mesa/src/compiler/nir/nir_gather_xfb_info.c

491 lines
18 KiB
C

/*
* Copyright © 2018 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "nir_xfb_info.h"
#include "util/u_dynarray.h"
#include <util/u_math.h>
static void
add_var_xfb_varying(nir_xfb_info *xfb,
nir_xfb_varyings_info *varyings,
unsigned buffer,
unsigned offset,
const struct glsl_type *type)
{
if (varyings == NULL)
return;
nir_xfb_varying_info *varying = &varyings->varyings[varyings->varying_count++];
varying->type = type;
varying->buffer = buffer;
varying->offset = offset;
xfb->buffers[buffer].varying_count++;
}
static nir_xfb_info *
nir_xfb_info_create(void *mem_ctx, uint16_t output_count)
{
return rzalloc_size(mem_ctx, nir_xfb_info_size(output_count));
}
static size_t
nir_xfb_varyings_info_size(uint16_t varying_count)
{
return sizeof(nir_xfb_info) + sizeof(nir_xfb_varying_info) * varying_count;
}
static nir_xfb_varyings_info *
nir_xfb_varyings_info_create(void *mem_ctx, uint16_t varying_count)
{
return rzalloc_size(mem_ctx, nir_xfb_varyings_info_size(varying_count));
}
static void
add_var_xfb_outputs(nir_xfb_info *xfb,
nir_xfb_varyings_info *varyings,
nir_variable *var,
unsigned buffer,
unsigned *location,
unsigned *offset,
const struct glsl_type *type,
bool varying_added)
{
/* If this type contains a 64-bit value, align to 8 bytes */
if (glsl_type_contains_64bit(type))
*offset = ALIGN_POT(*offset, 8);
if (glsl_type_is_array_or_matrix(type) && !var->data.compact) {
unsigned length = glsl_get_length(type);
const struct glsl_type *child_type = glsl_get_array_element(type);
if (!glsl_type_is_array(child_type) &&
!glsl_type_is_struct(child_type)) {
add_var_xfb_varying(xfb, varyings, buffer, *offset, type);
varying_added = true;
}
for (unsigned i = 0; i < length; i++)
add_var_xfb_outputs(xfb, varyings, var, buffer, location, offset,
child_type, varying_added);
} else if (glsl_type_is_struct_or_ifc(type)) {
unsigned length = glsl_get_length(type);
for (unsigned i = 0; i < length; i++) {
const struct glsl_type *child_type = glsl_get_struct_field(type, i);
add_var_xfb_outputs(xfb, varyings, var, buffer, location, offset,
child_type, varying_added);
}
} else {
assert(buffer < NIR_MAX_XFB_BUFFERS);
if (xfb->buffers_written & (1 << buffer)) {
assert(xfb->buffers[buffer].stride == var->data.xfb.stride);
assert(xfb->buffer_to_stream[buffer] == var->data.stream);
} else {
xfb->buffers_written |= (1 << buffer);
xfb->buffers[buffer].stride = var->data.xfb.stride;
xfb->buffer_to_stream[buffer] = var->data.stream;
}
assert(var->data.stream < NIR_MAX_XFB_STREAMS);
xfb->streams_written |= (1 << var->data.stream);
unsigned comp_slots;
if (var->data.compact) {
/* This only happens for clip/cull which are float arrays */
assert(glsl_without_array(type) == glsl_float_type());
assert(var->data.location == VARYING_SLOT_CLIP_DIST0 ||
var->data.location == VARYING_SLOT_CLIP_DIST1);
comp_slots = glsl_get_length(type);
} else {
comp_slots = glsl_get_component_slots(type);
UNUSED unsigned attrib_slots = DIV_ROUND_UP(comp_slots, 4);
assert(attrib_slots == glsl_count_attribute_slots(type, false));
/* Ensure that we don't have, for instance, a dvec2 with a
* location_frac of 2 which would make it crass a location boundary
* even though it fits in a single slot. However, you can have a
* dvec3 which crosses the slot boundary with a location_frac of 2.
