mesa/src/intel/compiler/brw_eu_validate.c

2352 lines
90 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright © 2015-2019 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/** @file brw_eu_validate.c
*
* This file implements a pass that validates shader assembly.
*
* The restrictions implemented herein are intended to verify that instructions
* in shader assembly do not violate restrictions documented in the graphics
* programming reference manuals.
*
* The restrictions are difficult for humans to quickly verify due to their
* complexity and abundance.
*
* It is critical that this code is thoroughly unit tested because false
* results will lead developers astray, which is worse than having no validator
* at all. Functional changes to this file without corresponding unit tests (in
* test_eu_validate.cpp) will be rejected.
*/
#include <stdlib.h>
#include "brw_eu.h"
/* We're going to do lots of string concatenation, so this should help. */
struct string {
char *str;
size_t len;
};
static void
cat(struct string *dest, const struct string src)
{
dest->str = realloc(dest->str, dest->len + src.len + 1);
memcpy(dest->str + dest->len, src.str, src.len);
dest->str[dest->len + src.len] = '\0';
dest->len = dest->len + src.len;
}
#define CAT(dest, src) cat(&dest, (struct string){src, strlen(src)})
static bool
contains(const struct string haystack, const struct string needle)
{
return haystack.str && memmem(haystack.str, haystack.len,
needle.str, needle.len) != NULL;
}
#define CONTAINS(haystack, needle) \
contains(haystack, (struct string){needle, strlen(needle)})
#define error(str) "\tERROR: " str "\n"
#define ERROR_INDENT "\t "
#define ERROR(msg) ERROR_IF(true, msg)
#define ERROR_IF(cond, msg) \
do { \
if ((cond) && !CONTAINS(error_msg, error(msg))) { \
CAT(error_msg, error(msg)); \
} \
} while(0)
#define CHECK(func, args...) \
do { \
struct string __msg = func(isa, inst, ##args); \
if (__msg.str) { \
cat(&error_msg, __msg); \
free(__msg.str); \
} \
} while (0)
#define STRIDE(stride) (stride != 0 ? 1 << ((stride) - 1) : 0)
#define WIDTH(width) (1 << (width))
static bool
inst_is_send(const struct brw_isa_info *isa, const brw_inst *inst)
{
switch (brw_inst_opcode(isa, inst)) {
case BRW_OPCODE_SEND:
case BRW_OPCODE_SENDC:
case BRW_OPCODE_SENDS:
case BRW_OPCODE_SENDSC:
return true;
default:
return false;
}
}
static bool
inst_is_split_send(const struct brw_isa_info *isa, const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
if (devinfo->ver >= 12) {
return inst_is_send(isa, inst);
} else {
switch (brw_inst_opcode(isa, inst)) {
case BRW_OPCODE_SENDS:
case BRW_OPCODE_SENDSC:
return true;
default:
return false;
}
}
}
static unsigned
signed_type(unsigned type)
{
switch (type) {
case BRW_REGISTER_TYPE_UD: return BRW_REGISTER_TYPE_D;
case BRW_REGISTER_TYPE_UW: return BRW_REGISTER_TYPE_W;
case BRW_REGISTER_TYPE_UB: return BRW_REGISTER_TYPE_B;
case BRW_REGISTER_TYPE_UQ: return BRW_REGISTER_TYPE_Q;
default: return type;
}
}
static enum brw_reg_type
inst_dst_type(const struct brw_isa_info *isa, const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
return (devinfo->ver < 12 || !inst_is_send(isa, inst)) ?
brw_inst_dst_type(devinfo, inst) : BRW_REGISTER_TYPE_D;
}
static bool
inst_is_raw_move(const struct brw_isa_info *isa, const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
unsigned dst_type = signed_type(inst_dst_type(isa, inst));
unsigned src_type = signed_type(brw_inst_src0_type(devinfo, inst));
if (brw_inst_src0_reg_file(devinfo, inst) == BRW_IMMEDIATE_VALUE) {
/* FIXME: not strictly true */
if (brw_inst_src0_type(devinfo, inst) == BRW_REGISTER_TYPE_VF ||
brw_inst_src0_type(devinfo, inst) == BRW_REGISTER_TYPE_UV ||
brw_inst_src0_type(devinfo, inst) == BRW_REGISTER_TYPE_V) {
return false;
}
} else if (brw_inst_src0_negate(devinfo, inst) ||
brw_inst_src0_abs(devinfo, inst)) {
return false;
}
return brw_inst_opcode(isa, inst) == BRW_OPCODE_MOV &&
brw_inst_saturate(devinfo, inst) == 0 &&
dst_type == src_type;
}
static bool
dst_is_null(const struct intel_device_info *devinfo, const brw_inst *inst)
{
return brw_inst_dst_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE &&
brw_inst_dst_da_reg_nr(devinfo, inst) == BRW_ARF_NULL;
}
static bool
src0_is_null(const struct intel_device_info *devinfo, const brw_inst *inst)
{
return brw_inst_src0_address_mode(devinfo, inst) == BRW_ADDRESS_DIRECT &&
brw_inst_src0_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE &&
brw_inst_src0_da_reg_nr(devinfo, inst) == BRW_ARF_NULL;
}
static bool
src1_is_null(const struct intel_device_info *devinfo, const brw_inst *inst)
{
return brw_inst_src1_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE &&
brw_inst_src1_da_reg_nr(devinfo, inst) == BRW_ARF_NULL;
}
static bool
src0_is_acc(const struct intel_device_info *devinfo, const brw_inst *inst)
{
return brw_inst_src0_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE &&
(brw_inst_src0_da_reg_nr(devinfo, inst) & 0xF0) == BRW_ARF_ACCUMULATOR;
}
static bool
src1_is_acc(const struct intel_device_info *devinfo, const brw_inst *inst)
{
return brw_inst_src1_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE &&
(brw_inst_src1_da_reg_nr(devinfo, inst) & 0xF0) == BRW_ARF_ACCUMULATOR;
}
static bool
src0_has_scalar_region(const struct intel_device_info *devinfo,
const brw_inst *inst)
{
return brw_inst_src0_vstride(devinfo, inst) == BRW_VERTICAL_STRIDE_0 &&
brw_inst_src0_width(devinfo, inst) == BRW_WIDTH_1 &&
brw_inst_src0_hstride(devinfo, inst) == BRW_HORIZONTAL_STRIDE_0;
}
static bool
src1_has_scalar_region(const struct intel_device_info *devinfo,
const brw_inst *inst)
{
return brw_inst_src1_vstride(devinfo, inst) == BRW_VERTICAL_STRIDE_0 &&
brw_inst_src1_width(devinfo, inst) == BRW_WIDTH_1 &&
brw_inst_src1_hstride(devinfo, inst) == BRW_HORIZONTAL_STRIDE_0;
}
static unsigned
num_sources_from_inst(const struct brw_isa_info *isa,
const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
const struct opcode_desc *desc =
brw_opcode_desc(isa, brw_inst_opcode(isa, inst));
unsigned math_function;
if (brw_inst_opcode(isa, inst) == BRW_OPCODE_MATH) {
math_function = brw_inst_math_function(devinfo, inst);
} else if (devinfo->ver < 6 &&
brw_inst_opcode(isa, inst) == BRW_OPCODE_SEND) {
if (brw_inst_sfid(devinfo, inst) == BRW_SFID_MATH) {
/* src1 must be a descriptor (including the information to determine
* that the SEND is doing an extended math operation), but src0 can
* actually be null since it serves as the source of the implicit GRF
* to MRF move.
*
* If we stop using that functionality, we'll have to revisit this.
*/
return 2;
} else {
/* Send instructions are allowed to have null sources since they use
* the base_mrf field to specify which message register source.
*/
return 0;
}
} else {
assert(desc->nsrc < 4);
return desc->nsrc;
}
switch (math_function) {
case BRW_MATH_FUNCTION_INV:
case BRW_MATH_FUNCTION_LOG:
case BRW_MATH_FUNCTION_EXP:
case BRW_MATH_FUNCTION_SQRT:
case BRW_MATH_FUNCTION_RSQ:
case BRW_MATH_FUNCTION_SIN:
case BRW_MATH_FUNCTION_COS:
case BRW_MATH_FUNCTION_SINCOS:
case GFX8_MATH_FUNCTION_INVM:
case GFX8_MATH_FUNCTION_RSQRTM:
return 1;
case BRW_MATH_FUNCTION_FDIV:
case BRW_MATH_FUNCTION_POW:
case BRW_MATH_FUNCTION_INT_DIV_QUOTIENT_AND_REMAINDER:
case BRW_MATH_FUNCTION_INT_DIV_QUOTIENT:
case BRW_MATH_FUNCTION_INT_DIV_REMAINDER:
return 2;
default:
unreachable("not reached");
}
}
static struct string
invalid_values(const struct brw_isa_info *isa, const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
unsigned num_sources = num_sources_from_inst(isa, inst);
struct string error_msg = { .str = NULL, .len = 0 };
switch ((enum brw_execution_size) brw_inst_exec_size(devinfo, inst)) {
case BRW_EXECUTE_1:
case BRW_EXECUTE_2:
case BRW_EXECUTE_4:
case BRW_EXECUTE_8:
case BRW_EXECUTE_16:
case BRW_EXECUTE_32:
break;
default:
ERROR("invalid execution size");
break;
}
if (inst_is_send(isa, inst))
return error_msg;
if (num_sources == 3) {
/* Nothing to test:
* No 3-src instructions on Gfx4-5
* No reg file bits on Gfx6-10 (align16)
* No invalid encodings on Gfx10-12 (align1)
*/
} else {
if (devinfo->ver > 6) {
ERROR_IF(brw_inst_dst_reg_file(devinfo, inst) == MRF ||
(num_sources > 0 &&
brw_inst_src0_reg_file(devinfo, inst) == MRF) ||
(num_sources > 1 &&
brw_inst_src1_reg_file(devinfo, inst) == MRF),
"invalid register file encoding");
}
}
if (error_msg.str)
return error_msg;
if (num_sources == 3) {
if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1) {
if (devinfo->ver >= 10) {
ERROR_IF(brw_inst_3src_a1_dst_type (devinfo, inst) == INVALID_REG_TYPE ||
brw_inst_3src_a1_src0_type(devinfo, inst) == INVALID_REG_TYPE ||
brw_inst_3src_a1_src1_type(devinfo, inst) == INVALID_REG_TYPE ||
brw_inst_3src_a1_src2_type(devinfo, inst) == INVALID_REG_TYPE,
"invalid register type encoding");
} else {
ERROR("Align1 mode not allowed on Gen < 10");
}
} else {
ERROR_IF(brw_inst_3src_a16_dst_type(devinfo, inst) == INVALID_REG_TYPE ||
brw_inst_3src_a16_src_type(devinfo, inst) == INVALID_REG_TYPE,
"invalid register type encoding");
}
} else {
ERROR_IF(brw_inst_dst_type (devinfo, inst) == INVALID_REG_TYPE ||
(num_sources > 0 &&
brw_inst_src0_type(devinfo, inst) == INVALID_REG_TYPE) ||
(num_sources > 1 &&
brw_inst_src1_type(devinfo, inst) == INVALID_REG_TYPE),
"invalid register type encoding");
}
return error_msg;
}
static struct string
sources_not_null(const struct brw_isa_info *isa,
const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
unsigned num_sources = num_sources_from_inst(isa, inst);
struct string error_msg = { .str = NULL, .len = 0 };
/* Nothing to test. 3-src instructions can only have GRF sources, and
* there's no bit to control the file.
