mesa/src/compiler/nir/nir.c

3541 lines
101 KiB
C

/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Connor Abbott (cwabbott0@gmail.com)
*
*/
#include "nir.h"
#include "nir_builder.h"
#include "nir_control_flow_private.h"
#include "nir_worklist.h"
#include "util/half_float.h"
#include <limits.h>
#include <assert.h>
#include <math.h>
#include "util/u_math.h"
#include "util/u_qsort.h"
#include "main/menums.h" /* BITFIELD64_MASK */
#ifndef NDEBUG
uint32_t nir_debug = 0;
bool nir_debug_print_shader[MESA_SHADER_KERNEL + 1] = { 0 };
static const struct debug_named_value nir_debug_control[] = {
{ "clone", NIR_DEBUG_CLONE,
"Test cloning a shader at each successful lowering/optimization call" },
{ "serialize", NIR_DEBUG_SERIALIZE,
"Test serialize and deserialize shader at each successful lowering/optimization call" },
{ "novalidate", NIR_DEBUG_NOVALIDATE,
"Disable shader validation at each successful lowering/optimization call" },
{ "validate_ssa_dominance", NIR_DEBUG_VALIDATE_SSA_DOMINANCE,
"Validate SSA dominance in shader at each successful lowering/optimization call" },
{ "validate_gc_list", NIR_DEBUG_VALIDATE_GC_LIST,
"Validate the instruction GC list at each successful lowering/optimization call" },
{ "tgsi", NIR_DEBUG_TGSI,
"Dump NIR/TGSI shaders when doing a NIR<->TGSI translation" },
{ "print", NIR_DEBUG_PRINT,
"Dump resulting shader after each successful lowering/optimization call" },
{ "print_vs", NIR_DEBUG_PRINT_VS,
"Dump resulting vertex shader after each successful lowering/optimization call" },
{ "print_tcs", NIR_DEBUG_PRINT_TCS,
"Dump resulting tessellation control shader after each successful lowering/optimization call" },
{ "print_tes", NIR_DEBUG_PRINT_TES,
"Dump resulting tessellation evaluation shader after each successful lowering/optimization call" },
{ "print_gs", NIR_DEBUG_PRINT_GS,
"Dump resulting geometry shader after each successful lowering/optimization call" },
{ "print_fs", NIR_DEBUG_PRINT_FS,
"Dump resulting fragment shader after each successful lowering/optimization call" },
{ "print_cs", NIR_DEBUG_PRINT_CS,
"Dump resulting compute shader after each successful lowering/optimization call" },
{ "print_ts", NIR_DEBUG_PRINT_TS,
"Dump resulting task shader after each successful lowering/optimization call" },
{ "print_ms", NIR_DEBUG_PRINT_MS,
"Dump resulting mesh shader after each successful lowering/optimization call" },
{ "print_rgs", NIR_DEBUG_PRINT_RGS,
"Dump resulting raygen shader after each successful lowering/optimization call" },
{ "print_ahs", NIR_DEBUG_PRINT_AHS,
"Dump resulting any-hit shader after each successful lowering/optimization call" },
{ "print_chs", NIR_DEBUG_PRINT_CHS,
"Dump resulting closest-hit shader after each successful lowering/optimization call" },
{ "print_mhs", NIR_DEBUG_PRINT_MHS,
"Dump resulting miss-hit shader after each successful lowering/optimization call" },
{ "print_is", NIR_DEBUG_PRINT_IS,
"Dump resulting intersection shader after each successful lowering/optimization call" },
{ "print_cbs", NIR_DEBUG_PRINT_CBS,
"Dump resulting callable shader after each successful lowering/optimization call" },
{ "print_ks", NIR_DEBUG_PRINT_KS,
"Dump resulting kernel shader after each successful lowering/optimization call" },
{ "print_consts", NIR_DEBUG_PRINT_CONSTS,
"Print const value near each use of const SSA variable" },
{ NULL }
};
DEBUG_GET_ONCE_FLAGS_OPTION(nir_debug, "NIR_DEBUG", nir_debug_control, 0)
static void
nir_process_debug_variable_once(void)
{
nir_debug = debug_get_option_nir_debug();
nir_debug_print_shader[MESA_SHADER_VERTEX] = NIR_DEBUG(PRINT_VS);
nir_debug_print_shader[MESA_SHADER_TESS_CTRL] = NIR_DEBUG(PRINT_TCS);
nir_debug_print_shader[MESA_SHADER_TESS_EVAL] = NIR_DEBUG(PRINT_TES);
nir_debug_print_shader[MESA_SHADER_GEOMETRY] = NIR_DEBUG(PRINT_GS);
nir_debug_print_shader[MESA_SHADER_FRAGMENT] = NIR_DEBUG(PRINT_FS);
nir_debug_print_shader[MESA_SHADER_COMPUTE] = NIR_DEBUG(PRINT_CS);
nir_debug_print_shader[MESA_SHADER_TASK] = NIR_DEBUG(PRINT_TS);
nir_debug_print_shader[MESA_SHADER_MESH] = NIR_DEBUG(PRINT_MS);
nir_debug_print_shader[MESA_SHADER_RAYGEN] = NIR_DEBUG(PRINT_RGS);
nir_debug_print_shader[MESA_SHADER_ANY_HIT] = NIR_DEBUG(PRINT_AHS);
nir_debug_print_shader[MESA_SHADER_CLOSEST_HIT] = NIR_DEBUG(PRINT_CHS);
nir_debug_print_shader[MESA_SHADER_MISS] = NIR_DEBUG(PRINT_MHS);
nir_debug_print_shader[MESA_SHADER_INTERSECTION] = NIR_DEBUG(PRINT_IS);
nir_debug_print_shader[MESA_SHADER_CALLABLE] = NIR_DEBUG(PRINT_CBS);
nir_debug_print_shader[MESA_SHADER_KERNEL] = NIR_DEBUG(PRINT_KS);
}
void
nir_process_debug_variable(void)
{
static once_flag flag = ONCE_FLAG_INIT;
call_once(&flag, nir_process_debug_variable_once);
}
#endif
/** Return true if the component mask "mask" with bit size "old_bit_size" can
* be re-interpreted to be used with "new_bit_size".
*/
bool
nir_component_mask_can_reinterpret(nir_component_mask_t mask,
unsigned old_bit_size,
unsigned new_bit_size)
{
assert(util_is_power_of_two_nonzero(old_bit_size));
assert(util_is_power_of_two_nonzero(new_bit_size));
if (old_bit_size == new_bit_size)
return true;
if (old_bit_size == 1 || new_bit_size == 1)
return false;
if (old_bit_size > new_bit_size) {
unsigned ratio = old_bit_size / new_bit_size;
return util_last_bit(mask) * ratio <= NIR_MAX_VEC_COMPONENTS;
}
unsigned iter = mask;
while (iter) {
int start, count;
u_bit_scan_consecutive_range(&iter, &start, &count);
start *= old_bit_size;
count *= old_bit_size;
if (start % new_bit_size != 0)
return false;
if (count % new_bit_size != 0)
return false;
}
return true;
}
/** Re-interprets a component mask "mask" with bit size "old_bit_size" so that
* it can be used can be used with "new_bit_size".
*/
nir_component_mask_t
nir_component_mask_reinterpret(nir_component_mask_t mask,
unsigned old_bit_size,
unsigned new_bit_size)
{
assert(nir_component_mask_can_reinterpret(mask, old_bit_size, new_bit_size));
if (old_bit_size == new_bit_size)
return mask;
nir_component_mask_t new_mask = 0;
unsigned iter = mask;
while (iter) {
int start, count;
u_bit_scan_consecutive_range(&iter, &start, &count);
start = start * old_bit_size / new_bit_size;
count = count * old_bit_size / new_bit_size;
new_mask |= BITFIELD_RANGE(start, count);
}
return new_mask;
}
static void
nir_shader_destructor(void *ptr)
{
nir_shader *shader = ptr;
/* Free all instrs from the shader, since they're not ralloced. */
list_for_each_entry_safe(nir_instr, instr, &shader->gc_list, gc_node) {
nir_instr_free(instr);
}
}
nir_shader *
nir_shader_create(void *mem_ctx,
gl_shader_stage stage,
const nir_shader_compiler_options *options,
shader_info *si)
{
nir_shader *shader = rzalloc(mem_ctx, nir_shader);
ralloc_set_destructor(shader, nir_shader_destructor);
#ifndef NDEBUG
nir_process_debug_variable();
#endif
exec_list_make_empty(&shader->variables);
shader->options = options;
if (si) {
assert(si->stage == stage);
shader->info = *si;
} else {
shader->info.stage = stage;
}
exec_list_make_empty(&shader->functions);
list_inithead(&shader->gc_list);
shader->num_inputs = 0;
shader->num_outputs = 0;
shader->num_uniforms = 0;
return shader;
}
static nir_register *
reg_create(void *mem_ctx, struct exec_list *list)
{
nir_register *reg = ralloc(mem_ctx, nir_register);
list_inithead(&reg->uses);
list_inithead(&reg->defs);
list_inithead(&reg->if_uses);
reg->num_components = 0;
reg->bit_size = 32;
reg->num_array_elems = 0;
reg->divergent = false;
exec_list_push_tail(list, &reg->node);
return reg;
}
nir_register *
nir_local_reg_create(nir_function_impl *impl)
{
nir_register *reg = reg_create(ralloc_parent(impl), &impl->registers);
reg->index = impl->reg_alloc++;
return reg;
}
void
nir_reg_remove(nir_register *reg)
{
exec_node_remove(&reg->node);
}
void
nir_shader_add_variable(nir_shader *shader, nir_variable *var)
{
switch (var->data.mode) {
case nir_var_function_temp:
assert(!"nir_shader_add_variable cannot be used for local variables");
return;
case nir_var_shader_temp:
case nir_var_shader_in:
case nir_var_shader_out:
case nir_var_uniform:
case nir_var_mem_ubo:
case nir_var_mem_ssbo:
case nir_var_image:
case nir_var_mem_shared:
case nir_var_system_value:
case nir_var_mem_push_const:
case nir_var_mem_constant:
case nir_var_shader_call_data:
case nir_var_ray_hit_attrib:
case nir_var_mem_task_payload:
case nir_var_mem_global:
break;
default:
assert(!"invalid mode");
return;
}
exec_list_push_tail(&shader->variables, &var->node);
}
nir_variable *
nir_variable_create(nir_shader *shader, nir_variable_mode mode,
const struct glsl_type *type, const char *name)
{
nir_variable *var = rzalloc(shader, nir_variable);
var->name = ralloc_strdup(var, name);
var->type = type;
var->data.mode = mode;
var->data.how_declared = nir_var_declared_normally;
if ((mode == nir_var_shader_in &&
shader->info.stage != MESA_SHADER_VERTEX &&
shader->info.stage != MESA_SHADER_KERNEL) ||
(mode == nir_var_shader_out &&
shader->info.stage != MESA_SHADER_FRAGMENT))
var->data.interpolation = INTERP_MODE_SMOOTH;
if (mode == nir_var_shader_in || mode == nir_var_uniform)
var->data.read_only = true;
nir_shader_add_variable(shader, var);
return var;
}
nir_variable *
nir_local_variable_create(nir_function_impl *impl,
const struct glsl_type *type, const char *name)
{
nir_variable *var = rzalloc(impl->function->shader, nir_variable);
var->name = ralloc_strdup(var, name);
var->type = type;
var->data.mode = nir_var_function_temp;
nir_function_impl_add_variable(impl, var);
return var;
}
nir_variable *
nir_find_variable_with_location(nir_shader *shader,
nir_variable_mode mode,
unsigned location)
{
assert(util_bitcount(mode) == 1 && mode != nir_var_function_temp);
nir_foreach_variable_with_modes(var, shader, mode) {
if (var->data.location == location)
return var;
}
return NULL;
}
nir_variable *
nir_find_variable_with_driver_location(nir_shader *shader,
nir_variable_mode mode,
unsigned location)
{
assert(util_bitcount(mode) == 1 && mode != nir_var_function_temp);
nir_foreach_variable_with_modes(var, shader, mode) {
if (var->data.driver_location == location)
return var;
}
return NULL;
}
/* Annoyingly, qsort_r is not in the C standard library and, in particular, we
* can't count on it on MSV and Android. So we stuff the CMP function into
* each array element. It's a bit messy and burns more memory but the list of
* variables should hever be all that long.
