mesa/src/compiler/nir/nir_opt_vectorize.c

420 lines
13 KiB
C

/*
* Copyright © 2015 Connor Abbott
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
/**
* nir_opt_vectorize() aims to vectorize ALU instructions.
*
* The default vectorization width is 4.
* If desired, a callback function which returns the max vectorization width
* per instruction can be provided.
*
* The max vectorization width must be a power of 2.
*/
#include "nir.h"
#include "nir_vla.h"
#include "nir_builder.h"
#include "util/u_dynarray.h"
#define HASH(hash, data) XXH32(&data, sizeof(data), hash)
static uint32_t
hash_src(uint32_t hash, const nir_src *src)
{
assert(src->is_ssa);
void *hash_data = nir_src_is_const(*src) ? NULL : src->ssa;
return HASH(hash, hash_data);
}
static uint32_t
hash_alu_src(uint32_t hash, const nir_alu_src *src,
uint32_t num_components, uint32_t max_vec)
{
assert(!src->abs && !src->negate);
/* hash whether a swizzle accesses elements beyond the maximum
* vectorization factor:
* For example accesses to .x and .y are considered different variables
* compared to accesses to .z and .w for 16-bit vec2.
*/
uint32_t swizzle = (src->swizzle[0] & ~(max_vec - 1));
hash = HASH(hash, swizzle);
return hash_src(hash, &src->src);
}
static uint32_t
hash_instr(const void *data)
{
const nir_instr *instr = (nir_instr *) data;
assert(instr->type == nir_instr_type_alu);
nir_alu_instr *alu = nir_instr_as_alu(instr);
uint32_t hash = HASH(0, alu->op);
hash = HASH(hash, alu->dest.dest.ssa.bit_size);
for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++)
hash = hash_alu_src(hash, &alu->src[i],
alu->dest.dest.ssa.num_components,
instr->pass_flags);
return hash;
}
static bool
srcs_equal(const nir_src *src1, const nir_src *src2)
{
assert(src1->is_ssa);
assert(src2->is_ssa);
return src1->ssa == src2->ssa ||
(nir_src_is_const(*src1) && nir_src_is_const(*src2));
}
static bool
alu_srcs_equal(const nir_alu_src *src1, const nir_alu_src *src2,
uint32_t max_vec)
{
assert(!src1->abs);
assert(!src1->negate);
assert(!src2->abs);
assert(!src2->negate);
uint32_t mask = ~(max_vec - 1);
if ((src1->swizzle[0] & mask) != (src2->swizzle[0] & mask))
return false;
return srcs_equal(&src1->src, &src2->src);
}
static bool
instrs_equal(const void *data1, const void *data2)
{
const nir_instr *instr1 = (nir_instr *) data1;
const nir_instr *instr2 = (nir_instr *) data2;
assert(instr1->type == nir_instr_type_alu);
assert(instr2->type == nir_instr_type_alu);
nir_alu_instr *alu1 = nir_instr_as_alu(instr1);
nir_alu_instr *alu2 = nir_instr_as_alu(instr2);
if (alu1->op != alu2->op)
return false;
if (alu1->dest.dest.ssa.bit_size != alu2->dest.dest.ssa.bit_size)
return false;
for (unsigned i = 0; i < nir_op_infos[alu1->op].num_inputs; i++) {
if (!alu_srcs_equal(&alu1->src[i], &alu2->src[i], instr1->pass_flags))
return false;
}
return true;
}
static bool
instr_can_rewrite(nir_instr *instr)
{
switch (instr->type) {
case nir_instr_type_alu: {
nir_alu_instr *alu = nir_instr_as_alu(instr);
/* Don't try and vectorize mov's. Either they'll be handled by copy
* prop, or they're actually necessary and trying to vectorize them
* would result in fighting with copy prop.
*/
if (alu->op == nir_op_mov)
return false;
/* no need to hash instructions which are already vectorized */
if (alu->dest.dest.ssa.num_components >= instr->pass_flags)
return false;
if (nir_op_infos[alu->op].output_size != 0)
return false;
for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
if (nir_op_infos[alu->op].input_sizes[i] != 0)
return false;
/* don't hash instructions which are already swizzled
* outside of max_components: these should better be scalarized */
uint32_t mask = ~(instr->pass_flags - 1);
for (unsigned j = 1; j < alu->dest.dest.ssa.num_components; j++) {
if ((alu->src[i].swizzle[0] & mask) != (alu->src[i].swizzle[j] & mask))
return false;
}
}
return true;
}
/* TODO support phi nodes */
default:
break;
}
return false;
}
/*
* Tries to combine two instructions whose sources are different components of
* the same instructions into one vectorized instruction. Note that instr1
* should dominate instr2.