*/
if (num_sources == 3)
return (struct string){};
/* Nothing to test. Split sends can only encode a file in sources that are
* allowed to be NULL.
*/
if (inst_is_split_send(isa, inst))
return (struct string){};
if (num_sources >= 1 && brw_inst_opcode(isa, inst) != BRW_OPCODE_SYNC)
ERROR_IF(src0_is_null(devinfo, inst), "src0 is null");
if (num_sources == 2)
ERROR_IF(src1_is_null(devinfo, inst), "src1 is null");
return error_msg;
}
static struct string
alignment_supported(const struct brw_isa_info *isa,
const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
struct string error_msg = { .str = NULL, .len = 0 };
ERROR_IF(devinfo->ver >= 11 && brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16,
"Align16 not supported");
return error_msg;
}
static bool
inst_uses_src_acc(const struct brw_isa_info *isa,
const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
/* Check instructions that use implicit accumulator sources */
switch (brw_inst_opcode(isa, inst)) {
case BRW_OPCODE_MAC:
case BRW_OPCODE_MACH:
case BRW_OPCODE_SADA2:
return true;
default:
break;
}
/* FIXME: support 3-src instructions */
unsigned num_sources = num_sources_from_inst(isa, inst);
assert(num_sources < 3);
return src0_is_acc(devinfo, inst) || (num_sources > 1 && src1_is_acc(devinfo, inst));
}
static struct string
send_restrictions(const struct brw_isa_info *isa,
const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
struct string error_msg = { .str = NULL, .len = 0 };
if (inst_is_split_send(isa, inst)) {
ERROR_IF(brw_inst_send_src1_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE &&
brw_inst_send_src1_reg_nr(devinfo, inst) != BRW_ARF_NULL,
"src1 of split send must be a GRF or NULL");
ERROR_IF(brw_inst_eot(devinfo, inst) &&
brw_inst_src0_da_reg_nr(devinfo, inst) < 112,
"send with EOT must use g112-g127");
ERROR_IF(brw_inst_eot(devinfo, inst) &&
brw_inst_send_src1_reg_file(devinfo, inst) == BRW_GENERAL_REGISTER_FILE &&
brw_inst_send_src1_reg_nr(devinfo, inst) < 112,
"send with EOT must use g112-g127");
if (brw_inst_send_src1_reg_file(devinfo, inst) == BRW_GENERAL_REGISTER_FILE) {
/* Assume minimums if we don't know */
unsigned mlen = 1;
if (!brw_inst_send_sel_reg32_desc(devinfo, inst)) {
const uint32_t desc = brw_inst_send_desc(devinfo, inst);
mlen = brw_message_desc_mlen(devinfo, desc);
}
unsigned ex_mlen = 1;
if (!brw_inst_send_sel_reg32_ex_desc(devinfo, inst)) {
const uint32_t ex_desc = brw_inst_sends_ex_desc(devinfo, inst);
ex_mlen = brw_message_ex_desc_ex_mlen(devinfo, ex_desc);
}
const unsigned src0_reg_nr = brw_inst_src0_da_reg_nr(devinfo, inst);
const unsigned src1_reg_nr = brw_inst_send_src1_reg_nr(devinfo, inst);
ERROR_IF((src0_reg_nr <= src1_reg_nr &&
src1_reg_nr < src0_reg_nr + mlen) ||
(src1_reg_nr <= src0_reg_nr &&
src0_reg_nr < src1_reg_nr + ex_mlen),
"split send payloads must not overlap");
}
} else if (inst_is_send(isa, inst)) {
ERROR_IF(brw_inst_src0_address_mode(devinfo, inst) != BRW_ADDRESS_DIRECT,
"send must use direct addressing");
if (devinfo->ver >= 7) {
ERROR_IF(brw_inst_send_src0_reg_file(devinfo, inst) != BRW_GENERAL_REGISTER_FILE,
"send from non-GRF");
ERROR_IF(brw_inst_eot(devinfo, inst) &&
brw_inst_src0_da_reg_nr(devinfo, inst) < 112,
"send with EOT must use g112-g127");
}
if (devinfo->ver >= 8) {
ERROR_IF(!dst_is_null(devinfo, inst) &&
(brw_inst_dst_da_reg_nr(devinfo, inst) +
brw_inst_rlen(devinfo, inst) > 127) &&
(brw_inst_src0_da_reg_nr(devinfo, inst) +
brw_inst_mlen(devinfo, inst) >
brw_inst_dst_da_reg_nr(devinfo, inst)),
"r127 must not be used for return address when there is "
"a src and dest overlap");
}
}
return error_msg;
}
static bool
is_unsupported_inst(const struct brw_isa_info *isa,
const brw_inst *inst)
{
return brw_inst_opcode(isa, inst) == BRW_OPCODE_ILLEGAL;
}
/**
* Returns whether a combination of two types would qualify as mixed float
* operation mode
*/
static inline bool
types_are_mixed_float(enum brw_reg_type t0, enum brw_reg_type t1)
{
return (t0 == BRW_REGISTER_TYPE_F && t1 == BRW_REGISTER_TYPE_HF) ||
(t1 == BRW_REGISTER_TYPE_F && t0 == BRW_REGISTER_TYPE_HF);
}
static enum brw_reg_type
execution_type_for_type(enum brw_reg_type type)
{
switch (type) {
case BRW_REGISTER_TYPE_NF:
case BRW_REGISTER_TYPE_DF:
case BRW_REGISTER_TYPE_F:
case BRW_REGISTER_TYPE_HF:
return type;
case BRW_REGISTER_TYPE_VF:
return BRW_REGISTER_TYPE_F;
case BRW_REGISTER_TYPE_Q:
case BRW_REGISTER_TYPE_UQ:
return BRW_REGISTER_TYPE_Q;
case BRW_REGISTER_TYPE_D:
case BRW_REGISTER_TYPE_UD:
return BRW_REGISTER_TYPE_D;
case BRW_REGISTER_TYPE_W:
case BRW_REGISTER_TYPE_UW:
case BRW_REGISTER_TYPE_B:
case BRW_REGISTER_TYPE_UB:
case BRW_REGISTER_TYPE_V:
case BRW_REGISTER_TYPE_UV:
return BRW_REGISTER_TYPE_W;
}
unreachable("not reached");
}
/**
* Returns the execution type of an instruction \p inst
*/
static enum brw_reg_type
execution_type(const struct brw_isa_info *isa, const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
unsigned num_sources = num_sources_from_inst(isa, inst);
enum brw_reg_type src0_exec_type, src1_exec_type;
/* Execution data type is independent of destination data type, except in
* mixed F/HF instructions.
*/
enum brw_reg_type dst_exec_type = inst_dst_type(isa, inst);
src0_exec_type = execution_type_for_type(brw_inst_src0_type(devinfo, inst));
if (num_sources == 1) {
if (src0_exec_type == BRW_REGISTER_TYPE_HF)
return dst_exec_type;
return src0_exec_type;
}
src1_exec_type = execution_type_for_type(brw_inst_src1_type(devinfo, inst));
if (types_are_mixed_float(src0_exec_type, src1_exec_type) ||
types_are_mixed_float(src0_exec_type, dst_exec_type) ||
types_are_mixed_float(src1_exec_type, dst_exec_type)) {
return BRW_REGISTER_TYPE_F;
}
if (src0_exec_type == src1_exec_type)
return src0_exec_type;
if (src0_exec_type == BRW_REGISTER_TYPE_NF ||
src1_exec_type == BRW_REGISTER_TYPE_NF)
return BRW_REGISTER_TYPE_NF;
/* Mixed operand types where one is float is float on Gen < 6
* (and not allowed on later platforms)
*/
if (devinfo->ver < 6 &&
(src0_exec_type == BRW_REGISTER_TYPE_F ||
src1_exec_type == BRW_REGISTER_TYPE_F))
return BRW_REGISTER_TYPE_F;
if (src0_exec_type == BRW_REGISTER_TYPE_Q ||
src1_exec_type == BRW_REGISTER_TYPE_Q)
return BRW_REGISTER_TYPE_Q;
if (src0_exec_type == BRW_REGISTER_TYPE_D ||
src1_exec_type == BRW_REGISTER_TYPE_D)
return BRW_REGISTER_TYPE_D;
if (src0_exec_type == BRW_REGISTER_TYPE_W ||
src1_exec_type == BRW_REGISTER_TYPE_W)
return BRW_REGISTER_TYPE_W;
if (src0_exec_type == BRW_REGISTER_TYPE_DF ||
src1_exec_type == BRW_REGISTER_TYPE_DF)
return BRW_REGISTER_TYPE_DF;
unreachable("not reached");
}
/**
* Returns whether a region is packed
*
* A region is packed if its elements are adjacent in memory, with no
* intervening space, no overlap, and no replicated values.