*/
struct var_cmp {
nir_variable *var;
int (*cmp)(const nir_variable *, const nir_variable *);
};
static int
var_sort_cmp(const void *_a, const void *_b, void *_cmp)
{
const struct var_cmp *a = _a;
const struct var_cmp *b = _b;
assert(a->cmp == b->cmp);
return a->cmp(a->var, b->var);
}
void
nir_sort_variables_with_modes(nir_shader *shader,
int (*cmp)(const nir_variable *,
const nir_variable *),
nir_variable_mode modes)
{
unsigned num_vars = 0;
nir_foreach_variable_with_modes(var, shader, modes) {
++num_vars;
}
struct var_cmp *vars = ralloc_array(shader, struct var_cmp, num_vars);
unsigned i = 0;
nir_foreach_variable_with_modes_safe(var, shader, modes) {
exec_node_remove(&var->node);
vars[i++] = (struct var_cmp){
.var = var,
.cmp = cmp,
};
}
assert(i == num_vars);
util_qsort_r(vars, num_vars, sizeof(*vars), var_sort_cmp, cmp);
for (i = 0; i < num_vars; i++)
exec_list_push_tail(&shader->variables, &vars[i].var->node);
ralloc_free(vars);
}
nir_function *
nir_function_create(nir_shader *shader, const char *name)
{
nir_function *func = ralloc(shader, nir_function);
exec_list_push_tail(&shader->functions, &func->node);
func->name = ralloc_strdup(func, name);
func->shader = shader;
func->num_params = 0;
func->params = NULL;
func->impl = NULL;
func->is_entrypoint = false;
func->is_preamble = false;
return func;
}
static bool src_has_indirect(nir_src *src)
{
return !src->is_ssa && src->reg.indirect;
}
static void src_free_indirects(nir_src *src)
{
if (src_has_indirect(src)) {
assert(src->reg.indirect->is_ssa || !src->reg.indirect->reg.indirect);
free(src->reg.indirect);
src->reg.indirect = NULL;
}
}
static void dest_free_indirects(nir_dest *dest)
{
if (!dest->is_ssa && dest->reg.indirect) {
assert(dest->reg.indirect->is_ssa || !dest->reg.indirect->reg.indirect);
free(dest->reg.indirect);
dest->reg.indirect = NULL;
}
}
/* NOTE: if the instruction you are copying a src to is already added
* to the IR, use nir_instr_rewrite_src() instead.
*/
void nir_src_copy(nir_src *dest, const nir_src *src)
{
src_free_indirects(dest);
dest->is_ssa = src->is_ssa;
if (src->is_ssa) {
dest->ssa = src->ssa;
} else {
dest->reg.base_offset = src->reg.base_offset;
dest->reg.reg = src->reg.reg;
if (src->reg.indirect) {
dest->reg.indirect = calloc(1, sizeof(nir_src));
nir_src_copy(dest->reg.indirect, src->reg.indirect);
} else {
dest->reg.indirect = NULL;
}
}
}
void nir_dest_copy(nir_dest *dest, const nir_dest *src)
{
/* Copying an SSA definition makes no sense whatsoever. */
assert(!src->is_ssa);
dest_free_indirects(dest);
dest->is_ssa = false;
dest->reg.base_offset = src->reg.base_offset;
dest->reg.reg = src->reg.reg;
if (src->reg.indirect) {
dest->reg.indirect = calloc(1, sizeof(nir_src));
nir_src_copy(dest->reg.indirect, src->reg.indirect);
} else {
dest->reg.indirect = NULL;
}
}
void
nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src)
{
nir_src_copy(&dest->src, &src->src);
dest->abs = src->abs;
dest->negate = src->negate;
for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++)
dest->swizzle[i] = src->swizzle[i];
}
void
nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src)
{
nir_dest_copy(&dest->dest, &src->dest);
dest->write_mask = src->write_mask;
dest->saturate = src->saturate;
}
bool
nir_alu_src_is_trivial_ssa(const nir_alu_instr *alu, unsigned srcn)
{
static uint8_t trivial_swizzle[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 };
STATIC_ASSERT(ARRAY_SIZE(trivial_swizzle) == NIR_MAX_VEC_COMPONENTS);
const nir_alu_src *src = &alu->src[srcn];
unsigned num_components = nir_ssa_alu_instr_src_components(alu, srcn);
return src->src.is_ssa && (src->src.ssa->num_components == num_components) &&
!src->abs && !src->negate &&
(memcmp(src->swizzle, trivial_swizzle, num_components) == 0);
}
static void
cf_init(nir_cf_node *node, nir_cf_node_type type)
{
exec_node_init(&node->node);
node->parent = NULL;
node->type = type;
}
nir_function_impl *
nir_function_impl_create_bare(nir_shader *shader)
{
nir_function_impl *impl = ralloc(shader, nir_function_impl);
impl->function = NULL;
impl->preamble = NULL;
cf_init(&impl->cf_node, nir_cf_node_function);
exec_list_make_empty(&impl->body);
exec_list_make_empty(&impl->registers);
exec_list_make_empty(&impl->locals);
impl->reg_alloc = 0;
impl->ssa_alloc = 0;
impl->num_blocks = 0;
impl->valid_metadata = nir_metadata_none;
impl->structured = true;
/* create start & end blocks */
nir_block *start_block = nir_block_create(shader);
nir_block *end_block = nir_block_create(shader);
start_block->cf_node.parent = &impl->cf_node;
end_block->cf_node.parent = &impl->cf_node;
impl->end_block = end_block;
exec_list_push_tail(&impl->body, &start_block->cf_node.node);
start_block->successors[0] = end_block;
_mesa_set_add(end_block->predecessors, start_block);
return impl;
}
nir_function_impl *
nir_function_impl_create(nir_function *function)
{
assert(function->impl == NULL);
nir_function_impl *impl = nir_function_impl_create_bare(function->shader);
function->impl = impl;
impl->function = function;
return impl;
}
nir_block *
nir_block_create(nir_shader *shader)
{
nir_block *block = rzalloc(shader, nir_block);
cf_init(&block->cf_node, nir_cf_node_block);
block->successors[0] = block->successors[1] = NULL;
block->predecessors = _mesa_pointer_set_create(block);
block->imm_dom = NULL;
/* XXX maybe it would be worth it to defer allocation? This
* way it doesn't get allocated for shader refs that never run
* nir_calc_dominance? For example, state-tracker creates an
* initial IR, clones that, runs appropriate lowering pass, passes
* to driver which does common lowering/opt, and then stores ref
* which is later used to do state specific lowering and futher
* opt. Do any of the references not need dominance metadata?
*/
block->dom_frontier = _mesa_pointer_set_create(block);
exec_list_make_empty(&block->instr_list);
return block;
}
static inline void
src_init(nir_src *src)
{
src->is_ssa = false;
src->reg.reg = NULL;
src->reg.indirect = NULL;
src->reg.base_offset = 0;
}
nir_if *
nir_if_create(nir_shader *shader)
{
nir_if *if_stmt = ralloc(shader, nir_if);
if_stmt->control = nir_selection_control_none;
cf_init(&if_stmt->cf_node, nir_cf_node_if);
src_init(&if_stmt->condition);
nir_block *then = nir_block_create(shader);
exec_list_make_empty(&if_stmt->then_list);
exec_list_push_tail(&if_stmt->then_list, &then->cf_node.node);
then->cf_node.parent = &if_stmt->cf_node;
nir_block *else_stmt = nir_block_create(shader);
exec_list_make_empty(&if_stmt->else_list);
exec_list_push_tail(&if_stmt->else_list, &else_stmt->cf_node.node);
else_stmt->cf_node.parent = &if_stmt->cf_node;
return if_stmt;
}
nir_loop *
nir_loop_create(nir_shader *shader)
{
nir_loop *loop = rzalloc(shader, nir_loop);
cf_init(&loop->cf_node, nir_cf_node_loop);
/* Assume that loops are divergent until proven otherwise */
loop->divergent = true;
nir_block *body = nir_block_create(shader);
exec_list_make_empty(&loop->body);
exec_list_push_tail(&loop->body, &body->cf_node.node);
body->cf_node.parent = &loop->cf_node;
body->successors[0] = body;
_mesa_set_add(body->predecessors, body);
return loop;
}
static void
instr_init(nir_instr *instr, nir_instr_type type)
{
instr->type = type;
instr->block = NULL;
exec_node_init(&instr->node);
}
static void
dest_init(nir_dest *dest)
{
dest->is_ssa = false;
dest->reg.reg = NULL;
dest->reg.indirect = NULL;
dest->reg.base_offset = 0;
}
static void
alu_dest_init(nir_alu_dest *dest)
{
dest_init(&dest->dest);
dest->saturate = false;
dest->write_mask = 0xf;
}
static void
alu_src_init(nir_alu_src *src)
{
src_init(&src->src);
src->abs = src->negate = false;
for (int i = 0; i < NIR_MAX_VEC_COMPONENTS; ++i)
src->swizzle[i] = i;
}
nir_alu_instr *
nir_alu_instr_create(nir_shader *shader, nir_op op)
{
unsigned num_srcs = nir_op_infos[op].num_inputs;
/* TODO: don't use calloc */
nir_alu_instr *instr = calloc(1, sizeof(nir_alu_instr) + num_srcs * sizeof(nir_alu_src));
instr_init(&instr->instr, nir_instr_type_alu);
instr->op = op;
alu_dest_init(&instr->dest);
for (unsigned i = 0; i < num_srcs; i++)
alu_src_init(&instr->src[i]);
list_add(&instr->instr.gc_node, &shader->gc_list);
return instr;
}
nir_deref_instr *
nir_deref_instr_create(nir_shader *shader, nir_deref_type deref_type)
{
nir_deref_instr *instr = calloc(1, sizeof(*instr));
instr_init(&instr->instr, nir_instr_type_deref);
instr->deref_type = deref_type;
if (deref_type != nir_deref_type_var)
src_init(&instr->parent);
if (deref_type == nir_deref_type_array ||
deref_type == nir_deref_type_ptr_as_array)
src_init(&instr->arr.index);
dest_init(&instr->dest);
list_add(&instr->instr.gc_node, &shader->gc_list);
return instr;
}
nir_jump_instr *
nir_jump_instr_create(nir_shader *shader, nir_jump_type type)
{
nir_jump_instr *instr = malloc(sizeof(*instr));
instr_init(&instr->instr, nir_instr_type_jump);
src_init(&instr->condition);
instr->type = type;
instr->target = NULL;
instr->else_target = NULL;
list_add(&instr->instr.gc_node, &shader->gc_list);
return instr;
}
nir_load_const_instr *
nir_load_const_instr_create(nir_shader *shader, unsigned num_components,
unsigned bit_size)
{
nir_load_const_instr *instr =
calloc(1, sizeof(*instr) + num_components * sizeof(*instr->value));
instr_init(&instr->instr, nir_instr_type_load_const);
nir_ssa_def_init(&instr->instr, &instr->def, num_components, bit_size);
list_add(&instr->instr.gc_node, &shader->gc_list);
return instr;
}
nir_intrinsic_instr *
nir_intrinsic_instr_create(nir_shader *shader, nir_intrinsic_op op)
{
unsigned num_srcs = nir_intrinsic_infos[op].num_srcs;
/* TODO: don't use calloc */
nir_intrinsic_instr *instr =
calloc(1, sizeof(nir_intrinsic_instr) + num_srcs * sizeof(nir_src));
instr_init(&instr->instr, nir_instr_type_intrinsic);
instr->intrinsic = op;
if (nir_intrinsic_infos[op].has_dest)
dest_init(&instr->dest);
for (unsigned i = 0; i < num_srcs; i++)
src_init(&instr->src[i]);
list_add(&instr->instr.gc_node, &shader->gc_list);
return instr;
}
nir_call_instr *
nir_call_instr_create(nir_shader *shader, nir_function *callee)
{
const unsigned num_params = callee->num_params;
nir_call_instr *instr =
calloc(1, sizeof(*instr) + num_params * sizeof(instr->params[0]));
instr_init(&instr->instr, nir_instr_type_call);
instr->callee = callee;
instr->num_params = num_params;
for (unsigned i = 0; i < num_params; i++)
src_init(&instr->params[i]);
list_add(&instr->instr.gc_node, &shader->gc_list);
return instr;
}
static int8_t default_tg4_offsets[4][2] =
{
{ 0, 1 },
{ 1, 1 },
{ 1, 0 },
{ 0, 0 },
};
nir_tex_instr *
nir_tex_instr_create(nir_shader *shader, unsigned num_srcs)
{
nir_tex_instr *instr = calloc(1, sizeof(*instr));
instr_init(&instr->instr, nir_instr_type_tex);
dest_init(&instr->dest);
instr->num_srcs = num_srcs;
instr->src = malloc(sizeof(nir_tex_src) * num_srcs);
for (unsigned i = 0; i < num_srcs; i++)
src_init(&instr->src[i].src);
instr->texture_index = 0;
instr->sampler_index = 0;
memcpy(instr->tg4_offsets, default_tg4_offsets, sizeof(instr->tg4_offsets));
list_add(&instr->instr.gc_node, &shader->gc_list);
return instr;
}
void
nir_tex_instr_add_src(nir_tex_instr *tex,
nir_tex_src_type src_type,
nir_src src)
{
nir_tex_src *new_srcs = calloc(sizeof(*new_srcs),
tex->num_srcs + 1);
for (unsigned i = 0; i < tex->num_srcs; i++) {
new_srcs[i].src_type = tex->src[i].src_type;
nir_instr_move_src(&tex->instr, &new_srcs[i].src,
&tex->src[i].src);
}
free(tex->src);
tex->src = new_srcs;
tex->src[tex->num_srcs].src_type = src_type;
nir_instr_rewrite_src(&tex->instr, &tex->src[tex->num_srcs].src, src);
tex->num_srcs++;
}
void
nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx)
{
assert(src_idx < tex->num_srcs);
/* First rewrite the source to NIR_SRC_INIT */
nir_instr_rewrite_src(&tex->instr, &tex->src[src_idx].src, NIR_SRC_INIT);
/* Now, move all of the other sources down */
for (unsigned i = src_idx + 1; i < tex->num_srcs; i++) {
tex->src[i-1].src_type = tex->src[i].src_type;
nir_instr_move_src(&tex->instr, &tex->src[i-1].src, &tex->src[i].src);
}
tex->num_srcs--;
}
bool
nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex)
{
if (tex->op != nir_texop_tg4)
return false;
return memcmp(tex->tg4_offsets, default_tg4_offsets,
sizeof(tex->tg4_offsets)) != 0;
}
nir_phi_instr *
nir_phi_instr_create(nir_shader *shader)
{
nir_phi_instr *instr = malloc(sizeof(*instr));
instr_init(&instr->instr, nir_instr_type_phi);
dest_init(&instr->dest);
exec_list_make_empty(&instr->srcs);
list_add(&instr->instr.gc_node, &shader->gc_list);
return instr;
}
/**
* Adds a new source to a NIR instruction.
