// in order to initialize the DXVK contex properly.
m_defaultBlendState = static_cast<D3D11BlendState*> (defaultBlendState.ptr());
m_defaultDepthStencilState = static_cast<D3D11DepthStencilState*>(defaultDepthStencilState.ptr());
m_defaultRasterizerState = static_cast<D3D11RasterizerState*> (defaultRasterizerState.ptr());
}
D3D11DeviceContext::~D3D11DeviceContext() {
}
HRESULT STDMETHODCALLTYPE D3D11DeviceContext::QueryInterface(REFIID riid, void** ppvObject) {
*ppvObject = nullptr;
if (riid == __uuidof(IUnknown)
|| riid == __uuidof(ID3D11DeviceChild)
|| riid == __uuidof(ID3D11DeviceContext)
|| riid == __uuidof(ID3D11DeviceContext1)) {
*ppvObject = ref(this);
return S_OK;
}
if (riid == __uuidof(ID3DUserDefinedAnnotation)) {
*ppvObject = ref(&m_annotation);
return S_OK;
}
Logger::warn("D3D11DeviceContext::QueryInterface: Unknown interface query");
Logger::warn(str::format(riid));
return E_NOINTERFACE;
}
void STDMETHODCALLTYPE D3D11DeviceContext::DiscardResource(ID3D11Resource* pResource) {
if (!pResource)
return;
// We don't support the Discard API for images
D3D11_RESOURCE_DIMENSION resType = D3D11_RESOURCE_DIMENSION_UNKNOWN;
pResource->GetType(&resType);
if (resType == D3D11_RESOURCE_DIMENSION_BUFFER)
DiscardBuffer(static_cast<D3D11Buffer*>(pResource));
else if (resType != D3D11_RESOURCE_DIMENSION_UNKNOWN)
DiscardTexture(GetCommonTexture(pResource));
}
void STDMETHODCALLTYPE D3D11DeviceContext::DiscardView(ID3D11View* pResourceView) {
// ID3D11View has no methods to query the exact type of
// the view, so we'll have to check each possible class
auto dsv = dynamic_cast<D3D11DepthStencilView*>(pResourceView);
auto rtv = dynamic_cast<D3D11RenderTargetView*>(pResourceView);
auto uav = dynamic_cast<D3D11UnorderedAccessView*>(pResourceView);
Rc<DxvkImageView> view;
if (dsv) view = dsv->GetImageView();
if (rtv) view = rtv->GetImageView();
if (uav) view = uav->GetImageView();
if (view != nullptr) {
EmitCs([cView = std::move(view)]
(DxvkContext* ctx) {
ctx->discardImage(
cView->image(),
cView->subresources());
});
}
}
void STDMETHODCALLTYPE D3D11DeviceContext::DiscardView1(
ID3D11View* pResourceView,
const D3D11_RECT* pRects,
UINT NumRects) {
static bool s_errorShown = false;
if (!std::exchange(s_errorShown, true))
Logger::err("D3D11DeviceContext::DiscardView1: Not implemented");
}
void STDMETHODCALLTYPE D3D11DeviceContext::SwapDeviceContextState(
ID3DDeviceContextState* pState,
ID3DDeviceContextState** ppPreviousState) {
Logger::err("D3D11DeviceContext::SwapDeviceContextState: Not implemented");
}
void STDMETHODCALLTYPE D3D11DeviceContext::GetDevice(ID3D11Device **ppDevice) {
*ppDevice = ref(m_parent);
}
void STDMETHODCALLTYPE D3D11DeviceContext::ClearState() {
// Default shaders
m_state.vs.shader = nullptr;
m_state.hs.shader = nullptr;
m_state.ds.shader = nullptr;
m_state.gs.shader = nullptr;
m_state.ps.shader = nullptr;
m_state.cs.shader = nullptr;
// Default constant buffers
for (uint32_t i = 0; i < D3D11_COMMONSHADER_CONSTANT_BUFFER_API_SLOT_COUNT; i++) {
m_state.vs.constantBuffers[i] = { nullptr, 0, 0 };
m_state.hs.constantBuffers[i] = { nullptr, 0, 0 };
m_state.ds.constantBuffers[i] = { nullptr, 0, 0 };
m_state.gs.constantBuffers[i] = { nullptr, 0, 0 };
m_state.ps.constantBuffers[i] = { nullptr, 0, 0 };
m_state.cs.constantBuffers[i] = { nullptr, 0, 0 };
}
// Default samplers
for (uint32_t i = 0; i < D3D11_COMMONSHADER_SAMPLER_SLOT_COUNT; i++) {
m_state.vs.samplers[i] = nullptr;
m_state.hs.samplers[i] = nullptr;
m_state.ds.samplers[i] = nullptr;
m_state.gs.samplers[i] = nullptr;
m_state.ps.samplers[i] = nullptr;
m_state.cs.samplers[i] = nullptr;
}
// Default shader resources
for (uint32_t i = 0; i < D3D11_COMMONSHADER_INPUT_RESOURCE_SLOT_COUNT; i++) {
m_state.vs.shaderResources[i] = nullptr;
m_state.hs.shaderResources[i] = nullptr;
m_state.ds.shaderResources[i] = nullptr;
m_state.gs.shaderResources[i] = nullptr;
m_state.ps.shaderResources[i] = nullptr;
m_state.cs.shaderResources[i] = nullptr;
}
// Default UAVs
for (uint32_t i = 0; i < D3D11_1_UAV_SLOT_COUNT; i++) {
m_state.ps.unorderedAccessViews[i] = nullptr;
m_state.cs.unorderedAccessViews[i] = nullptr;
}
// Default ID state
m_state.id.argBuffer = nullptr;
// Default IA state
m_state.ia.inputLayout = nullptr;
m_state.ia.primitiveTopology = D3D11_PRIMITIVE_TOPOLOGY_UNDEFINED;
for (uint32_t i = 0; i < D3D11_IA_VERTEX_INPUT_RESOURCE_SLOT_COUNT; i++) {
m_state.ia.vertexBuffers[i].buffer = nullptr;
m_state.ia.vertexBuffers[i].offset = 0;
m_state.ia.vertexBuffers[i].stride = 0;
}
m_state.ia.indexBuffer.buffer = nullptr;
m_state.ia.indexBuffer.offset = 0;
m_state.ia.indexBuffer.format = DXGI_FORMAT_UNKNOWN;
// Default OM State
for (uint32_t i = 0; i < D3D11_SIMULTANEOUS_RENDER_TARGET_COUNT; i++)
m_state.om.renderTargetViews[i] = nullptr;
m_state.om.depthStencilView = nullptr;
m_state.om.cbState = nullptr;
m_state.om.dsState = nullptr;
for (uint32_t i = 0; i < 4; i++)
m_state.om.blendFactor[i] = 0.0f;
m_state.om.sampleMask = D3D11_DEFAULT_SAMPLE_MASK;
m_state.om.stencilRef = D3D11_DEFAULT_STENCIL_REFERENCE;
// Default RS state
m_state.rs.state = nullptr;
m_state.rs.numViewports = 0;
m_state.rs.numScissors = 0;
for (uint32_t i = 0; i < D3D11_VIEWPORT_AND_SCISSORRECT_OBJECT_COUNT_PER_PIPELINE; i++) {
m_state.rs.viewports[i] = D3D11_VIEWPORT { };
m_state.rs.scissors [i] = D3D11_RECT { };
}
// Default SO state
for (uint32_t i = 0; i < D3D11_SO_BUFFER_SLOT_COUNT; i++) {
m_state.so.targets[i].buffer = nullptr;
m_state.so.targets[i].offset = 0;
}
// Default predication
m_state.pr.predicateObject = nullptr;
m_state.pr.predicateValue = FALSE;
// Make sure to apply all state
RestoreState();
}
void STDMETHODCALLTYPE D3D11DeviceContext::Begin(ID3D11Asynchronous *pAsync) {
if (!pAsync)
return;
Com<ID3D11Query> query;
if (SUCCEEDED(pAsync->QueryInterface(__uuidof(ID3D11Query), reinterpret_cast<void**>(&query)))) {
Com<D3D11Query> queryPtr = static_cast<D3D11Query*>(query.ptr());
if (queryPtr->HasBeginEnabled()) {
const uint32_t revision = queryPtr->Reset();
EmitCs([revision, queryPtr] (DxvkContext* ctx) {
queryPtr->Begin(ctx, revision);
});
}
}
}
void STDMETHODCALLTYPE D3D11DeviceContext::End(ID3D11Asynchronous *pAsync) {
if (!pAsync)
return;
Com<ID3D11Query> query;
if (SUCCEEDED(pAsync->QueryInterface(__uuidof(ID3D11Query), reinterpret_cast<void**>(&query)))) {
Com<D3D11Query> queryPtr = static_cast<D3D11Query*>(query.ptr());
if (queryPtr->HasBeginEnabled()) {
EmitCs([queryPtr] (DxvkContext* ctx) {
queryPtr->End(ctx);
});
} else {
const uint32_t revision = queryPtr->Reset();
EmitCs([revision, queryPtr] (DxvkContext* ctx) {
queryPtr->Signal(ctx, revision);
});
}
}
}
void STDMETHODCALLTYPE D3D11DeviceContext::SetPredication(
ID3D11Predicate* pPredicate,
BOOL PredicateValue) {
static bool s_errorShown = false;
if (pPredicate && !std::exchange(s_errorShown, true))
Logger::err("D3D11DeviceContext::SetPredication: Stub");
m_state.pr.predicateObject = static_cast<D3D11Query*>(pPredicate);
m_state.pr.predicateValue = PredicateValue;
}
void STDMETHODCALLTYPE D3D11DeviceContext::GetPredication(
ID3D11Predicate** ppPredicate,
BOOL* pPredicateValue) {
if (ppPredicate != nullptr)
*ppPredicate = m_state.pr.predicateObject.ref();
if (pPredicateValue != nullptr)
*pPredicateValue = m_state.pr.predicateValue;
}
void STDMETHODCALLTYPE D3D11DeviceContext::CopySubresourceRegion(
ID3D11Resource* pDstResource,
UINT DstSubresource,
UINT DstX,
UINT DstY,
UINT DstZ,
ID3D11Resource* pSrcResource,
UINT SrcSubresource,
const D3D11_BOX* pSrcBox) {
CopySubresourceRegion1(
pDstResource, DstSubresource, DstX, DstY, DstZ,
pSrcResource, SrcSubresource, pSrcBox, 0);
}
void STDMETHODCALLTYPE D3D11DeviceContext::CopySubresourceRegion1(
ID3D11Resource* pDstResource,
UINT DstSubresource,
UINT DstX,
UINT DstY,
UINT DstZ,
ID3D11Resource* pSrcResource,
UINT SrcSubresource,
const D3D11_BOX* pSrcBox,
UINT CopyFlags) {
D3D11_RESOURCE_DIMENSION dstResourceDim = D3D11_RESOURCE_DIMENSION_UNKNOWN;
D3D11_RESOURCE_DIMENSION srcResourceDim = D3D11_RESOURCE_DIMENSION_UNKNOWN;
pDstResource->GetType(&dstResourceDim);
pSrcResource->GetType(&srcResourceDim);
// Copying 2D image slices to 3D images and vice versa is legal
const bool copy2Dto3D = dstResourceDim == D3D11_RESOURCE_DIMENSION_TEXTURE3D
&& srcResourceDim == D3D11_RESOURCE_DIMENSION_TEXTURE2D;
const bool copy3Dto2D = dstResourceDim == D3D11_RESOURCE_DIMENSION_TEXTURE2D
&& srcResourceDim == D3D11_RESOURCE_DIMENSION_TEXTURE3D;
if (dstResourceDim != srcResourceDim && !copy2Dto3D && !copy3Dto2D) {
Logger::err(str::format(
"D3D11: CopySubresourceRegion: Incompatible resources",
"\n Dst resource type: ", dstResourceDim,
"\n Src resource type: ", srcResourceDim));
return;
}
if (dstResourceDim == D3D11_RESOURCE_DIMENSION_BUFFER) {
auto dstBuffer = static_cast<D3D11Buffer*>(pDstResource)->GetBufferSlice();
auto srcBuffer = static_cast<D3D11Buffer*>(pSrcResource)->GetBufferSlice();
if (CopyFlags & D3D11_COPY_DISCARD)
DiscardBuffer(static_cast<D3D11Buffer*>(pDstResource));
VkDeviceSize dstOffset = DstX;
VkDeviceSize srcOffset = 0;
VkDeviceSize regLength = srcBuffer.length();
if (dstOffset >= dstBuffer.length())
return;
if (pSrcBox != nullptr) {
if (pSrcBox->left >= pSrcBox->right)
return; // no-op, but legal
srcOffset = pSrcBox->left;
regLength = pSrcBox->right - pSrcBox->left;
if (srcOffset >= srcBuffer.length())
return;
}
// Clamp copy region to prevent out-of-bounds access
regLength = std::min(regLength, srcBuffer.length() - srcOffset);
regLength = std::min(regLength, dstBuffer.length() - dstOffset);
EmitCs([
cDstSlice = dstBuffer.subSlice(dstOffset, regLength),
cSrcSlice = srcBuffer.subSlice(srcOffset, regLength)
] (DxvkContext* ctx) {
bool sameResource = cDstSlice.buffer() == cSrcSlice.buffer();
if (!sameResource) {
ctx->copyBuffer(
cDstSlice.buffer(),
cDstSlice.offset(),
cSrcSlice.buffer(),
cSrcSlice.offset(),
cSrcSlice.length());
} else {
ctx->copyBufferRegion(
cDstSlice.buffer(),
cDstSlice.offset(),
cSrcSlice.offset(),
cSrcSlice.length());
}
});
} else {
const D3D11CommonTexture* dstTextureInfo = GetCommonTexture(pDstResource);
const D3D11CommonTexture* srcTextureInfo = GetCommonTexture(pSrcResource);
const Rc<DxvkImage> dstImage = dstTextureInfo->GetImage();
const Rc<DxvkImage> srcImage = srcTextureInfo->GetImage();
const DxvkFormatInfo* dstFormatInfo = imageFormatInfo(dstImage->info().format);
const DxvkFormatInfo* srcFormatInfo = imageFormatInfo(srcImage->info().format);
const VkImageSubresource dstSubresource = dstTextureInfo->GetSubresourceFromIndex(dstFormatInfo->aspectMask, DstSubresource);