*/
assert(DIV_ROUND_UP(var->data.location_frac + comp_slots, 4) ==
attrib_slots);
}
assert(var->data.location_frac + comp_slots <= 8);
uint8_t comp_mask = ((1 << comp_slots) - 1) << var->data.location_frac;
unsigned comp_offset = var->data.location_frac;
if (!varying_added) {
add_var_xfb_varying(xfb, varyings, buffer, *offset, type);
}
while (comp_mask) {
nir_xfb_output_info *output = &xfb->outputs[xfb->output_count++];
output->buffer = buffer;
output->offset = *offset;
output->location = *location;
output->component_mask = comp_mask & 0xf;
output->component_offset = comp_offset;
*offset += util_bitcount(output->component_mask) * 4;
(*location)++;
comp_mask >>= 4;
comp_offset = 0;
}
}
}
static int
compare_xfb_varying_offsets(const void *_a, const void *_b)
{
const nir_xfb_varying_info *a = _a, *b = _b;
if (a->buffer != b->buffer)
return a->buffer - b->buffer;
return a->offset - b->offset;
}
static int
compare_xfb_output_offsets(const void *_a, const void *_b)
{
const nir_xfb_output_info *a = _a, *b = _b;
return a->offset - b->offset;
}
void
nir_shader_gather_xfb_info(nir_shader *shader)
{
nir_gather_xfb_info_with_varyings(shader, NULL, NULL);
}
void
nir_gather_xfb_info_with_varyings(nir_shader *shader,
void *mem_ctx,
nir_xfb_varyings_info **varyings_info_out)
{
assert(shader->info.stage == MESA_SHADER_VERTEX ||
shader->info.stage == MESA_SHADER_TESS_EVAL ||
shader->info.stage == MESA_SHADER_GEOMETRY);
/* Compute the number of outputs we have. This is simply the number of
* cumulative locations consumed by all the variables. If a location is
* represented by multiple variables, then they each count separately in
* number of outputs. This is only an estimate as some variables may have
* an xfb_buffer but not an output so it may end up larger than we need but
* it should be good enough for allocation.
*/
unsigned num_outputs = 0;
unsigned num_varyings = 0;
nir_xfb_varyings_info *varyings_info = NULL;
nir_foreach_shader_out_variable(var, shader) {
if (var->data.explicit_xfb_buffer) {
num_outputs += glsl_count_attribute_slots(var->type, false);
num_varyings += glsl_varying_count(var->type);
}
}
if (num_outputs == 0 || num_varyings == 0)
return;
nir_xfb_info *xfb = nir_xfb_info_create(shader, num_outputs);
if (varyings_info_out != NULL) {
*varyings_info_out = nir_xfb_varyings_info_create(mem_ctx, num_varyings);
varyings_info = *varyings_info_out;
}
/* Walk the list of outputs and add them to the array */
nir_foreach_shader_out_variable(var, shader) {
if (!var->data.explicit_xfb_buffer)
continue;
unsigned location = var->data.location;
/* In order to know if we have a array of blocks can't be done just by
* checking if we have an interface type and is an array, because due
* splitting we could end on a case were we received a split struct
* that contains an array.
*/
bool is_array_block = var->interface_type != NULL &&
glsl_type_is_array(var->type) &&
glsl_without_array(var->type) == var->interface_type;
if (var->data.explicit_offset && !is_array_block) {
unsigned offset = var->data.offset;
add_var_xfb_outputs(xfb, varyings_info, var, var->data.xfb.buffer,
&location, &offset, var->type, false);
} else if (is_array_block) {
assert(glsl_type_is_struct_or_ifc(var->interface_type));
unsigned aoa_size = glsl_get_aoa_size(var->type);
const struct glsl_type *itype = var->interface_type;
unsigned nfields = glsl_get_length(itype);
for (unsigned b = 0; b < aoa_size; b++) {
for (unsigned f = 0; f < nfields; f++) {
int foffset = glsl_get_struct_field_offset(itype, f);
const struct glsl_type *ftype = glsl_get_struct_field(itype, f);
if (foffset < 0) {
location += glsl_count_attribute_slots(ftype, false);
continue;
}
unsigned offset = foffset;
add_var_xfb_outputs(xfb, varyings_info, var, var->data.xfb.buffer + b,
&location, &offset, ftype, false);
}
}
}
}
/* Everything is easier in the state setup code if outputs and varyings are
* sorted in order of output offset (and buffer for varyings).