*
* Note that this does not update the def/use relationship for src, assuming
* that the instr is not in the shader. If it is, you have to do:
*
* list_addtail(&phi_src->src.use_link, &src.ssa->uses);
*/
nir_phi_src *
nir_phi_instr_add_src(nir_phi_instr *instr, nir_block *pred, nir_src src)
{
nir_phi_src *phi_src;
phi_src = calloc(1, sizeof(nir_phi_src));
phi_src->pred = pred;
phi_src->src = src;
phi_src->src.parent_instr = &instr->instr;
exec_list_push_tail(&instr->srcs, &phi_src->node);
return phi_src;
}
nir_parallel_copy_instr *
nir_parallel_copy_instr_create(nir_shader *shader)
{
nir_parallel_copy_instr *instr = malloc(sizeof(*instr));
instr_init(&instr->instr, nir_instr_type_parallel_copy);
exec_list_make_empty(&instr->entries);
list_add(&instr->instr.gc_node, &shader->gc_list);
return instr;
}
nir_ssa_undef_instr *
nir_ssa_undef_instr_create(nir_shader *shader,
unsigned num_components,
unsigned bit_size)
{
nir_ssa_undef_instr *instr = malloc(sizeof(*instr));
instr_init(&instr->instr, nir_instr_type_ssa_undef);
nir_ssa_def_init(&instr->instr, &instr->def, num_components, bit_size);
list_add(&instr->instr.gc_node, &shader->gc_list);
return instr;
}
static nir_const_value
const_value_float(double d, unsigned bit_size)
{
nir_const_value v;
memset(&v, 0, sizeof(v));
switch (bit_size) {
case 16: v.u16 = _mesa_float_to_half(d); break;
case 32: v.f32 = d; break;
case 64: v.f64 = d; break;
default:
unreachable("Invalid bit size");
}
return v;
}
static nir_const_value
const_value_int(int64_t i, unsigned bit_size)
{
nir_const_value v;
memset(&v, 0, sizeof(v));
switch (bit_size) {
case 1: v.b = i & 1; break;
case 8: v.i8 = i; break;
case 16: v.i16 = i; break;
case 32: v.i32 = i; break;
case 64: v.i64 = i; break;
default:
unreachable("Invalid bit size");
}
return v;
}
nir_const_value
nir_alu_binop_identity(nir_op binop, unsigned bit_size)
{
const int64_t max_int = (1ull << (bit_size - 1)) - 1;
const int64_t min_int = -max_int - 1;
switch (binop) {
case nir_op_iadd:
return const_value_int(0, bit_size);
case nir_op_fadd:
return const_value_float(0, bit_size);
case nir_op_imul:
return const_value_int(1, bit_size);
case nir_op_fmul:
return const_value_float(1, bit_size);
case nir_op_imin:
return const_value_int(max_int, bit_size);
case nir_op_umin:
return const_value_int(~0ull, bit_size);
case nir_op_fmin:
return const_value_float(INFINITY, bit_size);
case nir_op_imax:
return const_value_int(min_int, bit_size);
case nir_op_umax:
return const_value_int(0, bit_size);
case nir_op_fmax:
return const_value_float(-INFINITY, bit_size);
case nir_op_iand:
return const_value_int(~0ull, bit_size);
case nir_op_ior:
return const_value_int(0, bit_size);
case nir_op_ixor:
return const_value_int(0, bit_size);
default:
unreachable("Invalid reduction operation");
}
}
nir_function_impl *
nir_cf_node_get_function(nir_cf_node *node)
{
while (node->type != nir_cf_node_function) {
node = node->parent;
}
return nir_cf_node_as_function(node);
}
/* Reduces a cursor by trying to convert everything to after and trying to
* go up to block granularity when possible.
*/
static nir_cursor
reduce_cursor(nir_cursor cursor)
{
switch (cursor.option) {
case nir_cursor_before_block:
if (exec_list_is_empty(&cursor.block->instr_list)) {
/* Empty block. After is as good as before. */
cursor.option = nir_cursor_after_block;
}
return cursor;
case nir_cursor_after_block:
return cursor;
case nir_cursor_before_instr: {
nir_instr *prev_instr = nir_instr_prev(cursor.instr);
if (prev_instr) {
/* Before this instruction is after the previous */
cursor.instr = prev_instr;
cursor.option = nir_cursor_after_instr;
} else {
/* No previous instruction. Switch to before block */
cursor.block = cursor.instr->block;
cursor.option = nir_cursor_before_block;
}
return reduce_cursor(cursor);
}
case nir_cursor_after_instr:
if (nir_instr_next(cursor.instr) == NULL) {
/* This is the last instruction, switch to after block */
cursor.option = nir_cursor_after_block;
cursor.block = cursor.instr->block;
}
return cursor;
default:
unreachable("Inavlid cursor option");
}
}
bool
nir_cursors_equal(nir_cursor a, nir_cursor b)
{
/* Reduced cursors should be unique */
a = reduce_cursor(a);
b = reduce_cursor(b);
return a.block == b.block && a.option == b.option;
}
static bool
add_use_cb(nir_src *src, void *state)
{
nir_instr *instr = state;
src->parent_instr = instr;
list_addtail(&src->use_link,
src->is_ssa ? &src->ssa->uses : &src->reg.reg->uses);
return true;
}
static bool
add_ssa_def_cb(nir_ssa_def *def, void *state)
{
nir_instr *instr = state;
if (instr->block && def->index == UINT_MAX) {
nir_function_impl *impl =
nir_cf_node_get_function(&instr->block->cf_node);
def->index = impl->ssa_alloc++;
impl->valid_metadata &= ~nir_metadata_live_ssa_defs;
}
return true;
}
static bool
add_reg_def_cb(nir_dest *dest, void *state)
{
nir_instr *instr = state;
if (!dest->is_ssa) {
dest->reg.parent_instr = instr;
list_addtail(&dest->reg.def_link, &dest->reg.reg->defs);
}
return true;
}
static void
add_defs_uses(nir_instr *instr)
{
nir_foreach_src(instr, add_use_cb, instr);
nir_foreach_dest(instr, add_reg_def_cb, instr);
nir_foreach_ssa_def(instr, add_ssa_def_cb, instr);
}
void
nir_instr_insert(nir_cursor cursor, nir_instr *instr)
{
switch (cursor.option) {
case nir_cursor_before_block:
/* Only allow inserting jumps into empty blocks. */
if (instr->type == nir_instr_type_jump)
assert(exec_list_is_empty(&cursor.block->instr_list));
instr->block = cursor.block;
add_defs_uses(instr);
exec_list_push_head(&cursor.block->instr_list, &instr->node);
break;
case nir_cursor_after_block: {
/* Inserting instructions after a jump is illegal. */
nir_instr *last = nir_block_last_instr(cursor.block);
assert(last == NULL || last->type != nir_instr_type_jump);
(void) last;
instr->block = cursor.block;
add_defs_uses(instr);
exec_list_push_tail(&cursor.block->instr_list, &instr->node);
break;
}
case nir_cursor_before_instr:
assert(instr->type != nir_instr_type_jump);
instr->block = cursor.instr->block;
add_defs_uses(instr);
exec_node_insert_node_before(&cursor.instr->node, &instr->node);
break;
case nir_cursor_after_instr:
/* Inserting instructions after a jump is illegal. */
assert(cursor.instr->type != nir_instr_type_jump);
/* Only allow inserting jumps at the end of the block. */
if (instr->type == nir_instr_type_jump)
assert(cursor.instr == nir_block_last_instr(cursor.instr->block));
instr->block = cursor.instr->block;
add_defs_uses(instr);
exec_node_insert_after(&cursor.instr->node, &instr->node);
break;
}
if (instr->type == nir_instr_type_jump)
nir_handle_add_jump(instr->block);
nir_function_impl *impl = nir_cf_node_get_function(&instr->block->cf_node);
impl->valid_metadata &= ~nir_metadata_instr_index;
}
bool
nir_instr_move(nir_cursor cursor, nir_instr *instr)
{
/* If the cursor happens to refer to this instruction (either before or
* after), don't do anything.
*/
if ((cursor.option == nir_cursor_before_instr ||
cursor.option == nir_cursor_after_instr) &&
cursor.instr == instr)
return false;
nir_instr_remove(instr);
nir_instr_insert(cursor, instr);
return true;
}
static bool
src_is_valid(const nir_src *src)
{
return src->is_ssa ? (src->ssa != NULL) : (src->reg.reg != NULL);
}
static bool
remove_use_cb(nir_src *src, void *state)
{
(void) state;
if (src_is_valid(src))
list_del(&src->use_link);
return true;
}
static bool
remove_def_cb(nir_dest *dest, void *state)
{
(void) state;
if (!dest->is_ssa)
list_del(&dest->reg.def_link);
return true;
}
static void
remove_defs_uses(nir_instr *instr)
{
nir_foreach_dest(instr, remove_def_cb, instr);
nir_foreach_src(instr, remove_use_cb, instr);
}
void nir_instr_remove_v(nir_instr *instr)
{
remove_defs_uses(instr);
exec_node_remove(&instr->node);
if (instr->type == nir_instr_type_jump) {
nir_jump_instr *jump_instr = nir_instr_as_jump(instr);
nir_handle_remove_jump(instr->block, jump_instr->type);
}
}
static bool free_src_indirects_cb(nir_src *src, void *state)
{
src_free_indirects(src);
return true;
}
static bool free_dest_indirects_cb(nir_dest *dest, void *state)
{
dest_free_indirects(dest);
return true;
}
void nir_instr_free(nir_instr *instr)
{
nir_foreach_src(instr, free_src_indirects_cb, NULL);
nir_foreach_dest(instr, free_dest_indirects_cb, NULL);
switch (instr->type) {
case nir_instr_type_tex:
free(nir_instr_as_tex(instr)->src);
break;
case nir_instr_type_phi: {
nir_phi_instr *phi = nir_instr_as_phi(instr);
nir_foreach_phi_src_safe(phi_src, phi) {
free(phi_src);
}
break;
}
default:
break;
}
list_del(&instr->gc_node);
free(instr);
}
void
nir_instr_free_list(struct exec_list *list)
{
struct exec_node *node;
while ((node = exec_list_pop_head(list))) {
nir_instr *removed_instr = exec_node_data(nir_instr, node, node);
nir_instr_free(removed_instr);
}
}
static bool nir_instr_free_and_dce_live_cb(nir_ssa_def *def, void *state)
{
bool *live = state;
if (!nir_ssa_def_is_unused(def)) {
*live = true;
return false;
} else {
return true;
}
}
static bool nir_instr_free_and_dce_is_live(nir_instr *instr)
{
/* Note: don't have to worry about jumps because they don't have dests to
* become unused.