const VkImageSubresource srcSubresource = srcTextureInfo->GetSubresourceFromIndex(srcFormatInfo->aspectMask, SrcSubresource);
// Copies are only supported on size-compatible formats
if (dstFormatInfo->elementSize != srcFormatInfo->elementSize) {
Logger::err(str::format(
"D3D11: CopySubresourceRegion: Incompatible texel size"
"\n Dst texel size: ", dstFormatInfo->elementSize,
"\n Src texel size: ", srcFormatInfo->elementSize));
return;
}
// Copies are only supported if the sample count matches
if (dstImage->info().sampleCount != srcImage->info().sampleCount) {
Logger::err(str::format(
"D3D11: CopySubresourceRegion: Incompatible sample count",
"\n Dst sample count: ", dstImage->info().sampleCount,
"\n Src sample count: ", srcImage->info().sampleCount));
return;
}
VkOffset3D srcOffset = { 0, 0, 0 };
VkOffset3D dstOffset = { int32_t(DstX), int32_t(DstY), int32_t(DstZ) };
VkExtent3D srcExtent = srcImage->mipLevelExtent(srcSubresource.mipLevel);
VkExtent3D dstExtent = dstImage->mipLevelExtent(dstSubresource.mipLevel);
VkExtent3D regExtent = srcExtent;
if (uint32_t(dstOffset.x) >= dstExtent.width
|| uint32_t(dstOffset.y) >= dstExtent.height
|| uint32_t(dstOffset.z) >= dstExtent.depth)
return;
if (pSrcBox != nullptr) {
if (pSrcBox->left >= pSrcBox->right
|| pSrcBox->top >= pSrcBox->bottom
|| pSrcBox->front >= pSrcBox->back)
return; // no-op, but legal
srcOffset.x = pSrcBox->left;
srcOffset.y = pSrcBox->top;
srcOffset.z = pSrcBox->front;
regExtent.width = pSrcBox->right - pSrcBox->left;
regExtent.height = pSrcBox->bottom - pSrcBox->top;
regExtent.depth = pSrcBox->back - pSrcBox->front;
if (uint32_t(srcOffset.x) >= srcExtent.width
|| uint32_t(srcOffset.y) >= srcExtent.height
|| uint32_t(srcOffset.z) >= srcExtent.depth)
return;
}
VkImageSubresourceLayers dstLayers = {
dstSubresource.aspectMask,
dstSubresource.mipLevel,
dstSubresource.arrayLayer, 1 };
VkImageSubresourceLayers srcLayers = {
srcSubresource.aspectMask,
srcSubresource.mipLevel,
srcSubresource.arrayLayer, 1 };
// Copying multiple slices does not
// seem to be supported in D3D11
if (copy2Dto3D || copy3Dto2D) {
regExtent.depth = 1;
dstLayers.layerCount = 1;
srcLayers.layerCount = 1;
}
// Don't perform the copy if the offsets aren't aligned
if (!util::isBlockAligned(srcOffset, srcFormatInfo->blockSize)
|| !util::isBlockAligned(dstOffset, dstFormatInfo->blockSize)) {
Logger::err(str::format(
"D3D11: CopySubresourceRegion: Unaligned block offset",
"\n Src offset: (", srcOffset.x, ",", srcOffset.y, ",", srcOffset.z, ")",
"\n Src block size: (", srcFormatInfo->blockSize.width, "x", srcFormatInfo->blockSize.height, "x", srcFormatInfo->blockSize.depth, ")",
"\n Dst offset: (", dstOffset.x, ",", dstOffset.y, ",", dstOffset.z, ")",
"\n Dst block size: (", dstFormatInfo->blockSize.width, "x", dstFormatInfo->blockSize.height, "x", dstFormatInfo->blockSize.depth, ")"));
return;
}
// Clamp the image region in order to avoid out-of-bounds access
VkExtent3D regBlockCount = util::computeBlockCount(regExtent, srcFormatInfo->blockSize);
VkExtent3D dstBlockCount = util::computeMaxBlockCount(dstOffset, dstExtent, dstFormatInfo->blockSize);
VkExtent3D srcBlockCount = util::computeMaxBlockCount(srcOffset, srcExtent, srcFormatInfo->blockSize);
regBlockCount = util::minExtent3D(regBlockCount, dstBlockCount);
regBlockCount = util::minExtent3D(regBlockCount, srcBlockCount);
regExtent = util::minExtent3D(regExtent, util::computeBlockExtent(regBlockCount, srcFormatInfo->blockSize));
// Don't perform the copy if the image extent is not aligned and
// if it does not touch the image border for unaligned dimensons
if (!util::isBlockAligned(srcOffset, regExtent, srcFormatInfo->blockSize, srcExtent)) {
Logger::err(str::format(
"D3D11: CopySubresourceRegion: Unaligned block size",
"\n Src offset: (", srcOffset.x, ",", srcOffset.y, ",", srcOffset.z, ")",
"\n Src extent: (", srcExtent.width, "x", srcExtent.height, "x", srcExtent.depth, ")",
"\n Src block size: (", srcFormatInfo->blockSize.width, "x", srcFormatInfo->blockSize.height, "x", srcFormatInfo->blockSize.depth, ")",
"\n Dst offset: (", dstOffset.x, ",", dstOffset.y, ",", dstOffset.z, ")",
"\n Dst extent: (", dstExtent.width, "x", dstExtent.height, "x", dstExtent.depth, ")",
"\n Dst block size: (", dstFormatInfo->blockSize.width, "x", dstFormatInfo->blockSize.height, "x", dstFormatInfo->blockSize.depth, ")",
"\n Region extent: (", regExtent.width, "x", regExtent.height, "x", regExtent.depth, ")"));
return;
}
EmitCs([
cDstImage = dstImage,
cSrcImage = srcImage,
cDstLayers = dstLayers,
cSrcLayers = srcLayers,
cDstOffset = dstOffset,
cSrcOffset = srcOffset,
cExtent = regExtent
] (DxvkContext* ctx) {
bool sameSubresource = cDstImage == cSrcImage
&& cDstLayers == cSrcLayers;
if (!sameSubresource) {
ctx->copyImage(
cDstImage, cDstLayers, cDstOffset,
cSrcImage, cSrcLayers, cSrcOffset,
cExtent);
} else {
ctx->copyImageRegion(
cDstImage, cDstLayers,
cDstOffset, cSrcOffset,
cExtent);
}
});
}
}
void STDMETHODCALLTYPE D3D11DeviceContext::CopyResource(
ID3D11Resource* pDstResource,
ID3D11Resource* pSrcResource) {
if (!pDstResource || !pSrcResource || (pDstResource == pSrcResource))
return;
D3D11_RESOURCE_DIMENSION dstResourceDim = D3D11_RESOURCE_DIMENSION_UNKNOWN;
D3D11_RESOURCE_DIMENSION srcResourceDim = D3D11_RESOURCE_DIMENSION_UNKNOWN;
pDstResource->GetType(&dstResourceDim);
pSrcResource->GetType(&srcResourceDim);
if (dstResourceDim != srcResourceDim) {
Logger::err(str::format(
"D3D11: CopyResource: Incompatible resources",
"\n Dst resource type: ", dstResourceDim,
"\n Src resource type: ", srcResourceDim));
return;
}
if (dstResourceDim == D3D11_RESOURCE_DIMENSION_BUFFER) {
auto dstBuffer = static_cast<D3D11Buffer*>(pDstResource)->GetBufferSlice();
auto srcBuffer = static_cast<D3D11Buffer*>(pSrcResource)->GetBufferSlice();
if (dstBuffer.length() != srcBuffer.length()) {
Logger::err(str::format(
"D3D11: CopyResource: Mismatched buffer size",
"\n Dst buffer size: ", dstBuffer.length(),
"\n Src buffer size: ", srcBuffer.length()));
return;
}
EmitCs([
cDstBuffer = std::move(dstBuffer),
cSrcBuffer = std::move(srcBuffer)
] (DxvkContext* ctx) {
ctx->copyBuffer(
cDstBuffer.buffer(),
cDstBuffer.offset(),
cSrcBuffer.buffer(),
cSrcBuffer.offset(),
cSrcBuffer.length());
});
} else {
const Rc<DxvkImage> dstImage = GetCommonTexture(pDstResource)->GetImage();
const Rc<DxvkImage> srcImage = GetCommonTexture(pSrcResource)->GetImage();
const DxvkFormatInfo* dstFormatInfo = imageFormatInfo(dstImage->info().format);
const DxvkFormatInfo* srcFormatInfo = imageFormatInfo(srcImage->info().format);
// Copies are only supported on size-compatible formats
if (dstFormatInfo->elementSize != srcFormatInfo->elementSize) {
Logger::err(str::format(
"D3D11: CopyResource: Incompatible texel size"
"\n Dst texel size: ", dstFormatInfo->elementSize,
"\n Src texel size: ", srcFormatInfo->elementSize));
return;
}
// Layer count, mip level count, and sample count must match
if (srcImage->info().numLayers != dstImage->info().numLayers
|| srcImage->info().mipLevels != dstImage->info().mipLevels
|| srcImage->info().sampleCount != dstImage->info().sampleCount) {
Logger::err(str::format(
"D3D11: CopyResource: Incompatible images"
"\n Dst: (", dstImage->info().numLayers,
",", dstImage->info().mipLevels,
",", dstImage->info().sampleCount, ")",
"\n Src: (", srcImage->info().numLayers,
",", srcImage->info().mipLevels,
",", srcImage->info().sampleCount, ")"));
return;
}
for (uint32_t i = 0; i < srcImage->info().mipLevels; i++) {
VkImageSubresourceLayers dstLayers = { dstFormatInfo->aspectMask, i, 0, dstImage->info().numLayers };
VkImageSubresourceLayers srcLayers = { srcFormatInfo->aspectMask, i, 0, srcImage->info().numLayers };
VkExtent3D extent = srcImage->mipLevelExtent(i);
EmitCs([
cDstImage = dstImage,
cSrcImage = srcImage,
cDstLayers = dstLayers,
cSrcLayers = srcLayers,
cExtent = extent
] (DxvkContext* ctx) {
ctx->copyImage(
cDstImage, cDstLayers, VkOffset3D { 0, 0, 0 },
cSrcImage, cSrcLayers, VkOffset3D { 0, 0, 0 },
cExtent);
});
}
}
}
void STDMETHODCALLTYPE D3D11DeviceContext::CopyStructureCount(
ID3D11Buffer* pDstBuffer,
UINT DstAlignedByteOffset,
ID3D11UnorderedAccessView* pSrcView) {
auto buf = static_cast<D3D11Buffer*>(pDstBuffer);
auto uav = static_cast<D3D11UnorderedAccessView*>(pSrcView);
if (!buf || !uav)
return;
EmitCs([
cDstSlice = buf->GetBufferSlice(DstAlignedByteOffset),
cSrcSlice = uav->GetCounterSlice()
] (DxvkContext* ctx) {
ctx->copyBuffer(
cDstSlice.buffer(),
cDstSlice.offset(),
cSrcSlice.buffer(),
cSrcSlice.offset(),
sizeof(uint32_t));
});
}
void STDMETHODCALLTYPE D3D11DeviceContext::ClearRenderTargetView(
ID3D11RenderTargetView* pRenderTargetView,
const FLOAT ColorRGBA[4]) {
auto rtv = static_cast<D3D11RenderTargetView*>(pRenderTargetView);
if (!rtv)
return;
const Rc<DxvkImageView> view = rtv->GetImageView();
VkClearValue clearValue;
clearValue.color.float32[0] = ColorRGBA[0];
clearValue.color.float32[1] = ColorRGBA[1];
clearValue.color.float32[2] = ColorRGBA[2];
clearValue.color.float32[3] = ColorRGBA[3];
EmitCs([
cClearValue = clearValue,
cImageView = view
] (DxvkContext* ctx) {
ctx->clearRenderTarget(
cImageView,
VK_IMAGE_ASPECT_COLOR_BIT,
cClearValue);
});
}
void STDMETHODCALLTYPE D3D11DeviceContext::ClearUnorderedAccessViewUint(
ID3D11UnorderedAccessView* pUnorderedAccessView,
const UINT Values[4]) {
auto uav = static_cast<D3D11UnorderedAccessView*>(pUnorderedAccessView);
if (!uav)
return;
// Gather UAV format info. We'll use this to determine
// whether we need to create a temporary view or not.
D3D11_UNORDERED_ACCESS_VIEW_DESC uavDesc;
uav->GetDesc(&uavDesc);
VkFormat uavFormat = m_parent->LookupFormat(uavDesc.Format, DXGI_VK_FORMAT_MODE_ANY).Format;
VkFormat rawFormat = m_parent->LookupFormat(uavDesc.Format, DXGI_VK_FORMAT_MODE_RAW).Format;
// FIXME support packed formats
if (uavFormat != rawFormat && rawFormat == VK_FORMAT_UNDEFINED) {
Logger::err(str::format("D3D11: ClearUnorderedAccessViewUint: No raw format found for ", uavFormat));
return;
}
// Set up clear color struct
VkClearValue clearValue;
clearValue.color.uint32[0] = Values[0];
clearValue.color.uint32[1] = Values[1];
clearValue.color.uint32[2] = Values[2];
clearValue.color.uint32[3] = Values[3];
if (uav->GetResourceType() == D3D11_RESOURCE_DIMENSION_BUFFER) {
// In case of raw and structured buffers as well as typed
// buffers that can be used for atomic operations, we can
// use the fast Vulkan buffer clear function.