*/
qsort(xfb->outputs, xfb->output_count, sizeof(xfb->outputs[0]),
compare_xfb_output_offsets);
if (varyings_info != NULL) {
qsort(varyings_info->varyings, varyings_info->varying_count,
sizeof(varyings_info->varyings[0]),
compare_xfb_varying_offsets);
}
#ifndef NDEBUG
/* Finally, do a sanity check */
unsigned max_offset[NIR_MAX_XFB_BUFFERS] = {0};
for (unsigned i = 0; i < xfb->output_count; i++) {
assert(xfb->outputs[i].offset >= max_offset[xfb->outputs[i].buffer]);
assert(xfb->outputs[i].component_mask != 0);
unsigned slots = util_bitcount(xfb->outputs[i].component_mask);
max_offset[xfb->outputs[i].buffer] = xfb->outputs[i].offset + slots * 4;
}
#endif
ralloc_free(shader->xfb_info);
shader->xfb_info = xfb;
}
static int
get_xfb_out_sort_index(const nir_xfb_output_info *a)
{
/* Return the maximum number to put dummy components at the end. */
if (!a->component_mask)
return MAX_XFB_BUFFERS << 26;
return ((uint32_t)a->buffer << 26) | /* 2 bits for the buffer */
/* 10 bits for the component location (256 * 4) */
(((uint32_t)a->location * 4 + a->component_offset) << 16) |
/* 16 bits for the offset */
a->offset;
}
static int
compare_xfb_out(const void *pa, const void *pb)
{
const nir_xfb_output_info *a = (const nir_xfb_output_info *)pa;
const nir_xfb_output_info *b = (const nir_xfb_output_info *)pb;
return get_xfb_out_sort_index(a) - get_xfb_out_sort_index(b);
}
/**
* Gather transform feedback info from lowered IO intrinsics.
*
* Optionally return slot_to_register, an optional table to translate
* gl_varying_slot to "base" indices.
*/
nir_xfb_info *
nir_gather_xfb_info_from_intrinsics(nir_shader *nir,
int slot_to_register[NUM_TOTAL_VARYING_SLOTS])
{
nir_function_impl *impl = nir_shader_get_entrypoint(nir);
uint8_t buffer_to_stream[MAX_XFB_BUFFERS] = {0};
uint8_t buffer_mask = 0;
uint8_t stream_mask = 0;
if (slot_to_register) {
memset(slot_to_register, -1,
sizeof(slot_to_register[0] * NUM_TOTAL_VARYING_SLOTS));
}
/* Gather xfb outputs. */
struct util_dynarray array = {0};
nir_foreach_block(block, impl) {
nir_foreach_instr(instr, block) {
if (instr->type != nir_instr_type_intrinsic ||
!nir_instr_xfb_write_mask(nir_instr_as_intrinsic(instr)))
continue;
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
unsigned wr_mask = nir_intrinsic_write_mask(intr);
while (wr_mask) {
unsigned i = u_bit_scan(&wr_mask);
unsigned index = nir_intrinsic_component(intr) + i;
nir_io_xfb xfb = index < 2 ? nir_intrinsic_io_xfb(intr) :
nir_intrinsic_io_xfb2(intr);
if (xfb.out[index % 2].num_components) {
nir_io_semantics sem = nir_intrinsic_io_semantics(intr);
nir_xfb_output_info out;
out.component_offset = index;
out.component_mask =
BITFIELD_RANGE(index, xfb.out[index % 2].num_components);
out.location = sem.location;
out.buffer = xfb.out[index % 2].buffer;
out.offset = (uint32_t)xfb.out[index % 2].offset * 4;
util_dynarray_append(&array, nir_xfb_output_info, out);
uint8_t stream = (sem.gs_streams >> (i * 2)) & 0x3;
buffer_to_stream[out.buffer] = stream;
buffer_mask |= BITFIELD_BIT(out.buffer);
stream_mask |= BITFIELD_BIT(stream);
if (slot_to_register)
slot_to_register[sem.location] = nir_intrinsic_base(intr);
/* No elements before component_offset are allowed to be set. */
assert(!(out.component_mask & BITFIELD_MASK(out.component_offset)));
