mesa/src/compiler/nir/nir_lower_goto_ifs.c

997 lines
33 KiB
C
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright © 2020 Julian Winkler
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "nir.h"
#include "nir_builder.h"
#include "nir_vla.h"
#define NIR_LOWER_GOTO_IFS_DEBUG 0
struct path {
/** Set of blocks which this path represents
*
* It's "reachable" not in the sense that these are all the nodes reachable
* through this path but in the sense that, when you see one of these
* blocks, you know you've reached this path.
*/
struct set *reachable;
/** Fork in the path, if reachable->entries > 1 */
struct path_fork *fork;
};
struct path_fork {
bool is_var;
union {
nir_variable *path_var;
nir_ssa_def *path_ssa;
};
struct path paths[2];
};
struct routes {
struct path regular;
struct path brk;
struct path cont;
struct routes *loop_backup;
};
struct strct_lvl {
struct list_head link;
/** Set of blocks at the current level */
struct set *blocks;
/** Path for the next level */
struct path out_path;
/** Reach set from inside_outside if irreducable */
struct set *reach;
/** True if a skip region starts with this level */
bool skip_start;
/** True if a skip region ends with this level */
bool skip_end;
/** True if this level is irreducable */
bool irreducible;
};
static int
nir_block_ptr_cmp(const void *_a, const void *_b)
{
const nir_block *const *a = _a;
const nir_block *const *b = _b;
return (int)(*a)->index - (int)(*b)->index;
}
static void
print_block_set(const struct set *set)
{
printf("{ ");
if (set != NULL) {
unsigned count = 0;
set_foreach(set, entry) {
if (count++)
printf(", ");
printf("%u", ((nir_block *)entry->key)->index);
}
}
printf(" }\n");
}
/** Return a sorted array of blocks for a set
*
* Hash set ordering is non-deterministic. We hash based on pointers and so,
* if any pointer ever changes from one run to another, the order of the set
* may change. Any time we're going to make decisions which may affect the
* final structure which may depend on ordering, we should first sort the
* blocks.
*/
static nir_block **
sorted_block_arr_for_set(const struct set *block_set, void *mem_ctx)
{
const unsigned num_blocks = block_set->entries;
nir_block **block_arr = ralloc_array(mem_ctx, nir_block *, num_blocks);
unsigned i = 0;
set_foreach(block_set, entry)
block_arr[i++] = (nir_block *)entry->key;
assert(i == num_blocks);
qsort(block_arr, num_blocks, sizeof(*block_arr), nir_block_ptr_cmp);
return block_arr;
}
static nir_block *
block_for_singular_set(const struct set *block_set)
{
assert(block_set->entries == 1);
return (nir_block *)_mesa_set_next_entry(block_set, NULL)->key;
}
/**
* Sets all path variables to reach the target block via a fork
*/
static void
set_path_vars(nir_builder *b, struct path_fork *fork, nir_block *target)
{
while (fork) {
for (int i = 0; i < 2; i++) {
if (_mesa_set_search(fork->paths[i].reachable, target)) {
if (fork->is_var) {
nir_store_var(b, fork->path_var, nir_imm_bool(b, i), 1);
} else {
assert(fork->path_ssa == NULL);
fork->path_ssa = nir_imm_bool(b, i);
}
fork = fork->paths[i].fork;
break;
}
}
}
}
/**
* Sets all path variables to reach the both target blocks via a fork.
* If the blocks are in different fork paths, the condition will be used.