*/
static nir_instr *
instr_try_combine(struct set *instr_set, nir_instr *instr1, nir_instr *instr2)
{
assert(instr1->type == nir_instr_type_alu);
assert(instr2->type == nir_instr_type_alu);
nir_alu_instr *alu1 = nir_instr_as_alu(instr1);
nir_alu_instr *alu2 = nir_instr_as_alu(instr2);
assert(alu1->dest.dest.ssa.bit_size == alu2->dest.dest.ssa.bit_size);
unsigned alu1_components = alu1->dest.dest.ssa.num_components;
unsigned alu2_components = alu2->dest.dest.ssa.num_components;
unsigned total_components = alu1_components + alu2_components;
assert(instr1->pass_flags == instr2->pass_flags);
if (total_components > instr1->pass_flags)
return NULL;
nir_builder b;
nir_builder_init(&b, nir_cf_node_get_function(&instr1->block->cf_node));
b.cursor = nir_after_instr(instr1);
nir_alu_instr *new_alu = nir_alu_instr_create(b.shader, alu1->op);
nir_ssa_dest_init(&new_alu->instr, &new_alu->dest.dest,
total_components, alu1->dest.dest.ssa.bit_size, NULL);
new_alu->dest.write_mask = (1 << total_components) - 1;
new_alu->instr.pass_flags = alu1->instr.pass_flags;
/* If either channel is exact, we have to preserve it even if it's
* not optimal for other channels.
*/
new_alu->exact = alu1->exact || alu2->exact;
/* If all channels don't wrap, we can say that the whole vector doesn't
* wrap.
*/
new_alu->no_signed_wrap = alu1->no_signed_wrap && alu2->no_signed_wrap;
new_alu->no_unsigned_wrap = alu1->no_unsigned_wrap && alu2->no_unsigned_wrap;
for (unsigned i = 0; i < nir_op_infos[alu1->op].num_inputs; i++) {
/* handle constant merging case */
if (alu1->src[i].src.ssa != alu2->src[i].src.ssa) {
nir_const_value *c1 = nir_src_as_const_value(alu1->src[i].src);
nir_const_value *c2 = nir_src_as_const_value(alu2->src[i].src);
assert(c1 && c2);
nir_const_value value[NIR_MAX_VEC_COMPONENTS];
unsigned bit_size = alu1->src[i].src.ssa->bit_size;
for (unsigned j = 0; j < total_components; j++) {
value[j].u64 = j < alu1_components ?
c1[alu1->src[i].swizzle[j]].u64 :
c2[alu2->src[i].swizzle[j - alu1_components]].u64;
}
nir_ssa_def *def = nir_build_imm(&b, total_components, bit_size, value);
new_alu->src[i].src = nir_src_for_ssa(def);
for (unsigned j = 0; j < total_components; j++)
new_alu->src[i].swizzle[j] = j;
continue;
}
new_alu->src[i].src = alu1->src[i].src;
for (unsigned j = 0; j < alu1_components; j++)
new_alu->src[i].swizzle[j] = alu1->src[i].swizzle[j];
for (unsigned j = 0; j < alu2_components; j++) {
new_alu->src[i].swizzle[j + alu1_components] =
alu2->src[i].swizzle[j];
}
}
nir_builder_instr_insert(&b, &new_alu->instr);
/* update all ALU uses */
nir_foreach_use_safe(src, &alu1->dest.dest.ssa) {
nir_instr *user_instr = src->parent_instr;
if (user_instr->type == nir_instr_type_alu) {
/* Check if user is found in the hashset */
struct set_entry *entry = _mesa_set_search(instr_set, user_instr);
/* For ALU instructions, rewrite the source directly to avoid a
* round-trip through copy propagation.
*/
nir_instr_rewrite_src(user_instr, src,
nir_src_for_ssa(&new_alu->dest.dest.ssa));
/* Rehash user if it was found in the hashset */
if (entry && entry->key == user_instr) {
_mesa_set_remove(instr_set, entry);
_mesa_set_add(instr_set, user_instr);
}
}
}
nir_foreach_use_safe(src, &alu2->dest.dest.ssa) {
if (src->parent_instr->type == nir_instr_type_alu) {
/* For ALU instructions, rewrite the source directly to avoid a
* round-trip through copy propagation.