*/
if (instr->type == nir_instr_type_intrinsic) {
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
if (!(info->flags & NIR_INTRINSIC_CAN_ELIMINATE))
return true;
}
bool live = false;
nir_foreach_ssa_def(instr, nir_instr_free_and_dce_live_cb, &live);
return live;
}
static bool
nir_instr_dce_add_dead_srcs_cb(nir_src *src, void *state)
{
nir_instr_worklist *wl = state;
if (src->is_ssa) {
list_del(&src->use_link);
if (!nir_instr_free_and_dce_is_live(src->ssa->parent_instr))
nir_instr_worklist_push_tail(wl, src->ssa->parent_instr);
/* Stop nir_instr_remove from trying to delete the link again. */
src->ssa = NULL;
}
return true;
}
static void
nir_instr_dce_add_dead_ssa_srcs(nir_instr_worklist *wl, nir_instr *instr)
{
nir_foreach_src(instr, nir_instr_dce_add_dead_srcs_cb, wl);
}
/**
* Frees an instruction and any SSA defs that it used that are now dead,
* returning a nir_cursor where the instruction previously was.
*/
nir_cursor
nir_instr_free_and_dce(nir_instr *instr)
{
nir_instr_worklist *worklist = nir_instr_worklist_create();
nir_instr_dce_add_dead_ssa_srcs(worklist, instr);
nir_cursor c = nir_instr_remove(instr);
struct exec_list to_free;
exec_list_make_empty(&to_free);
nir_instr *dce_instr;
while ((dce_instr = nir_instr_worklist_pop_head(worklist))) {
nir_instr_dce_add_dead_ssa_srcs(worklist, dce_instr);
/* If we're removing the instr where our cursor is, then we have to
* point the cursor elsewhere.
*/
if ((c.option == nir_cursor_before_instr ||
c.option == nir_cursor_after_instr) &&
c.instr == dce_instr)
c = nir_instr_remove(dce_instr);
else
nir_instr_remove(dce_instr);
exec_list_push_tail(&to_free, &dce_instr->node);
}
nir_instr_free_list(&to_free);
nir_instr_worklist_destroy(worklist);
return c;
}
/*@}*/
void
nir_index_local_regs(nir_function_impl *impl)
{
unsigned index = 0;
foreach_list_typed(nir_register, reg, node, &impl->registers) {
reg->index = index++;
}
impl->reg_alloc = index;
}
struct foreach_ssa_def_state {
nir_foreach_ssa_def_cb cb;
void *client_state;
};
static inline bool
nir_ssa_def_visitor(nir_dest *dest, void *void_state)
{
struct foreach_ssa_def_state *state = void_state;
if (dest->is_ssa)
return state->cb(&dest->ssa, state->client_state);
else
return true;
}
bool
nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb, void *state)
{
switch (instr->type) {
case nir_instr_type_alu:
case nir_instr_type_deref:
case nir_instr_type_tex:
case nir_instr_type_intrinsic:
case nir_instr_type_phi:
case nir_instr_type_parallel_copy: {
struct foreach_ssa_def_state foreach_state = {cb, state};
return nir_foreach_dest(instr, nir_ssa_def_visitor, &foreach_state);
}
case nir_instr_type_load_const:
return cb(&nir_instr_as_load_const(instr)->def, state);
case nir_instr_type_ssa_undef:
return cb(&nir_instr_as_ssa_undef(instr)->def, state);
case nir_instr_type_call:
case nir_instr_type_jump:
return true;
default:
unreachable("Invalid instruction type");
}
}
nir_ssa_def *
nir_instr_ssa_def(nir_instr *instr)
{
switch (instr->type) {
case nir_instr_type_alu:
assert(nir_instr_as_alu(instr)->dest.dest.is_ssa);
return &nir_instr_as_alu(instr)->dest.dest.ssa;
case nir_instr_type_deref:
assert(nir_instr_as_deref(instr)->dest.is_ssa);
return &nir_instr_as_deref(instr)->dest.ssa;
case nir_instr_type_tex:
assert(nir_instr_as_tex(instr)->dest.is_ssa);
return &nir_instr_as_tex(instr)->dest.ssa;
case nir_instr_type_intrinsic: {
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
if (nir_intrinsic_infos[intrin->intrinsic].has_dest) {
assert(intrin->dest.is_ssa);
return &intrin->dest.ssa;
} else {
return NULL;
}
}
case nir_instr_type_phi:
assert(nir_instr_as_phi(instr)->dest.is_ssa);
return &nir_instr_as_phi(instr)->dest.ssa;
case nir_instr_type_parallel_copy:
unreachable("Parallel copies are unsupported by this function");
case nir_instr_type_load_const:
return &nir_instr_as_load_const(instr)->def;
case nir_instr_type_ssa_undef:
return &nir_instr_as_ssa_undef(instr)->def;
case nir_instr_type_call:
case nir_instr_type_jump:
return NULL;
}
unreachable("Invalid instruction type");
}
bool
nir_instr_def_is_register(nir_instr *instr)
{
switch (instr->type) {
case nir_instr_type_alu:
return !nir_instr_as_alu(instr)->dest.dest.is_ssa;
case nir_instr_type_deref:
return !nir_instr_as_deref(instr)->dest.is_ssa;
case nir_instr_type_tex:
return !nir_instr_as_tex(instr)->dest.is_ssa;
case nir_instr_type_intrinsic: {
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
return nir_intrinsic_infos[intrin->intrinsic].has_dest &&
!intrin->dest.is_ssa;
}
case nir_instr_type_phi:
return !nir_instr_as_phi(instr)->dest.is_ssa;
case nir_instr_type_parallel_copy:
unreachable("Parallel copies are unsupported by this function");
case nir_instr_type_load_const:
case nir_instr_type_ssa_undef:
return false;
case nir_instr_type_call:
case nir_instr_type_jump:
return false;
}
unreachable("Invalid instruction type");
}
bool
nir_foreach_phi_src_leaving_block(nir_block *block,
nir_foreach_src_cb cb,
void *state)
{
for (unsigned i = 0; i < ARRAY_SIZE(block->successors); i++) {
if (block->successors[i] == NULL)
continue;
nir_foreach_instr(instr, block->successors[i]) {
if (instr->type != nir_instr_type_phi)
break;
nir_phi_instr *phi = nir_instr_as_phi(instr);
nir_foreach_phi_src(phi_src, phi) {
if (phi_src->pred == block) {
if (!cb(&phi_src->src, state))
return false;
}
}
}
}
return true;
}
nir_const_value
nir_const_value_for_float(double f, unsigned bit_size)
{
nir_const_value v;
memset(&v, 0, sizeof(v));
switch (bit_size) {
case 16:
v.u16 = _mesa_float_to_half(f);
break;
case 32:
v.f32 = f;
break;
case 64:
v.f64 = f;
break;
default:
unreachable("Invalid bit size");
}
return v;
}
double
nir_const_value_as_float(nir_const_value value, unsigned bit_size)
{
switch (bit_size) {
case 16: return _mesa_half_to_float(value.u16);
case 32: return value.f32;
case 64: return value.f64;
default:
unreachable("Invalid bit size");
}
}
nir_const_value *
nir_src_as_const_value(nir_src src)
{
if (!src.is_ssa)
return NULL;
if (src.ssa->parent_instr->type != nir_instr_type_load_const)
return NULL;
nir_load_const_instr *load = nir_instr_as_load_const(src.ssa->parent_instr);
return load->value;
}
/**
* Returns true if the source is known to be always uniform. Otherwise it
* returns false which means it may or may not be uniform but it can't be
* determined.
*
* For a more precise analysis of uniform values, use nir_divergence_analysis.
*/
bool
nir_src_is_always_uniform(nir_src src)
{
if (!src.is_ssa)
return false;
/* Constants are trivially uniform */
if (src.ssa->parent_instr->type == nir_instr_type_load_const)
return true;
if (src.ssa->parent_instr->type == nir_instr_type_intrinsic) {
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(src.ssa->parent_instr);
/* As are uniform variables */
if (intr->intrinsic == nir_intrinsic_load_uniform &&
nir_src_is_always_uniform(intr->src[0]))
return true;
/* From the Vulkan specification 15.6.1. Push Constant Interface:
* "Any member of a push constant block that is declared as an array must
* only be accessed with dynamically uniform indices."
*/
if (intr->intrinsic == nir_intrinsic_load_push_constant)
return true;
if (intr->intrinsic == nir_intrinsic_load_deref &&
nir_deref_mode_is(nir_src_as_deref(intr->src[0]), nir_var_mem_push_const))
return true;
}
/* Operating together uniform expressions produces a uniform result */
if (src.ssa->parent_instr->type == nir_instr_type_alu) {
nir_alu_instr *alu = nir_instr_as_alu(src.ssa->parent_instr);
for (int i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
if (!nir_src_is_always_uniform(alu->src[i].src))
return false;
}
return true;
}
/* XXX: this could have many more tests, such as when a sampler function is
* called with uniform arguments.
*/
return false;
}
static void
src_remove_all_uses(nir_src *src)
{
for (; src; src = src->is_ssa ? NULL : src->reg.indirect) {
if (!src_is_valid(src))
continue;
list_del(&src->use_link);
}
}
static void
src_add_all_uses(nir_src *src, nir_instr *parent_instr, nir_if *parent_if)
{
for (; src; src = src->is_ssa ? NULL : src->reg.indirect) {
if (!src_is_valid(src))
continue;
if (parent_instr) {
src->parent_instr = parent_instr;
if (src->is_ssa)
list_addtail(&src->use_link, &src->ssa->uses);
else
list_addtail(&src->use_link, &src->reg.reg->uses);
} else {
assert(parent_if);
src->parent_if = parent_if;
if (src->is_ssa)
list_addtail(&src->use_link, &src->ssa->if_uses);
else
list_addtail(&src->use_link, &src->reg.reg->if_uses);
}
}
}
void
nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src)
{
assert(!src_is_valid(src) || src->parent_instr == instr);
src_remove_all_uses(src);
nir_src_copy(src, &new_src);
src_add_all_uses(src, instr, NULL);
}
void
nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src)
{
assert(!src_is_valid(dest) || dest->parent_instr == dest_instr);
src_remove_all_uses(dest);
src_free_indirects(dest);
src_remove_all_uses(src);
*dest = *src;
*src = NIR_SRC_INIT;
src_add_all_uses(dest, dest_instr, NULL);
}
void
nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src)
{
nir_src *src = &if_stmt->condition;
assert(!src_is_valid(src) || src->parent_if == if_stmt);
src_remove_all_uses(src);
nir_src_copy(src, &new_src);
src_add_all_uses(src, NULL, if_stmt);
}
void
nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest, nir_dest new_dest)
{
if (dest->is_ssa) {
/* We can only overwrite an SSA destination if it has no uses. */
assert(nir_ssa_def_is_unused(&dest->ssa));
} else {
list_del(&dest->reg.def_link);
if (dest->reg.indirect)
src_remove_all_uses(dest->reg.indirect);
}
/* We can't re-write with an SSA def */
assert(!new_dest.is_ssa);
nir_dest_copy(dest, &new_dest);
dest->reg.parent_instr = instr;
list_addtail(&dest->reg.def_link, &new_dest.reg.reg->defs);
if (dest->reg.indirect)
src_add_all_uses(dest->reg.indirect, instr, NULL);
}
/* note: does *not* take ownership of 'name' */
void
nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
unsigned num_components,
unsigned bit_size)
{
def->parent_instr = instr;
list_inithead(&def->uses);
list_inithead(&def->if_uses);
def->num_components = num_components;
def->bit_size = bit_size;
def->divergent = true; /* This is the safer default */
if (instr->block) {
nir_function_impl *impl =
nir_cf_node_get_function(&instr->block->cf_node);
def->index = impl->ssa_alloc++;
impl->valid_metadata &= ~nir_metadata_live_ssa_defs;
} else {
def->index = UINT_MAX;
}
}
/* note: does *not* take ownership of 'name' */
void
nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
unsigned num_components, unsigned bit_size,
const char *name)
{
dest->is_ssa = true;
nir_ssa_def_init(instr, &dest->ssa, num_components, bit_size);
}
void
nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_ssa_def *new_ssa)
{
assert(def != new_ssa);
nir_foreach_use_safe(use_src, def)
nir_instr_rewrite_src_ssa(use_src->parent_instr, use_src, new_ssa);
nir_foreach_if_use_safe(use_src, def)
nir_if_rewrite_condition_ssa(use_src->parent_if, use_src, new_ssa);
}
void
nir_ssa_def_rewrite_uses_src(nir_ssa_def *def, nir_src new_src)
{
if (new_src.is_ssa) {
nir_ssa_def_rewrite_uses(def, new_src.ssa);
} else {
nir_foreach_use_safe(use_src, def)
nir_instr_rewrite_src(use_src->parent_instr, use_src, new_src);
nir_foreach_if_use_safe(use_src, def)
nir_if_rewrite_condition(use_src->parent_if, new_src);
}
}
static bool
is_instr_between(nir_instr *start, nir_instr *end, nir_instr *between)
{
assert(start->block == end->block);
if (between->block != start->block)
return false;
/* Search backwards looking for "between" */
while (start != end) {
if (between == end)
return true;
end = nir_instr_prev(end);
assert(end);
}
return false;
}
/* Replaces all uses of the given SSA def with the given source but only if
* the use comes after the after_me instruction. This can be useful if you
* are emitting code to fix up the result of some instruction: you can freely
* use the result in that code and then call rewrite_uses_after and pass the
* last fixup instruction as after_me and it will replace all of the uses you
* want without touching the fixup code.