}
}
}
}
nir_xfb_output_info *outputs = (nir_xfb_output_info *)array.data;
int count = util_dynarray_num_elements(&array, nir_xfb_output_info);
if (!count)
return NULL;
if (count > 1) {
/* Sort outputs by buffer, location, and component. */
qsort(outputs, count, sizeof(nir_xfb_output_info), compare_xfb_out);
/* Merge outputs referencing the same slot. */
for (int i = 0; i < count - 1; i++) {
nir_xfb_output_info *cur = &outputs[i];
if (!cur->component_mask)
continue;
/* Outputs referencing the same buffer and location are contiguous. */
for (int j = i + 1;
j < count &&
cur->buffer == outputs[j].buffer &&
cur->location == outputs[j].location; j++) {
if (outputs[j].component_mask &&
outputs[j].offset - outputs[j].component_offset * 4 ==
cur->offset - cur->component_offset * 4) {
unsigned merged_offset = MIN2(cur->component_offset,
outputs[j].component_offset);
/* component_mask is relative to 0, not component_offset */
unsigned merged_mask = cur->component_mask | outputs[j].component_mask;
/* The component mask should have no holes after merging. */
if (util_is_power_of_two_nonzero((merged_mask >> merged_offset) + 1)) {
/* Merge outputs. */
cur->component_offset = merged_offset;
cur->component_mask = merged_mask;
cur->offset = (uint32_t)cur->offset -
(uint32_t)cur->component_offset * 4 +
(uint32_t)merged_offset * 4;
/* Disable the other output. */
outputs[j].component_mask = 0;
}
}
}
}
/* Sort outputs again to put disabled outputs at the end. */
qsort(outputs, count, sizeof(nir_xfb_output_info), compare_xfb_out);
/* Remove disabled outputs. */
for (int i = count - 1; i >= 0 && !outputs[i].component_mask; i--)
count = i;
}
for (unsigned i = 0; i < count; i++)
assert(outputs[i].component_mask);
/* Create nir_xfb_info. */
nir_xfb_info *info = calloc(1, nir_xfb_info_size(count));
if (!info) {
util_dynarray_fini(&array);
return NULL;
}
/* Fill nir_xfb_info. */
info->buffers_written = buffer_mask;
info->streams_written = stream_mask;
memcpy(info->buffer_to_stream, buffer_to_stream, sizeof(buffer_to_stream));
info->output_count = count;
memcpy(info->outputs, outputs, count * sizeof(outputs[0]));
/* Set strides. */
for (unsigned i = 0; i < MAX_XFB_BUFFERS; i++) {
if (buffer_mask & BITFIELD_BIT(i))
info->buffers[i].stride = nir->info.xfb_stride[i];
}
/* Set varying_count. */
for (unsigned i = 0; i < count; i++)
info->buffers[outputs[i].buffer].varying_count++;
util_dynarray_fini(&array);
return info;
}
void
nir_print_xfb_info(nir_xfb_info *info, FILE *fp)
{
fprintf(fp, "buffers_written: 0x%x\n", info->buffers_written);
fprintf(fp, "streams_written: 0x%x\n", info->streams_written);
for (unsigned i = 0; i < NIR_MAX_XFB_BUFFERS; i++) {
if (BITFIELD_BIT(i) & info->buffers_written) {
fprintf(fp, "buffer%u: stride=%u varying_count=%u stream=%u\n", i,
info->buffers[i].stride,
info->buffers[i].varying_count,
info->buffer_to_stream[i]);
}
}
fprintf(fp, "output_count: %u\n", info->output_count);
for (unsigned i = 0; i < info->output_count; i++) {
fprintf(fp, "output%u: buffer=%u, offset=%u, location=%u, "
"component_offset=%u, component_mask=0x%x\n",
i, info->outputs[i].buffer,
info->outputs[i].offset,
info->outputs[i].location,
info->outputs[i].component_offset,
info->outputs[i].component_mask);
}
}