* As the fork is already created, the then and else blocks may be swapped,
* in this case the condition is inverted
*/
static void
set_path_vars_cond(nir_builder *b, struct path_fork *fork, nir_src condition,
nir_block *then_block, nir_block *else_block)
{
int i;
while (fork) {
for (i = 0; i < 2; i++) {
if (_mesa_set_search(fork->paths[i].reachable, then_block)) {
if (_mesa_set_search(fork->paths[i].reachable, else_block)) {
if (fork->is_var) {
nir_store_var(b, fork->path_var, nir_imm_bool(b, i), 1);
} else {
assert(fork->path_ssa == NULL);
fork->path_ssa = nir_imm_bool(b, i);
}
fork = fork->paths[i].fork;
break;
}
else {
assert(condition.is_ssa);
nir_ssa_def *ssa_def = condition.ssa;
assert(ssa_def->bit_size == 1);
assert(ssa_def->num_components == 1);
if (!i)
ssa_def = nir_inot(b, ssa_def);
if (fork->is_var) {
nir_store_var(b, fork->path_var, ssa_def, 1);
} else {
assert(fork->path_ssa == NULL);
fork->path_ssa = ssa_def;
}
set_path_vars(b, fork->paths[i].fork, then_block);
set_path_vars(b, fork->paths[!i].fork, else_block);
return;
}
}
}
assert(i < 2);
}
}
/**
* Sets all path variables and places the right jump instruction to reach the
* target block
*/
static void
route_to(nir_builder *b, struct routes *routing, nir_block *target)
{
if (_mesa_set_search(routing->regular.reachable, target)) {
set_path_vars(b, routing->regular.fork, target);
}
else if (_mesa_set_search(routing->brk.reachable, target)) {
set_path_vars(b, routing->brk.fork, target);
nir_jump(b, nir_jump_break);
}
else if (_mesa_set_search(routing->cont.reachable, target)) {
set_path_vars(b, routing->cont.fork, target);
nir_jump(b, nir_jump_continue);
}
else {
assert(!target->successors[0]); /* target is endblock */
nir_jump(b, nir_jump_return);
}
}
/**
* Sets path vars and places the right jump instr to reach one of the two
* target blocks based on the condition. If the targets need different jump
* istructions, they will be placed into an if else statement.
* This can happen if one target is the loop head
* A __
* | \
* B |
* |\__/
* C
*/
static void
route_to_cond(nir_builder *b, struct routes *routing, nir_src condition,
nir_block *then_block, nir_block *else_block)
{
if (_mesa_set_search(routing->regular.reachable, then_block)) {
if (_mesa_set_search(routing->regular.reachable, else_block)) {
set_path_vars_cond(b, routing->regular.fork, condition,
then_block, else_block);
return;
}
} else if (_mesa_set_search(routing->brk.reachable, then_block)) {
if (_mesa_set_search(routing->brk.reachable, else_block)) {
set_path_vars_cond(b, routing->brk.fork, condition,
then_block, else_block);
nir_jump(b, nir_jump_break);
return;
}
} else if (_mesa_set_search(routing->cont.reachable, then_block)) {
if (_mesa_set_search(routing->cont.reachable, else_block)) {
set_path_vars_cond(b, routing->cont.fork, condition,
then_block, else_block);
nir_jump(b, nir_jump_continue);
return;
}
}
/* then and else blocks are in different routes */
nir_push_if_src(b, condition);
route_to(b, routing, then_block);
nir_push_else(b, NULL);
route_to(b, routing, else_block);
nir_pop_if(b, NULL);
}
/**
* Merges the reachable sets of both fork subpaths into the forks entire
* reachable set
*/
static struct set *
fork_reachable(struct path_fork *fork)
{
struct set *reachable = _mesa_set_clone(fork->paths[0].reachable, fork);
set_foreach(fork->paths[1].reachable, entry)
_mesa_set_add_pre_hashed(reachable, entry->hash, entry->key);
return reachable;
}
/**
* Modifies the routing to be the routing inside a loop. The old regular path
* becomes the new break path. The loop in path becomes the new regular and
* continue path.
* The lost routing information is stacked into the loop_backup stack.
* Also creates helper vars for multilevel loop jumping if needed.