*
* This function assumes that after_me is in the same block as
* def->parent_instr and that after_me comes after def->parent_instr.
*/
void
nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_ssa_def *new_ssa,
nir_instr *after_me)
{
if (def == new_ssa)
return;
nir_foreach_use_safe(use_src, def) {
assert(use_src->parent_instr != def->parent_instr);
/* Since def already dominates all of its uses, the only way a use can
* not be dominated by after_me is if it is between def and after_me in
* the instruction list.
*/
if (!is_instr_between(def->parent_instr, after_me, use_src->parent_instr))
nir_instr_rewrite_src_ssa(use_src->parent_instr, use_src, new_ssa);
}
nir_foreach_if_use_safe(use_src, def) {
nir_if_rewrite_condition_ssa(use_src->parent_if,
&use_src->parent_if->condition,
new_ssa);
}
}
static nir_ssa_def *
get_store_value(nir_intrinsic_instr *intrin)
{
assert(nir_intrinsic_has_write_mask(intrin));
/* deref stores have the deref in src[0] and the store value in src[1] */
if (intrin->intrinsic == nir_intrinsic_store_deref ||
intrin->intrinsic == nir_intrinsic_store_deref_block_intel)
return intrin->src[1].ssa;
/* all other stores have the store value in src[0] */
return intrin->src[0].ssa;
}
nir_component_mask_t
nir_src_components_read(const nir_src *src)
{
assert(src->is_ssa && src->parent_instr);
if (src->parent_instr->type == nir_instr_type_alu) {
nir_alu_instr *alu = nir_instr_as_alu(src->parent_instr);
nir_alu_src *alu_src = exec_node_data(nir_alu_src, src, src);
int src_idx = alu_src - &alu->src[0];
assert(src_idx >= 0 && src_idx < nir_op_infos[alu->op].num_inputs);
return nir_alu_instr_src_read_mask(alu, src_idx);
} else if (src->parent_instr->type == nir_instr_type_intrinsic) {
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(src->parent_instr);
if (nir_intrinsic_has_write_mask(intrin) && src->ssa == get_store_value(intrin))
return nir_intrinsic_write_mask(intrin);
else
return (1 << src->ssa->num_components) - 1;
} else {
return (1 << src->ssa->num_components) - 1;
}
}
nir_component_mask_t
nir_ssa_def_components_read(const nir_ssa_def *def)
{
nir_component_mask_t read_mask = 0;
if (!list_is_empty(&def->if_uses))
read_mask |= 1;
nir_foreach_use(use, def) {
read_mask |= nir_src_components_read(use);
if (read_mask == (1 << def->num_components) - 1)
return read_mask;
}
return read_mask;
}
nir_block *
nir_block_unstructured_next(nir_block *block)
{
if (block == NULL) {
/* nir_foreach_block_unstructured_safe() will call this function on a
* NULL block after the last iteration, but it won't use the result so
* just return NULL here.
*/
return NULL;
}
nir_cf_node *cf_next = nir_cf_node_next(&block->cf_node);
if (cf_next == NULL && block->cf_node.parent->type == nir_cf_node_function)
return NULL;
if (cf_next && cf_next->type == nir_cf_node_block)
return nir_cf_node_as_block(cf_next);
return nir_block_cf_tree_next(block);
}
nir_block *
nir_unstructured_start_block(nir_function_impl *impl)
{
return nir_start_block(impl);
}
nir_block *
nir_block_cf_tree_next(nir_block *block)
{
if (block == NULL) {
/* nir_foreach_block_safe() will call this function on a NULL block
* after the last iteration, but it won't use the result so just return
* NULL here.
*/
return NULL;
}
assert(nir_cf_node_get_function(&block->cf_node)->structured);
nir_cf_node *cf_next = nir_cf_node_next(&block->cf_node);
if (cf_next)
return nir_cf_node_cf_tree_first(cf_next);
nir_cf_node *parent = block->cf_node.parent;
switch (parent->type) {
case nir_cf_node_if: {
/* Are we at the end of the if? Go to the beginning of the else */
nir_if *if_stmt = nir_cf_node_as_if(parent);
if (block == nir_if_last_then_block(if_stmt))
return nir_if_first_else_block(if_stmt);
assert(block == nir_if_last_else_block(if_stmt));
}
FALLTHROUGH;
case nir_cf_node_loop:
return nir_cf_node_as_block(nir_cf_node_next(parent));
case nir_cf_node_function:
return NULL;
default:
unreachable("unknown cf node type");
}
}
nir_block *
nir_block_cf_tree_prev(nir_block *block)
{
if (block == NULL) {
/* do this for consistency with nir_block_cf_tree_next() */
return NULL;
}
assert(nir_cf_node_get_function(&block->cf_node)->structured);
nir_cf_node *cf_prev = nir_cf_node_prev(&block->cf_node);
if (cf_prev)
return nir_cf_node_cf_tree_last(cf_prev);
nir_cf_node *parent = block->cf_node.parent;
switch (parent->type) {
case nir_cf_node_if: {
/* Are we at the beginning of the else? Go to the end of the if */
nir_if *if_stmt = nir_cf_node_as_if(parent);
if (block == nir_if_first_else_block(if_stmt))
return nir_if_last_then_block(if_stmt);
assert(block == nir_if_first_then_block(if_stmt));
}
FALLTHROUGH;
case nir_cf_node_loop:
return nir_cf_node_as_block(nir_cf_node_prev(parent));
case nir_cf_node_function:
return NULL;
default:
unreachable("unknown cf node type");
}
}
nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node)
{
switch (node->type) {
case nir_cf_node_function: {
nir_function_impl *impl = nir_cf_node_as_function(node);
return nir_start_block(impl);
}
case nir_cf_node_if: {
nir_if *if_stmt = nir_cf_node_as_if(node);
return nir_if_first_then_block(if_stmt);
}
case nir_cf_node_loop: {
nir_loop *loop = nir_cf_node_as_loop(node);
return nir_loop_first_block(loop);
}
case nir_cf_node_block: {
return nir_cf_node_as_block(node);
}
default:
unreachable("unknown node type");
}
}
nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node)
{
switch (node->type) {
case nir_cf_node_function: {
nir_function_impl *impl = nir_cf_node_as_function(node);
return nir_impl_last_block(impl);
}
case nir_cf_node_if: {
nir_if *if_stmt = nir_cf_node_as_if(node);
return nir_if_last_else_block(if_stmt);
}
case nir_cf_node_loop: {
nir_loop *loop = nir_cf_node_as_loop(node);
return nir_loop_last_block(loop);
}
case nir_cf_node_block: {
return nir_cf_node_as_block(node);
}
default:
unreachable("unknown node type");
}
}
nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node)
{
if (node->type == nir_cf_node_block)
return nir_block_cf_tree_next(nir_cf_node_as_block(node));
else if (node->type == nir_cf_node_function)
return NULL;
else
return nir_cf_node_as_block(nir_cf_node_next(node));
}
nir_if *
nir_block_get_following_if(nir_block *block)
{
if (exec_node_is_tail_sentinel(&block->cf_node.node))
return NULL;
if (nir_cf_node_is_last(&block->cf_node))
return NULL;
nir_cf_node *next_node = nir_cf_node_next(&block->cf_node);
if (next_node->type != nir_cf_node_if)
return NULL;
return nir_cf_node_as_if(next_node);
}
nir_loop *
nir_block_get_following_loop(nir_block *block)
{
if (exec_node_is_tail_sentinel(&block->cf_node.node))
return NULL;
if (nir_cf_node_is_last(&block->cf_node))
return NULL;
nir_cf_node *next_node = nir_cf_node_next(&block->cf_node);
if (next_node->type != nir_cf_node_loop)
return NULL;
return nir_cf_node_as_loop(next_node);
}
static int
compare_block_index(const void *p1, const void *p2)
{
const nir_block *block1 = *((const nir_block **) p1);
const nir_block *block2 = *((const nir_block **) p2);
return (int) block1->index - (int) block2->index;
}
nir_block **
nir_block_get_predecessors_sorted(const nir_block *block, void *mem_ctx)
{
nir_block **preds =
ralloc_array(mem_ctx, nir_block *, block->predecessors->entries);
unsigned i = 0;
set_foreach(block->predecessors, entry)
preds[i++] = (nir_block *) entry->key;
assert(i == block->predecessors->entries);
qsort(preds, block->predecessors->entries, sizeof(nir_block *),
compare_block_index);
return preds;
}
void
nir_index_blocks(nir_function_impl *impl)
{
unsigned index = 0;
if (impl->valid_metadata & nir_metadata_block_index)
return;
nir_foreach_block_unstructured(block, impl) {
block->index = index++;
}
/* The end_block isn't really part of the program, which is why its index
* is >= num_blocks.
*/
impl->num_blocks = impl->end_block->index = index;
}
static bool
index_ssa_def_cb(nir_ssa_def *def, void *state)
{
unsigned *index = (unsigned *) state;
def->index = (*index)++;
return true;
}
/**
* The indices are applied top-to-bottom which has the very nice property
* that, if A dominates B, then A->index <= B->index.
*/
void
nir_index_ssa_defs(nir_function_impl *impl)
{
unsigned index = 0;
impl->valid_metadata &= ~nir_metadata_live_ssa_defs;
nir_foreach_block_unstructured(block, impl) {
nir_foreach_instr(instr, block)
nir_foreach_ssa_def(instr, index_ssa_def_cb, &index);
}
impl->ssa_alloc = index;
}
/**
* The indices are applied top-to-bottom which has the very nice property
* that, if A dominates B, then A->index <= B->index.
*/
unsigned
nir_index_instrs(nir_function_impl *impl)
{
unsigned index = 0;
nir_foreach_block(block, impl) {
block->start_ip = index++;
nir_foreach_instr(instr, block)
instr->index = index++;
block->end_ip = index++;
}
return index;
}
unsigned
nir_shader_index_vars(nir_shader *shader, nir_variable_mode modes)
{
unsigned count = 0;
nir_foreach_variable_with_modes(var, shader, modes)
var->index = count++;
return count;
}
unsigned
nir_function_impl_index_vars(nir_function_impl *impl)
{
unsigned count = 0;
nir_foreach_function_temp_variable(var, impl)
var->index = count++;
return count;
}
static nir_instr *
cursor_next_instr(nir_cursor cursor)
{
switch (cursor.option) {
case nir_cursor_before_block:
for (nir_block *block = cursor.block; block;
block = nir_block_cf_tree_next(block)) {
nir_instr *instr = nir_block_first_instr(block);
if (instr)
return instr;
}
return NULL;
case nir_cursor_after_block:
cursor.block = nir_block_cf_tree_next(cursor.block);
if (cursor.block == NULL)
return NULL;
cursor.option = nir_cursor_before_block;
return cursor_next_instr(cursor);
case nir_cursor_before_instr:
return cursor.instr;
case nir_cursor_after_instr:
if (nir_instr_next(cursor.instr))
return nir_instr_next(cursor.instr);
cursor.option = nir_cursor_after_block;
cursor.block = cursor.instr->block;
return cursor_next_instr(cursor);
}
unreachable("Inavlid cursor option");
}
ASSERTED static bool
dest_is_ssa(nir_dest *dest, void *_state)
{
(void) _state;
return dest->is_ssa;
}
bool
nir_function_impl_lower_instructions(nir_function_impl *impl,
nir_instr_filter_cb filter,
nir_lower_instr_cb lower,
void *cb_data)
{
nir_builder b;
nir_builder_init(&b, impl);
nir_metadata preserved = nir_metadata_block_index |
nir_metadata_dominance;
bool progress = false;
nir_cursor iter = nir_before_cf_list(&impl->body);
nir_instr *instr;
while ((instr = cursor_next_instr(iter)) != NULL) {
if (filter && !filter(instr, cb_data)) {
iter = nir_after_instr(instr);
continue;
}
assert(nir_foreach_dest(instr, dest_is_ssa, NULL));
nir_ssa_def *old_def = nir_instr_ssa_def(instr);
struct list_head old_uses, old_if_uses;
if (old_def != NULL) {
/* We're about to ask the callback to generate a replacement for instr.