Rc<DxvkBufferView> bufferView = uav->GetBufferView();
if (bufferView->info().format == VK_FORMAT_R32_UINT
|| bufferView->info().format == VK_FORMAT_R32_SINT
|| bufferView->info().format == VK_FORMAT_R32_SFLOAT) {
EmitCs([
cClearValue = Values[0],
cDstSlice = bufferView->slice()
] (DxvkContext* ctx) {
ctx->clearBuffer(
cDstSlice.buffer(),
cDstSlice.offset(),
cDstSlice.length(),
cClearValue);
});
} else {
// Create a view with an integer format if necessary
if (uavFormat != rawFormat) {
DxvkBufferViewCreateInfo info = bufferView->info();
info.format = rawFormat;
bufferView = m_device->createBufferView(
bufferView->buffer(), info);
}
EmitCs([
cClearValue = clearValue,
cDstView = bufferView
] (DxvkContext* ctx) {
ctx->clearBufferView(
cDstView, 0,
cDstView->elementCount(),
cClearValue.color);
});
}
} else {
// Create a view with an integer format if necessary
Rc<DxvkImageView> imageView = uav->GetImageView();
if (uavFormat != rawFormat) {
DxvkImageViewCreateInfo info = imageView->info();
info.format = rawFormat;
imageView = m_device->createImageView(
imageView->image(), info);
}
EmitCs([
cClearValue = clearValue,
cDstView = imageView
] (DxvkContext* ctx) {
ctx->clearImageView(cDstView,
VkOffset3D { 0, 0, 0 },
cDstView->mipLevelExtent(0),
cClearValue);
});
}
}
void STDMETHODCALLTYPE D3D11DeviceContext::ClearUnorderedAccessViewFloat(
ID3D11UnorderedAccessView* pUnorderedAccessView,
const FLOAT Values[4]) {
auto uav = static_cast<D3D11UnorderedAccessView*>(pUnorderedAccessView);
if (!uav)
return;
VkClearValue clearValue;
clearValue.color.float32[0] = Values[0];
clearValue.color.float32[1] = Values[1];
clearValue.color.float32[2] = Values[2];
clearValue.color.float32[3] = Values[3];
if (uav->GetResourceType() == D3D11_RESOURCE_DIMENSION_BUFFER) {
EmitCs([
cClearValue = clearValue,
cDstView = uav->GetBufferView()
] (DxvkContext* ctx) {
ctx->clearBufferView(
cDstView, 0,
cDstView->elementCount(),
cClearValue.color);
});
} else {
EmitCs([
cClearValue = clearValue,
cDstView = uav->GetImageView()
] (DxvkContext* ctx) {
ctx->clearImageView(cDstView,
VkOffset3D { 0, 0, 0 },
cDstView->mipLevelExtent(0),
cClearValue);
});
}
}
void STDMETHODCALLTYPE D3D11DeviceContext::ClearDepthStencilView(
ID3D11DepthStencilView* pDepthStencilView,
UINT ClearFlags,
FLOAT Depth,
UINT8 Stencil) {
auto dsv = static_cast<D3D11DepthStencilView*>(pDepthStencilView);
if (!dsv)
return;
// Figure out which aspects to clear based
// on the image format and the clear flags.
const Rc<DxvkImageView> view = dsv->GetImageView();
VkImageAspectFlags aspectMask = 0;
if (ClearFlags & D3D11_CLEAR_DEPTH)
aspectMask |= VK_IMAGE_ASPECT_DEPTH_BIT;
if (ClearFlags & D3D11_CLEAR_STENCIL)
aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
aspectMask &= imageFormatInfo(view->info().format)->aspectMask;
VkClearValue clearValue;
clearValue.depthStencil.depth = Depth;
clearValue.depthStencil.stencil = Stencil;
EmitCs([
cClearValue = clearValue,
cAspectMask = aspectMask,
cImageView = view
] (DxvkContext* ctx) {
ctx->clearRenderTarget(
cImageView,
cAspectMask,
cClearValue);
});
}
void STDMETHODCALLTYPE D3D11DeviceContext::ClearView(
ID3D11View* pView,
const FLOAT Color[4],
const D3D11_RECT* pRect,
UINT NumRects) {
// ID3D11View has no methods to query the exact type of
// the view, so we'll have to check each possible class
auto dsv = dynamic_cast<D3D11DepthStencilView*>(pView);
auto rtv = dynamic_cast<D3D11RenderTargetView*>(pView);
auto uav = dynamic_cast<D3D11UnorderedAccessView*>(pView);
// Retrieve underlying resource view
Rc<DxvkBufferView> bufView;
Rc<DxvkImageView> imgView;
if (dsv != nullptr)
imgView = dsv->GetImageView();
if (rtv != nullptr)
imgView = rtv->GetImageView();
if (uav != nullptr) {
bufView = uav->GetBufferView();
imgView = uav->GetImageView();
}
// 3D views are unsupported
if (imgView != nullptr
&& imgView->info().type == VK_IMAGE_VIEW_TYPE_3D)
return;
// Query the view format. We'll have to convert
// the clear color based on the format's data type.
VkFormat format = VK_FORMAT_UNDEFINED;
if (bufView != nullptr)
format = bufView->info().format;
if (imgView != nullptr)
format = imgView->info().format;
if (format == VK_FORMAT_UNDEFINED)
return;
// We'll need the format info to determine the buffer
// element size, and we also need it for depth images.
const DxvkFormatInfo* formatInfo = imageFormatInfo(format);
// Convert the clear color format. ClearView takes
// the clear value for integer formats as a set of
// integral floats, so we'll have to convert.
VkClearValue clearValue;
if (imgView == nullptr || imgView->info().aspect & VK_IMAGE_ASPECT_COLOR_BIT) {
for (uint32_t i = 0; i < 4; i++) {
if (formatInfo->flags.test(DxvkFormatFlag::SampledUInt))
clearValue.color.uint32[i] = uint32_t(Color[i]);
else if (formatInfo->flags.test(DxvkFormatFlag::SampledSInt))
clearValue.color.int32[i] = int32_t(Color[i]);
else
clearValue.color.float32[i] = Color[i];
}
} else {
clearValue.depthStencil.depth = Color[0];
clearValue.depthStencil.stencil = 0;
}
// Clear all the rectangles that are specified
for (uint32_t i = 0; i < NumRects; i++) {
if (pRect[i].left >= pRect[i].right
|| pRect[i].top >= pRect[i].bottom)
continue;
if (bufView != nullptr) {
VkDeviceSize offset = pRect[i].left;
VkDeviceSize length = pRect[i].right - pRect[i].left;
EmitCs([
cBufferView = bufView,
cRangeOffset = offset,
cRangeLength = length,
cClearValue = clearValue
] (DxvkContext* ctx) {
ctx->clearBufferView(
cBufferView,
cRangeOffset,
cRangeLength,
cClearValue.color);
});
}
if (imgView != nullptr) {
VkOffset3D offset = { pRect[i].left, pRect[i].top, 0 };
VkExtent3D extent = {
uint32_t(pRect[i].right - pRect[i].left),
uint32_t(pRect[i].bottom - pRect[i].top), 1 };
EmitCs([
cImageView = imgView,
cAreaOffset = offset,
cAreaExtent = extent,
cClearValue = clearValue
] (DxvkContext* ctx) {
ctx->clearImageView(
cImageView,
cAreaOffset,
cAreaExtent,
cClearValue);
});
}
}
// The rect array is optional, so if it is not
// specified, we'll have to clear the entire view
if (pRect == nullptr) {
if (bufView != nullptr) {
EmitCs([
cBufferView = bufView,
cClearValue = clearValue,
cElementSize = formatInfo->elementSize
] (DxvkContext* ctx) {
ctx->clearBufferView(cBufferView,
cBufferView->info().rangeOffset / cElementSize,
cBufferView->info().rangeLength / cElementSize,
cClearValue.color);
});
}
if (imgView != nullptr) {
EmitCs([
cImageView = imgView,
cClearValue = clearValue
] (DxvkContext* ctx) {
VkOffset3D offset = { 0, 0, 0 };
VkExtent3D extent = cImageView->mipLevelExtent(0);
ctx->clearImageView(cImageView,
offset, extent, cClearValue);
});
}
}
}
void STDMETHODCALLTYPE D3D11DeviceContext::GenerateMips(ID3D11ShaderResourceView* pShaderResourceView) {
auto view = static_cast<D3D11ShaderResourceView*>(pShaderResourceView);
if (!view || view->GetResourceType() == D3D11_RESOURCE_DIMENSION_BUFFER)
return;
EmitCs([cDstImageView = view->GetImageView()]
(DxvkContext* ctx) {
ctx->generateMipmaps(cDstImageView);
});
}
void STDMETHODCALLTYPE D3D11DeviceContext::UpdateSubresource(
ID3D11Resource* pDstResource,
UINT DstSubresource,
const D3D11_BOX* pDstBox,
const void* pSrcData,
UINT SrcRowPitch,
UINT SrcDepthPitch) {
UpdateSubresource1(pDstResource,
DstSubresource, pDstBox, pSrcData,
SrcRowPitch, SrcDepthPitch, 0);
}
void STDMETHODCALLTYPE D3D11DeviceContext::UpdateSubresource1(
ID3D11Resource* pDstResource,
UINT DstSubresource,
const D3D11_BOX* pDstBox,
const void* pSrcData,
UINT SrcRowPitch,
UINT SrcDepthPitch,
UINT CopyFlags) {
if (!pDstResource)
return;
// We need a different code path for buffers
D3D11_RESOURCE_DIMENSION resourceType;
pDstResource->GetType(&resourceType);
if (resourceType == D3D11_RESOURCE_DIMENSION_BUFFER) {
const auto bufferResource = static_cast<D3D11Buffer*>(pDstResource);
const auto bufferSlice = bufferResource->GetBufferSlice();
if (CopyFlags & D3D11_COPY_DISCARD)
DiscardBuffer(bufferResource);
VkDeviceSize offset = bufferSlice.offset();
VkDeviceSize size = bufferSlice.length();
if (pDstBox != nullptr) {
offset = pDstBox->left;
size = pDstBox->right - pDstBox->left;
}
if (offset + size > bufferSlice.length()) {
Logger::err(str::format(
"D3D11: UpdateSubresource: Buffer update range out of bounds",
"\n Dst slice offset: ", bufferSlice.offset(),
"\n Dst slice length: ", bufferSlice.length(),
"\n Src slice offset: ", offset,
"\n Src slice length: ", size));
return;
}
if (size == 0)
return;
if (((size == bufferSlice.length())
&& (bufferSlice.buffer()->memFlags() & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT))) {
D3D11_MAPPED_SUBRESOURCE mappedSr;
Map(pDstResource, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedSr);
std::memcpy(mappedSr.pData, pSrcData, size);
Unmap(pDstResource, 0);
} else {
DxvkDataSlice dataSlice = AllocUpdateBufferSlice(size);
std::memcpy(dataSlice.ptr(), pSrcData, size);
EmitCs([
cDataBuffer = std::move(dataSlice),
cBufferSlice = bufferSlice.subSlice(offset, size)
] (DxvkContext* ctx) {
ctx->updateBuffer(
cBufferSlice.buffer(),
cBufferSlice.offset(),
cBufferSlice.length(),
cDataBuffer.ptr());
});
}
} else {
const D3D11CommonTexture* textureInfo = GetCommonTexture(pDstResource);
const VkImageSubresource subresource =
textureInfo->GetSubresourceFromIndex(
VK_IMAGE_ASPECT_COLOR_BIT, DstSubresource);
VkOffset3D offset = { 0, 0, 0 };
VkExtent3D extent = textureInfo->GetImage()->mipLevelExtent(subresource.mipLevel);
if (pDstBox != nullptr) {
if (pDstBox->left >= pDstBox->right
|| pDstBox->top >= pDstBox->bottom
|| pDstBox->front >= pDstBox->back)
return; // no-op, but legal
offset.x = pDstBox->left;
offset.y = pDstBox->top;
offset.z = pDstBox->front;
extent.width = pDstBox->right - pDstBox->left;
extent.height = pDstBox->bottom - pDstBox->top;
extent.depth = pDstBox->back - pDstBox->front;
}
const VkImageSubresourceLayers layers = {
subresource.aspectMask,
subresource.mipLevel,
subresource.arrayLayer, 1 };
auto formatInfo = imageFormatInfo(
textureInfo->GetImage()->info().format);
const VkExtent3D regionExtent = util::computeBlockCount(extent, formatInfo->blockSize);
const VkDeviceSize bytesPerRow = regionExtent.width * formatInfo->elementSize;
const VkDeviceSize bytesPerLayer = regionExtent.height * bytesPerRow;
const VkDeviceSize bytesTotal = regionExtent.depth * bytesPerLayer;
DxvkDataSlice imageDataBuffer = AllocUpdateBufferSlice(bytesTotal);
util::packImageData(
reinterpret_cast<char*>(imageDataBuffer.ptr()),
reinterpret_cast<const char*>(pSrcData),
regionExtent, formatInfo->elementSize,
SrcRowPitch, SrcDepthPitch);
EmitCs([
cDstImage = textureInfo->GetImage(),
cDstLayers = layers,
cDstOffset = offset,
cDstExtent = extent,
cSrcData = std::move(imageDataBuffer),
cSrcBytesPerRow = bytesPerRow,
cSrcBytesPerLayer = bytesPerLayer
] (DxvkContext* ctx) {
ctx->updateImage(cDstImage, cDstLayers,
cDstOffset, cDstExtent, cSrcData.ptr(),
cSrcBytesPerRow, cSrcBytesPerLayer);
});
}
}
void STDMETHODCALLTYPE D3D11DeviceContext::SetResourceMinLOD(
ID3D11Resource* pResource,
FLOAT MinLOD) {
Logger::err("D3D11DeviceContext::SetResourceMinLOD: Not implemented");
}
FLOAT STDMETHODCALLTYPE D3D11DeviceContext::GetResourceMinLOD(ID3D11Resource* pResource) {
Logger::err("D3D11DeviceContext::GetResourceMinLOD: Not implemented");
return 0.0f;
}
void STDMETHODCALLTYPE D3D11DeviceContext::ResolveSubresource(
ID3D11Resource* pDstResource,
UINT DstSubresource,
ID3D11Resource* pSrcResource,
UINT SrcSubresource,
DXGI_FORMAT Format) {
bool isSameSubresource = pDstResource == pSrcResource
&& DstSubresource == SrcSubresource;
if (!pDstResource || !pSrcResource || isSameSubresource)
return;
D3D11_RESOURCE_DIMENSION dstResourceType;
D3D11_RESOURCE_DIMENSION srcResourceType;
pDstResource->GetType(&dstResourceType);
pSrcResource->GetType(&srcResourceType);
if (dstResourceType != D3D11_RESOURCE_DIMENSION_TEXTURE2D
|| srcResourceType != D3D11_RESOURCE_DIMENSION_TEXTURE2D) {
Logger::err(str::format(
"D3D11: ResolveSubresource: Incompatible resources",
"\n Dst resource type: ", dstResourceType,
"\n Src resource type: ", srcResourceType));
return;
}
auto dstTexture = static_cast<D3D11Texture2D*>(pDstResource);
auto srcTexture = static_cast<D3D11Texture2D*>(pSrcResource);
D3D11_TEXTURE2D_DESC dstDesc;
D3D11_TEXTURE2D_DESC srcDesc;
dstTexture->GetDesc(&dstDesc);
srcTexture->GetDesc(&srcDesc);
if (dstDesc.SampleDesc.Count != 1) {
Logger::err(str::format(
"D3D11: ResolveSubresource: Invalid sample counts",
"\n Dst sample count: ", dstDesc.SampleDesc.Count,
"\n Src sample count: ", srcDesc.SampleDesc.Count));
return;
}
const D3D11CommonTexture* dstTextureInfo = GetCommonTexture(pDstResource);
const D3D11CommonTexture* srcTextureInfo = GetCommonTexture(pSrcResource);
const DXGI_VK_FORMAT_INFO dstFormatInfo = m_parent->LookupFormat(dstDesc.Format, DXGI_VK_FORMAT_MODE_ANY);
const DXGI_VK_FORMAT_INFO srcFormatInfo = m_parent->LookupFormat(srcDesc.Format, DXGI_VK_FORMAT_MODE_ANY);
auto dstVulkanFormatInfo = imageFormatInfo(dstFormatInfo.Format);
auto srcVulkanFormatInfo = imageFormatInfo(srcFormatInfo.Format);
const VkImageSubresource dstSubresource =
dstTextureInfo->GetSubresourceFromIndex(
dstVulkanFormatInfo->aspectMask, DstSubresource);
const VkImageSubresource srcSubresource =
srcTextureInfo->GetSubresourceFromIndex(
srcVulkanFormatInfo->aspectMask, SrcSubresource);
const VkImageSubresourceLayers dstSubresourceLayers = {
dstSubresource.aspectMask,
dstSubresource.mipLevel,
dstSubresource.arrayLayer, 1 };
const VkImageSubresourceLayers srcSubresourceLayers = {
srcSubresource.aspectMask,
srcSubresource.mipLevel,
srcSubresource.arrayLayer, 1 };
if (srcDesc.SampleDesc.Count == 1) {
EmitCs([
cDstImage = dstTextureInfo->GetImage(),
cSrcImage = srcTextureInfo->GetImage(),
cDstLayers = dstSubresourceLayers,
cSrcLayers = srcSubresourceLayers
] (DxvkContext* ctx) {
ctx->copyImage(
cDstImage, cDstLayers, VkOffset3D { 0, 0, 0 },
cSrcImage, cSrcLayers, VkOffset3D { 0, 0, 0 },
cDstImage->mipLevelExtent(cDstLayers.mipLevel));
});
} else {
const VkFormat format = m_parent->LookupFormat(
Format, DXGI_VK_FORMAT_MODE_ANY).Format;
EmitCs([
cDstImage = dstTextureInfo->GetImage(),
cSrcImage = srcTextureInfo->GetImage(),
cDstSubres = dstSubresourceLayers,
cSrcSubres = srcSubresourceLayers,
cFormat = format
] (DxvkContext* ctx) {
ctx->resolveImage(
cDstImage, cDstSubres,
cSrcImage, cSrcSubres,
cFormat);
});
}
}
void STDMETHODCALLTYPE D3D11DeviceContext::DrawAuto() {
D3D11Buffer* buffer = m_state.ia.vertexBuffers[0].buffer.ptr();
if (buffer == nullptr)
return;
DxvkBufferSlice vtxBuf = buffer->GetBufferSlice();
DxvkBufferSlice ctrBuf = buffer->GetSOCounter();
if (!ctrBuf.defined())
return;
EmitCs([=] (DxvkContext* ctx) {
ctx->drawIndirectXfb(ctrBuf,
vtxBuf.buffer()->getXfbVertexStride(),
0); // FIXME offset?