*/
static bool
is_packed(unsigned vstride, unsigned width, unsigned hstride)
{
if (vstride == width) {
if (vstride == 1) {
return hstride == 0;
} else {
return hstride == 1;
}
}
return false;
}
/**
* Returns whether a region is linear
*
* A region is linear if its elements do not overlap and are not replicated.
* Unlike a packed region, intervening space (i.e. strided values) is allowed.
*/
static bool
is_linear(unsigned vstride, unsigned width, unsigned hstride)
{
return vstride == width * hstride ||
(hstride == 0 && width == 1);
}
/**
* Returns whether an instruction is an explicit or implicit conversion
* to/from half-float.
*/
static bool
is_half_float_conversion(const struct brw_isa_info *isa,
const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
enum brw_reg_type dst_type = brw_inst_dst_type(devinfo, inst);
unsigned num_sources = num_sources_from_inst(isa, inst);
enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst);
if (dst_type != src0_type &&
(dst_type == BRW_REGISTER_TYPE_HF || src0_type == BRW_REGISTER_TYPE_HF)) {
return true;
} else if (num_sources > 1) {
enum brw_reg_type src1_type = brw_inst_src1_type(devinfo, inst);
return dst_type != src1_type &&
(dst_type == BRW_REGISTER_TYPE_HF ||
src1_type == BRW_REGISTER_TYPE_HF);
}
return false;
}
/*
* Returns whether an instruction is using mixed float operation mode
*/
static bool
is_mixed_float(const struct brw_isa_info *isa, const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
if (devinfo->ver < 8)
return false;
if (inst_is_send(isa, inst))
return false;
unsigned opcode = brw_inst_opcode(isa, inst);
const struct opcode_desc *desc = brw_opcode_desc(isa, opcode);
if (desc->ndst == 0)
return false;
/* FIXME: support 3-src instructions */
unsigned num_sources = num_sources_from_inst(isa, inst);
assert(num_sources < 3);
enum brw_reg_type dst_type = brw_inst_dst_type(devinfo, inst);
enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst);
if (num_sources == 1)
return types_are_mixed_float(src0_type, dst_type);
enum brw_reg_type src1_type = brw_inst_src1_type(devinfo, inst);
return types_are_mixed_float(src0_type, src1_type) ||
types_are_mixed_float(src0_type, dst_type) ||
types_are_mixed_float(src1_type, dst_type);
}
/**
* Returns whether an instruction is an explicit or implicit conversion
* to/from byte.
*/
static bool
is_byte_conversion(const struct brw_isa_info *isa,
const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
enum brw_reg_type dst_type = brw_inst_dst_type(devinfo, inst);
unsigned num_sources = num_sources_from_inst(isa, inst);
enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst);
if (dst_type != src0_type &&
(type_sz(dst_type) == 1 || type_sz(src0_type) == 1)) {
return true;
} else if (num_sources > 1) {
enum brw_reg_type src1_type = brw_inst_src1_type(devinfo, inst);
return dst_type != src1_type &&
(type_sz(dst_type) == 1 || type_sz(src1_type) == 1);
}
return false;
}
/**
* Checks restrictions listed in "General Restrictions Based on Operand Types"
* in the "Register Region Restrictions" section.
*/
static struct string
general_restrictions_based_on_operand_types(const struct brw_isa_info *isa,
const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
const struct opcode_desc *desc =
brw_opcode_desc(isa, brw_inst_opcode(isa, inst));
unsigned num_sources = num_sources_from_inst(isa, inst);
unsigned exec_size = 1 << brw_inst_exec_size(devinfo, inst);
struct string error_msg = { .str = NULL, .len = 0 };
if (inst_is_send(isa, inst))
return error_msg;
if (devinfo->ver >= 11) {
if (num_sources == 3) {
ERROR_IF(brw_reg_type_to_size(brw_inst_3src_a1_src1_type(devinfo, inst)) == 1 ||
brw_reg_type_to_size(brw_inst_3src_a1_src2_type(devinfo, inst)) == 1,
"Byte data type is not supported for src1/2 register regioning. This includes "
"byte broadcast as well.");
}
if (num_sources == 2) {
ERROR_IF(brw_reg_type_to_size(brw_inst_src1_type(devinfo, inst)) == 1,
"Byte data type is not supported for src1 register regioning. This includes "
"byte broadcast as well.");
}
}
enum brw_reg_type dst_type;
if (num_sources == 3) {
if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1)
dst_type = brw_inst_3src_a1_dst_type(devinfo, inst);
else
dst_type = brw_inst_3src_a16_dst_type(devinfo, inst);
} else {
dst_type = inst_dst_type(isa, inst);
}
ERROR_IF(dst_type == BRW_REGISTER_TYPE_DF &&
!devinfo->has_64bit_float,
"64-bit float destination, but platform does not support it");
ERROR_IF((dst_type == BRW_REGISTER_TYPE_Q ||
dst_type == BRW_REGISTER_TYPE_UQ) &&
!devinfo->has_64bit_int,
"64-bit int destination, but platform does not support it");
for (unsigned s = 0; s < num_sources; s++) {
enum brw_reg_type src_type;
if (num_sources == 3) {
if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1) {
switch (s) {
case 0: src_type = brw_inst_3src_a1_src0_type(devinfo, inst); break;
case 1: src_type = brw_inst_3src_a1_src1_type(devinfo, inst); break;
case 2: src_type = brw_inst_3src_a1_src2_type(devinfo, inst); break;
default: unreachable("invalid src");
}
} else {
src_type = brw_inst_3src_a16_src_type(devinfo, inst);
}
} else {
switch (s) {
case 0: src_type = brw_inst_src0_type(devinfo, inst); break;
case 1: src_type = brw_inst_src1_type(devinfo, inst); break;
default: unreachable("invalid src");
}
}
ERROR_IF(src_type == BRW_REGISTER_TYPE_DF &&
!devinfo->has_64bit_float,
"64-bit float source, but platform does not support it");
ERROR_IF((src_type == BRW_REGISTER_TYPE_Q ||
src_type == BRW_REGISTER_TYPE_UQ) &&
!devinfo->has_64bit_int,
"64-bit int source, but platform does not support it");
}
if (num_sources == 3)
return error_msg;
if (exec_size == 1)
return error_msg;
if (desc->ndst == 0)
return error_msg;
/* The PRMs say:
*
* Where n is the largest element size in bytes for any source or
* destination operand type, ExecSize * n must be <= 64.
*
* But we do not attempt to enforce it, because it is implied by other
* rules:
*
* - that the destination stride must match the execution data type
* - sources may not span more than two adjacent GRF registers
* - destination may not span more than two adjacent GRF registers
*
* In fact, checking it would weaken testing of the other rules.
*/
unsigned dst_stride = STRIDE(brw_inst_dst_hstride(devinfo, inst));
bool dst_type_is_byte =
inst_dst_type(isa, inst) == BRW_REGISTER_TYPE_B ||
inst_dst_type(isa, inst) == BRW_REGISTER_TYPE_UB;
if (dst_type_is_byte) {
if (is_packed(exec_size * dst_stride, exec_size, dst_stride)) {
if (!inst_is_raw_move(isa, inst))
ERROR("Only raw MOV supports a packed-byte destination");
return error_msg;
}
}
unsigned exec_type = execution_type(isa, inst);
unsigned exec_type_size = brw_reg_type_to_size(exec_type);
unsigned dst_type_size = brw_reg_type_to_size(dst_type);
/* On IVB/BYT, region parameters and execution size for DF are in terms of
* 32-bit elements, so they are doubled. For evaluating the validity of an
* instruction, we halve them.
*/
if (devinfo->verx10 == 70 &&
exec_type_size == 8 && dst_type_size == 4)
dst_type_size = 8;
if (is_byte_conversion(isa, inst)) {
/* From the BDW+ PRM, Volume 2a, Command Reference, Instructions - MOV:
*
* "There is no direct conversion from B/UB to DF or DF to B/UB.
* There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB."
*
* Even if these restrictions are listed for the MOV instruction, we
* validate this more generally, since there is the possibility
* of implicit conversions from other instructions.
*/
enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst);
enum brw_reg_type src1_type = num_sources > 1 ?
brw_inst_src1_type(devinfo, inst) : 0;
ERROR_IF(type_sz(dst_type) == 1 &&
(type_sz(src0_type) == 8 ||
(num_sources > 1 && type_sz(src1_type) == 8)),
"There are no direct conversions between 64-bit types and B/UB");
ERROR_IF(type_sz(dst_type) == 8 &&
(type_sz(src0_type) == 1 ||
(num_sources > 1 && type_sz(src1_type) == 1)),
"There are no direct conversions between 64-bit types and B/UB");
}
if (is_half_float_conversion(isa, inst)) {
/**
* A helper to validate used in the validation of the following restriction
* from the BDW+ PRM, Volume 2a, Command Reference, Instructions - MOV:
*
* "There is no direct conversion from HF to DF or DF to HF.
* There is no direct conversion from HF to Q/UQ or Q/UQ to HF."
*
* Even if these restrictions are listed for the MOV instruction, we
* validate this more generally, since there is the possibility
* of implicit conversions from other instructions, such us implicit
* conversion from integer to HF with the ADD instruction in SKL+.
*/
enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst);
enum brw_reg_type src1_type = num_sources > 1 ?
brw_inst_src1_type(devinfo, inst) : 0;
ERROR_IF(dst_type == BRW_REGISTER_TYPE_HF &&
(type_sz(src0_type) == 8 ||
(num_sources > 1 && type_sz(src1_type) == 8)),
"There are no direct conversions between 64-bit types and HF");
ERROR_IF(type_sz(dst_type) == 8 &&
(src0_type == BRW_REGISTER_TYPE_HF ||
(num_sources > 1 && src1_type == BRW_REGISTER_TYPE_HF)),
"There are no direct conversions between 64-bit types and HF");
/* From the BDW+ PRM:
*
* "Conversion between Integer and HF (Half Float) must be
* DWord-aligned and strided by a DWord on the destination."
*
* Also, the above restrictions seems to be expanded on CHV and SKL+ by:
*
* "There is a relaxed alignment rule for word destinations. When
* the destination type is word (UW, W, HF), destination data types
* can be aligned to either the lowest word or the second lowest
* word of the execution channel. This means the destination data
* words can be either all in the even word locations or all in the
* odd word locations."