* Save off the uses from instr's SSA def so we know what uses to
* rewrite later. If we use nir_ssa_def_rewrite_uses, it fails in the
* case where the generated replacement code uses the result of instr
* itself. If we use nir_ssa_def_rewrite_uses_after (which is the
* normal solution to this problem), it doesn't work well if control-
* flow is inserted as part of the replacement, doesn't handle cases
* where the replacement is something consumed by instr, and suffers
* from performance issues. This is the only way to 100% guarantee
* that we rewrite the correct set efficiently.
*/
list_replace(&old_def->uses, &old_uses);
list_inithead(&old_def->uses);
list_replace(&old_def->if_uses, &old_if_uses);
list_inithead(&old_def->if_uses);
}
b.cursor = nir_after_instr(instr);
nir_ssa_def *new_def = lower(&b, instr, cb_data);
if (new_def && new_def != NIR_LOWER_INSTR_PROGRESS &&
new_def != NIR_LOWER_INSTR_PROGRESS_REPLACE) {
assert(old_def != NULL);
if (new_def->parent_instr->block != instr->block)
preserved = nir_metadata_none;
nir_src new_src = nir_src_for_ssa(new_def);
list_for_each_entry_safe(nir_src, use_src, &old_uses, use_link)
nir_instr_rewrite_src(use_src->parent_instr, use_src, new_src);
list_for_each_entry_safe(nir_src, use_src, &old_if_uses, use_link)
nir_if_rewrite_condition(use_src->parent_if, new_src);
if (nir_ssa_def_is_unused(old_def)) {
iter = nir_instr_free_and_dce(instr);
} else {
iter = nir_after_instr(instr);
}
progress = true;
} else {
/* We didn't end up lowering after all. Put the uses back */
if (old_def) {
list_replace(&old_uses, &old_def->uses);
list_replace(&old_if_uses, &old_def->if_uses);
}
if (new_def == NIR_LOWER_INSTR_PROGRESS_REPLACE) {
/* Only instructions without a return value can be removed like this */
assert(!old_def);
iter = nir_instr_free_and_dce(instr);
progress = true;
} else
iter = nir_after_instr(instr);
if (new_def == NIR_LOWER_INSTR_PROGRESS)
progress = true;
}
}
if (progress) {
nir_metadata_preserve(impl, preserved);
} else {
nir_metadata_preserve(impl, nir_metadata_all);
}
return progress;
}
bool
nir_shader_lower_instructions(nir_shader *shader,
nir_instr_filter_cb filter,
nir_lower_instr_cb lower,
void *cb_data)
{
bool progress = false;
nir_foreach_function(function, shader) {
if (function->impl &&
nir_function_impl_lower_instructions(function->impl,
filter, lower, cb_data))
progress = true;
}
return progress;
}
/**
* Returns true if the shader supports quad-based implicit derivatives on
* texture sampling.
*/
bool nir_shader_supports_implicit_lod(nir_shader *shader)
{
return (shader->info.stage == MESA_SHADER_FRAGMENT ||
(shader->info.stage == MESA_SHADER_COMPUTE &&
shader->info.cs.derivative_group != DERIVATIVE_GROUP_NONE));
}
nir_intrinsic_op
nir_intrinsic_from_system_value(gl_system_value val)
{
switch (val) {
case SYSTEM_VALUE_VERTEX_ID:
return nir_intrinsic_load_vertex_id;
case SYSTEM_VALUE_INSTANCE_ID:
return nir_intrinsic_load_instance_id;
case SYSTEM_VALUE_DRAW_ID:
return nir_intrinsic_load_draw_id;
case SYSTEM_VALUE_BASE_INSTANCE:
return nir_intrinsic_load_base_instance;
case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
return nir_intrinsic_load_vertex_id_zero_base;
case SYSTEM_VALUE_IS_INDEXED_DRAW:
return nir_intrinsic_load_is_indexed_draw;
case SYSTEM_VALUE_FIRST_VERTEX:
return nir_intrinsic_load_first_vertex;
case SYSTEM_VALUE_BASE_VERTEX:
return nir_intrinsic_load_base_vertex;
case SYSTEM_VALUE_INVOCATION_ID:
return nir_intrinsic_load_invocation_id;
case SYSTEM_VALUE_FRAG_COORD:
return nir_intrinsic_load_frag_coord;
case SYSTEM_VALUE_POINT_COORD:
return nir_intrinsic_load_point_coord;
case SYSTEM_VALUE_LINE_COORD:
return nir_intrinsic_load_line_coord;
case SYSTEM_VALUE_FRONT_FACE:
return nir_intrinsic_load_front_face;
case SYSTEM_VALUE_SAMPLE_ID:
return nir_intrinsic_load_sample_id;
case SYSTEM_VALUE_SAMPLE_POS:
return nir_intrinsic_load_sample_pos;
case SYSTEM_VALUE_SAMPLE_POS_OR_CENTER:
return nir_intrinsic_load_sample_pos_or_center;
case SYSTEM_VALUE_SAMPLE_MASK_IN:
return nir_intrinsic_load_sample_mask_in;
case SYSTEM_VALUE_LOCAL_INVOCATION_ID:
return nir_intrinsic_load_local_invocation_id;
case SYSTEM_VALUE_LOCAL_INVOCATION_INDEX:
return nir_intrinsic_load_local_invocation_index;
case SYSTEM_VALUE_WORKGROUP_ID:
return nir_intrinsic_load_workgroup_id;
case SYSTEM_VALUE_WORKGROUP_INDEX:
return nir_intrinsic_load_workgroup_index;
case SYSTEM_VALUE_NUM_WORKGROUPS:
return nir_intrinsic_load_num_workgroups;
case SYSTEM_VALUE_PRIMITIVE_ID:
return nir_intrinsic_load_primitive_id;
case SYSTEM_VALUE_TESS_COORD:
return nir_intrinsic_load_tess_coord;
case SYSTEM_VALUE_TESS_LEVEL_OUTER:
return nir_intrinsic_load_tess_level_outer;
case SYSTEM_VALUE_TESS_LEVEL_INNER:
return nir_intrinsic_load_tess_level_inner;
case SYSTEM_VALUE_TESS_LEVEL_OUTER_DEFAULT:
return nir_intrinsic_load_tess_level_outer_default;
case SYSTEM_VALUE_TESS_LEVEL_INNER_DEFAULT:
return nir_intrinsic_load_tess_level_inner_default;
case SYSTEM_VALUE_VERTICES_IN:
return nir_intrinsic_load_patch_vertices_in;
case SYSTEM_VALUE_HELPER_INVOCATION:
return nir_intrinsic_load_helper_invocation;
case SYSTEM_VALUE_COLOR0:
return nir_intrinsic_load_color0;
case SYSTEM_VALUE_COLOR1:
return nir_intrinsic_load_color1;
case SYSTEM_VALUE_VIEW_INDEX:
return nir_intrinsic_load_view_index;
case SYSTEM_VALUE_SUBGROUP_SIZE:
return nir_intrinsic_load_subgroup_size;
case SYSTEM_VALUE_SUBGROUP_INVOCATION:
return nir_intrinsic_load_subgroup_invocation;
case SYSTEM_VALUE_SUBGROUP_EQ_MASK:
return nir_intrinsic_load_subgroup_eq_mask;
case SYSTEM_VALUE_SUBGROUP_GE_MASK:
return nir_intrinsic_load_subgroup_ge_mask;
case SYSTEM_VALUE_SUBGROUP_GT_MASK:
return nir_intrinsic_load_subgroup_gt_mask;
case SYSTEM_VALUE_SUBGROUP_LE_MASK:
return nir_intrinsic_load_subgroup_le_mask;
case SYSTEM_VALUE_SUBGROUP_LT_MASK:
return nir_intrinsic_load_subgroup_lt_mask;
case SYSTEM_VALUE_NUM_SUBGROUPS:
return nir_intrinsic_load_num_subgroups;
case SYSTEM_VALUE_SUBGROUP_ID:
return nir_intrinsic_load_subgroup_id;
case SYSTEM_VALUE_WORKGROUP_SIZE:
return nir_intrinsic_load_workgroup_size;
case SYSTEM_VALUE_GLOBAL_INVOCATION_ID:
return nir_intrinsic_load_global_invocation_id;
case SYSTEM_VALUE_BASE_GLOBAL_INVOCATION_ID:
return nir_intrinsic_load_base_global_invocation_id;
case SYSTEM_VALUE_GLOBAL_INVOCATION_INDEX:
return nir_intrinsic_load_global_invocation_index;
case SYSTEM_VALUE_WORK_DIM:
return nir_intrinsic_load_work_dim;
case SYSTEM_VALUE_USER_DATA_AMD:
return nir_intrinsic_load_user_data_amd;
case SYSTEM_VALUE_RAY_LAUNCH_ID:
return nir_intrinsic_load_ray_launch_id;
case SYSTEM_VALUE_RAY_LAUNCH_SIZE:
return nir_intrinsic_load_ray_launch_size;
case SYSTEM_VALUE_RAY_LAUNCH_SIZE_ADDR_AMD:
return nir_intrinsic_load_ray_launch_size_addr_amd;
case SYSTEM_VALUE_RAY_WORLD_ORIGIN:
return nir_intrinsic_load_ray_world_origin;
case SYSTEM_VALUE_RAY_WORLD_DIRECTION:
return nir_intrinsic_load_ray_world_direction;
case SYSTEM_VALUE_RAY_OBJECT_ORIGIN:
return nir_intrinsic_load_ray_object_origin;
case SYSTEM_VALUE_RAY_OBJECT_DIRECTION:
return nir_intrinsic_load_ray_object_direction;
case SYSTEM_VALUE_RAY_T_MIN:
return nir_intrinsic_load_ray_t_min;
case SYSTEM_VALUE_RAY_T_MAX:
return nir_intrinsic_load_ray_t_max;
case SYSTEM_VALUE_RAY_OBJECT_TO_WORLD:
return nir_intrinsic_load_ray_object_to_world;
case SYSTEM_VALUE_RAY_WORLD_TO_OBJECT:
return nir_intrinsic_load_ray_world_to_object;
case SYSTEM_VALUE_RAY_HIT_KIND:
return nir_intrinsic_load_ray_hit_kind;
case SYSTEM_VALUE_RAY_FLAGS:
return nir_intrinsic_load_ray_flags;
case SYSTEM_VALUE_RAY_GEOMETRY_INDEX:
return nir_intrinsic_load_ray_geometry_index;
case SYSTEM_VALUE_RAY_INSTANCE_CUSTOM_INDEX:
return nir_intrinsic_load_ray_instance_custom_index;
case SYSTEM_VALUE_CULL_MASK:
return nir_intrinsic_load_cull_mask;
case SYSTEM_VALUE_MESH_VIEW_COUNT:
return nir_intrinsic_load_mesh_view_count;
case SYSTEM_VALUE_FRAG_SHADING_RATE:
return nir_intrinsic_load_frag_shading_rate;
default:
unreachable("system value does not directly correspond to intrinsic");
}
}
gl_system_value
nir_system_value_from_intrinsic(nir_intrinsic_op intrin)
{
switch (intrin) {
case nir_intrinsic_load_vertex_id:
return SYSTEM_VALUE_VERTEX_ID;
case nir_intrinsic_load_instance_id:
return SYSTEM_VALUE_INSTANCE_ID;
case nir_intrinsic_load_draw_id:
return SYSTEM_VALUE_DRAW_ID;
case nir_intrinsic_load_base_instance:
return SYSTEM_VALUE_BASE_INSTANCE;
case nir_intrinsic_load_vertex_id_zero_base:
return SYSTEM_VALUE_VERTEX_ID_ZERO_BASE;
case nir_intrinsic_load_first_vertex:
return SYSTEM_VALUE_FIRST_VERTEX;
case nir_intrinsic_load_is_indexed_draw:
return SYSTEM_VALUE_IS_INDEXED_DRAW;
case nir_intrinsic_load_base_vertex:
return SYSTEM_VALUE_BASE_VERTEX;
case nir_intrinsic_load_invocation_id:
return SYSTEM_VALUE_INVOCATION_ID;
case nir_intrinsic_load_frag_coord:
return SYSTEM_VALUE_FRAG_COORD;
case nir_intrinsic_load_point_coord:
return SYSTEM_VALUE_POINT_COORD;
case nir_intrinsic_load_line_coord:
return SYSTEM_VALUE_LINE_COORD;
case nir_intrinsic_load_front_face:
return SYSTEM_VALUE_FRONT_FACE;
case nir_intrinsic_load_sample_id:
return SYSTEM_VALUE_SAMPLE_ID;
case nir_intrinsic_load_sample_pos:
return SYSTEM_VALUE_SAMPLE_POS;
