mesa/src/intel/compiler/test_eu_compact.cpp

352 lines
9.7 KiB
C++

/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include "util/ralloc.h"
#include "brw_eu.h"
#include <gtest/gtest.h>
struct CompactParams {
unsigned verx10;
unsigned align;
};
std::string
get_compact_params_name(const testing::TestParamInfo<CompactParams> p)
{
CompactParams params = p.param;
std::stringstream ss;
ss << params.verx10 << "_";
switch (params.align) {
case BRW_ALIGN_1:
ss << "Align_1";
break;
case BRW_ALIGN_16:
ss << "Align_16";
break;
default:
unreachable("invalid align");
}
return ss.str();
}
static bool
test_compact_instruction(struct brw_codegen *p, brw_inst src)
{
brw_compact_inst dst;
memset(&dst, 0xd0, sizeof(dst));
if (brw_try_compact_instruction(p->isa, &dst, &src)) {
brw_inst uncompacted;
brw_uncompact_instruction(p->isa, &uncompacted, &dst);
if (memcmp(&uncompacted, &src, sizeof(src))) {
brw_debug_compact_uncompact(p->isa, &src, &uncompacted);
return false;
}
} else {
brw_compact_inst unchanged;
memset(&unchanged, 0xd0, sizeof(unchanged));
/* It's not supposed to change dst unless it compacted. */
if (memcmp(&unchanged, &dst, sizeof(dst))) {
fprintf(stderr, "Failed to compact, but dst changed\n");
fprintf(stderr, " Instruction: ");
brw_disassemble_inst(stderr, p->isa, &src, false, 0, NULL);
return false;
}
}
return true;
}
/**
* When doing fuzz testing, pad bits won't round-trip.
*
* This sort of a superset of skip_bit, which is testing for changing bits that
* aren't worth testing for fuzzing. We also just want to clear bits that
* become meaningless once fuzzing twiddles a related bit.
*/
static void
clear_pad_bits(const struct brw_isa_info *isa, brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
if (brw_inst_opcode(isa, inst) != BRW_OPCODE_SEND &&
brw_inst_opcode(isa, inst) != BRW_OPCODE_SENDC &&
brw_inst_src0_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE &&
brw_inst_src1_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE) {
brw_inst_set_bits(inst, 127, 111, 0);
}
if (devinfo->ver == 8 && devinfo->platform != INTEL_PLATFORM_CHV &&
is_3src(isa, brw_inst_opcode(isa, inst))) {
brw_inst_set_bits(inst, 105, 105, 0);
brw_inst_set_bits(inst, 84, 84, 0);
brw_inst_set_bits(inst, 36, 35, 0);
}
}
static bool
skip_bit(const struct brw_isa_info *isa, brw_inst *src, int bit)
{
const struct intel_device_info *devinfo = isa->devinfo;
/* pad bit */
if (bit == 7)
return true;
/* The compact bit -- uncompacted can't have it set. */
if (bit == 29)
return true;
if (is_3src(isa, brw_inst_opcode(isa, src))) {
if (devinfo->ver >= 9 || devinfo->platform == INTEL_PLATFORM_CHV) {
if (bit == 127)
return true;
} else {
if (bit >= 126 && bit <= 127)
return true;
if (bit == 105)
return true;
if (bit == 84)
return true;
if (bit >= 35 && bit <= 36)
return true;
}
} else {
if (bit == 47)
return true;
if (devinfo->ver >= 8) {
if (bit == 11)
return true;
if (bit == 95)
return true;
} else {
if (devinfo->ver < 7 && bit == 90)
return true;
if (bit >= 91 && bit <= 95)
return true;
}
}
/* sometimes these are pad bits. */
if (brw_inst_opcode(isa, src) != BRW_OPCODE_SEND &&
brw_inst_opcode(isa, src) != BRW_OPCODE_SENDC &&
brw_inst_src0_reg_file(devinfo, src) != BRW_IMMEDIATE_VALUE &&
brw_inst_src1_reg_file(devinfo, src) != BRW_IMMEDIATE_VALUE &&
bit >= 121) {
return true;
}
return false;
}
static bool
test_fuzz_compact_instruction(struct brw_codegen *p, brw_inst src)
{
for (int bit0 = 0; bit0 < 128; bit0++) {
if (skip_bit(p->isa, &src, bit0))
continue;
for (int bit1 = 0; bit1 < 128; bit1++) {
brw_inst instr = src;
uint64_t *bits = instr.data;
if (skip_bit(p->isa, &src, bit1))
continue;
bits[bit0 / 64] ^= (1ull << (bit0 & 63));
bits[bit1 / 64] ^= (1ull << (bit1 & 63));
clear_pad_bits(p->isa, &instr);
if (!brw_validate_instruction(p->isa, &instr, 0, sizeof(brw_inst), NULL))
continue;
if (!test_compact_instruction(p, instr)) {
printf(" twiddled bits for fuzzing %d, %d\n", bit0, bit1);