});
}
void STDMETHODCALLTYPE D3D11DeviceContext::Draw(
UINT VertexCount,
UINT StartVertexLocation) {
EmitCs([=] (DxvkContext* ctx) {
ctx->draw(
VertexCount, 1,
StartVertexLocation, 0);
});
}
void STDMETHODCALLTYPE D3D11DeviceContext::DrawIndexed(
UINT IndexCount,
UINT StartIndexLocation,
INT BaseVertexLocation) {
EmitCs([=] (DxvkContext* ctx) {
ctx->drawIndexed(
IndexCount, 1,
StartIndexLocation,
BaseVertexLocation, 0);
});
}
void STDMETHODCALLTYPE D3D11DeviceContext::DrawInstanced(
UINT VertexCountPerInstance,
UINT InstanceCount,
UINT StartVertexLocation,
UINT StartInstanceLocation) {
EmitCs([=] (DxvkContext* ctx) {
ctx->draw(
VertexCountPerInstance,
InstanceCount,
StartVertexLocation,
StartInstanceLocation);
});
}
void STDMETHODCALLTYPE D3D11DeviceContext::DrawIndexedInstanced(
UINT IndexCountPerInstance,
UINT InstanceCount,
UINT StartIndexLocation,
INT BaseVertexLocation,
UINT StartInstanceLocation) {
EmitCs([=] (DxvkContext* ctx) {
ctx->drawIndexed(
IndexCountPerInstance,
InstanceCount,
StartIndexLocation,
BaseVertexLocation,
StartInstanceLocation);
});
}
void STDMETHODCALLTYPE D3D11DeviceContext::DrawIndexedInstancedIndirect(
ID3D11Buffer* pBufferForArgs,
UINT AlignedByteOffsetForArgs) {
SetDrawBuffer(pBufferForArgs);
EmitCs([cOffset = AlignedByteOffsetForArgs]
(DxvkContext* ctx) {
ctx->drawIndexedIndirect(cOffset, 1, 0);
});
}
void STDMETHODCALLTYPE D3D11DeviceContext::DrawInstancedIndirect(
ID3D11Buffer* pBufferForArgs,
UINT AlignedByteOffsetForArgs) {
SetDrawBuffer(pBufferForArgs);
EmitCs([cOffset = AlignedByteOffsetForArgs]
(DxvkContext* ctx) {
ctx->drawIndirect(cOffset, 1, 0);
});
}
void STDMETHODCALLTYPE D3D11DeviceContext::Dispatch(
UINT ThreadGroupCountX,
UINT ThreadGroupCountY,
UINT ThreadGroupCountZ) {
EmitCs([=] (DxvkContext* ctx) {
ctx->dispatch(
ThreadGroupCountX,
ThreadGroupCountY,
ThreadGroupCountZ);
});
}
void STDMETHODCALLTYPE D3D11DeviceContext::DispatchIndirect(
ID3D11Buffer* pBufferForArgs,
UINT AlignedByteOffsetForArgs) {
SetDrawBuffer(pBufferForArgs);
EmitCs([cOffset = AlignedByteOffsetForArgs]
(DxvkContext* ctx) {
ctx->dispatchIndirect(cOffset);
});
}
void STDMETHODCALLTYPE D3D11DeviceContext::IASetInputLayout(ID3D11InputLayout* pInputLayout) {
auto inputLayout = static_cast<D3D11InputLayout*>(pInputLayout);
if (m_state.ia.inputLayout != inputLayout) {
bool equal = false;
// Some games (e.g. Grim Dawn) create lots and lots of
// identical input layouts, so we'll only apply the state
// if the input layouts has actually changed between calls.
if (m_state.ia.inputLayout != nullptr && inputLayout != nullptr)
equal = m_state.ia.inputLayout->Compare(inputLayout);
m_state.ia.inputLayout = inputLayout;
if (!equal)
ApplyInputLayout();
}
}
void STDMETHODCALLTYPE D3D11DeviceContext::IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY Topology) {
if (m_state.ia.primitiveTopology != Topology) {
m_state.ia.primitiveTopology = Topology;
ApplyPrimitiveTopology();
}
}
void STDMETHODCALLTYPE D3D11DeviceContext::IASetVertexBuffers(
UINT StartSlot,
UINT NumBuffers,
ID3D11Buffer* const* ppVertexBuffers,
const UINT* pStrides,
const UINT* pOffsets) {
for (uint32_t i = 0; i < NumBuffers; i++) {
auto newBuffer = static_cast<D3D11Buffer*>(ppVertexBuffers[i]);
m_state.ia.vertexBuffers[StartSlot + i].buffer = newBuffer;
m_state.ia.vertexBuffers[StartSlot + i].offset = pOffsets[i];
m_state.ia.vertexBuffers[StartSlot + i].stride = pStrides[i];
BindVertexBuffer(StartSlot + i, newBuffer, pOffsets[i], pStrides[i]);
}
}
void STDMETHODCALLTYPE D3D11DeviceContext::IASetIndexBuffer(
ID3D11Buffer* pIndexBuffer,
DXGI_FORMAT Format,
UINT Offset) {
auto newBuffer = static_cast<D3D11Buffer*>(pIndexBuffer);
m_state.ia.indexBuffer.buffer = newBuffer;
m_state.ia.indexBuffer.offset = Offset;
m_state.ia.indexBuffer.format = Format;
BindIndexBuffer(newBuffer, Offset, Format);
}
void STDMETHODCALLTYPE D3D11DeviceContext::IAGetInputLayout(ID3D11InputLayout** ppInputLayout) {
*ppInputLayout = m_state.ia.inputLayout.ref();
}
void STDMETHODCALLTYPE D3D11DeviceContext::IAGetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY* pTopology) {
*pTopology = m_state.ia.primitiveTopology;
}
void STDMETHODCALLTYPE D3D11DeviceContext::IAGetVertexBuffers(
UINT StartSlot,
UINT NumBuffers,
ID3D11Buffer** ppVertexBuffers,
UINT* pStrides,
UINT* pOffsets) {
for (uint32_t i = 0; i < NumBuffers; i++) {
if (ppVertexBuffers != nullptr)
ppVertexBuffers[i] = m_state.ia.vertexBuffers[StartSlot + i].buffer.ref();
if (pStrides != nullptr)
pStrides[i] = m_state.ia.vertexBuffers[StartSlot + i].stride;
if (pOffsets != nullptr)
pOffsets[i] = m_state.ia.vertexBuffers[StartSlot + i].offset;
}
}
void STDMETHODCALLTYPE D3D11DeviceContext::IAGetIndexBuffer(
ID3D11Buffer** ppIndexBuffer,
DXGI_FORMAT* pFormat,
UINT* pOffset) {
if (ppIndexBuffer != nullptr)
*ppIndexBuffer = m_state.ia.indexBuffer.buffer.ref();
if (pFormat != nullptr)
*pFormat = m_state.ia.indexBuffer.format;
if (pOffset != nullptr)
*pOffset = m_state.ia.indexBuffer.offset;
}
void STDMETHODCALLTYPE D3D11DeviceContext::VSSetShader(
ID3D11VertexShader* pVertexShader,
ID3D11ClassInstance* const* ppClassInstances,
UINT NumClassInstances) {
auto shader = static_cast<D3D11VertexShader*>(pVertexShader);
if (NumClassInstances != 0)
Logger::err("D3D11: Class instances not supported");
if (m_state.vs.shader != shader) {
m_state.vs.shader = shader;
BindShader(
DxbcProgramType::VertexShader,
GetCommonShader(shader));
}
}
void STDMETHODCALLTYPE D3D11DeviceContext::VSSetConstantBuffers(
UINT StartSlot,
UINT NumBuffers,
ID3D11Buffer* const* ppConstantBuffers) {
SetConstantBuffers(
DxbcProgramType::VertexShader,
m_state.vs.constantBuffers,
StartSlot, NumBuffers,
ppConstantBuffers,
nullptr, nullptr);
}
void STDMETHODCALLTYPE D3D11DeviceContext::VSSetConstantBuffers1(
UINT StartSlot,
UINT NumBuffers,
ID3D11Buffer* const* ppConstantBuffers,
const UINT* pFirstConstant,
const UINT* pNumConstants) {
SetConstantBuffers(
DxbcProgramType::VertexShader,
m_state.vs.constantBuffers,
StartSlot, NumBuffers,
ppConstantBuffers,
pFirstConstant,
pNumConstants);
}
void STDMETHODCALLTYPE D3D11DeviceContext::VSSetShaderResources(
UINT StartSlot,
UINT NumViews,
ID3D11ShaderResourceView* const* ppShaderResourceViews) {
SetShaderResources(
DxbcProgramType::VertexShader,
m_state.vs.shaderResources,
StartSlot, NumViews,
ppShaderResourceViews);
}
void STDMETHODCALLTYPE D3D11DeviceContext::VSSetSamplers(
UINT StartSlot,
UINT NumSamplers,
ID3D11SamplerState* const* ppSamplers) {
SetSamplers(
DxbcProgramType::VertexShader,
m_state.vs.samplers,
StartSlot, NumSamplers,
ppSamplers);
}
void STDMETHODCALLTYPE D3D11DeviceContext::VSGetShader(
ID3D11VertexShader** ppVertexShader,
ID3D11ClassInstance** ppClassInstances,
UINT* pNumClassInstances) {
if (ppVertexShader != nullptr)
*ppVertexShader = m_state.vs.shader.ref();
if (pNumClassInstances != nullptr)
*pNumClassInstances = 0;
}
void STDMETHODCALLTYPE D3D11DeviceContext::VSGetConstantBuffers(
UINT StartSlot,
UINT NumBuffers,
ID3D11Buffer** ppConstantBuffers) {
GetConstantBuffers(
m_state.vs.constantBuffers,
StartSlot, NumBuffers,
ppConstantBuffers,
nullptr, nullptr);
}
void STDMETHODCALLTYPE D3D11DeviceContext::VSGetConstantBuffers1(
UINT StartSlot,
UINT NumBuffers,
ID3D11Buffer** ppConstantBuffers,
UINT* pFirstConstant,
UINT* pNumConstants) {
GetConstantBuffers(
m_state.vs.constantBuffers,
StartSlot, NumBuffers,
ppConstantBuffers,
pFirstConstant,
pNumConstants);
}
void STDMETHODCALLTYPE D3D11DeviceContext::VSGetShaderResources(
UINT StartSlot,
UINT NumViews,
ID3D11ShaderResourceView** ppShaderResourceViews) {
for (uint32_t i = 0; i < NumViews; i++)
ppShaderResourceViews[i] = m_state.vs.shaderResources.at(StartSlot + i).ref();
}
void STDMETHODCALLTYPE D3D11DeviceContext::VSGetSamplers(
UINT StartSlot,
UINT NumSamplers,
ID3D11SamplerState** ppSamplers) {
for (uint32_t i = 0; i < NumSamplers; i++)
ppSamplers[i] = m_state.vs.samplers.at(StartSlot + i).ref();
}
void STDMETHODCALLTYPE D3D11DeviceContext::HSSetShader(
ID3D11HullShader* pHullShader,
ID3D11ClassInstance* const* ppClassInstances,
UINT NumClassInstances) {
auto shader = static_cast<D3D11HullShader*>(pHullShader);
if (NumClassInstances != 0)
Logger::err("D3D11: Class instances not supported");
if (m_state.hs.shader != shader) {
m_state.hs.shader = shader;
BindShader(
DxbcProgramType::HullShader,
GetCommonShader(shader));
}
}
void STDMETHODCALLTYPE D3D11DeviceContext::HSSetShaderResources(
UINT StartSlot,
UINT NumViews,
ID3D11ShaderResourceView* const* ppShaderResourceViews) {
SetShaderResources(
DxbcProgramType::HullShader,
m_state.hs.shaderResources,
StartSlot, NumViews,
ppShaderResourceViews);
}
void STDMETHODCALLTYPE D3D11DeviceContext::HSSetConstantBuffers(
UINT StartSlot,
UINT NumBuffers,
ID3D11Buffer* const* ppConstantBuffers) {
SetConstantBuffers(
DxbcProgramType::HullShader,
m_state.hs.constantBuffers,
StartSlot, NumBuffers,
ppConstantBuffers,
nullptr, nullptr);
}
void STDMETHODCALLTYPE D3D11DeviceContext::HSSetConstantBuffers1(
UINT StartSlot,
UINT NumBuffers,
ID3D11Buffer* const* ppConstantBuffers,
const UINT* pFirstConstant,
const UINT* pNumConstants) {
SetConstantBuffers(
DxbcProgramType::HullShader,
m_state.hs.constantBuffers,
StartSlot, NumBuffers,
ppConstantBuffers,
pFirstConstant,
pNumConstants);
}
void STDMETHODCALLTYPE D3D11DeviceContext::HSSetSamplers(
UINT StartSlot,
UINT NumSamplers,
ID3D11SamplerState* const* ppSamplers) {
SetSamplers(
DxbcProgramType::HullShader,
m_state.hs.samplers,
StartSlot, NumSamplers,
ppSamplers);
}
void STDMETHODCALLTYPE D3D11DeviceContext::HSGetShader(
ID3D11HullShader** ppHullShader,
ID3D11ClassInstance** ppClassInstances,
UINT* pNumClassInstances) {
if (ppHullShader != nullptr)
*ppHullShader = m_state.hs.shader.ref();
if (pNumClassInstances != nullptr)
*pNumClassInstances = 0;
}
void STDMETHODCALLTYPE D3D11DeviceContext::HSGetConstantBuffers(
UINT StartSlot,
UINT NumBuffers,
ID3D11Buffer** ppConstantBuffers) {
GetConstantBuffers(
m_state.hs.constantBuffers,
StartSlot, NumBuffers,
ppConstantBuffers,
nullptr, nullptr);
}
void D3D11DeviceContext::HSGetConstantBuffers1(
UINT StartSlot,
UINT NumBuffers,
ID3D11Buffer** ppConstantBuffers,
UINT* pFirstConstant,
UINT* pNumConstants) {
GetConstantBuffers(
m_state.hs.constantBuffers,
StartSlot, NumBuffers,
ppConstantBuffers,
pFirstConstant,
pNumConstants);
}
void STDMETHODCALLTYPE D3D11DeviceContext::HSGetShaderResources(
UINT StartSlot,
UINT NumViews,
ID3D11ShaderResourceView** ppShaderResourceViews) {
for (uint32_t i = 0; i < NumViews; i++)
ppShaderResourceViews[i] = m_state.hs.shaderResources.at(StartSlot + i).ref();
}
void STDMETHODCALLTYPE D3D11DeviceContext::HSGetSamplers(