case nir_intrinsic_load_sample_pos_or_center:
return SYSTEM_VALUE_SAMPLE_POS_OR_CENTER;
case nir_intrinsic_load_sample_mask_in:
return SYSTEM_VALUE_SAMPLE_MASK_IN;
case nir_intrinsic_load_local_invocation_id:
return SYSTEM_VALUE_LOCAL_INVOCATION_ID;
case nir_intrinsic_load_local_invocation_index:
return SYSTEM_VALUE_LOCAL_INVOCATION_INDEX;
case nir_intrinsic_load_num_workgroups:
return SYSTEM_VALUE_NUM_WORKGROUPS;
case nir_intrinsic_load_workgroup_id:
return SYSTEM_VALUE_WORKGROUP_ID;
case nir_intrinsic_load_workgroup_index:
return SYSTEM_VALUE_WORKGROUP_INDEX;
case nir_intrinsic_load_primitive_id:
return SYSTEM_VALUE_PRIMITIVE_ID;
case nir_intrinsic_load_tess_coord:
return SYSTEM_VALUE_TESS_COORD;
case nir_intrinsic_load_tess_level_outer:
return SYSTEM_VALUE_TESS_LEVEL_OUTER;
case nir_intrinsic_load_tess_level_inner:
return SYSTEM_VALUE_TESS_LEVEL_INNER;
case nir_intrinsic_load_tess_level_outer_default:
return SYSTEM_VALUE_TESS_LEVEL_OUTER_DEFAULT;
case nir_intrinsic_load_tess_level_inner_default:
return SYSTEM_VALUE_TESS_LEVEL_INNER_DEFAULT;
case nir_intrinsic_load_patch_vertices_in:
return SYSTEM_VALUE_VERTICES_IN;
case nir_intrinsic_load_helper_invocation:
return SYSTEM_VALUE_HELPER_INVOCATION;
case nir_intrinsic_load_color0:
return SYSTEM_VALUE_COLOR0;
case nir_intrinsic_load_color1:
return SYSTEM_VALUE_COLOR1;
case nir_intrinsic_load_view_index:
return SYSTEM_VALUE_VIEW_INDEX;
case nir_intrinsic_load_subgroup_size:
return SYSTEM_VALUE_SUBGROUP_SIZE;
case nir_intrinsic_load_subgroup_invocation:
return SYSTEM_VALUE_SUBGROUP_INVOCATION;
case nir_intrinsic_load_subgroup_eq_mask:
return SYSTEM_VALUE_SUBGROUP_EQ_MASK;
case nir_intrinsic_load_subgroup_ge_mask:
return SYSTEM_VALUE_SUBGROUP_GE_MASK;
case nir_intrinsic_load_subgroup_gt_mask:
return SYSTEM_VALUE_SUBGROUP_GT_MASK;
case nir_intrinsic_load_subgroup_le_mask:
return SYSTEM_VALUE_SUBGROUP_LE_MASK;
case nir_intrinsic_load_subgroup_lt_mask:
return SYSTEM_VALUE_SUBGROUP_LT_MASK;
case nir_intrinsic_load_num_subgroups:
return SYSTEM_VALUE_NUM_SUBGROUPS;
case nir_intrinsic_load_subgroup_id:
return SYSTEM_VALUE_SUBGROUP_ID;
case nir_intrinsic_load_workgroup_size:
return SYSTEM_VALUE_WORKGROUP_SIZE;
case nir_intrinsic_load_global_invocation_id:
return SYSTEM_VALUE_GLOBAL_INVOCATION_ID;
case nir_intrinsic_load_base_global_invocation_id:
return SYSTEM_VALUE_BASE_GLOBAL_INVOCATION_ID;
case nir_intrinsic_load_global_invocation_index:
return SYSTEM_VALUE_GLOBAL_INVOCATION_INDEX;
case nir_intrinsic_load_work_dim:
return SYSTEM_VALUE_WORK_DIM;
case nir_intrinsic_load_user_data_amd:
return SYSTEM_VALUE_USER_DATA_AMD;
case nir_intrinsic_load_barycentric_model:
return SYSTEM_VALUE_BARYCENTRIC_PULL_MODEL;
case nir_intrinsic_load_gs_header_ir3:
return SYSTEM_VALUE_GS_HEADER_IR3;
case nir_intrinsic_load_tcs_header_ir3:
return SYSTEM_VALUE_TCS_HEADER_IR3;
case nir_intrinsic_load_ray_launch_id:
return SYSTEM_VALUE_RAY_LAUNCH_ID;
case nir_intrinsic_load_ray_launch_size:
return SYSTEM_VALUE_RAY_LAUNCH_SIZE;
case nir_intrinsic_load_ray_launch_size_addr_amd:
return SYSTEM_VALUE_RAY_LAUNCH_SIZE_ADDR_AMD;
case nir_intrinsic_load_ray_world_origin:
return SYSTEM_VALUE_RAY_WORLD_ORIGIN;
case nir_intrinsic_load_ray_world_direction:
return SYSTEM_VALUE_RAY_WORLD_DIRECTION;
case nir_intrinsic_load_ray_object_origin:
return SYSTEM_VALUE_RAY_OBJECT_ORIGIN;
case nir_intrinsic_load_ray_object_direction:
return SYSTEM_VALUE_RAY_OBJECT_DIRECTION;
case nir_intrinsic_load_ray_t_min:
return SYSTEM_VALUE_RAY_T_MIN;
case nir_intrinsic_load_ray_t_max:
return SYSTEM_VALUE_RAY_T_MAX;
case nir_intrinsic_load_ray_object_to_world:
return SYSTEM_VALUE_RAY_OBJECT_TO_WORLD;
case nir_intrinsic_load_ray_world_to_object:
return SYSTEM_VALUE_RAY_WORLD_TO_OBJECT;
case nir_intrinsic_load_ray_hit_kind:
return SYSTEM_VALUE_RAY_HIT_KIND;
case nir_intrinsic_load_ray_flags:
return SYSTEM_VALUE_RAY_FLAGS;
case nir_intrinsic_load_ray_geometry_index:
return SYSTEM_VALUE_RAY_GEOMETRY_INDEX;
case nir_intrinsic_load_ray_instance_custom_index:
return SYSTEM_VALUE_RAY_INSTANCE_CUSTOM_INDEX;
case nir_intrinsic_load_cull_mask:
return SYSTEM_VALUE_CULL_MASK;
case nir_intrinsic_load_frag_shading_rate:
return SYSTEM_VALUE_FRAG_SHADING_RATE;
case nir_intrinsic_load_mesh_view_count:
return SYSTEM_VALUE_MESH_VIEW_COUNT;
default:
unreachable("intrinsic doesn't produce a system value");
}
}
/* OpenGL utility method that remaps the location attributes if they are
* doubles. Not needed for vulkan due the differences on the input location
* count for doubles on vulkan vs OpenGL
*
* The bitfield returned in dual_slot is one bit for each double input slot in
* the original OpenGL single-slot input numbering. The mapping from old
* locations to new locations is as follows:
*
* new_loc = loc + util_bitcount(dual_slot & BITFIELD64_MASK(loc))
*/
void
nir_remap_dual_slot_attributes(nir_shader *shader, uint64_t *dual_slot)
{
assert(shader->info.stage == MESA_SHADER_VERTEX);
*dual_slot = 0;
nir_foreach_shader_in_variable(var, shader) {
if (glsl_type_is_dual_slot(glsl_without_array(var->type))) {
unsigned slots = glsl_count_attribute_slots(var->type, true);
*dual_slot |= BITFIELD64_MASK(slots) << var->data.location;
}
}
nir_foreach_shader_in_variable(var, shader) {
var->data.location +=
util_bitcount64(*dual_slot & BITFIELD64_MASK(var->data.location));
}
}
/* Returns an attribute mask that has been re-compacted using the given
* dual_slot mask.
*/
uint64_t
nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot)
{
while (dual_slot) {
unsigned loc = u_bit_scan64(&dual_slot);
/* mask of all bits up to and including loc */
uint64_t mask = BITFIELD64_MASK(loc + 1);
attribs = (attribs & mask) | ((attribs & ~mask) >> 1);
}
return attribs;
}
void
nir_rewrite_image_intrinsic(nir_intrinsic_instr *intrin, nir_ssa_def *src,
bool bindless)
{
enum gl_access_qualifier access = nir_intrinsic_access(intrin);
/* Image intrinsics only have one of these */
assert(!nir_intrinsic_has_src_type(intrin) ||
!nir_intrinsic_has_dest_type(intrin));
nir_alu_type data_type = nir_type_invalid;
if (nir_intrinsic_has_src_type(intrin))
data_type = nir_intrinsic_src_type(intrin);
if (nir_intrinsic_has_dest_type(intrin))
data_type = nir_intrinsic_dest_type(intrin);
switch (intrin->intrinsic) {
#define CASE(op) \
case nir_intrinsic_image_deref_##op: \
intrin->intrinsic = bindless ? nir_intrinsic_bindless_image_##op \
: nir_intrinsic_image_##op; \
break;
CASE(load)
CASE(sparse_load)
CASE(store)
CASE(atomic_add)
CASE(atomic_imin)
CASE(atomic_umin)
CASE(atomic_imax)
CASE(atomic_umax)
CASE(atomic_and)
CASE(atomic_or)
CASE(atomic_xor)
CASE(atomic_exchange)
CASE(atomic_comp_swap)
CASE(atomic_fadd)
CASE(atomic_fmin)
CASE(atomic_fmax)
CASE(atomic_inc_wrap)
CASE(atomic_dec_wrap)
CASE(size)
CASE(samples)
CASE(load_raw_intel)
CASE(store_raw_intel)
#undef CASE
default:
unreachable("Unhanded image intrinsic");
}
nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
nir_variable *var = nir_deref_instr_get_variable(deref);
/* Only update the format if the intrinsic doesn't have one set */
if (nir_intrinsic_format(intrin) == PIPE_FORMAT_NONE)
nir_intrinsic_set_format(intrin, var->data.image.format);
nir_intrinsic_set_access(intrin, access | var->data.access);
if (nir_intrinsic_has_src_type(intrin))
nir_intrinsic_set_src_type(intrin, data_type);
if (nir_intrinsic_has_dest_type(intrin))
nir_intrinsic_set_dest_type(intrin, data_type);
nir_instr_rewrite_src(&intrin->instr, &intrin->src[0],
nir_src_for_ssa(src));
}
unsigned
nir_image_intrinsic_coord_components(const nir_intrinsic_instr *instr)
{
enum glsl_sampler_dim dim = nir_intrinsic_image_dim(instr);
int coords = glsl_get_sampler_dim_coordinate_components(dim);
if (dim == GLSL_SAMPLER_DIM_CUBE)
return coords;
else
return coords + nir_intrinsic_image_array(instr);
}
nir_src *
nir_get_shader_call_payload_src(nir_intrinsic_instr *call)
{
switch (call->intrinsic) {
case nir_intrinsic_trace_ray:
case nir_intrinsic_rt_trace_ray:
return &call->src[10];
case nir_intrinsic_execute_callable:
case nir_intrinsic_rt_execute_callable:
return &call->src[1];
default:
unreachable("Not a call intrinsic");
return NULL;
}
}
nir_binding nir_chase_binding(nir_src rsrc)
{
nir_binding res = {0};
if (rsrc.ssa->parent_instr->type == nir_instr_type_deref) {
const struct glsl_type *type = glsl_without_array(nir_src_as_deref(rsrc)->type);
bool is_image = glsl_type_is_image(type) || glsl_type_is_sampler(type);
while (rsrc.ssa->parent_instr->type == nir_instr_type_deref) {
nir_deref_instr *deref = nir_src_as_deref(rsrc);
if (deref->deref_type == nir_deref_type_var) {
res.success = true;
res.var = deref->var;
res.desc_set = deref->var->data.descriptor_set;
res.binding = deref->var->data.binding;
return res;
} else if (deref->deref_type == nir_deref_type_array && is_image) {
if (res.num_indices == ARRAY_SIZE(res.indices))
return (nir_binding){0};
res.indices[res.num_indices++] = deref->arr.index;
}
rsrc = deref->parent;
}
}
/* Skip copies and trimming. Trimming can appear as nir_op_mov instructions
* when removing the offset from addresses. We also consider nir_op_is_vec()
* instructions to skip trimming of vec2_index_32bit_offset addresses after
* lowering ALU to scalar.