*/
nir_instr_rewrite_src(src->parent_instr, src,
nir_src_for_ssa(&new_alu->dest.dest.ssa));
nir_alu_src *alu_src = container_of(src, nir_alu_src, src);
nir_alu_instr *use = nir_instr_as_alu(src->parent_instr);
unsigned components = nir_ssa_alu_instr_src_components(use, alu_src - use->src);
for (unsigned i = 0; i < components; i++)
alu_src->swizzle[i] += alu1_components;
}
}
/* update all other uses if there are any */
unsigned swiz[NIR_MAX_VEC_COMPONENTS];
if (!nir_ssa_def_is_unused(&alu1->dest.dest.ssa)) {
for (unsigned i = 0; i < alu1_components; i++)
swiz[i] = i;
nir_ssa_def *new_alu1 = nir_swizzle(&b, &new_alu->dest.dest.ssa, swiz,
alu1_components);
nir_ssa_def_rewrite_uses(&alu1->dest.dest.ssa, new_alu1);
}
if (!nir_ssa_def_is_unused(&alu2->dest.dest.ssa)) {
for (unsigned i = 0; i < alu2_components; i++)
swiz[i] = i + alu1_components;
nir_ssa_def *new_alu2 = nir_swizzle(&b, &new_alu->dest.dest.ssa, swiz,
alu2_components);
nir_ssa_def_rewrite_uses(&alu2->dest.dest.ssa, new_alu2);
}
nir_instr_remove(instr1);
nir_instr_remove(instr2);
return &new_alu->instr;
}
static struct set *
vec_instr_set_create(void)
{
return _mesa_set_create(NULL, hash_instr, instrs_equal);
}
static void
vec_instr_set_destroy(struct set *instr_set)
{
_mesa_set_destroy(instr_set, NULL);
}
static bool
vec_instr_set_add_or_rewrite(struct set *instr_set, nir_instr *instr,
nir_vectorize_cb filter, void *data)
{
/* set max vector to instr pass flags: this is used to hash swizzles */
instr->pass_flags = filter ? filter(instr, data) : 4;
assert(util_is_power_of_two_or_zero(instr->pass_flags));
if (!instr_can_rewrite(instr))
return false;
struct set_entry *entry = _mesa_set_search(instr_set, instr);
if (entry) {
nir_instr *old_instr = (nir_instr *) entry->key;
_mesa_set_remove(instr_set, entry);
nir_instr *new_instr = instr_try_combine(instr_set, old_instr, instr);
if (new_instr) {
if (instr_can_rewrite(new_instr))
_mesa_set_add(instr_set, new_instr);
return true;
}
}
_mesa_set_add(instr_set, instr);
return false;
}
static bool
vectorize_block(nir_block *block, struct set *instr_set,
nir_vectorize_cb filter, void *data)
{
bool progress = false;
nir_foreach_instr_safe(instr, block) {
if (vec_instr_set_add_or_rewrite(instr_set, instr, filter, data))
progress = true;
}
for (unsigned i = 0; i < block->num_dom_children; i++) {
nir_block *child = block->dom_children[i];
progress |= vectorize_block(child, instr_set, filter, data);
}
nir_foreach_instr_reverse(instr, block) {
if (instr_can_rewrite(instr))
_mesa_set_remove_key(instr_set, instr);
}
return progress;
}
static bool
nir_opt_vectorize_impl(nir_function_impl *impl,
nir_vectorize_cb filter, void *data)
{
struct set *instr_set = vec_instr_set_create();
nir_metadata_require(impl, nir_metadata_dominance);
bool progress = vectorize_block(nir_start_block(impl), instr_set,
filter, data);
if (progress) {
nir_metadata_preserve(impl, nir_metadata_block_index |
nir_metadata_dominance);
} else {
nir_metadata_preserve(impl, nir_metadata_all);
}
vec_instr_set_destroy(instr_set);
return progress;
}
bool
nir_opt_vectorize(nir_shader *shader, nir_vectorize_cb filter,
void *data)
{
bool progress = false;
nir_foreach_function(function, shader) {
if (function->impl)
progress |= nir_opt_vectorize_impl(function->impl, filter, data);
}
return progress;
}