UINT StartSlot,
UINT NumSamplers,
ID3D11SamplerState** ppSamplers) {
for (uint32_t i = 0; i < NumSamplers; i++)
ppSamplers[i] = m_state.hs.samplers.at(StartSlot + i).ref();
}
void STDMETHODCALLTYPE D3D11DeviceContext::DSSetShader(
ID3D11DomainShader* pDomainShader,
ID3D11ClassInstance* const* ppClassInstances,
UINT NumClassInstances) {
auto shader = static_cast<D3D11DomainShader*>(pDomainShader);
if (NumClassInstances != 0)
Logger::err("D3D11: Class instances not supported");
if (m_state.ds.shader != shader) {
m_state.ds.shader = shader;
BindShader(
DxbcProgramType::DomainShader,
GetCommonShader(shader));
}
}
void STDMETHODCALLTYPE D3D11DeviceContext::DSSetShaderResources(
UINT StartSlot,
UINT NumViews,
ID3D11ShaderResourceView* const* ppShaderResourceViews) {
SetShaderResources(
DxbcProgramType::DomainShader,
m_state.ds.shaderResources,
StartSlot, NumViews,
ppShaderResourceViews);
}
void STDMETHODCALLTYPE D3D11DeviceContext::DSSetConstantBuffers(
UINT StartSlot,
UINT NumBuffers,
ID3D11Buffer* const* ppConstantBuffers) {
SetConstantBuffers(
DxbcProgramType::DomainShader,
m_state.ds.constantBuffers,
StartSlot, NumBuffers,
ppConstantBuffers,
nullptr, nullptr);
}
void STDMETHODCALLTYPE D3D11DeviceContext::DSSetConstantBuffers1(
UINT StartSlot,
UINT NumBuffers,
ID3D11Buffer* const* ppConstantBuffers,
const UINT* pFirstConstant,
const UINT* pNumConstants) {
SetConstantBuffers(
DxbcProgramType::DomainShader,
m_state.ds.constantBuffers,
StartSlot, NumBuffers,
ppConstantBuffers,
pFirstConstant,
pNumConstants);
}
void STDMETHODCALLTYPE D3D11DeviceContext::DSSetSamplers(
UINT StartSlot,
UINT NumSamplers,
ID3D11SamplerState* const* ppSamplers) {
SetSamplers(
DxbcProgramType::DomainShader,
m_state.ds.samplers,
StartSlot, NumSamplers,
ppSamplers);
}
void STDMETHODCALLTYPE D3D11DeviceContext::DSGetShader(
ID3D11DomainShader** ppDomainShader,
ID3D11ClassInstance** ppClassInstances,
UINT* pNumClassInstances) {
if (ppDomainShader != nullptr)
*ppDomainShader = m_state.ds.shader.ref();
if (pNumClassInstances != nullptr)
*pNumClassInstances = 0;
}
void STDMETHODCALLTYPE D3D11DeviceContext::DSGetConstantBuffers(
UINT StartSlot,
UINT NumBuffers,
ID3D11Buffer** ppConstantBuffers) {
GetConstantBuffers(
m_state.ds.constantBuffers,
StartSlot, NumBuffers,
ppConstantBuffers,
nullptr, nullptr);
}
void STDMETHODCALLTYPE D3D11DeviceContext::DSGetConstantBuffers1(
UINT StartSlot,
UINT NumBuffers,
ID3D11Buffer** ppConstantBuffers,
UINT* pFirstConstant,
UINT* pNumConstants) {
GetConstantBuffers(
m_state.ds.constantBuffers,
StartSlot, NumBuffers,
ppConstantBuffers,
pFirstConstant,
pNumConstants);
}
void STDMETHODCALLTYPE D3D11DeviceContext::DSGetShaderResources(
UINT StartSlot,
UINT NumViews,
ID3D11ShaderResourceView** ppShaderResourceViews) {
for (uint32_t i = 0; i < NumViews; i++)
ppShaderResourceViews[i] = m_state.ds.shaderResources.at(StartSlot + i).ref();
}
void STDMETHODCALLTYPE D3D11DeviceContext::DSGetSamplers(
UINT StartSlot,
UINT NumSamplers,
ID3D11SamplerState** ppSamplers) {
for (uint32_t i = 0; i < NumSamplers; i++)
ppSamplers[i] = m_state.ds.samplers.at(StartSlot + i).ref();
}
void STDMETHODCALLTYPE D3D11DeviceContext::GSSetShader(
ID3D11GeometryShader* pShader,
ID3D11ClassInstance* const* ppClassInstances,
UINT NumClassInstances) {
auto shader = static_cast<D3D11GeometryShader*>(pShader);
if (NumClassInstances != 0)
Logger::err("D3D11: Class instances not supported");
if (m_state.gs.shader != shader) {
m_state.gs.shader = shader;
BindShader(
DxbcProgramType::GeometryShader,
GetCommonShader(shader));
}
}
void STDMETHODCALLTYPE D3D11DeviceContext::GSSetConstantBuffers(
UINT StartSlot,
UINT NumBuffers,
ID3D11Buffer* const* ppConstantBuffers) {
SetConstantBuffers(
DxbcProgramType::GeometryShader,
m_state.gs.constantBuffers,
StartSlot, NumBuffers,
ppConstantBuffers,
nullptr, nullptr);
}
void D3D11DeviceContext::GSSetConstantBuffers1(
UINT StartSlot,
UINT NumBuffers,
ID3D11Buffer* const* ppConstantBuffers,
const UINT* pFirstConstant,
const UINT* pNumConstants) {
SetConstantBuffers(
DxbcProgramType::GeometryShader,
m_state.gs.constantBuffers,
StartSlot, NumBuffers,
ppConstantBuffers,
pFirstConstant,
pNumConstants);
}
void STDMETHODCALLTYPE D3D11DeviceContext::GSSetShaderResources(
UINT StartSlot,
UINT NumViews,
ID3D11ShaderResourceView* const* ppShaderResourceViews) {
SetShaderResources(
DxbcProgramType::GeometryShader,
m_state.gs.shaderResources,
StartSlot, NumViews,
ppShaderResourceViews);
}
void STDMETHODCALLTYPE D3D11DeviceContext::GSSetSamplers(
UINT StartSlot,
UINT NumSamplers,
ID3D11SamplerState* const* ppSamplers) {
SetSamplers(
DxbcProgramType::GeometryShader,
m_state.gs.samplers,
StartSlot, NumSamplers,
ppSamplers);
}
void STDMETHODCALLTYPE D3D11DeviceContext::GSGetShader(
ID3D11GeometryShader** ppGeometryShader,
ID3D11ClassInstance** ppClassInstances,
UINT* pNumClassInstances) {
if (ppGeometryShader != nullptr)
*ppGeometryShader = m_state.gs.shader.ref();
if (pNumClassInstances != nullptr)
*pNumClassInstances = 0;
}
void STDMETHODCALLTYPE D3D11DeviceContext::GSGetConstantBuffers(
UINT StartSlot,
UINT NumBuffers,
ID3D11Buffer** ppConstantBuffers) {
GetConstantBuffers(
m_state.gs.constantBuffers,
StartSlot, NumBuffers,
ppConstantBuffers,
nullptr, nullptr);
}
void D3D11DeviceContext::GSGetConstantBuffers1(
UINT StartSlot,
UINT NumBuffers,
ID3D11Buffer** ppConstantBuffers,
UINT* pFirstConstant,
UINT* pNumConstants) {
GetConstantBuffers(
m_state.gs.constantBuffers,
StartSlot, NumBuffers,
ppConstantBuffers,
pFirstConstant,
pNumConstants);
}
void STDMETHODCALLTYPE D3D11DeviceContext::GSGetShaderResources(
UINT StartSlot,
UINT NumViews,
ID3D11ShaderResourceView** ppShaderResourceViews) {
for (uint32_t i = 0; i < NumViews; i++)
ppShaderResourceViews[i] = m_state.gs.shaderResources.at(StartSlot + i).ref();
}
void STDMETHODCALLTYPE D3D11DeviceContext::GSGetSamplers(
UINT StartSlot,
UINT NumSamplers,
ID3D11SamplerState** ppSamplers) {
for (uint32_t i = 0; i < NumSamplers; i++)
ppSamplers[i] = m_state.gs.samplers.at(StartSlot + i).ref();
}
void STDMETHODCALLTYPE D3D11DeviceContext::PSSetShader(
ID3D11PixelShader* pPixelShader,
ID3D11ClassInstance* const* ppClassInstances,
UINT NumClassInstances) {
auto shader = static_cast<D3D11PixelShader*>(pPixelShader);
if (NumClassInstances != 0)
Logger::err("D3D11: Class instances not supported");
if (m_state.ps.shader != shader) {
m_state.ps.shader = shader;
BindShader(
DxbcProgramType::PixelShader,
GetCommonShader(shader));
}
}
void STDMETHODCALLTYPE D3D11DeviceContext::PSSetConstantBuffers(
UINT StartSlot,
UINT NumBuffers,
ID3D11Buffer* const* ppConstantBuffers) {
SetConstantBuffers(
DxbcProgramType::PixelShader,
m_state.ps.constantBuffers,
StartSlot, NumBuffers,
ppConstantBuffers,
nullptr, nullptr);
}
void D3D11DeviceContext::PSSetConstantBuffers1(
UINT StartSlot,
UINT NumBuffers,
ID3D11Buffer* const* ppConstantBuffers,
const UINT* pFirstConstant,
const UINT* pNumConstants) {
SetConstantBuffers(
DxbcProgramType::PixelShader,
m_state.ps.constantBuffers,
StartSlot, NumBuffers,
ppConstantBuffers,
pFirstConstant,
pNumConstants);
}
void STDMETHODCALLTYPE D3D11DeviceContext::PSSetShaderResources(
UINT StartSlot,
UINT NumViews,
ID3D11ShaderResourceView* const* ppShaderResourceViews) {
SetShaderResources(
DxbcProgramType::PixelShader,
m_state.ps.shaderResources,
StartSlot, NumViews,
ppShaderResourceViews);
}
void STDMETHODCALLTYPE D3D11DeviceContext::PSSetSamplers(
UINT StartSlot,
UINT NumSamplers,
ID3D11SamplerState* const* ppSamplers) {
SetSamplers(
DxbcProgramType::PixelShader,
m_state.ps.samplers,
StartSlot, NumSamplers,
ppSamplers);
}
void STDMETHODCALLTYPE D3D11DeviceContext::PSGetShader(
ID3D11PixelShader** ppPixelShader,
ID3D11ClassInstance** ppClassInstances,
UINT* pNumClassInstances) {
if (ppPixelShader != nullptr)
*ppPixelShader = m_state.ps.shader.ref();
if (pNumClassInstances != nullptr)
*pNumClassInstances = 0;
}
void STDMETHODCALLTYPE D3D11DeviceContext::PSGetConstantBuffers(
UINT StartSlot,
UINT NumBuffers,
ID3D11Buffer** ppConstantBuffers) {
GetConstantBuffers(
m_state.ps.constantBuffers,
StartSlot, NumBuffers,
ppConstantBuffers,
nullptr, nullptr);
}
void D3D11DeviceContext::PSGetConstantBuffers1(
UINT StartSlot,
UINT NumBuffers,
ID3D11Buffer** ppConstantBuffers,
UINT* pFirstConstant,
UINT* pNumConstants) {
GetConstantBuffers(
m_state.ps.constantBuffers,
StartSlot, NumBuffers,
ppConstantBuffers,
pFirstConstant,
pNumConstants);
}
void STDMETHODCALLTYPE D3D11DeviceContext::PSGetShaderResources(
UINT StartSlot,
UINT NumViews,
ID3D11ShaderResourceView** ppShaderResourceViews) {
for (uint32_t i = 0; i < NumViews; i++)
ppShaderResourceViews[i] = m_state.ps.shaderResources.at(StartSlot + i).ref();
}
void STDMETHODCALLTYPE D3D11DeviceContext::PSGetSamplers(
UINT StartSlot,
UINT NumSamplers,
ID3D11SamplerState** ppSamplers) {
for (uint32_t i = 0; i < NumSamplers; i++)
ppSamplers[i] = m_state.ps.samplers.at(StartSlot + i).ref();
}
void STDMETHODCALLTYPE D3D11DeviceContext::CSSetShader(
ID3D11ComputeShader* pComputeShader,
ID3D11ClassInstance* const* ppClassInstances,
UINT NumClassInstances) {
auto shader = static_cast<D3D11ComputeShader*>(pComputeShader);
if (NumClassInstances != 0)
Logger::err("D3D11: Class instances not supported");
if (m_state.cs.shader != shader) {
m_state.cs.shader = shader;
BindShader(
DxbcProgramType::ComputeShader,
GetCommonShader(shader));
}
}
void STDMETHODCALLTYPE D3D11DeviceContext::CSSetConstantBuffers(
UINT StartSlot,
UINT NumBuffers,
ID3D11Buffer* const* ppConstantBuffers) {
SetConstantBuffers(
DxbcProgramType::ComputeShader,
m_state.cs.constantBuffers,
StartSlot, NumBuffers,
ppConstantBuffers,
nullptr, nullptr);
}
void STDMETHODCALLTYPE D3D11DeviceContext::CSSetConstantBuffers1(
UINT StartSlot,
UINT NumBuffers,
ID3D11Buffer* const* ppConstantBuffers,
const UINT* pFirstConstant,
const UINT* pNumConstants) {
SetConstantBuffers(
DxbcProgramType::ComputeShader,
m_state.cs.constantBuffers,
StartSlot, NumBuffers,
ppConstantBuffers,
pFirstConstant,
pNumConstants);
}
void STDMETHODCALLTYPE D3D11DeviceContext::CSSetShaderResources(
UINT StartSlot,
UINT NumViews,
ID3D11ShaderResourceView* const* ppShaderResourceViews) {
SetShaderResources(
DxbcProgramType::ComputeShader,
m_state.cs.shaderResources,
StartSlot, NumViews,
ppShaderResourceViews);
}
void STDMETHODCALLTYPE D3D11DeviceContext::CSSetSamplers(
UINT StartSlot,
UINT NumSamplers,
ID3D11SamplerState* const* ppSamplers) {
SetSamplers(
DxbcProgramType::ComputeShader,
m_state.cs.samplers,
StartSlot, NumSamplers,
ppSamplers);
}
void STDMETHODCALLTYPE D3D11DeviceContext::CSSetUnorderedAccessViews(
UINT StartSlot,
UINT NumUAVs,
ID3D11UnorderedAccessView* const* ppUnorderedAccessViews,