*
* We do not implement the second rule as is though, since empirical
* testing shows inconsistencies:
* - It suggests that packed 16-bit is not allowed, which is not true.
* - It suggests that conversions from Q/DF to W (which need to be
* 64-bit aligned on the destination) are not possible, which is
* not true.
*
* So from this rule we only validate the implication that conversions
* from F to HF need to be DWord strided (except in Align1 mixed
* float mode where packed fp16 destination is allowed so long as the
* destination is oword-aligned).
*
* Finally, we only validate this for Align1 because Align16 always
* requires packed destinations, so these restrictions can't possibly
* apply to Align16 mode.
*/
if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1) {
if ((dst_type == BRW_REGISTER_TYPE_HF &&
(brw_reg_type_is_integer(src0_type) ||
(num_sources > 1 && brw_reg_type_is_integer(src1_type)))) ||
(brw_reg_type_is_integer(dst_type) &&
(src0_type == BRW_REGISTER_TYPE_HF ||
(num_sources > 1 && src1_type == BRW_REGISTER_TYPE_HF)))) {
ERROR_IF(dst_stride * dst_type_size != 4,
"Conversions between integer and half-float must be "
"strided by a DWord on the destination");
unsigned subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);
ERROR_IF(subreg % 4 != 0,
"Conversions between integer and half-float must be "
"aligned to a DWord on the destination");
} else if ((devinfo->platform == INTEL_PLATFORM_CHV ||
devinfo->ver >= 9) &&
dst_type == BRW_REGISTER_TYPE_HF) {
unsigned subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);
ERROR_IF(dst_stride != 2 &&
!(is_mixed_float(isa, inst) &&
dst_stride == 1 && subreg % 16 == 0),
"Conversions to HF must have either all words in even "
"word locations or all words in odd word locations or "
"be mixed-float with Oword-aligned packed destination");
}
}
}
/* There are special regioning rules for mixed-float mode in CHV and SKL that
* override the general rule for the ratio of sizes of the destination type
* and the execution type. We will add validation for those in a later patch.
*/
bool validate_dst_size_and_exec_size_ratio =
!is_mixed_float(isa, inst) ||
!(devinfo->platform == INTEL_PLATFORM_CHV || devinfo->ver >= 9);
if (validate_dst_size_and_exec_size_ratio &&
exec_type_size > dst_type_size) {
if (!(dst_type_is_byte && inst_is_raw_move(isa, inst))) {
ERROR_IF(dst_stride * dst_type_size != exec_type_size,
"Destination stride must be equal to the ratio of the sizes "
"of the execution data type to the destination type");
}
unsigned subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);
if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1 &&
brw_inst_dst_address_mode(devinfo, inst) == BRW_ADDRESS_DIRECT) {
/* The i965 PRM says:
*
* Implementation Restriction: The relaxed alignment rule for byte
* destination (#10.5) is not supported.
*/
if (devinfo->verx10 >= 45 && dst_type_is_byte) {
ERROR_IF(subreg % exec_type_size != 0 &&
subreg % exec_type_size != 1,
"Destination subreg must be aligned to the size of the "
"execution data type (or to the next lowest byte for byte "
"destinations)");
} else {
ERROR_IF(subreg % exec_type_size != 0,
"Destination subreg must be aligned to the size of the "
"execution data type");
}
}
}
return error_msg;
}
/**
* Checks restrictions listed in "General Restrictions on Regioning Parameters"
* in the "Register Region Restrictions" section.
*/
static struct string
general_restrictions_on_region_parameters(const struct brw_isa_info *isa,
const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
const struct opcode_desc *desc =
brw_opcode_desc(isa, brw_inst_opcode(isa, inst));
unsigned num_sources = num_sources_from_inst(isa, inst);
unsigned exec_size = 1 << brw_inst_exec_size(devinfo, inst);
struct string error_msg = { .str = NULL, .len = 0 };
if (num_sources == 3)
return (struct string){};
/* Split sends don't have the bits in the instruction to encode regions so
* there's nothing to check.
*/
if (inst_is_split_send(isa, inst))
return (struct string){};
if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16) {
if (desc->ndst != 0 && !dst_is_null(devinfo, inst))
ERROR_IF(brw_inst_dst_hstride(devinfo, inst) != BRW_HORIZONTAL_STRIDE_1,
"Destination Horizontal Stride must be 1");
if (num_sources >= 1) {
if (devinfo->verx10 >= 75) {
ERROR_IF(brw_inst_src0_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE &&
brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_0 &&
brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_2 &&
brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
"In Align16 mode, only VertStride of 0, 2, or 4 is allowed");
} else {
ERROR_IF(brw_inst_src0_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE &&
brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_0 &&
brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
"In Align16 mode, only VertStride of 0 or 4 is allowed");
}
}
if (num_sources == 2) {
if (devinfo->verx10 >= 75) {
ERROR_IF(brw_inst_src1_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE &&
brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_0 &&
brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_2 &&
brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
"In Align16 mode, only VertStride of 0, 2, or 4 is allowed");
} else {
ERROR_IF(brw_inst_src1_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE &&
brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_0 &&
brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
"In Align16 mode, only VertStride of 0 or 4 is allowed");
}
}
return error_msg;
}
for (unsigned i = 0; i < num_sources; i++) {
unsigned vstride, width, hstride, element_size, subreg;
enum brw_reg_type type;
#define DO_SRC(n) \
if (brw_inst_src ## n ## _reg_file(devinfo, inst) == \
BRW_IMMEDIATE_VALUE) \
continue; \
\
vstride = STRIDE(brw_inst_src ## n ## _vstride(devinfo, inst)); \
width = WIDTH(brw_inst_src ## n ## _width(devinfo, inst)); \
hstride = STRIDE(brw_inst_src ## n ## _hstride(devinfo, inst)); \
type = brw_inst_src ## n ## _type(devinfo, inst); \
element_size = brw_reg_type_to_size(type); \
subreg = brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst)
if (i == 0) {
DO_SRC(0);
} else {
DO_SRC(1);
}
#undef DO_SRC
/* On IVB/BYT, region parameters and execution size for DF are in terms of
* 32-bit elements, so they are doubled. For evaluating the validity of an
* instruction, we halve them.
*/
if (devinfo->verx10 == 70 &&
element_size == 8)
element_size = 4;
/* ExecSize must be greater than or equal to Width. */
ERROR_IF(exec_size < width, "ExecSize must be greater than or equal "
"to Width");
/* If ExecSize = Width and HorzStride ≠ 0,
* VertStride must be set to Width * HorzStride.
*/
if (exec_size == width && hstride != 0) {
ERROR_IF(vstride != width * hstride,
"If ExecSize = Width and HorzStride ≠ 0, "
"VertStride must be set to Width * HorzStride");
}
/* If Width = 1, HorzStride must be 0 regardless of the values of
* ExecSize and VertStride.
*/
if (width == 1) {
ERROR_IF(hstride != 0,
"If Width = 1, HorzStride must be 0 regardless "
"of the values of ExecSize and VertStride");
}
/* If ExecSize = Width = 1, both VertStride and HorzStride must be 0. */
if (exec_size == 1 && width == 1) {
ERROR_IF(vstride != 0 || hstride != 0,
"If ExecSize = Width = 1, both VertStride "
"and HorzStride must be 0");
}
/* If VertStride = HorzStride = 0, Width must be 1 regardless of the
* value of ExecSize.
*/
if (vstride == 0 && hstride == 0) {
ERROR_IF(width != 1,
"If VertStride = HorzStride = 0, Width must be "
"1 regardless of the value of ExecSize");
}
/* VertStride must be used to cross GRF register boundaries. This rule
* implies that elements within a 'Width' cannot cross GRF boundaries.
*/
const uint64_t mask = (1ULL << element_size) - 1;
unsigned rowbase = subreg;
for (int y = 0; y < exec_size / width; y++) {
uint64_t access_mask = 0;
unsigned offset = rowbase;
for (int x = 0; x < width; x++) {
access_mask |= mask << (offset % 64);
offset += hstride * element_size;
}
rowbase += vstride * element_size;
if ((uint32_t)access_mask != 0 && (access_mask >> 32) != 0) {
ERROR("VertStride must be used to cross GRF register boundaries");
break;
}
}
}
/* Dst.HorzStride must not be 0. */
if (desc->ndst != 0 && !dst_is_null(devinfo, inst)) {
ERROR_IF(brw_inst_dst_hstride(devinfo, inst) == BRW_HORIZONTAL_STRIDE_0,
"Destination Horizontal Stride must not be 0");
}
return error_msg;
}
static struct string
special_restrictions_for_mixed_float_mode(const struct brw_isa_info *isa,
const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
struct string error_msg = { .str = NULL, .len = 0 };
const unsigned opcode = brw_inst_opcode(isa, inst);
const unsigned num_sources = num_sources_from_inst(isa, inst);
if (num_sources >= 3)
return error_msg;
if (!is_mixed_float(isa, inst))
return error_msg;
unsigned exec_size = 1 << brw_inst_exec_size(devinfo, inst);
bool is_align16 = brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16;
enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst);
enum brw_reg_type src1_type = num_sources > 1 ?
brw_inst_src1_type(devinfo, inst) : 0;
enum brw_reg_type dst_type = brw_inst_dst_type(devinfo, inst);
unsigned dst_stride = STRIDE(brw_inst_dst_hstride(devinfo, inst));
bool dst_is_packed = is_packed(exec_size * dst_stride, exec_size, dst_stride);
/* From the SKL PRM, Special Restrictions for Handling Mixed Mode
* Float Operations:
*
* "Indirect addressing on source is not supported when source and
* destination data types are mixed float."
*/
ERROR_IF(brw_inst_src0_address_mode(devinfo, inst) != BRW_ADDRESS_DIRECT ||
(num_sources > 1 &&
brw_inst_src1_address_mode(devinfo, inst) != BRW_ADDRESS_DIRECT),
"Indirect addressing on source is not supported when source and "
"destination data types are mixed float");
/* From the SKL PRM, Special Restrictions for Handling Mixed Mode
* Float Operations:
*
* "No SIMD16 in mixed mode when destination is f32. Instruction
* execution size must be no more than 8."