* Also calls the nir builder to build the loop
*/
static void
loop_routing_start(struct routes *routing, nir_builder *b,
struct path loop_path, struct set *reach,
void *mem_ctx)
{
if (NIR_LOWER_GOTO_IFS_DEBUG) {
printf("loop_routing_start:\n");
printf(" reach = ");
print_block_set(reach);
printf(" loop_path.reachable = ");
print_block_set(loop_path.reachable);
printf(" routing->regular.reachable = ");
print_block_set(routing->regular.reachable);
printf(" routing->brk.reachable = ");
print_block_set(routing->brk.reachable);
printf(" routing->cont.reachable = ");
print_block_set(routing->cont.reachable);
printf("\n");
}
struct routes *routing_backup = rzalloc(mem_ctx, struct routes);
*routing_backup = *routing;
bool break_needed = false;
bool continue_needed = false;
set_foreach(reach, entry) {
if (_mesa_set_search(loop_path.reachable, entry->key))
continue;
if (_mesa_set_search(routing->regular.reachable, entry->key))
continue;
if (_mesa_set_search(routing->brk.reachable, entry->key)) {
break_needed = true;
continue;
}
assert(_mesa_set_search(routing->cont.reachable, entry->key));
continue_needed = true;
}
routing->brk = routing_backup->regular;
routing->cont = loop_path;
routing->regular = loop_path;
routing->loop_backup = routing_backup;
if (break_needed) {
struct path_fork *fork = rzalloc(mem_ctx, struct path_fork);
fork->is_var = true;
fork->path_var = nir_local_variable_create(b->impl, glsl_bool_type(),
"path_break");
fork->paths[0] = routing->brk;
fork->paths[1] = routing_backup->brk;
routing->brk.fork = fork;
routing->brk.reachable = fork_reachable(fork);
}
if (continue_needed) {
struct path_fork *fork = rzalloc(mem_ctx, struct path_fork);
fork->is_var = true;
fork->path_var = nir_local_variable_create(b->impl, glsl_bool_type(),
"path_continue");
fork->paths[0] = routing->brk;
fork->paths[1] = routing_backup->cont;
routing->brk.fork = fork;
routing->brk.reachable = fork_reachable(fork);
}
nir_push_loop(b);
}
/**
* Gets a forks condition as ssa def if the condition is inside a helper var,
* the variable will be read into an ssa def
*/
static nir_ssa_def *
fork_condition(nir_builder *b, struct path_fork *fork)
{
nir_ssa_def *ret;
if (fork->is_var) {
ret = nir_load_var(b, fork->path_var);
}
else
ret = fork->path_ssa;
return ret;
}
/**
* Restores the routing after leaving a loop based on the loop_backup stack.
* Also handles multi level jump helper vars if existing and calls the nir
* builder to pop the nir loop
*/
static void
loop_routing_end(struct routes *routing, nir_builder *b)
{
struct routes *routing_backup = routing->loop_backup;
assert(routing->cont.fork == routing->regular.fork);
assert(routing->cont.reachable == routing->regular.reachable);
nir_pop_loop(b, NULL);
if (routing->brk.fork && routing->brk.fork->paths[1].reachable ==
routing_backup->cont.reachable) {
assert(!(routing->brk.fork->is_var &&
strcmp(routing->brk.fork->path_var->name, "path_continue")));
nir_push_if_src(b, nir_src_for_ssa(
fork_condition(b, routing->brk.fork)));
nir_jump(b, nir_jump_continue);
nir_pop_if(b, NULL);
routing->brk = routing->brk.fork->paths[0];
}
if (routing->brk.fork && routing->brk.fork->paths[1].reachable ==
routing_backup->brk.reachable) {
assert(!(routing->brk.fork->is_var &&
strcmp(routing->brk.fork->path_var->name, "path_break")));
nir_push_if_src(b, nir_src_for_ssa(
fork_condition(b, routing->brk.fork)));
nir_jump(b, nir_jump_break);
nir_pop_if(b, NULL);
routing->brk = routing->brk.fork->paths[0];
}
assert(routing->brk.fork == routing_backup->regular.fork);
assert(routing->brk.reachable == routing_backup->regular.reachable);
*routing = *routing_backup;
ralloc_free(routing_backup);
}
/**
* generates a list of all blocks dominated by the loop header, but the
* control flow can't go back to the loop header from the block.