const UINT* pUAVInitialCounts) {
SetUnorderedAccessViews(
DxbcProgramType::ComputeShader,
m_state.cs.unorderedAccessViews,
StartSlot, NumUAVs,
ppUnorderedAccessViews,
pUAVInitialCounts);
}
void STDMETHODCALLTYPE D3D11DeviceContext::CSGetShader(
ID3D11ComputeShader** ppComputeShader,
ID3D11ClassInstance** ppClassInstances,
UINT* pNumClassInstances) {
if (ppComputeShader != nullptr)
*ppComputeShader = m_state.cs.shader.ref();
if (pNumClassInstances != nullptr)
*pNumClassInstances = 0;
}
void STDMETHODCALLTYPE D3D11DeviceContext::CSGetConstantBuffers(
UINT StartSlot,
UINT NumBuffers,
ID3D11Buffer** ppConstantBuffers) {
GetConstantBuffers(
m_state.cs.constantBuffers,
StartSlot, NumBuffers,
ppConstantBuffers,
nullptr, nullptr);
}
void STDMETHODCALLTYPE D3D11DeviceContext::CSGetConstantBuffers1(
UINT StartSlot,
UINT NumBuffers,
ID3D11Buffer** ppConstantBuffers,
UINT* pFirstConstant,
UINT* pNumConstants) {
GetConstantBuffers(
m_state.cs.constantBuffers,
StartSlot, NumBuffers,
ppConstantBuffers,
pFirstConstant,
pNumConstants);
}
void STDMETHODCALLTYPE D3D11DeviceContext::CSGetShaderResources(
UINT StartSlot,
UINT NumViews,
ID3D11ShaderResourceView** ppShaderResourceViews) {
for (uint32_t i = 0; i < NumViews; i++)
ppShaderResourceViews[i] = m_state.cs.shaderResources.at(StartSlot + i).ref();
}
void STDMETHODCALLTYPE D3D11DeviceContext::CSGetSamplers(
UINT StartSlot,
UINT NumSamplers,
ID3D11SamplerState** ppSamplers) {
for (uint32_t i = 0; i < NumSamplers; i++)
ppSamplers[i] = m_state.cs.samplers.at(StartSlot + i).ref();
}
void STDMETHODCALLTYPE D3D11DeviceContext::CSGetUnorderedAccessViews(
UINT StartSlot,
UINT NumUAVs,
ID3D11UnorderedAccessView** ppUnorderedAccessViews) {
for (uint32_t i = 0; i < NumUAVs; i++)
ppUnorderedAccessViews[i] = m_state.cs.unorderedAccessViews.at(StartSlot + i).ref();
}
void STDMETHODCALLTYPE D3D11DeviceContext::OMSetRenderTargets(
UINT NumViews,
ID3D11RenderTargetView* const* ppRenderTargetViews,
ID3D11DepthStencilView* pDepthStencilView) {
SetRenderTargets(NumViews, ppRenderTargetViews, pDepthStencilView);
BindFramebuffer(std::exchange(m_state.om.isUavRendering, false));
}
void STDMETHODCALLTYPE D3D11DeviceContext::OMSetRenderTargetsAndUnorderedAccessViews(
UINT NumRTVs,
ID3D11RenderTargetView* const* ppRenderTargetViews,
ID3D11DepthStencilView* pDepthStencilView,
UINT UAVStartSlot,
UINT NumUAVs,
ID3D11UnorderedAccessView* const* ppUnorderedAccessViews,
const UINT* pUAVInitialCounts) {
bool spillOnBind = m_state.om.isUavRendering;
if (NumRTVs != D3D11_KEEP_RENDER_TARGETS_AND_DEPTH_STENCIL)
SetRenderTargets(NumRTVs, ppRenderTargetViews, pDepthStencilView);
if (NumUAVs != D3D11_KEEP_UNORDERED_ACCESS_VIEWS) {
// Check whether there actually are any UAVs bound
m_state.om.isUavRendering = false;
for (uint32_t i = 0; i < NumUAVs && !m_state.om.isUavRendering; i++)
m_state.om.isUavRendering = ppUnorderedAccessViews[i] != nullptr;
// UAVs are made available to all shader stages in
// the graphics pipeline even though this code may
// suggest that they are limited to the pixel shader.
SetUnorderedAccessViews(
DxbcProgramType::PixelShader,
m_state.ps.unorderedAccessViews,
UAVStartSlot, NumUAVs,
ppUnorderedAccessViews,
pUAVInitialCounts);
}
BindFramebuffer(spillOnBind);
}
void STDMETHODCALLTYPE D3D11DeviceContext::OMSetBlendState(
ID3D11BlendState* pBlendState,
const FLOAT BlendFactor[4],
UINT SampleMask) {
auto blendState = static_cast<D3D11BlendState*>(pBlendState);
if (m_state.om.cbState != blendState
|| m_state.om.sampleMask != SampleMask) {
m_state.om.cbState = blendState;
m_state.om.sampleMask = SampleMask;
ApplyBlendState();
}
if (BlendFactor != nullptr) {
for (uint32_t i = 0; i < 4; i++)
m_state.om.blendFactor[i] = BlendFactor[i];
ApplyBlendFactor();
}
}
void STDMETHODCALLTYPE D3D11DeviceContext::OMSetDepthStencilState(
ID3D11DepthStencilState* pDepthStencilState,
UINT StencilRef) {
auto depthStencilState = static_cast<D3D11DepthStencilState*>(pDepthStencilState);
if (m_state.om.dsState != depthStencilState) {
m_state.om.dsState = depthStencilState;
ApplyDepthStencilState();
}
if (m_state.om.stencilRef != StencilRef) {
m_state.om.stencilRef = StencilRef;
ApplyStencilRef();
}
}
void STDMETHODCALLTYPE D3D11DeviceContext::OMGetRenderTargets(
UINT NumViews,
ID3D11RenderTargetView** ppRenderTargetViews,
ID3D11DepthStencilView** ppDepthStencilView) {
if (ppRenderTargetViews != nullptr) {
for (UINT i = 0; i < NumViews; i++)
ppRenderTargetViews[i] = m_state.om.renderTargetViews[i].ref();
}
if (ppDepthStencilView != nullptr)
*ppDepthStencilView = m_state.om.depthStencilView.ref();
}
void STDMETHODCALLTYPE D3D11DeviceContext::OMGetRenderTargetsAndUnorderedAccessViews(
UINT NumRTVs,
ID3D11RenderTargetView** ppRenderTargetViews,
ID3D11DepthStencilView** ppDepthStencilView,
UINT UAVStartSlot,
UINT NumUAVs,
ID3D11UnorderedAccessView** ppUnorderedAccessViews) {
OMGetRenderTargets(NumRTVs, ppRenderTargetViews, ppDepthStencilView);
if (ppUnorderedAccessViews != nullptr) {
for (UINT i = 0; i < NumUAVs; i++)
ppUnorderedAccessViews[i] = m_state.ps.unorderedAccessViews[UAVStartSlot + i].ref();
}
}
void STDMETHODCALLTYPE D3D11DeviceContext::OMGetBlendState(
ID3D11BlendState** ppBlendState,
FLOAT BlendFactor[4],
UINT* pSampleMask) {
if (ppBlendState != nullptr)
*ppBlendState = m_state.om.cbState.ref();
if (BlendFactor != nullptr)
std::memcpy(BlendFactor, m_state.om.blendFactor, sizeof(FLOAT) * 4);
if (pSampleMask != nullptr)
*pSampleMask = m_state.om.sampleMask;
}
void STDMETHODCALLTYPE D3D11DeviceContext::OMGetDepthStencilState(
ID3D11DepthStencilState** ppDepthStencilState,
UINT* pStencilRef) {
if (ppDepthStencilState != nullptr)
*ppDepthStencilState = m_state.om.dsState.ref();
if (pStencilRef != nullptr)
*pStencilRef = m_state.om.stencilRef;
}
void STDMETHODCALLTYPE D3D11DeviceContext::RSSetState(ID3D11RasterizerState* pRasterizerState) {
auto rasterizerState = static_cast<D3D11RasterizerState*>(pRasterizerState);
if (m_state.rs.state != rasterizerState) {
m_state.rs.state = rasterizerState;
// In D3D11, the rasterizer state defines whether the
// scissor test is enabled, so we have to update the
// scissor rectangles as well.
ApplyRasterizerState();
ApplyViewportState();
}
}
void STDMETHODCALLTYPE D3D11DeviceContext::RSSetViewports(
UINT NumViewports,
const D3D11_VIEWPORT* pViewports) {
m_state.rs.numViewports = NumViewports;
for (uint32_t i = 0; i < NumViewports; i++)
m_state.rs.viewports.at(i) = pViewports[i];
ApplyViewportState();
}
void STDMETHODCALLTYPE D3D11DeviceContext::RSSetScissorRects(
UINT NumRects,
const D3D11_RECT* pRects) {
m_state.rs.numScissors = NumRects;
for (uint32_t i = 0; i < NumRects; i++) {
if (pRects[i].bottom >= pRects[i].top
&& pRects[i].right >= pRects[i].left)
m_state.rs.scissors.at(i) = pRects[i];
}
if (m_state.rs.state != nullptr) {
D3D11_RASTERIZER_DESC rsDesc;
m_state.rs.state->GetDesc(&rsDesc);
if (rsDesc.ScissorEnable)
ApplyViewportState();
}
}
void STDMETHODCALLTYPE D3D11DeviceContext::RSGetState(ID3D11RasterizerState** ppRasterizerState) {
if (ppRasterizerState != nullptr)
*ppRasterizerState = m_state.rs.state.ref();
}
void STDMETHODCALLTYPE D3D11DeviceContext::RSGetViewports(
UINT* pNumViewports,
D3D11_VIEWPORT* pViewports) {
if (pViewports != nullptr) {
for (uint32_t i = 0; i < *pNumViewports; i++) {
if (i < m_state.rs.numViewports) {
pViewports[i] = m_state.rs.viewports.at(i);
} else {
pViewports[i].TopLeftX = 0.0f;
pViewports[i].TopLeftY = 0.0f;
pViewports[i].Width = 0.0f;
pViewports[i].Height = 0.0f;
pViewports[i].MinDepth = 0.0f;
pViewports[i].MaxDepth = 0.0f;
}
}
}
*pNumViewports = m_state.rs.numViewports;
}
void STDMETHODCALLTYPE D3D11DeviceContext::RSGetScissorRects(
UINT* pNumRects,
D3D11_RECT* pRects) {
if (pRects != nullptr) {
for (uint32_t i = 0; i < *pNumRects; i++) {
if (i < m_state.rs.numScissors) {
pRects[i] = m_state.rs.scissors.at(i);
} else {
pRects[i].left = 0;
pRects[i].top = 0;
pRects[i].right = 0;
pRects[i].bottom = 0;
}
}
}
*pNumRects = m_state.rs.numScissors;
}
void STDMETHODCALLTYPE D3D11DeviceContext::SOSetTargets(
UINT NumBuffers,
ID3D11Buffer* const* ppSOTargets,
const UINT* pOffsets) {
for (uint32_t i = 0; i < NumBuffers; i++) {
D3D11Buffer* buffer = static_cast<D3D11Buffer*>(ppSOTargets[i]);
UINT offset = pOffsets != nullptr ? pOffsets[i] : 0;
m_state.so.targets[i].buffer = buffer;
m_state.so.targets[i].offset = offset;
}
for (uint32_t i = NumBuffers; i < D3D11_SO_BUFFER_SLOT_COUNT; i++) {
m_state.so.targets[i].buffer = nullptr;
m_state.so.targets[i].offset = 0;
}
for (uint32_t i = 0; i < D3D11_SO_BUFFER_SLOT_COUNT; i++) {
BindXfbBuffer(i,
m_state.so.targets[i].buffer.ptr(),
m_state.so.targets[i].offset);
}
}
void STDMETHODCALLTYPE D3D11DeviceContext::SOGetTargets(
UINT NumBuffers,
ID3D11Buffer** ppSOTargets) {
for (uint32_t i = 0; i < NumBuffers; i++)
ppSOTargets[i] = m_state.so.targets[i].buffer.ref();
}
void STDMETHODCALLTYPE D3D11DeviceContext::SOGetTargetsWithOffsets(
UINT NumBuffers,
ID3D11Buffer** ppSOTargets,
UINT* pOffsets) {
for (uint32_t i = 0; i < NumBuffers; i++) {
if (ppSOTargets != nullptr)
ppSOTargets[i] = m_state.so.targets[i].buffer.ref();
if (pOffsets != nullptr)
pOffsets[i] = m_state.so.targets[i].offset;
}
}
void STDMETHODCALLTYPE D3D11DeviceContext::TransitionSurfaceLayout(
IDXGIVkInteropSurface* pSurface,
const VkImageSubresourceRange* pSubresources,
VkImageLayout OldLayout,
VkImageLayout NewLayout) {
// Get the underlying D3D11 resource
Com<ID3D11Resource> resource;
pSurface->QueryInterface(__uuidof(ID3D11Resource),
reinterpret_cast<void**>(&resource));
// Get the texture from that resource
D3D11CommonTexture* texture = GetCommonTexture(resource.ptr());
EmitCs([
cImage = texture->GetImage(),
cSubresources = *pSubresources,
cOldLayout = OldLayout,
cNewLayout = NewLayout
] (DxvkContext* ctx) {
ctx->transformImage(
cImage, cSubresources,
cOldLayout, cNewLayout);
});
}
void D3D11DeviceContext::ApplyInputLayout() {
if (m_state.ia.inputLayout != nullptr) {
EmitCs([cInputLayout = m_state.ia.inputLayout] (DxvkContext* ctx) {
cInputLayout->BindToContext(ctx);
});
} else {
EmitCs([] (DxvkContext* ctx) {
ctx->setInputLayout(0, nullptr, 0, nullptr);
});
}
}
void D3D11DeviceContext::ApplyPrimitiveTopology() {
if (m_state.ia.primitiveTopology == D3D11_PRIMITIVE_TOPOLOGY_UNDEFINED)
return;
const DxvkInputAssemblyState iaState =
[Topology = m_state.ia.primitiveTopology] () -> DxvkInputAssemblyState {
if (Topology >= D3D11_PRIMITIVE_TOPOLOGY_1_CONTROL_POINT_PATCHLIST
&& Topology <= D3D11_PRIMITIVE_TOPOLOGY_32_CONTROL_POINT_PATCHLIST) {
// Tessellation patch. The number of control points per
// patch can be inferred from the enum value in D3D11.