return false;
}
}
}
return true;
}
class CompactTestFixture : public testing::TestWithParam<CompactParams> {
protected:
virtual void SetUp() {
CompactParams params = GetParam();
mem_ctx = ralloc_context(NULL);
devinfo = rzalloc(mem_ctx, intel_device_info);
p = rzalloc(mem_ctx, brw_codegen);
devinfo->verx10 = params.verx10;
devinfo->ver = devinfo->verx10 / 10;
brw_init_isa_info(&isa, devinfo);
brw_init_codegen(&isa, p, p);
brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
brw_set_default_access_mode(p, params.align);
};
virtual void TearDown() {
EXPECT_EQ(p->nr_insn, 1);
EXPECT_TRUE(test_compact_instruction(p, p->store[0]));
EXPECT_TRUE(test_fuzz_compact_instruction(p, p->store[0]));
ralloc_free(mem_ctx);
};
void *mem_ctx;
struct brw_isa_info isa;
intel_device_info *devinfo;
brw_codegen *p;
};
class Instructions : public CompactTestFixture {};
INSTANTIATE_TEST_CASE_P(
CompactTest,
Instructions,
testing::Values(
CompactParams{ 50, BRW_ALIGN_1 }, CompactParams{ 50, BRW_ALIGN_16 },
CompactParams{ 60, BRW_ALIGN_1 }, CompactParams{ 60, BRW_ALIGN_16 },
CompactParams{ 70, BRW_ALIGN_1 }, CompactParams{ 70, BRW_ALIGN_16 },
CompactParams{ 75, BRW_ALIGN_1 }, CompactParams{ 75, BRW_ALIGN_16 },
CompactParams{ 80, BRW_ALIGN_1 }, CompactParams{ 80, BRW_ALIGN_16 },
CompactParams{ 90, BRW_ALIGN_1 }, CompactParams{ 90, BRW_ALIGN_16 },
CompactParams{ 110, BRW_ALIGN_1 },
CompactParams{ 120, BRW_ALIGN_1 },
CompactParams{ 125, BRW_ALIGN_1 }
),
get_compact_params_name);
class InstructionsBeforeIvyBridge : public CompactTestFixture {};
INSTANTIATE_TEST_CASE_P(
CompactTest,
InstructionsBeforeIvyBridge,
testing::Values(
CompactParams{ 50, BRW_ALIGN_1 }, CompactParams{ 50, BRW_ALIGN_16 },
CompactParams{ 60, BRW_ALIGN_1 }, CompactParams{ 60, BRW_ALIGN_16 }
),
get_compact_params_name);
TEST_P(Instructions, ADD_GRF_GRF_GRF)
{
struct brw_reg g0 = brw_vec8_grf(0, 0);
struct brw_reg g2 = brw_vec8_grf(2, 0);
struct brw_reg g4 = brw_vec8_grf(4, 0);
brw_ADD(p, g0, g2, g4);
}
TEST_P(Instructions, ADD_GRF_GRF_IMM)
{
struct brw_reg g0 = brw_vec8_grf(0, 0);
struct brw_reg g2 = brw_vec8_grf(2, 0);
brw_ADD(p, g0, g2, brw_imm_f(1.0));
}
TEST_P(Instructions, ADD_GRF_GRF_IMM_d)
{
struct brw_reg g0 = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_D);
struct brw_reg g2 = retype(brw_vec8_grf(2, 0), BRW_REGISTER_TYPE_D);
brw_ADD(p, g0, g2, brw_imm_d(1));
}
TEST_P(Instructions, MOV_GRF_GRF)
{
struct brw_reg g0 = brw_vec8_grf(0, 0);
struct brw_reg g2 = brw_vec8_grf(2, 0);
brw_MOV(p, g0, g2);
}
TEST_P(InstructionsBeforeIvyBridge, ADD_MRF_GRF_GRF)
{
struct brw_reg m6 = brw_vec8_reg(BRW_MESSAGE_REGISTER_FILE, 6, 0);
struct brw_reg g2 = brw_vec8_grf(2, 0);
struct brw_reg g4 = brw_vec8_grf(4, 0);
brw_ADD(p, m6, g2, g4);
}
TEST_P(Instructions, ADD_vec1_GRF_GRF_GRF)
{
struct brw_reg g0 = brw_vec1_grf(0, 0);
struct brw_reg g2 = brw_vec1_grf(2, 0);
struct brw_reg g4 = brw_vec1_grf(4, 0);
brw_ADD(p, g0, g2, g4);
}
TEST_P(InstructionsBeforeIvyBridge, PLN_MRF_GRF_GRF)
{
struct brw_reg m6 = brw_vec8_reg(BRW_MESSAGE_REGISTER_FILE, 6, 0);
struct brw_reg interp = brw_vec1_grf(2, 0);
struct brw_reg g4 = brw_vec8_grf(4, 0);
brw_PLN(p, m6, interp, g4);
}
TEST_P(Instructions, f0_0_MOV_GRF_GRF)
{
struct brw_reg g0 = brw_vec8_grf(0, 0);
struct brw_reg g2 = brw_vec8_grf(2, 0);
brw_push_insn_state(p);
brw_set_default_predicate_control(p, BRW_PREDICATE_NORMAL);
brw_MOV(p, g0, g2);
brw_pop_insn_state(p);
}
/* The handling of f0.1 vs f0.0 changes between gfx6 and gfx7. Explicitly test
* it, so that we run the fuzzing can run over all the other bits that might
* interact with it.
*/
TEST_P(Instructions, f0_1_MOV_GRF_GRF)
{
struct brw_reg g0 = brw_vec8_grf(0, 0);
struct brw_reg g2 = brw_vec8_grf(2, 0);
brw_push_insn_state(p);
brw_set_default_predicate_control(p, BRW_PREDICATE_NORMAL);
brw_inst *mov = brw_MOV(p, g0, g2);
brw_inst_set_flag_subreg_nr(p->devinfo, mov, 1);
brw_pop_insn_state(p);
}