* also generates a list of all blocks that can be reached from within the
* loop
* | __
* A´ \
* | \ \
* B C-´
* /
* D
* here B and C are directly dominated by A but only C can reach back to the
* loop head A. B will be added to the outside set and to the reach set.
* \param loop_heads set of loop heads. All blocks inside the loop will be
* added to this set
* \param outside all blocks directly outside the loop will be added
* \param reach all blocks reachable from the loop will be added
*/
static void
inside_outside(nir_block *block, struct set *loop_heads, struct set *outside,
struct set *reach, struct set *brk_reachable, void *mem_ctx)
{
assert(_mesa_set_search(loop_heads, block));
struct set *remaining = _mesa_pointer_set_create(mem_ctx);
for (int i = 0; i < block->num_dom_children; i++) {
if (!_mesa_set_search(brk_reachable, block->dom_children[i]))
_mesa_set_add(remaining, block->dom_children[i]);
}
if (NIR_LOWER_GOTO_IFS_DEBUG) {
printf("inside_outside(%u):\n", block->index);
printf(" loop_heads = ");
print_block_set(loop_heads);
printf(" reach = ");
print_block_set(reach);
printf(" brk_reach = ");
print_block_set(brk_reachable);
printf(" remaining = ");
print_block_set(remaining);
printf("\n");
}
bool progress = true;
while (remaining->entries && progress) {
progress = false;
set_foreach(remaining, child_entry) {
nir_block *dom_child = (nir_block *) child_entry->key;
bool can_jump_back = false;
set_foreach(dom_child->dom_frontier, entry) {
if (entry->key == dom_child)
continue;
if (_mesa_set_search_pre_hashed(remaining, entry->hash,
entry->key)) {
can_jump_back = true;
break;
}
if (_mesa_set_search_pre_hashed(loop_heads, entry->hash,
entry->key)) {
can_jump_back = true;
break;
}
}
if (!can_jump_back) {
_mesa_set_add_pre_hashed(outside, child_entry->hash,
child_entry->key);
_mesa_set_remove(remaining, child_entry);
progress = true;
}
}
}
/* Add everything remaining to loop_heads */
set_foreach(remaining, entry)
_mesa_set_add_pre_hashed(loop_heads, entry->hash, entry->key);
/* Recurse for each remaining */
set_foreach(remaining, entry) {
inside_outside((nir_block *) entry->key, loop_heads, outside, reach,
brk_reachable, mem_ctx);
}
for (int i = 0; i < 2; i++) {
if (block->successors[i] && block->successors[i]->successors[0] &&
!_mesa_set_search(loop_heads, block->successors[i])) {
_mesa_set_add(reach, block->successors[i]);
}
}
if (NIR_LOWER_GOTO_IFS_DEBUG) {
printf("outside(%u) = ", block->index);
print_block_set(outside);
printf("reach(%u) = ", block->index);
print_block_set(reach);
}
}
static struct path_fork *
select_fork_recur(struct nir_block **blocks, unsigned start, unsigned end,
nir_function_impl *impl, bool need_var, void *mem_ctx)
{
if (start == end - 1)
return NULL;
struct path_fork *fork = rzalloc(mem_ctx, struct path_fork);
fork->is_var = need_var;
if (need_var)
fork->path_var = nir_local_variable_create(impl, glsl_bool_type(),
"path_select");
unsigned mid = start + (end - start) / 2;
fork->paths[0].reachable = _mesa_pointer_set_create(fork);
for (unsigned i = start; i < mid; i++)
_mesa_set_add(fork->paths[0].reachable, blocks[i]);
fork->paths[0].fork =
select_fork_recur(blocks, start, mid, impl, need_var, mem_ctx);
fork->paths[1].reachable = _mesa_pointer_set_create(fork);
for (unsigned i = mid; i < end; i++)
_mesa_set_add(fork->paths[1].reachable, blocks[i]);
fork->paths[1].fork =
select_fork_recur(blocks, mid, end, impl, need_var, mem_ctx);
return fork;
}
/**
* Gets a set of blocks organized into the same level by the organize_levels
* function and creates enough forks to be able to route to them.