return { VK_PRIMITIVE_TOPOLOGY_PATCH_LIST, VK_FALSE,
uint32_t(Topology - D3D11_PRIMITIVE_TOPOLOGY_1_CONTROL_POINT_PATCHLIST + 1) };
} else {
switch (Topology) {
case D3D11_PRIMITIVE_TOPOLOGY_POINTLIST:
return { VK_PRIMITIVE_TOPOLOGY_POINT_LIST, VK_FALSE, 0 };
case D3D11_PRIMITIVE_TOPOLOGY_LINELIST:
return { VK_PRIMITIVE_TOPOLOGY_LINE_LIST, VK_FALSE, 0 };
case D3D11_PRIMITIVE_TOPOLOGY_LINESTRIP:
return { VK_PRIMITIVE_TOPOLOGY_LINE_STRIP, VK_TRUE, 0 };
case D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST:
return { VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, VK_FALSE, 0 };
case D3D11_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP:
return { VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, VK_TRUE, 0 };
case D3D11_PRIMITIVE_TOPOLOGY_LINELIST_ADJ:
return { VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY, VK_FALSE, 0 };
case D3D11_PRIMITIVE_TOPOLOGY_LINESTRIP_ADJ:
return { VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY, VK_TRUE, 0 };
case D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST_ADJ:
return { VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY, VK_FALSE, 0 };
case D3D11_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP_ADJ:
return { VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY, VK_TRUE, 0 };
default:
Logger::err(str::format("D3D11: Invalid primitive topology: ", Topology));
return { };
}
}
}();
EmitCs([iaState] (DxvkContext* ctx) {
ctx->setInputAssemblyState(iaState);
});
}
void D3D11DeviceContext::ApplyBlendState() {
EmitCs([
cBlendState = m_state.om.cbState != nullptr
? m_state.om.cbState
: m_defaultBlendState,
cSampleMask = m_state.om.sampleMask
] (DxvkContext* ctx) {
cBlendState->BindToContext(ctx, cSampleMask);
});
}
void D3D11DeviceContext::ApplyBlendFactor() {
EmitCs([
cBlendConstants = DxvkBlendConstants {
m_state.om.blendFactor[0], m_state.om.blendFactor[1],
m_state.om.blendFactor[2], m_state.om.blendFactor[3] }
] (DxvkContext* ctx) {
ctx->setBlendConstants(cBlendConstants);
});
}
void D3D11DeviceContext::ApplyDepthStencilState() {
EmitCs([
cDepthStencilState = m_state.om.dsState != nullptr
? m_state.om.dsState
: m_defaultDepthStencilState
] (DxvkContext* ctx) {
cDepthStencilState->BindToContext(ctx);
});
}
void D3D11DeviceContext::ApplyStencilRef() {
EmitCs([
cStencilRef = m_state.om.stencilRef
] (DxvkContext* ctx) {
ctx->setStencilReference(cStencilRef);
});
}
void D3D11DeviceContext::ApplyRasterizerState() {
EmitCs([
cRasterizerState = m_state.rs.state != nullptr
? m_state.rs.state
: m_defaultRasterizerState
] (DxvkContext* ctx) {
cRasterizerState->BindToContext(ctx);
});
}
void D3D11DeviceContext::ApplyViewportState() {
// We cannot set less than one viewport in Vulkan, and
// rendering with no active viewport is illegal anyway.
if (m_state.rs.numViewports == 0)
return;
std::array<VkViewport, D3D11_VIEWPORT_AND_SCISSORRECT_OBJECT_COUNT_PER_PIPELINE> viewports;
std::array<VkRect2D, D3D11_VIEWPORT_AND_SCISSORRECT_OBJECT_COUNT_PER_PIPELINE> scissors;
// D3D11's coordinate system has its origin in the bottom left,
// but the viewport coordinates are aligned to the top-left
// corner so we can get away with flipping the viewport.
for (uint32_t i = 0; i < m_state.rs.numViewports; i++) {
const D3D11_VIEWPORT& vp = m_state.rs.viewports.at(i);
viewports.at(i) = VkViewport {
vp.TopLeftX, vp.Height + vp.TopLeftY,
vp.Width, -vp.Height,
vp.MinDepth, vp.MaxDepth,
};
}
// Scissor rectangles. Vulkan does not provide an easy way
// to disable the scissor test, so we'll have to set scissor
// rects that are at least as large as the framebuffer.
bool enableScissorTest = false;
if (m_state.rs.state != nullptr) {
D3D11_RASTERIZER_DESC rsDesc;
m_state.rs.state->GetDesc(&rsDesc);
enableScissorTest = rsDesc.ScissorEnable;
}
for (uint32_t i = 0; i < m_state.rs.numViewports; i++) {
if (enableScissorTest && (i < m_state.rs.numScissors)) {
D3D11_RECT sr = m_state.rs.scissors.at(i);
VkOffset2D srPosA;
srPosA.x = std::max<int32_t>(0, sr.left);
srPosA.y = std::max<int32_t>(0, sr.top);
VkOffset2D srPosB;
srPosB.x = std::max<int32_t>(srPosA.x, sr.right);
srPosB.y = std::max<int32_t>(srPosA.y, sr.bottom);
VkExtent2D srSize;
srSize.width = uint32_t(srPosB.x - srPosA.x);
srSize.height = uint32_t(srPosB.y - srPosA.y);
scissors.at(i) = VkRect2D { srPosA, srSize };
} else {
scissors.at(i) = VkRect2D {
VkOffset2D { 0, 0 },
VkExtent2D {
D3D11_VIEWPORT_BOUNDS_MAX,
D3D11_VIEWPORT_BOUNDS_MAX } };
}
}
EmitCs([
cViewportCount = m_state.rs.numViewports,
cViewports = viewports,
cScissors = scissors
] (DxvkContext* ctx) {
ctx->setViewports(
cViewportCount,
cViewports.data(),
cScissors.data());
});
}
void D3D11DeviceContext::BindShader(
DxbcProgramType ShaderStage,
const D3D11CommonShader* pShaderModule) {
// Bind the shader and the ICB at once
const uint32_t slotId = computeResourceSlotId(
ShaderStage, DxbcBindingType::ConstantBuffer,
D3D11_COMMONSHADER_CONSTANT_BUFFER_API_SLOT_COUNT);
EmitCs([
cSlotId = slotId,
cStage = GetShaderStage(ShaderStage),
cSlice = pShaderModule != nullptr
&& pShaderModule->GetIcb() != nullptr
? DxvkBufferSlice(pShaderModule->GetIcb())
: DxvkBufferSlice(),
cShader = pShaderModule != nullptr
? pShaderModule->GetShader()
: nullptr
] (DxvkContext* ctx) {
ctx->bindShader (cStage, cShader);
ctx->bindResourceBuffer(cSlotId, cSlice);
});
}
void D3D11DeviceContext::BindFramebuffer(BOOL Spill) {
// NOTE According to the Microsoft docs, we are supposed to
// unbind overlapping shader resource views. Since this comes
// with a large performance penalty we'll ignore this until an
// application actually relies on this behaviour.
DxvkRenderTargets attachments;
// D3D11 doesn't have the concept of a framebuffer object,
// so we'll just create a new one every time the render
// target bindings are updated. Set up the attachments.
for (UINT i = 0; i < m_state.om.renderTargetViews.size(); i++) {
if (m_state.om.renderTargetViews.at(i) != nullptr) {
attachments.color[i] = {
m_state.om.renderTargetViews.at(i)->GetImageView(),
m_state.om.renderTargetViews.at(i)->GetRenderLayout() };
}
}
if (m_state.om.depthStencilView != nullptr) {
attachments.depth = {
m_state.om.depthStencilView->GetImageView(),
m_state.om.depthStencilView->GetRenderLayout() };
}
// Create and bind the framebuffer object to the context
EmitCs([
cAttachments = std::move(attachments),
cSpill = Spill
] (DxvkContext* ctx) {
ctx->bindRenderTargets(cAttachments, cSpill);
});
}
void D3D11DeviceContext::BindDrawBuffer(
D3D11Buffer* pBuffer) {
EmitCs([
cBufferSlice = pBuffer != nullptr
? pBuffer->GetBufferSlice()
: DxvkBufferSlice()
] (DxvkContext* ctx) {
ctx->bindDrawBuffer(cBufferSlice);
});
}
void D3D11DeviceContext::BindVertexBuffer(
UINT Slot,
D3D11Buffer* pBuffer,
UINT Offset,
UINT Stride) {
EmitCs([
cSlotId = Slot,
cBufferSlice = pBuffer != nullptr ? pBuffer->GetBufferSlice(Offset) : DxvkBufferSlice(),
cStride = pBuffer != nullptr ? Stride : 0
] (DxvkContext* ctx) {
ctx->bindVertexBuffer(cSlotId, cBufferSlice, cStride);
});
}
void D3D11DeviceContext::BindIndexBuffer(
D3D11Buffer* pBuffer,
UINT Offset,
DXGI_FORMAT Format) {
// As in Vulkan, the index format can be either a 32-bit
// or 16-bit unsigned integer, no other formats are allowed.