*/
ERROR_IF(exec_size > 8 && dst_type == BRW_REGISTER_TYPE_F,
"Mixed float mode with 32-bit float destination is limited "
"to SIMD8");
if (is_align16) {
/* From the SKL PRM, Special Restrictions for Handling Mixed Mode
* Float Operations:
*
* "In Align16 mode, when half float and float data types are mixed
* between source operands OR between source and destination operands,
* the register content are assumed to be packed."
*
* Since Align16 doesn't have a concept of horizontal stride (or width),
* it means that vertical stride must always be 4, since 0 and 2 would
* lead to replicated data, and any other value is disallowed in Align16.
*/
ERROR_IF(brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
"Align16 mixed float mode assumes packed data (vstride must be 4");
ERROR_IF(num_sources >= 2 &&
brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
"Align16 mixed float mode assumes packed data (vstride must be 4");
/* From the SKL PRM, Special Restrictions for Handling Mixed Mode
* Float Operations:
*
* "For Align16 mixed mode, both input and output packed f16 data
* must be oword aligned, no oword crossing in packed f16."
*
* The previous rule requires that Align16 operands are always packed,
* and since there is only one bit for Align16 subnr, which represents
* offsets 0B and 16B, this rule is always enforced and we don't need to
* validate it.
*/
/* From the SKL PRM, Special Restrictions for Handling Mixed Mode
* Float Operations:
*
* "No SIMD16 in mixed mode when destination is packed f16 for both
* Align1 and Align16."
*
* And:
*
* "In Align16 mode, when half float and float data types are mixed
* between source operands OR between source and destination operands,
* the register content are assumed to be packed."
*
* Which implies that SIMD16 is not available in Align16. This is further
* confirmed by:
*
* "For Align16 mixed mode, both input and output packed f16 data
* must be oword aligned, no oword crossing in packed f16"
*
* Since oword-aligned packed f16 data would cross oword boundaries when
* the execution size is larger than 8.
*/
ERROR_IF(exec_size > 8, "Align16 mixed float mode is limited to SIMD8");
/* From the SKL PRM, Special Restrictions for Handling Mixed Mode
* Float Operations:
*
* "No accumulator read access for Align16 mixed float."
*/
ERROR_IF(inst_uses_src_acc(isa, inst),
"No accumulator read access for Align16 mixed float");
} else {
assert(!is_align16);
/* From the SKL PRM, Special Restrictions for Handling Mixed Mode
* Float Operations:
*
* "No SIMD16 in mixed mode when destination is packed f16 for both
* Align1 and Align16."
*/
ERROR_IF(exec_size > 8 && dst_is_packed &&
dst_type == BRW_REGISTER_TYPE_HF,
"Align1 mixed float mode is limited to SIMD8 when destination "
"is packed half-float");
/* From the SKL PRM, Special Restrictions for Handling Mixed Mode
* Float Operations:
*
* "Math operations for mixed mode:
* - In Align1, f16 inputs need to be strided"
*/
if (opcode == BRW_OPCODE_MATH) {
if (src0_type == BRW_REGISTER_TYPE_HF) {
ERROR_IF(STRIDE(brw_inst_src0_hstride(devinfo, inst)) <= 1,
"Align1 mixed mode math needs strided half-float inputs");
}
if (num_sources >= 2 && src1_type == BRW_REGISTER_TYPE_HF) {
ERROR_IF(STRIDE(brw_inst_src1_hstride(devinfo, inst)) <= 1,
"Align1 mixed mode math needs strided half-float inputs");
}
}
if (dst_type == BRW_REGISTER_TYPE_HF && dst_stride == 1) {
/* From the SKL PRM, Special Restrictions for Handling Mixed Mode
* Float Operations:
*
* "In Align1, destination stride can be smaller than execution
* type. When destination is stride of 1, 16 bit packed data is
* updated on the destination. However, output packed f16 data
* must be oword aligned, no oword crossing in packed f16."
*
* The requirement of not crossing oword boundaries for 16-bit oword
* aligned data means that execution size is limited to 8.
*/
unsigned subreg;
if (brw_inst_dst_address_mode(devinfo, inst) == BRW_ADDRESS_DIRECT)
subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);
else
subreg = brw_inst_dst_ia_subreg_nr(devinfo, inst);
ERROR_IF(subreg % 16 != 0,
"Align1 mixed mode packed half-float output must be "
"oword aligned");
ERROR_IF(exec_size > 8,
"Align1 mixed mode packed half-float output must not "
"cross oword boundaries (max exec size is 8)");
/* From the SKL PRM, Special Restrictions for Handling Mixed Mode
* Float Operations:
*
* "When source is float or half float from accumulator register and
* destination is half float with a stride of 1, the source must
* register aligned. i.e., source must have offset zero."
*
* Align16 mixed float mode doesn't allow accumulator access on sources,
* so we only need to check this for Align1.
*/
if (src0_is_acc(devinfo, inst) &&
(src0_type == BRW_REGISTER_TYPE_F ||
src0_type == BRW_REGISTER_TYPE_HF)) {
ERROR_IF(brw_inst_src0_da1_subreg_nr(devinfo, inst) != 0,
"Mixed float mode requires register-aligned accumulator "
"source reads when destination is packed half-float");
}
if (num_sources > 1 &&
src1_is_acc(devinfo, inst) &&
(src1_type == BRW_REGISTER_TYPE_F ||
src1_type == BRW_REGISTER_TYPE_HF)) {
ERROR_IF(brw_inst_src1_da1_subreg_nr(devinfo, inst) != 0,
"Mixed float mode requires register-aligned accumulator "
"source reads when destination is packed half-float");
}
}
/* From the SKL PRM, Special Restrictions for Handling Mixed Mode
* Float Operations:
*
* "No swizzle is allowed when an accumulator is used as an implicit
* source or an explicit source in an instruction. i.e. when
* destination is half float with an implicit accumulator source,
* destination stride needs to be 2."
*
* FIXME: it is not quite clear what the first sentence actually means
* or its link to the implication described after it, so we only
* validate the explicit implication, which is clearly described.
*/
if (dst_type == BRW_REGISTER_TYPE_HF &&
inst_uses_src_acc(isa, inst)) {
ERROR_IF(dst_stride != 2,
"Mixed float mode with implicit/explicit accumulator "
"source and half-float destination requires a stride "
"of 2 on the destination");
}
}
return error_msg;
}
/**
* Creates an \p access_mask for an \p exec_size, \p element_size, and a region
*
* An \p access_mask is a 32-element array of uint64_t, where each uint64_t is
* a bitmask of bytes accessed by the region.
*
* For instance the access mask of the source gX.1<4,2,2>F in an exec_size = 4
* instruction would be
*
* access_mask[0] = 0x00000000000000F0
* access_mask[1] = 0x000000000000F000
* access_mask[2] = 0x0000000000F00000
* access_mask[3] = 0x00000000F0000000
* access_mask[4-31] = 0
*
* because the first execution channel accesses bytes 7-4 and the second
* execution channel accesses bytes 15-12, etc.
*/
static void
align1_access_mask(uint64_t access_mask[static 32],
unsigned exec_size, unsigned element_size, unsigned subreg,
unsigned vstride, unsigned width, unsigned hstride)
{
const uint64_t mask = (1ULL << element_size) - 1;
unsigned rowbase = subreg;
unsigned element = 0;
for (int y = 0; y < exec_size / width; y++) {
unsigned offset = rowbase;
for (int x = 0; x < width; x++) {
access_mask[element++] = mask << (offset % 64);
offset += hstride * element_size;
}
rowbase += vstride * element_size;
}
assert(element == 0 || element == exec_size);
}
/**
* Returns the number of registers accessed according to the \p access_mask
*/
static int
registers_read(const uint64_t access_mask[static 32])
{
int regs_read = 0;
for (unsigned i = 0; i < 32; i++) {
if (access_mask[i] > 0xFFFFFFFF) {
return 2;
} else if (access_mask[i]) {
regs_read = 1;
}
}
return regs_read;
}
/**
* Checks restrictions listed in "Region Alignment Rules" in the "Register
* Region Restrictions" section.
*/
static struct string
region_alignment_rules(const struct brw_isa_info *isa,
const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
const struct opcode_desc *desc =
brw_opcode_desc(isa, brw_inst_opcode(isa, inst));
unsigned num_sources = num_sources_from_inst(isa, inst);
unsigned exec_size = 1 << brw_inst_exec_size(devinfo, inst);
uint64_t dst_access_mask[32], src0_access_mask[32], src1_access_mask[32];
struct string error_msg = { .str = NULL, .len = 0 };
if (num_sources == 3)
return (struct string){};
if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16)
return (struct string){};
if (inst_is_send(isa, inst))
return (struct string){};
memset(dst_access_mask, 0, sizeof(dst_access_mask));
memset(src0_access_mask, 0, sizeof(src0_access_mask));
memset(src1_access_mask, 0, sizeof(src1_access_mask));
for (unsigned i = 0; i < num_sources; i++) {
unsigned vstride, width, hstride, element_size, subreg;
enum brw_reg_type type;
/* In Direct Addressing mode, a source cannot span more than 2 adjacent
* GRF registers.