* If the set only contains one block, the function has nothing to do.
* The set should almost never contain more than two blocks, but if so,
* then the function calls itself recursively
*/
static struct path_fork *
select_fork(struct set *reachable, nir_function_impl *impl, bool need_var,
void *mem_ctx)
{
assert(reachable->entries > 0);
if (reachable->entries <= 1)
return NULL;
/* Hash set ordering is non-deterministic. We're about to turn a set into
* a tree so we really want things to be in a deterministic ordering.
*/
return select_fork_recur(sorted_block_arr_for_set(reachable, mem_ctx),
0, reachable->entries, impl, need_var, mem_ctx);
}
/**
* gets called when the organize_levels functions fails to find blocks that
* can't be reached by the other remaining blocks. This means, at least two
* dominance sibling blocks can reach each other. So we have a multi entry
* loop. This function tries to find the smallest possible set of blocks that
* must be part of the multi entry loop.
* example cf: | |
* A<---B
* / \__,^ \
* \ /
* \ /
* C
* The function choses a random block as candidate. for example C
* The function checks which remaining blocks can reach C, in this case A.
* So A becomes the new candidate and C is removed from the result set.
* B can reach A.
* So B becomes the new candidate and A is removed from the set.
* A can reach B.
* A was an old candidate. So it is added to the set containing B.
* No other remaining blocks can reach A or B.
* So only A and B must be part of the multi entry loop.
*/
static void
handle_irreducible(struct set *remaining, struct strct_lvl *curr_level,
struct set *brk_reachable, void *mem_ctx)
{
nir_block *candidate = (nir_block *)
_mesa_set_next_entry(remaining, NULL)->key;
struct set *old_candidates = _mesa_pointer_set_create(mem_ctx);
while (candidate) {
_mesa_set_add(old_candidates, candidate);
/* Start with just the candidate block */
_mesa_set_clear(curr_level->blocks, NULL);
_mesa_set_add(curr_level->blocks, candidate);
candidate = NULL;
set_foreach(remaining, entry) {
nir_block *remaining_block = (nir_block *) entry->key;
if (!_mesa_set_search(curr_level->blocks, remaining_block) &&
_mesa_set_intersects(remaining_block->dom_frontier,
curr_level->blocks)) {
if (_mesa_set_search(old_candidates, remaining_block)) {
_mesa_set_add(curr_level->blocks, remaining_block);
} else {
candidate = remaining_block;
break;
}
}
}
}
_mesa_set_destroy(old_candidates, NULL);
old_candidates = NULL;
struct set *loop_heads = _mesa_set_clone(curr_level->blocks, curr_level);
curr_level->reach = _mesa_pointer_set_create(curr_level);
set_foreach(curr_level->blocks, entry) {
_mesa_set_remove_key(remaining, entry->key);
inside_outside((nir_block *) entry->key, loop_heads, remaining,
curr_level->reach, brk_reachable, mem_ctx);
}
_mesa_set_destroy(loop_heads, NULL);
}
/**
* organize a set of blocks into a list of levels. Where every level contains
* one or more blocks. So that every block is before all blocks it can reach.
* Also creates all path variables needed, for the control flow between the
* block.