VkIndexType indexType = VK_INDEX_TYPE_UINT32;
if (pBuffer != nullptr) {
switch (Format) {
case DXGI_FORMAT_R16_UINT: indexType = VK_INDEX_TYPE_UINT16; break;
case DXGI_FORMAT_R32_UINT: indexType = VK_INDEX_TYPE_UINT32; break;
default: Logger::err(str::format("D3D11: Invalid index format: ", Format));
}
}
EmitCs([
cBufferSlice = pBuffer != nullptr ? pBuffer->GetBufferSlice(Offset) : DxvkBufferSlice(),
cIndexType = indexType
] (DxvkContext* ctx) {
ctx->bindIndexBuffer(cBufferSlice, cIndexType);
});
}
void D3D11DeviceContext::BindXfbBuffer(
UINT Slot,
D3D11Buffer* pBuffer,
UINT Offset) {
DxvkBufferSlice bufferSlice;
DxvkBufferSlice counterSlice;
if (pBuffer != nullptr) {
bufferSlice = pBuffer->GetBufferSlice();
counterSlice = pBuffer->GetSOCounter();
}
EmitCs([
cSlotId = Slot,
cOffset = Offset,
cBufferSlice = bufferSlice,
cCounterSlice = counterSlice
] (DxvkContext* ctx) {
if (cCounterSlice.defined() && cOffset != ~0u) {
ctx->updateBuffer(
cCounterSlice.buffer(),
cCounterSlice.offset(),
sizeof(cOffset),
&cOffset);
}
ctx->bindXfbBuffer(cSlotId, cBufferSlice, cCounterSlice);
});
}
void D3D11DeviceContext::BindConstantBuffer(
UINT Slot,
const D3D11ConstantBufferBinding* pBufferBinding) {
EmitCs([
cSlotId = Slot,
cBufferSlice = pBufferBinding->buffer != nullptr
? pBufferBinding->buffer->GetBufferSlice(
pBufferBinding->constantOffset * 16,
pBufferBinding->constantCount * 16)
: DxvkBufferSlice()
] (DxvkContext* ctx) {
ctx->bindResourceBuffer(cSlotId, cBufferSlice);
});
}
void D3D11DeviceContext::BindSampler(
UINT Slot,
D3D11SamplerState* pSampler) {
EmitCs([
cSlotId = Slot,
cSampler = pSampler != nullptr ? pSampler->GetDXVKSampler() : nullptr
] (DxvkContext* ctx) {
ctx->bindResourceSampler(cSlotId, cSampler);
});
}
void D3D11DeviceContext::BindShaderResource(
UINT Slot,
D3D11ShaderResourceView* pResource) {
EmitCs([
cSlotId = Slot,
cImageView = pResource != nullptr ? pResource->GetImageView() : nullptr,
cBufferView = pResource != nullptr ? pResource->GetBufferView() : nullptr
] (DxvkContext* ctx) {
ctx->bindResourceView(cSlotId, cImageView, cBufferView);
});
}
void D3D11DeviceContext::BindUnorderedAccessView(
UINT UavSlot,
UINT CtrSlot,
D3D11UnorderedAccessView* pUav,
UINT Counter) {
EmitCs([
cUavSlotId = UavSlot,
cCtrSlotId = CtrSlot,
cImageView = pUav != nullptr ? pUav->GetImageView() : nullptr,
cBufferView = pUav != nullptr ? pUav->GetBufferView() : nullptr,
cCounterSlice = pUav != nullptr ? pUav->GetCounterSlice() : DxvkBufferSlice(),
cCounterValue = Counter
] (DxvkContext* ctx) {
if (cCounterSlice.defined() && cCounterValue != ~0u) {
ctx->updateBuffer(
cCounterSlice.buffer(),
cCounterSlice.offset(),
sizeof(uint32_t),
&cCounterValue);
}
ctx->bindResourceView (cUavSlotId, cImageView, cBufferView);
ctx->bindResourceBuffer (cCtrSlotId, cCounterSlice);
});
}
void D3D11DeviceContext::DiscardBuffer(
D3D11Buffer* pBuffer) {
EmitCs([cBuffer = pBuffer->GetBuffer()] (DxvkContext* ctx) {
ctx->discardBuffer(cBuffer);
});
}
void D3D11DeviceContext::DiscardTexture(
D3D11CommonTexture* pTexture) {
EmitCs([cImage = pTexture->GetImage()] (DxvkContext* ctx) {
VkImageSubresourceRange subresources = {
cImage->formatInfo()->aspectMask,
0, cImage->info().mipLevels,
0, cImage->info().numLayers };
ctx->discardImage(cImage, subresources);
});
}
void D3D11DeviceContext::SetDrawBuffer(
ID3D11Buffer* pBuffer) {
auto buffer = static_cast<D3D11Buffer*>(pBuffer);
if (m_state.id.argBuffer != buffer) {
m_state.id.argBuffer = buffer;
BindDrawBuffer(buffer);
}
}
void D3D11DeviceContext::SetConstantBuffers(
DxbcProgramType ShaderStage,
D3D11ConstantBufferBindings& Bindings,
UINT StartSlot,
UINT NumBuffers,
ID3D11Buffer* const* ppConstantBuffers,
const UINT* pFirstConstant,
const UINT* pNumConstants) {
const uint32_t slotId = computeResourceSlotId(
ShaderStage, DxbcBindingType::ConstantBuffer,
StartSlot);
for (uint32_t i = 0; i < NumBuffers; i++) {
auto newBuffer = static_cast<D3D11Buffer*>(ppConstantBuffers[i]);
UINT constantOffset = 0;
UINT constantCount = newBuffer != nullptr
? newBuffer->GetSize() / 16
: 0;
if (newBuffer != nullptr && pFirstConstant != nullptr && pNumConstants != nullptr) {
constantOffset = pFirstConstant[i];
constantCount = pNumConstants [i];
}
if (Bindings[StartSlot + i].buffer != newBuffer
|| Bindings[StartSlot + i].constantOffset != constantOffset
|| Bindings[StartSlot + i].constantCount != constantCount) {
Bindings[StartSlot + i].buffer = newBuffer;
Bindings[StartSlot + i].constantOffset = constantOffset;
Bindings[StartSlot + i].constantCount = constantCount;
BindConstantBuffer(slotId + i, &Bindings[StartSlot + i]);
}
}
}
void D3D11DeviceContext::SetSamplers(
DxbcProgramType ShaderStage,
D3D11SamplerBindings& Bindings,
UINT StartSlot,
UINT NumSamplers,
ID3D11SamplerState* const* ppSamplers) {
const uint32_t slotId = computeResourceSlotId(
ShaderStage, DxbcBindingType::ImageSampler,
StartSlot);
for (uint32_t i = 0; i < NumSamplers; i++) {
auto sampler = static_cast<D3D11SamplerState*>(ppSamplers[i]);
if (Bindings[StartSlot + i] != sampler) {
Bindings[StartSlot + i] = sampler;
BindSampler(slotId + i, sampler);
}
}
}
void D3D11DeviceContext::SetShaderResources(
DxbcProgramType ShaderStage,
D3D11ShaderResourceBindings& Bindings,
UINT StartSlot,
UINT NumResources,
ID3D11ShaderResourceView* const* ppResources) {
const uint32_t slotId = computeResourceSlotId(
ShaderStage, DxbcBindingType::ShaderResource,
StartSlot);
for (uint32_t i = 0; i < NumResources; i++) {
auto resView = static_cast<D3D11ShaderResourceView*>(ppResources[i]);
if (Bindings[StartSlot + i] != resView) {
Bindings[StartSlot + i] = resView;
BindShaderResource(slotId + i, resView);
}
}
}
void D3D11DeviceContext::SetUnorderedAccessViews(
DxbcProgramType ShaderStage,
D3D11UnorderedAccessBindings& Bindings,
UINT StartSlot,
UINT NumUAVs,
ID3D11UnorderedAccessView* const* ppUnorderedAccessViews,
const UINT* pUAVInitialCounts) {
const uint32_t uavSlotId = computeResourceSlotId(
ShaderStage, DxbcBindingType::UnorderedAccessView,
StartSlot);
const uint32_t ctrSlotId = computeResourceSlotId(
ShaderStage, DxbcBindingType::UavCounter,
StartSlot);
for (uint32_t i = 0; i < NumUAVs; i++) {
auto uav = static_cast<D3D11UnorderedAccessView*>(ppUnorderedAccessViews[i]);
if (Bindings[StartSlot + i] != uav) {
Bindings[StartSlot + i] = uav;
BindUnorderedAccessView(uavSlotId + i, ctrSlotId + i, uav,
pUAVInitialCounts ? pUAVInitialCounts[i] : ~0u);
}
}
}
void D3D11DeviceContext::SetRenderTargets(
UINT NumViews,
ID3D11RenderTargetView* const* ppRenderTargetViews,
ID3D11DepthStencilView* pDepthStencilView) {
// Native D3D11 does not change the render targets if
// the parameters passed to this method are invalid.
if (!ValidateRenderTargets(NumViews, ppRenderTargetViews, pDepthStencilView))
return;
for (UINT i = 0; i < m_state.om.renderTargetViews.size(); i++) {
m_state.om.renderTargetViews.at(i) = i < NumViews
? static_cast<D3D11RenderTargetView*>(ppRenderTargetViews[i])
: nullptr;
}
m_state.om.depthStencilView = static_cast<D3D11DepthStencilView*>(pDepthStencilView);
}
void D3D11DeviceContext::GetConstantBuffers(
const D3D11ConstantBufferBindings& Bindings,
UINT StartSlot,
UINT NumBuffers,
ID3D11Buffer** ppConstantBuffers,
UINT* pFirstConstant,
UINT* pNumConstants) {
for (uint32_t i = 0; i < NumBuffers; i++) {
if (ppConstantBuffers != nullptr)
ppConstantBuffers[i] = Bindings[StartSlot + i].buffer.ref();
if (pFirstConstant != nullptr)
pFirstConstant[i] = Bindings[StartSlot + i].constantOffset;
if (pNumConstants != nullptr)
pNumConstants[i] = Bindings[StartSlot + i].constantCount;
}
}
void D3D11DeviceContext::RestoreState() {
BindFramebuffer(m_state.om.isUavRendering);
BindShader(DxbcProgramType::VertexShader, GetCommonShader(m_state.vs.shader.ptr()));
BindShader(DxbcProgramType::HullShader, GetCommonShader(m_state.hs.shader.ptr()));
BindShader(DxbcProgramType::DomainShader, GetCommonShader(m_state.ds.shader.ptr()));
BindShader(DxbcProgramType::GeometryShader, GetCommonShader(m_state.gs.shader.ptr()));
BindShader(DxbcProgramType::PixelShader, GetCommonShader(m_state.ps.shader.ptr()));
BindShader(DxbcProgramType::ComputeShader, GetCommonShader(m_state.cs.shader.ptr()));
ApplyInputLayout();
ApplyPrimitiveTopology();
ApplyBlendState();
ApplyBlendFactor();
ApplyDepthStencilState();
ApplyStencilRef();
ApplyRasterizerState();
ApplyViewportState();
BindDrawBuffer(
m_state.id.argBuffer.ptr());
BindIndexBuffer(
m_state.ia.indexBuffer.buffer.ptr(),
m_state.ia.indexBuffer.offset,
m_state.ia.indexBuffer.format);
for (uint32_t i = 0; i < m_state.ia.vertexBuffers.size(); i++) {
BindVertexBuffer(i,
m_state.ia.vertexBuffers[i].buffer.ptr(),
m_state.ia.vertexBuffers[i].offset,
m_state.ia.vertexBuffers[i].stride);
}
for (uint32_t i = 0; i < m_state.so.targets.size(); i++)
BindXfbBuffer(i, m_state.so.targets[i].buffer.ptr(), ~0u);
RestoreConstantBuffers(DxbcProgramType::VertexShader, m_state.vs.constantBuffers);
RestoreConstantBuffers(DxbcProgramType::HullShader, m_state.hs.constantBuffers);
RestoreConstantBuffers(DxbcProgramType::DomainShader, m_state.ds.constantBuffers);
RestoreConstantBuffers(DxbcProgramType::GeometryShader, m_state.gs.constantBuffers);
RestoreConstantBuffers(DxbcProgramType::PixelShader, m_state.ps.constantBuffers);
RestoreConstantBuffers(DxbcProgramType::ComputeShader, m_state.cs.constantBuffers);
RestoreSamplers(DxbcProgramType::VertexShader, m_state.vs.samplers);
RestoreSamplers(DxbcProgramType::HullShader, m_state.hs.samplers);
RestoreSamplers(DxbcProgramType::DomainShader, m_state.ds.samplers);
RestoreSamplers(DxbcProgramType::GeometryShader, m_state.gs.samplers);
RestoreSamplers(DxbcProgramType::PixelShader, m_state.ps.samplers);
RestoreSamplers(DxbcProgramType::ComputeShader, m_state.cs.samplers);
RestoreShaderResources(DxbcProgramType::VertexShader, m_state.vs.shaderResources);
RestoreShaderResources(DxbcProgramType::HullShader, m_state.hs.shaderResources);
RestoreShaderResources(DxbcProgramType::DomainShader, m_state.ds.shaderResources);
RestoreShaderResources(DxbcProgramType::GeometryShader, m_state.gs.shaderResources);
RestoreShaderResources(DxbcProgramType::PixelShader, m_state.ps.shaderResources);
RestoreShaderResources(DxbcProgramType::ComputeShader, m_state.cs.shaderResources);
RestoreUnorderedAccessViews(DxbcProgramType::PixelShader, m_state.ps.unorderedAccessViews);
RestoreUnorderedAccessViews(DxbcProgramType::ComputeShader, m_state.cs.unorderedAccessViews);
}
void D3D11DeviceContext::RestoreConstantBuffers(
DxbcProgramType Stage,
D3D11ConstantBufferBindings& Bindings) {
const uint32_t slotId = computeResourceSlotId(
Stage, DxbcBindingType::ConstantBuffer, 0);
for (uint32_t i = 0; i < Bindings.size(); i++)
BindConstantBuffer(slotId + i, &Bindings[i]);
}
void D3D11DeviceContext::RestoreSamplers(
DxbcProgramType Stage,
D3D11SamplerBindings& Bindings) {
const uint32_t slotId = computeResourceSlotId(
Stage, DxbcBindingType::ImageSampler, 0);
for (uint32_t i = 0; i < Bindings.size(); i++)
BindSampler(slotId + i, Bindings[i].ptr());
}
void D3D11DeviceContext::RestoreShaderResources(
DxbcProgramType Stage,
D3D11ShaderResourceBindings& Bindings) {
const uint32_t slotId = computeResourceSlotId(
Stage, DxbcBindingType::ShaderResource, 0);
for (uint32_t i = 0; i < Bindings.size(); i++)
BindShaderResource(slotId + i, Bindings[i].ptr());
}
void D3D11DeviceContext::RestoreUnorderedAccessViews(
DxbcProgramType Stage,
D3D11UnorderedAccessBindings& Bindings) {
const uint32_t uavSlotId = computeResourceSlotId(
Stage, DxbcBindingType::UnorderedAccessView, 0);
const uint32_t ctrSlotId = computeResourceSlotId(
Stage, DxbcBindingType::UavCounter, 0);
for (uint32_t i = 0; i < Bindings.size(); i++) {
BindUnorderedAccessView(
uavSlotId + i, ctrSlotId + i,
Bindings[i].ptr(), ~0u);
}
}
bool D3D11DeviceContext::ValidateRenderTargets(
UINT NumViews,
ID3D11RenderTargetView* const* ppRenderTargetViews,
ID3D11DepthStencilView* pDepthStencilView) {
Rc<DxvkImageView> refView;
if (pDepthStencilView != nullptr) {
refView = static_cast<D3D11DepthStencilView*>(
pDepthStencilView)->GetImageView();
}
for (uint32_t i = 0; i < NumViews; i++) {
if (ppRenderTargetViews[i] != nullptr) {
auto curView = static_cast<D3D11RenderTargetView*>(
ppRenderTargetViews[i])->GetImageView();
if (refView != nullptr) {
// Render target views must all have the same
// size, sample count, layer count, and type
if (curView->info().type != refView->info().type
|| curView->info().numLayers != refView->info().numLayers)
return false;
if (curView->imageInfo().sampleCount
!= refView->imageInfo().sampleCount)
return false;
} else {
// Set reference view. All remaining views
// must be compatible to the reference view.
refView = curView;
}
}
}
return true;
}
DxvkDataSlice D3D11DeviceContext::AllocUpdateBufferSlice(size_t Size) {
constexpr size_t UpdateBufferSize = 16 * 1024 * 1024;
if (Size >= UpdateBufferSize) {
Rc<DxvkDataBuffer> buffer = new DxvkDataBuffer(Size);
return buffer->alloc(Size);
} else {
if (m_updateBuffer == nullptr)
m_updateBuffer = new DxvkDataBuffer(UpdateBufferSize);
DxvkDataSlice slice = m_updateBuffer->alloc(Size);
if (slice.ptr() == nullptr) {
m_updateBuffer = new DxvkDataBuffer(UpdateBufferSize);
slice = m_updateBuffer->alloc(Size);
}
return slice;
}
}
DxvkCsChunkRef D3D11DeviceContext::AllocCsChunk() {
return m_parent->AllocCsChunk();
}
}