*/
#define DO_SRC(n) \
if (brw_inst_src ## n ## _address_mode(devinfo, inst) != \
BRW_ADDRESS_DIRECT) \
continue; \
\
if (brw_inst_src ## n ## _reg_file(devinfo, inst) == \
BRW_IMMEDIATE_VALUE) \
continue; \
\
vstride = STRIDE(brw_inst_src ## n ## _vstride(devinfo, inst)); \
width = WIDTH(brw_inst_src ## n ## _width(devinfo, inst)); \
hstride = STRIDE(brw_inst_src ## n ## _hstride(devinfo, inst)); \
type = brw_inst_src ## n ## _type(devinfo, inst); \
element_size = brw_reg_type_to_size(type); \
subreg = brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst); \
align1_access_mask(src ## n ## _access_mask, \
exec_size, element_size, subreg, \
vstride, width, hstride)
if (i == 0) {
DO_SRC(0);
} else {
DO_SRC(1);
}
#undef DO_SRC
unsigned num_vstride = exec_size / width;
unsigned num_hstride = width;
unsigned vstride_elements = (num_vstride - 1) * vstride;
unsigned hstride_elements = (num_hstride - 1) * hstride;
unsigned offset = (vstride_elements + hstride_elements) * element_size +
subreg;
ERROR_IF(offset >= 64,
"A source cannot span more than 2 adjacent GRF registers");
}
if (desc->ndst == 0 || dst_is_null(devinfo, inst))
return error_msg;
unsigned stride = STRIDE(brw_inst_dst_hstride(devinfo, inst));
enum brw_reg_type dst_type = inst_dst_type(isa, inst);
unsigned element_size = brw_reg_type_to_size(dst_type);
unsigned subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);
unsigned offset = ((exec_size - 1) * stride * element_size) + subreg;
ERROR_IF(offset >= 64,
"A destination cannot span more than 2 adjacent GRF registers");
if (error_msg.str)
return error_msg;
/* On IVB/BYT, region parameters and execution size for DF are in terms of
* 32-bit elements, so they are doubled. For evaluating the validity of an
* instruction, we halve them.
*/
if (devinfo->verx10 == 70 &&
element_size == 8)
element_size = 4;
align1_access_mask(dst_access_mask, exec_size, element_size, subreg,
exec_size == 1 ? 0 : exec_size * stride,
exec_size == 1 ? 1 : exec_size,
exec_size == 1 ? 0 : stride);
unsigned dst_regs = registers_read(dst_access_mask);
unsigned src0_regs = registers_read(src0_access_mask);
unsigned src1_regs = registers_read(src1_access_mask);
/* The SNB, IVB, HSW, BDW, and CHV PRMs say:
*
* When an instruction has a source region spanning two registers and a
* destination region contained in one register, the number of elements
* must be the same between two sources and one of the following must be
* true:
*
* 1. The destination region is entirely contained in the lower OWord
* of a register.
* 2. The destination region is entirely contained in the upper OWord
* of a register.
* 3. The destination elements are evenly split between the two OWords
* of a register.
*/
if (devinfo->ver <= 8) {
if (dst_regs == 1 && (src0_regs == 2 || src1_regs == 2)) {
unsigned upper_oword_writes = 0, lower_oword_writes = 0;
for (unsigned i = 0; i < exec_size; i++) {
if (dst_access_mask[i] > 0x0000FFFF) {
upper_oword_writes++;
} else {
assert(dst_access_mask[i] != 0);
lower_oword_writes++;
}
}
ERROR_IF(lower_oword_writes != 0 &&
upper_oword_writes != 0 &&
upper_oword_writes != lower_oword_writes,
"Writes must be to only one OWord or "
"evenly split between OWords");
}
}
/* The IVB and HSW PRMs say:
*
* When an instruction has a source region that spans two registers and
* the destination spans two registers, the destination elements must be
* evenly split between the two registers [...]
*
* The SNB PRM contains similar wording (but written in a much more
* confusing manner).
*
* The BDW PRM says:
*
* When destination spans two registers, the source may be one or two
* registers. The destination elements must be evenly split between the
* two registers.
*
* The SKL PRM says:
*
* When destination of MATH instruction spans two registers, the
* destination elements must be evenly split between the two registers.
*
* It is not known whether this restriction applies to KBL other Gens after
* SKL.
*/
if (devinfo->ver <= 8 ||
brw_inst_opcode(isa, inst) == BRW_OPCODE_MATH) {
/* Nothing explicitly states that on Gen < 8 elements must be evenly
* split between two destination registers in the two exceptional
* source-region-spans-one-register cases, but since Broadwell requires
* evenly split writes regardless of source region, we assume that it was
* an oversight and require it.
*/
if (dst_regs == 2) {
unsigned upper_reg_writes = 0, lower_reg_writes = 0;
for (unsigned i = 0; i < exec_size; i++) {
if (dst_access_mask[i] > 0xFFFFFFFF) {
upper_reg_writes++;
} else {
assert(dst_access_mask[i] != 0);
lower_reg_writes++;
}
}
ERROR_IF(upper_reg_writes != lower_reg_writes,
"Writes must be evenly split between the two "
"destination registers");
}
}
/* The IVB and HSW PRMs say:
*
* When an instruction has a source region that spans two registers and
* the destination spans two registers, the destination elements must be
* evenly split between the two registers and each destination register
* must be entirely derived from one source register.
*
* Note: In such cases, the regioning parameters must ensure that the
* offset from the two source registers is the same.
*
* The SNB PRM contains similar wording (but written in a much more
* confusing manner).
*
* There are effectively three rules stated here:
*
* For an instruction with a source and a destination spanning two
* registers,
*
* (1) destination elements must be evenly split between the two
* registers
* (2) all destination elements in a register must be derived
* from one source register
* (3) the offset (i.e. the starting location in each of the two
* registers spanned by a region) must be the same in the two
* registers spanned by a region
*
* It is impossible to violate rule (1) without violating (2) or (3), so we
* do not attempt to validate it.
*/
if (devinfo->ver <= 7 && dst_regs == 2) {
for (unsigned i = 0; i < num_sources; i++) {
#define DO_SRC(n) \
if (src ## n ## _regs <= 1) \
continue; \
\
for (unsigned i = 0; i < exec_size; i++) { \
if ((dst_access_mask[i] > 0xFFFFFFFF) != \
(src ## n ## _access_mask[i] > 0xFFFFFFFF)) { \
ERROR("Each destination register must be entirely derived " \
"from one source register"); \
break; \
} \
} \
\
unsigned offset_0 = \
brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst); \
unsigned offset_1 = offset_0; \
\
for (unsigned i = 0; i < exec_size; i++) { \
if (src ## n ## _access_mask[i] > 0xFFFFFFFF) { \
offset_1 = __builtin_ctzll(src ## n ## _access_mask[i]) - 32; \
break; \
} \
} \
\
ERROR_IF(num_sources == 2 && offset_0 != offset_1, \
"The offset from the two source registers " \
"must be the same")
if (i == 0) {
DO_SRC(0);
} else {
DO_SRC(1);
}
#undef DO_SRC
}
}
/* The IVB and HSW PRMs say:
*
* When destination spans two registers, the source MUST span two
* registers. The exception to the above rule:
* 1. When source is scalar, the source registers are not
* incremented.
* 2. When source is packed integer Word and destination is packed
* integer DWord, the source register is not incremented by the
* source sub register is incremented.
*
* The SNB PRM does not contain this rule, but the internal documentation
* indicates that it applies to SNB as well. We assume that the rule applies
* to Gen <= 5 although their PRMs do not state it.
*
* While the documentation explicitly says in exception (2) that the
* destination must be an integer DWord, the hardware allows at least a
* float destination type as well. We emit such instructions from
*
* fs_visitor::emit_interpolation_setup_gfx6
* fs_visitor::emit_fragcoord_interpolation
*
* and have for years with no ill effects.
*
* Additionally the simulator source code indicates that the real condition
* is that the size of the destination type is 4 bytes.
*/
if (devinfo->ver <= 7 && dst_regs == 2) {
enum brw_reg_type dst_type = inst_dst_type(isa, inst);
bool dst_is_packed_dword =
is_packed(exec_size * stride, exec_size, stride) &&
brw_reg_type_to_size(dst_type) == 4;
for (unsigned i = 0; i < num_sources; i++) {
#define DO_SRC(n) \
unsigned vstride, width, hstride; \
vstride = STRIDE(brw_inst_src ## n ## _vstride(devinfo, inst)); \
width = WIDTH(brw_inst_src ## n ## _width(devinfo, inst)); \
hstride = STRIDE(brw_inst_src ## n ## _hstride(devinfo, inst)); \
bool src ## n ## _is_packed_word = \
is_packed(vstride, width, hstride) && \
(brw_inst_src ## n ## _type(devinfo, inst) == BRW_REGISTER_TYPE_W || \
brw_inst_src ## n ## _type(devinfo, inst) == BRW_REGISTER_TYPE_UW); \
\
ERROR_IF(src ## n ## _regs == 1 && \
!src ## n ## _has_scalar_region(devinfo, inst) && \
!(dst_is_packed_dword && src ## n ## _is_packed_word), \
"When the destination spans two registers, the source must " \
"span two registers\n" ERROR_INDENT "(exceptions for scalar " \
"source and packed-word to packed-dword expansion)")
if (i == 0) {
DO_SRC(0);
} else {
DO_SRC(1);
}
#undef DO_SRC
}
}
return error_msg;
}
static struct string
vector_immediate_restrictions(const struct brw_isa_info *isa,
const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
unsigned num_sources = num_sources_from_inst(isa, inst);
struct string error_msg = { .str = NULL, .len = 0 };
if (num_sources == 3 || num_sources == 0)
return (struct string){};
unsigned file = num_sources == 1 ?
brw_inst_src0_reg_file(devinfo, inst) :
brw_inst_src1_reg_file(devinfo, inst);
if (file != BRW_IMMEDIATE_VALUE)
return (struct string){};
enum brw_reg_type dst_type = inst_dst_type(isa, inst);
unsigned dst_type_size = brw_reg_type_to_size(dst_type);
unsigned dst_subreg = brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1 ?
brw_inst_dst_da1_subreg_nr(devinfo, inst) : 0;
unsigned dst_stride = STRIDE(brw_inst_dst_hstride(devinfo, inst));
enum brw_reg_type type = num_sources == 1 ?
brw_inst_src0_type(devinfo, inst) :
brw_inst_src1_type(devinfo, inst);
/* The PRMs say:
*
* When an immediate vector is used in an instruction, the destination
* must be 128-bit aligned with destination horizontal stride equivalent
* to a word for an immediate integer vector (v) and equivalent to a
* DWord for an immediate float vector (vf).
*
* The text has not been updated for the addition of the immediate unsigned
* integer vector type (uv) on SNB, but presumably the same restriction
* applies.