* For example if the control flow looks like this:
* A
* / |
* B C
* | / \
* E |
* \ /
* F
* B, C, E and F are dominance children of A
* The level list should look like this:
* blocks irreducible conditional
* level 0 B, C false false
* level 1 E false true
* level 2 F false false
* The final structure should look like this:
* A
* if (path_select) {
* B
* } else {
* C
* }
* if (path_conditional) {
* E
* }
* F
*
* \param levels uninitialized list
* \param is_dominated if true, no helper variables will be created for the
* zeroth level
*/
static void
organize_levels(struct list_head *levels, struct set *remaining,
struct set *reach, struct routes *routing,
nir_function_impl *impl, bool is_domminated, void *mem_ctx)
{
if (NIR_LOWER_GOTO_IFS_DEBUG) {
printf("organize_levels:\n");
printf(" reach = ");
print_block_set(reach);
}
/* blocks that can be reached by the remaining blocks */
struct set *remaining_frontier = _mesa_pointer_set_create(mem_ctx);
/* targets of active skip path */
struct set *skip_targets = _mesa_pointer_set_create(mem_ctx);
list_inithead(levels);
while (remaining->entries) {
_mesa_set_clear(remaining_frontier, NULL);
set_foreach(remaining, entry) {
nir_block *remain_block = (nir_block *) entry->key;
set_foreach(remain_block->dom_frontier, frontier_entry) {
nir_block *frontier = (nir_block *) frontier_entry->key;
if (frontier != remain_block) {
_mesa_set_add(remaining_frontier, frontier);
}
}
}
struct strct_lvl *curr_level = rzalloc(mem_ctx, struct strct_lvl);
curr_level->blocks = _mesa_pointer_set_create(curr_level);
set_foreach(remaining, entry) {
nir_block *candidate = (nir_block *) entry->key;
if (!_mesa_set_search(remaining_frontier, candidate)) {
_mesa_set_add(curr_level->blocks, candidate);
_mesa_set_remove_key(remaining, candidate);
}
}
curr_level->irreducible = !curr_level->blocks->entries;
if (curr_level->irreducible) {
handle_irreducible(remaining, curr_level,
routing->brk.reachable, mem_ctx);
}
assert(curr_level->blocks->entries);
struct strct_lvl *prev_level = NULL;
if (!list_is_empty(levels))
prev_level = list_last_entry(levels, struct strct_lvl, link);
set_foreach(skip_targets, entry) {
if (_mesa_set_search_pre_hashed(curr_level->blocks,
entry->hash, entry->key)) {
_mesa_set_remove(skip_targets, entry);
prev_level->skip_end = 1;
}
}
curr_level->skip_start = skip_targets->entries != 0;
struct set *prev_frontier = NULL;
if (!prev_level) {
prev_frontier = _mesa_set_clone(reach, curr_level);
} else if (prev_level->irreducible) {
prev_frontier = _mesa_set_clone(prev_level->reach, curr_level);
}
set_foreach(curr_level->blocks, blocks_entry) {
nir_block *level_block = (nir_block *) blocks_entry->key;
if (prev_frontier == NULL) {
prev_frontier =
_mesa_set_clone(level_block->dom_frontier, curr_level);
} else {
set_foreach(level_block->dom_frontier, entry)
_mesa_set_add_pre_hashed(prev_frontier, entry->hash,
entry->key);
}
}
bool is_in_skip = skip_targets->entries != 0;
set_foreach(prev_frontier, entry) {
if (_mesa_set_search(remaining, entry->key) ||
(_mesa_set_search(routing->regular.reachable, entry->key) &&
!_mesa_set_search(routing->brk.reachable, entry->key) &&
!_mesa_set_search(routing->cont.reachable, entry->key))) {
_mesa_set_add_pre_hashed(skip_targets, entry->hash, entry->key);
if (is_in_skip)
prev_level->skip_end = 1;
curr_level->skip_start = 1;
}
}
curr_level->skip_end = 0;
list_addtail(&curr_level->link, levels);
}
if (NIR_LOWER_GOTO_IFS_DEBUG) {
printf(" levels:\n");