*/
switch (type) {
case BRW_REGISTER_TYPE_V:
case BRW_REGISTER_TYPE_UV:
case BRW_REGISTER_TYPE_VF:
ERROR_IF(dst_subreg % (128 / 8) != 0,
"Destination must be 128-bit aligned in order to use immediate "
"vector types");
if (type == BRW_REGISTER_TYPE_VF) {
ERROR_IF(dst_type_size * dst_stride != 4,
"Destination must have stride equivalent to dword in order "
"to use the VF type");
} else {
ERROR_IF(dst_type_size * dst_stride != 2,
"Destination must have stride equivalent to word in order "
"to use the V or UV type");
}
break;
default:
break;
}
return error_msg;
}
static struct string
special_requirements_for_handling_double_precision_data_types(
const struct brw_isa_info *isa,
const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
unsigned num_sources = num_sources_from_inst(isa, inst);
struct string error_msg = { .str = NULL, .len = 0 };
if (num_sources == 3 || num_sources == 0)
return (struct string){};
/* Split sends don't have types so there's no doubles there. */
if (inst_is_split_send(isa, inst))
return (struct string){};
enum brw_reg_type exec_type = execution_type(isa, inst);
unsigned exec_type_size = brw_reg_type_to_size(exec_type);
enum brw_reg_file dst_file = brw_inst_dst_reg_file(devinfo, inst);
enum brw_reg_type dst_type = inst_dst_type(isa, inst);
unsigned dst_type_size = brw_reg_type_to_size(dst_type);
unsigned dst_hstride = STRIDE(brw_inst_dst_hstride(devinfo, inst));
unsigned dst_reg = brw_inst_dst_da_reg_nr(devinfo, inst);
unsigned dst_subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);
unsigned dst_address_mode = brw_inst_dst_address_mode(devinfo, inst);
bool is_integer_dword_multiply =
devinfo->ver >= 8 &&
brw_inst_opcode(isa, inst) == BRW_OPCODE_MUL &&
(brw_inst_src0_type(devinfo, inst) == BRW_REGISTER_TYPE_D ||
brw_inst_src0_type(devinfo, inst) == BRW_REGISTER_TYPE_UD) &&
(brw_inst_src1_type(devinfo, inst) == BRW_REGISTER_TYPE_D ||
brw_inst_src1_type(devinfo, inst) == BRW_REGISTER_TYPE_UD);
const bool is_double_precision =
dst_type_size == 8 || exec_type_size == 8 || is_integer_dword_multiply;
for (unsigned i = 0; i < num_sources; i++) {
unsigned vstride, width, hstride, type_size, reg, subreg, address_mode;
bool is_scalar_region;
enum brw_reg_file file;
enum brw_reg_type type;
#define DO_SRC(n) \
if (brw_inst_src ## n ## _reg_file(devinfo, inst) == \
BRW_IMMEDIATE_VALUE) \
continue; \
\
is_scalar_region = src ## n ## _has_scalar_region(devinfo, inst); \
vstride = STRIDE(brw_inst_src ## n ## _vstride(devinfo, inst)); \
width = WIDTH(brw_inst_src ## n ## _width(devinfo, inst)); \
hstride = STRIDE(brw_inst_src ## n ## _hstride(devinfo, inst)); \
file = brw_inst_src ## n ## _reg_file(devinfo, inst); \
type = brw_inst_src ## n ## _type(devinfo, inst); \
type_size = brw_reg_type_to_size(type); \
reg = brw_inst_src ## n ## _da_reg_nr(devinfo, inst); \
subreg = brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst); \
address_mode = brw_inst_src ## n ## _address_mode(devinfo, inst)
if (i == 0) {
DO_SRC(0);
} else {
DO_SRC(1);
}
#undef DO_SRC
const unsigned src_stride = (hstride ? hstride : vstride) * type_size;
const unsigned dst_stride = dst_hstride * dst_type_size;
/* The PRMs say that for CHV, BXT:
*
* When source or destination datatype is 64b or operation is integer
* DWord multiply, regioning in Align1 must follow these rules:
*
* 1. Source and Destination horizontal stride must be aligned to the
* same qword.
* 2. Regioning must ensure Src.Vstride = Src.Width * Src.Hstride.
* 3. Source and Destination offset must be the same, except the case
* of scalar source.
*
* We assume that the restriction applies to GLK as well.
*/
if (is_double_precision &&
brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1 &&
(devinfo->platform == INTEL_PLATFORM_CHV || intel_device_info_is_9lp(devinfo))) {
ERROR_IF(!is_scalar_region &&
(src_stride % 8 != 0 ||
dst_stride % 8 != 0 ||
src_stride != dst_stride),
"Source and destination horizontal stride must equal and a "
"multiple of a qword when the execution type is 64-bit");
ERROR_IF(vstride != width * hstride,
"Vstride must be Width * Hstride when the execution type is "
"64-bit");
ERROR_IF(!is_scalar_region && dst_subreg != subreg,
"Source and destination offset must be the same when the "
"execution type is 64-bit");
}
/* The PRMs say that for CHV, BXT:
*
* When source or destination datatype is 64b or operation is integer
* DWord multiply, indirect addressing must not be used.
*
* We assume that the restriction applies to GLK as well.
*/
if (is_double_precision &&
(devinfo->platform == INTEL_PLATFORM_CHV || intel_device_info_is_9lp(devinfo))) {
ERROR_IF(BRW_ADDRESS_REGISTER_INDIRECT_REGISTER == address_mode ||
BRW_ADDRESS_REGISTER_INDIRECT_REGISTER == dst_address_mode,
"Indirect addressing is not allowed when the execution type "
"is 64-bit");
}
/* The PRMs say that for CHV, BXT:
*
* ARF registers must never be used with 64b datatype or when
* operation is integer DWord multiply.
*
* We assume that the restriction applies to GLK as well.
*
* We assume that the restriction does not apply to the null register.
*/
if (is_double_precision &&
(devinfo->platform == INTEL_PLATFORM_CHV ||
intel_device_info_is_9lp(devinfo))) {
ERROR_IF(brw_inst_opcode(isa, inst) == BRW_OPCODE_MAC ||
brw_inst_acc_wr_control(devinfo, inst) ||
(BRW_ARCHITECTURE_REGISTER_FILE == file &&
reg != BRW_ARF_NULL) ||
(BRW_ARCHITECTURE_REGISTER_FILE == dst_file &&
dst_reg != BRW_ARF_NULL),
"Architecture registers cannot be used when the execution "
"type is 64-bit");
}
/* From the hardware spec section "Register Region Restrictions":
*
* "In case where source or destination datatype is 64b or operation is
* integer DWord multiply [or in case where a floating point data type
* is used as destination]:
*
* 1. Register Regioning patterns where register data bit location
* of the LSB of the channels are changed between source and
* destination are not supported on Src0 and Src1 except for
* broadcast of a scalar.
*
* 2. Explicit ARF registers except null and accumulator must not be
* used."
*/
if (devinfo->verx10 >= 125 &&
(brw_reg_type_is_floating_point(dst_type) ||
is_double_precision)) {
ERROR_IF(!is_scalar_region &&
BRW_ADDRESS_REGISTER_INDIRECT_REGISTER != address_mode &&
(!is_linear(vstride, width, hstride) ||
src_stride != dst_stride ||
subreg != dst_subreg),
"Register Regioning patterns where register data bit "
"location of the LSB of the channels are changed between "
"source and destination are not supported except for "
"broadcast of a scalar.");
ERROR_IF((file == BRW_ARCHITECTURE_REGISTER_FILE &&
reg != BRW_ARF_NULL && !(reg >= BRW_ARF_ACCUMULATOR && reg < BRW_ARF_FLAG)) ||
(dst_file == BRW_ARCHITECTURE_REGISTER_FILE &&
dst_reg != BRW_ARF_NULL && dst_reg != BRW_ARF_ACCUMULATOR),
"Explicit ARF registers except null and accumulator must not "
"be used.");
}
/* From the hardware spec section "Register Region Restrictions":
*
* "Vx1 and VxH indirect addressing for Float, Half-Float, Double-Float and
* Quad-Word data must not be used."
*/
if (devinfo->verx10 >= 125 &&
(brw_reg_type_is_floating_point(type) || type_sz(type) == 8)) {
ERROR_IF(address_mode == BRW_ADDRESS_REGISTER_INDIRECT_REGISTER &&
vstride == BRW_VERTICAL_STRIDE_ONE_DIMENSIONAL,
"Vx1 and VxH indirect addressing for Float, Half-Float, "
"Double-Float and Quad-Word data must not be used");
}
}
/* The PRMs say that for BDW, SKL:
*
* If Align16 is required for an operation with QW destination and non-QW
* source datatypes, the execution size cannot exceed 2.
*
* We assume that the restriction applies to all Gfx8+ parts.
*/
if (is_double_precision && devinfo->ver >= 8) {
enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst);
enum brw_reg_type src1_type =
num_sources > 1 ? brw_inst_src1_type(devinfo, inst) : src0_type;
unsigned src0_type_size = brw_reg_type_to_size(src0_type);
unsigned src1_type_size = brw_reg_type_to_size(src1_type);
ERROR_IF(brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16 &&
dst_type_size == 8 &&
(src0_type_size != 8 || src1_type_size != 8) &&
brw_inst_exec_size(devinfo, inst) > BRW_EXECUTE_2,
"In Align16 exec size cannot exceed 2 with a QWord destination "
"and a non-QWord source");
}
/* The PRMs say that for CHV, BXT:
*
* When source or destination datatype is 64b or operation is integer
* DWord multiply, DepCtrl must not be used.
*
* We assume that the restriction applies to GLK as well.
*/
if (is_double_precision &&
(devinfo->platform == INTEL_PLATFORM_CHV || intel_device_info_is_9lp(devinfo))) {
ERROR_IF(brw_inst_no_dd_check(devinfo, inst) ||
brw_inst_no_dd_clear(devinfo, inst),
"DepCtrl is not allowed when the execution type is 64-bit");
}
return error_msg;
}
static struct string
instruction_restrictions(const struct brw_isa_info *isa,
const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
struct string error_msg = { .str = NULL, .len = 0 };
/* From Wa_1604601757:
*
* "When multiplying a DW and any lower precision integer, source modifier
* is not supported."