list_for_each_entry(struct strct_lvl, level, levels, link) {
printf(" ");
print_block_set(level->blocks);
}
printf("\n");
}
if (skip_targets->entries)
list_last_entry(levels, struct strct_lvl, link)->skip_end = 1;
/* Iterate throught all levels reverse and create all the paths and forks */
struct path path_after_skip;
list_for_each_entry_rev(struct strct_lvl, level, levels, link) {
bool need_var = !(is_domminated && level->link.prev == levels);
level->out_path = routing->regular;
if (level->skip_end) {
path_after_skip = routing->regular;
}
routing->regular.reachable = level->blocks;
routing->regular.fork = select_fork(routing->regular.reachable, impl,
need_var, mem_ctx);
if (level->skip_start) {
struct path_fork *fork = rzalloc(mem_ctx, struct path_fork);
fork->is_var = need_var;
if (need_var)
fork->path_var = nir_local_variable_create(impl, glsl_bool_type(),
"path_conditional");
fork->paths[0] = path_after_skip;
fork->paths[1] = routing->regular;
routing->regular.fork = fork;
routing->regular.reachable = fork_reachable(fork);
}
}
}
static void
nir_structurize(struct routes *routing, nir_builder *b,
nir_block *block, void *mem_ctx);
/**
* Places all the if else statements to select between all blocks in a select
* path
*/
static void
select_blocks(struct routes *routing, nir_builder *b,
struct path in_path, void *mem_ctx)
{
if (!in_path.fork) {
nir_block *block = block_for_singular_set(in_path.reachable);
nir_structurize(routing, b, block, mem_ctx);
} else {
assert(!(in_path.fork->is_var &&
strcmp(in_path.fork->path_var->name, "path_select")));
nir_push_if_src(b, nir_src_for_ssa(fork_condition(b, in_path.fork)));
select_blocks(routing, b, in_path.fork->paths[1], mem_ctx);
nir_push_else(b, NULL);
select_blocks(routing, b, in_path.fork->paths[0], mem_ctx);
nir_pop_if(b, NULL);
}
}
/**
* Builds the structurized nir code by the final level list.
*/
static void
plant_levels(struct list_head *levels, struct routes *routing,
nir_builder *b, void *mem_ctx)
{
/* Place all dominated blocks and build the path forks */
list_for_each_entry(struct strct_lvl, level, levels, link) {
if (level->skip_start) {
assert(routing->regular.fork);
assert(!(routing->regular.fork->is_var && strcmp(
routing->regular.fork->path_var->name, "path_conditional")));
nir_push_if_src(b, nir_src_for_ssa(
fork_condition(b, routing->regular.fork)));
routing->regular = routing->regular.fork->paths[1];
}
struct path in_path = routing->regular;
routing->regular = level->out_path;
if (level->irreducible)
loop_routing_start(routing, b, in_path, level->reach, mem_ctx);
select_blocks(routing, b, in_path, mem_ctx);
if (level->irreducible)
loop_routing_end(routing, b);
if (level->skip_end)
nir_pop_if(b, NULL);
}
}
/**
* builds the control flow of a block and all its dominance children
* \param routing the routing after the block and all dominated blocks
*/
static void
nir_structurize(struct routes *routing, nir_builder *b, nir_block *block,
void *mem_ctx)
{
struct set *remaining = _mesa_pointer_set_create(mem_ctx);
for (int i = 0; i < block->num_dom_children; i++) {
if (!_mesa_set_search(routing->brk.reachable, block->dom_children[i]))
_mesa_set_add(remaining, block->dom_children[i]);
}
/* If the block can reach back to itself, it is a loop head */
int is_looped = _mesa_set_search(block->dom_frontier, block) != NULL;
struct list_head outside_levels;
if (is_looped) {
struct set *loop_heads = _mesa_pointer_set_create(mem_ctx);
_mesa_set_add(loop_heads, block);
struct set *outside = _mesa_pointer_set_create(mem_ctx);
struct set *reach = _mesa_pointer_set_create(mem_ctx);
inside_outside(block, loop_heads, outside, reach,
routing->brk.reachable, mem_ctx);
set_foreach(outside, entry)
_mesa_set_remove_key(remaining, entry->key);
organize_levels(&outside_levels, outside, reach, routing, b->impl,
false, mem_ctx);
struct path loop_path = {
.reachable = _mesa_pointer_set_create(mem_ctx),
.fork = NULL,
};
_mesa_set_add(loop_path.reachable, block);
loop_routing_start(routing, b, loop_path, reach, mem_ctx);
}
struct set *reach = _mesa_pointer_set_create(mem_ctx);
if (block->successors[0]->successors[0]) /* it is not the end_block */
_mesa_set_add(reach, block->successors[0]);
if (block->successors[1] && block->successors[1]->successors[0])
_mesa_set_add(reach, block->successors[1]);
struct list_head levels;
organize_levels(&levels, remaining, reach, routing, b->impl, true, mem_ctx);
/* Push all instructions of this block, without the jump instr */
nir_jump_instr *jump_instr = NULL;
nir_foreach_instr_safe(instr, block) {
if (instr->type == nir_instr_type_jump) {
jump_instr = nir_instr_as_jump(instr);
break;
}
nir_instr_remove(instr);
nir_builder_instr_insert(b, instr);
}
/* Find path to the successor blocks */
if (jump_instr->type == nir_jump_goto_if) {
route_to_cond(b, routing, jump_instr->condition,
jump_instr->target, jump_instr->else_target);
} else {
route_to(b, routing, block->successors[0]);
}
plant_levels(&levels, routing, b, mem_ctx);
if (is_looped) {
loop_routing_end(routing, b);
plant_levels(&outside_levels, routing, b, mem_ctx);
}
}
static bool
nir_lower_goto_ifs_impl(nir_function_impl *impl)
{
if (impl->structured) {
nir_metadata_preserve(impl, nir_metadata_all);
return false;
}
nir_metadata_require(impl, nir_metadata_dominance);
/* We're going to re-arrange blocks like crazy. This is much easier to do
* if we don't have any phi nodes to fix up.
*/
nir_foreach_block_unstructured(block, impl)
nir_lower_phis_to_regs_block(block);
nir_cf_list cf_list;
nir_cf_extract(&cf_list, nir_before_cf_list(&impl->body),
nir_after_cf_list(&impl->body));
/* From this point on, it's structured */
impl->structured = true;
nir_builder b;
nir_builder_init(&b, impl);
b.cursor = nir_before_block(nir_start_block(impl));
void *mem_ctx = ralloc_context(b.shader);
struct set *end_set = _mesa_pointer_set_create(mem_ctx);
_mesa_set_add(end_set, impl->end_block);
struct set *empty_set = _mesa_pointer_set_create(mem_ctx);
nir_cf_node *start_node =
exec_node_data(nir_cf_node, exec_list_get_head(&cf_list.list), node);
nir_block *start_block = nir_cf_node_as_block(start_node);
struct routes *routing = rzalloc(mem_ctx, struct routes);
*routing = (struct routes) {
.regular.reachable = end_set,
.brk.reachable = empty_set,
.cont.reachable = empty_set,
};
nir_structurize(routing, &b, start_block, mem_ctx);
assert(routing->regular.fork == NULL);
assert(routing->brk.fork == NULL);
assert(routing->cont.fork == NULL);
assert(routing->brk.reachable == empty_set);
assert(routing->cont.reachable == empty_set);
ralloc_free(mem_ctx);
nir_cf_delete(&cf_list);
nir_metadata_preserve(impl, nir_metadata_none);
nir_repair_ssa_impl(impl);
nir_lower_regs_to_ssa_impl(impl);
return true;
}
bool
nir_lower_goto_ifs(nir_shader *shader)
{
bool progress = true;
nir_foreach_function(function, shader) {
if (function->impl && nir_lower_goto_ifs_impl(function->impl))
progress = true;
}
return progress;
}