*/
if (devinfo->ver >= 12 &&
brw_inst_opcode(isa, inst) == BRW_OPCODE_MUL) {
enum brw_reg_type exec_type = execution_type(isa, inst);
const bool src0_valid = type_sz(brw_inst_src0_type(devinfo, inst)) == 4 ||
brw_inst_src0_reg_file(devinfo, inst) == BRW_IMMEDIATE_VALUE ||
!(brw_inst_src0_negate(devinfo, inst) ||
brw_inst_src0_abs(devinfo, inst));
const bool src1_valid = type_sz(brw_inst_src1_type(devinfo, inst)) == 4 ||
brw_inst_src1_reg_file(devinfo, inst) == BRW_IMMEDIATE_VALUE ||
!(brw_inst_src1_negate(devinfo, inst) ||
brw_inst_src1_abs(devinfo, inst));
ERROR_IF(!brw_reg_type_is_floating_point(exec_type) &&
type_sz(exec_type) == 4 && !(src0_valid && src1_valid),
"When multiplying a DW and any lower precision integer, source "
"modifier is not supported.");
}
if (brw_inst_opcode(isa, inst) == BRW_OPCODE_CMP ||
brw_inst_opcode(isa, inst) == BRW_OPCODE_CMPN) {
if (devinfo->ver <= 7) {
/* Page 166 of the Ivy Bridge PRM Volume 4 part 3 (Execution Unit
* ISA) says:
*
* Accumulator cannot be destination, implicit or explicit. The
* destination must be a general register or the null register.
*
* Page 77 of the Haswell PRM Volume 2b contains the same text. The
* 965G PRMs contain similar text.
*
* Page 864 (page 880 of the PDF) of the Broadwell PRM Volume 7 says:
*
* For the cmp and cmpn instructions, remove the accumulator
* restrictions.
*/
ERROR_IF(brw_inst_dst_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE &&
brw_inst_dst_da_reg_nr(devinfo, inst) != BRW_ARF_NULL,
"Accumulator cannot be destination, implicit or explicit.");
}
/* Page 166 of the Ivy Bridge PRM Volume 4 part 3 (Execution Unit ISA)
* says:
*
* If the destination is the null register, the {Switch} instruction
* option must be used.
*
* Page 77 of the Haswell PRM Volume 2b contains the same text.
*/
if (devinfo->ver == 7) {
ERROR_IF(dst_is_null(devinfo, inst) &&
brw_inst_thread_control(devinfo, inst) != BRW_THREAD_SWITCH,
"If the destination is the null register, the {Switch} "
"instruction option must be used.");
}
}
if (brw_inst_opcode(isa, inst) == BRW_OPCODE_MATH) {
unsigned math_function = brw_inst_math_function(devinfo, inst);
switch (math_function) {
case BRW_MATH_FUNCTION_INT_DIV_QUOTIENT_AND_REMAINDER:
case BRW_MATH_FUNCTION_INT_DIV_QUOTIENT:
case BRW_MATH_FUNCTION_INT_DIV_REMAINDER: {
/* Page 442 of the Broadwell PRM Volume 2a "Extended Math Function" says:
* INT DIV function does not support source modifiers.
* Bspec 6647 extends it back to Ivy Bridge.
*/
bool src0_valid = !brw_inst_src0_negate(devinfo, inst) &&
!brw_inst_src0_abs(devinfo, inst);
bool src1_valid = !brw_inst_src1_negate(devinfo, inst) &&
!brw_inst_src1_abs(devinfo, inst);
ERROR_IF(!src0_valid || !src1_valid,
"INT DIV function does not support source modifiers.");
break;
}
default:
break;
}
}
if (brw_inst_opcode(isa, inst) == BRW_OPCODE_DP4A) {
/* Page 396 (page 412 of the PDF) of the DG1 PRM volume 2a says:
*
* Only one of src0 or src1 operand may be an the (sic) accumulator
* register (acc#).
*/
ERROR_IF(src0_is_acc(devinfo, inst) && src1_is_acc(devinfo, inst),
"Only one of src0 or src1 operand may be an accumulator "
"register (acc#).");
}
return error_msg;
}
static struct string
send_descriptor_restrictions(const struct brw_isa_info *isa,
const brw_inst *inst)
{
const struct intel_device_info *devinfo = isa->devinfo;
struct string error_msg = { .str = NULL, .len = 0 };
if (inst_is_split_send(isa, inst)) {
/* We can only validate immediate descriptors */
if (brw_inst_send_sel_reg32_desc(devinfo, inst))
return error_msg;
} else if (inst_is_send(isa, inst)) {
/* We can only validate immediate descriptors */
if (brw_inst_src1_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE)
return error_msg;
} else {
return error_msg;
}
const uint32_t desc = brw_inst_send_desc(devinfo, inst);
switch (brw_inst_sfid(devinfo, inst)) {
case GFX12_SFID_TGM:
case GFX12_SFID_SLM:
case GFX12_SFID_UGM:
ERROR_IF(!devinfo->has_lsc, "Platform does not support LSC");
ERROR_IF(lsc_opcode_has_transpose(lsc_msg_desc_opcode(devinfo, desc)) &&
lsc_msg_desc_transpose(devinfo, desc) &&
brw_inst_exec_size(devinfo, inst) != BRW_EXECUTE_1,
"Transposed vectors are restricted to Exec_Mask = 1.");
break;
default:
break;
}
if (brw_inst_sfid(devinfo, inst) == BRW_SFID_URB) {
/* Gfx4 doesn't have a "header present" bit in the SEND message. */
ERROR_IF(devinfo->ver > 4 && !brw_inst_header_present(devinfo, inst),
"Header must be present for all URB messages.");
switch (brw_inst_urb_opcode(devinfo, inst)) {
case BRW_URB_OPCODE_WRITE_HWORD:
break;
/* case FF_SYNC: */
case BRW_URB_OPCODE_WRITE_OWORD:
/* Gfx5 / Gfx6 FF_SYNC message and Gfx7+ URB_WRITE_OWORD have the
* same opcode value.
*/
if (devinfo->ver == 5 || devinfo->ver == 6) {
ERROR_IF(brw_inst_urb_global_offset(devinfo, inst) != 0,
"FF_SYNC global offset must be zero.");
ERROR_IF(brw_inst_urb_swizzle_control(devinfo, inst) != 0,
"FF_SYNC swizzle control must be zero.");
ERROR_IF(brw_inst_urb_used(devinfo, inst) != 0,
"FF_SYNC used must be zero.");
ERROR_IF(brw_inst_urb_complete(devinfo, inst) != 0,
"FF_SYNC complete must be zero.");
/* Volume 4 part 2 of the Sandybridge PRM (page 28) says:
*
* A message response (writeback) length of 1 GRF will be
* indicated on the send instruction if the thread requires
* response data and/or synchronization.
*/
ERROR_IF((unsigned)brw_inst_rlen(devinfo, inst) > 1,
"FF_SYNC read length must be 0 or 1.");
} else {
ERROR_IF(devinfo->ver < 7,
"URB OWORD write messages only valid on gfx >= 7");
}
break;
case BRW_URB_OPCODE_READ_HWORD:
case BRW_URB_OPCODE_READ_OWORD:
ERROR_IF(devinfo->ver < 7,
"URB read messages only valid on gfx >= 7");
break;
case GFX7_URB_OPCODE_ATOMIC_MOV:
case GFX7_URB_OPCODE_ATOMIC_INC:
ERROR_IF(devinfo->ver < 7,
"URB atomic move and increment messages only valid on gfx >= 7");
break;
case GFX8_URB_OPCODE_ATOMIC_ADD:
/* The Haswell PRM lists this opcode as valid on page 317. */
ERROR_IF(devinfo->verx10 < 75,
"URB atomic add message only valid on gfx >= 7.5");
break;
case GFX8_URB_OPCODE_SIMD8_READ:
ERROR_IF(brw_inst_rlen(devinfo, inst) == 0,
"URB SIMD8 read message must read some data.");
FALLTHROUGH;
case GFX8_URB_OPCODE_SIMD8_WRITE:
ERROR_IF(devinfo->ver < 8,
"URB SIMD8 messages only valid on gfx >= 8");
break;
case GFX125_URB_OPCODE_FENCE:
ERROR_IF(devinfo->verx10 < 125,
"URB fence message only valid on gfx >= 12.5");
break;
default:
ERROR_IF(true, "Invalid URB message");
break;
}
}
return error_msg;
}
bool
brw_validate_instruction(const struct brw_isa_info *isa,
const brw_inst *inst, int offset,
unsigned inst_size,
struct disasm_info *disasm)
{
struct string error_msg = { .str = NULL, .len = 0 };
if (is_unsupported_inst(isa, inst)) {
ERROR("Instruction not supported on this Gen");
} else {
CHECK(invalid_values);
if (error_msg.str == NULL) {
CHECK(sources_not_null);
CHECK(send_restrictions);
CHECK(alignment_supported);
CHECK(general_restrictions_based_on_operand_types);
CHECK(general_restrictions_on_region_parameters);
CHECK(special_restrictions_for_mixed_float_mode);
CHECK(region_alignment_rules);
CHECK(vector_immediate_restrictions);
CHECK(special_requirements_for_handling_double_precision_data_types);
CHECK(instruction_restrictions);
CHECK(send_descriptor_restrictions);
}
}
if (error_msg.str && disasm) {
disasm_insert_error(disasm, offset, inst_size, error_msg.str);
}
free(error_msg.str);
return error_msg.len == 0;
}
bool
brw_validate_instructions(const struct brw_isa_info *isa,
const void *assembly, int start_offset, int end_offset,
struct disasm_info *disasm)
{
const struct intel_device_info *devinfo = isa->devinfo;
bool valid = true;
for (int src_offset = start_offset; src_offset < end_offset;) {
const brw_inst *inst = assembly + src_offset;
bool is_compact = brw_inst_cmpt_control(devinfo, inst);
unsigned inst_size = is_compact ? sizeof(brw_compact_inst)
: sizeof(brw_inst);
brw_inst uncompacted;
if (is_compact) {
brw_compact_inst *compacted = (void *)inst;
brw_uncompact_instruction(isa, &uncompacted, compacted);
inst = &uncompacted;
}
bool v = brw_validate_instruction(isa, inst, src_offset,
inst_size, disasm);
valid = valid && v;
src_offset += inst_size;
}
return valid;
}