*/
while (true) {
nir_alu_instr *alu = nir_src_as_alu_instr(rsrc);
nir_intrinsic_instr *intrin = nir_src_as_intrinsic(rsrc);
if (alu && alu->op == nir_op_mov) {
for (unsigned i = 0; i < alu->dest.dest.ssa.num_components; i++) {
if (alu->src[0].swizzle[i] != i)
return (nir_binding){0};
}
rsrc = alu->src[0].src;
} else if (alu && nir_op_is_vec(alu->op)) {
for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
if (alu->src[i].swizzle[0] != i || alu->src[i].src.ssa != alu->src[0].src.ssa)
return (nir_binding){0};
}
rsrc = alu->src[0].src;
} else if (intrin && intrin->intrinsic == nir_intrinsic_read_first_invocation) {
/* The caller might want to be aware if only the first invocation of
* the indices are used.
*/
res.read_first_invocation = true;
rsrc = intrin->src[0];
} else {
break;
}
}
if (nir_src_is_const(rsrc)) {
/* GL binding model after deref lowering */
res.success = true;
/* Can't use just nir_src_as_uint. Vulkan resource index produces a
* vec2. Some drivers lower it to vec1 (to handle get_ssbo_size for
* example) but others just keep it around as a vec2 (v3dv).
*/
res.binding = nir_src_comp_as_uint(rsrc, 0);
return res;
}
/* otherwise, must be Vulkan binding model after deref lowering or GL bindless */
nir_intrinsic_instr *intrin = nir_src_as_intrinsic(rsrc);
if (!intrin)
return (nir_binding){0};
/* skip load_vulkan_descriptor */
if (intrin->intrinsic == nir_intrinsic_load_vulkan_descriptor) {
intrin = nir_src_as_intrinsic(intrin->src[0]);
if (!intrin)
return (nir_binding){0};
}
if (intrin->intrinsic != nir_intrinsic_vulkan_resource_index)
return (nir_binding){0};
assert(res.num_indices == 0);
res.success = true;
res.desc_set = nir_intrinsic_desc_set(intrin);
res.binding = nir_intrinsic_binding(intrin);
res.num_indices = 1;
res.indices[0] = intrin->src[0];
return res;
}
nir_variable *nir_get_binding_variable(nir_shader *shader, nir_binding binding)
{
nir_variable *binding_var = NULL;
unsigned count = 0;
if (!binding.success)
return NULL;
if (binding.var)
return binding.var;
nir_foreach_variable_with_modes(var, shader, nir_var_mem_ubo | nir_var_mem_ssbo) {
if (var->data.descriptor_set == binding.desc_set && var->data.binding == binding.binding) {
binding_var = var;
count++;
}
}
/* Be conservative if another variable is using the same binding/desc_set
* because the access mask might be different and we can't get it reliably.
*/
if (count > 1)
return NULL;
return binding_var;
}
bool
nir_alu_instr_is_copy(nir_alu_instr *instr)
{
assert(instr->src[0].src.is_ssa);
if (instr->op == nir_op_mov) {
return !instr->dest.saturate &&
!instr->src[0].abs &&
!instr->src[0].negate;
} else if (nir_op_is_vec(instr->op)) {
for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; i++) {
if (instr->src[i].abs || instr->src[i].negate)
return false;
}
return !instr->dest.saturate;
} else {
return false;
}
}
nir_ssa_scalar
nir_ssa_scalar_chase_movs(nir_ssa_scalar s)
{
while (nir_ssa_scalar_is_alu(s)) {
nir_alu_instr *alu = nir_instr_as_alu(s.def->parent_instr);
if (!nir_alu_instr_is_copy(alu))
break;
if (alu->op == nir_op_mov) {
s.def = alu->src[0].src.ssa;
s.comp = alu->src[0].swizzle[s.comp];
} else {
assert(nir_op_is_vec(alu->op));
s.def = alu->src[s.comp].src.ssa;
s.comp = alu->src[s.comp].swizzle[0];
}
}
return s;
}
nir_alu_type
nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
{
switch (base_type) {
case GLSL_TYPE_BOOL:
return nir_type_bool1;
break;
case GLSL_TYPE_UINT:
return nir_type_uint32;
break;
case GLSL_TYPE_INT:
return nir_type_int32;
break;
case GLSL_TYPE_UINT16:
return nir_type_uint16;
break;
case GLSL_TYPE_INT16:
return nir_type_int16;
break;
case GLSL_TYPE_UINT8:
return nir_type_uint8;
case GLSL_TYPE_INT8:
return nir_type_int8;
case GLSL_TYPE_UINT64:
return nir_type_uint64;
break;
case GLSL_TYPE_INT64:
return nir_type_int64;
break;
case GLSL_TYPE_FLOAT:
return nir_type_float32;
break;
case GLSL_TYPE_FLOAT16:
return nir_type_float16;
break;
case GLSL_TYPE_DOUBLE:
return nir_type_float64;
break;
case GLSL_TYPE_SAMPLER:
case GLSL_TYPE_TEXTURE:
case GLSL_TYPE_IMAGE:
case GLSL_TYPE_ATOMIC_UINT:
case GLSL_TYPE_STRUCT:
case GLSL_TYPE_INTERFACE:
case GLSL_TYPE_ARRAY:
case GLSL_TYPE_VOID:
case GLSL_TYPE_SUBROUTINE:
case GLSL_TYPE_FUNCTION:
case GLSL_TYPE_ERROR:
return nir_type_invalid;
}
unreachable("unknown type");
}
enum glsl_base_type
nir_get_glsl_base_type_for_nir_type(nir_alu_type base_type)
{
switch (base_type) {
case nir_type_bool1:
return GLSL_TYPE_BOOL;
case nir_type_uint32:
return GLSL_TYPE_UINT;
case nir_type_int32:
return GLSL_TYPE_INT;
case nir_type_uint16:
return GLSL_TYPE_UINT16;
case nir_type_int16:
return GLSL_TYPE_INT16;
case nir_type_uint8:
return GLSL_TYPE_UINT8;
case nir_type_int8:
return GLSL_TYPE_INT8;
case nir_type_uint64:
return GLSL_TYPE_UINT64;
case nir_type_int64:
return GLSL_TYPE_INT64;
case nir_type_float32:
return GLSL_TYPE_FLOAT;
case nir_type_float16:
return GLSL_TYPE_FLOAT16;
case nir_type_float64:
return GLSL_TYPE_DOUBLE;
default: unreachable("Not a sized nir_alu_type");
}
}
nir_op
nir_op_vec(unsigned components)
{
switch (components) {
case 1: return nir_op_mov;
case 2: return nir_op_vec2;
case 3: return nir_op_vec3;
case 4: return nir_op_vec4;
case 5: return nir_op_vec5;
case 8: return nir_op_vec8;
case 16: return nir_op_vec16;
default: unreachable("bad component count");
}
}
bool
nir_op_is_vec(nir_op op)
{
switch (op) {
case nir_op_mov:
case nir_op_vec2:
case nir_op_vec3:
case nir_op_vec4:
case nir_op_vec5:
case nir_op_vec8:
case nir_op_vec16:
return true;
default:
return false;
}
}
bool
nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
unsigned channel)
{
if (nir_op_infos[instr->op].input_sizes[src] > 0)
return channel < nir_op_infos[instr->op].input_sizes[src];
return (instr->dest.write_mask >> channel) & 1;
}
nir_component_mask_t
nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
{
nir_component_mask_t read_mask = 0;
for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
if (!nir_alu_instr_channel_used(instr, src, c))
continue;
read_mask |= (1 << instr->src[src].swizzle[c]);
}
return read_mask;
}
unsigned
nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
{
if (nir_op_infos[instr->op].input_sizes[src] > 0)
return nir_op_infos[instr->op].input_sizes[src];
return nir_dest_num_components(instr->dest.dest);
}
#define CASE_ALL_SIZES(op) \
case op: \
case op ## 8: \
case op ## 16: \
case op ## 32: \
bool
nir_alu_instr_is_comparison(const nir_alu_instr *instr)
{
switch (instr->op) {
CASE_ALL_SIZES(nir_op_flt)
CASE_ALL_SIZES(nir_op_fge)
CASE_ALL_SIZES(nir_op_feq)
CASE_ALL_SIZES(nir_op_fneu)
CASE_ALL_SIZES(nir_op_ilt)
CASE_ALL_SIZES(nir_op_ult)
CASE_ALL_SIZES(nir_op_ige)
CASE_ALL_SIZES(nir_op_uge)
CASE_ALL_SIZES(nir_op_ieq)
CASE_ALL_SIZES(nir_op_ine)
case nir_op_i2b1:
case nir_op_i2b8:
case nir_op_i2b16:
case nir_op_i2b32:
case nir_op_f2b1:
case nir_op_f2b8:
case nir_op_f2b16:
case nir_op_f2b32:
case nir_op_inot:
return true;
default:
return false;
}
}
#undef CASE_ALL_SIZES
unsigned
nir_intrinsic_src_components(const nir_intrinsic_instr *intr, unsigned srcn)
{
const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
assert(srcn < info->num_srcs);
if (info->src_components[srcn] > 0)
return info->src_components[srcn];
else if (info->src_components[srcn] == 0)
return intr->num_components;
else
return nir_src_num_components(intr->src[srcn]);
}
unsigned
nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
{
const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
if (!info->has_dest)
return 0;
else if (info->dest_components)
return info->dest_components;
else
return intr->num_components;
}
/**
* Helper to copy const_index[] from src to dst, without assuming they
* match in order.
*/
void
nir_intrinsic_copy_const_indices(nir_intrinsic_instr *dst, nir_intrinsic_instr *src)
{
if (src->intrinsic == dst->intrinsic) {
memcpy(dst->const_index, src->const_index, sizeof(dst->const_index));
return;
}
const nir_intrinsic_info *src_info = &nir_intrinsic_infos[src->intrinsic];
const nir_intrinsic_info *dst_info = &nir_intrinsic_infos[dst->intrinsic];
for (unsigned i = 0; i < NIR_INTRINSIC_NUM_INDEX_FLAGS; i++) {
if (src_info->index_map[i] == 0)
continue;
/* require that dst instruction also uses the same const_index[]: */
assert(dst_info->index_map[i] > 0);
dst->const_index[dst_info->index_map[i] - 1] =
src->const_index[src_info->index_map[i] - 1];
}
}
bool
nir_tex_instr_need_sampler(const nir_tex_instr *instr)
{
switch (instr->op) {
case nir_texop_txf:
case nir_texop_txf_ms:
case nir_texop_txs:
case nir_texop_query_levels:
case nir_texop_texture_samples:
case nir_texop_samples_identical:
return false;
default:
return true;
}
}
unsigned
nir_tex_instr_result_size(const nir_tex_instr *instr)
{
switch (instr->op) {
case nir_texop_txs: {
unsigned ret;
switch (instr->sampler_dim) {
case GLSL_SAMPLER_DIM_1D:
case GLSL_SAMPLER_DIM_BUF:
ret = 1;
break;
case GLSL_SAMPLER_DIM_2D:
case GLSL_SAMPLER_DIM_CUBE:
case GLSL_SAMPLER_DIM_MS:
case GLSL_SAMPLER_DIM_RECT:
case GLSL_SAMPLER_DIM_EXTERNAL:
case GLSL_SAMPLER_DIM_SUBPASS:
ret = 2;
break;
case GLSL_SAMPLER_DIM_3D:
ret = 3;
break;
default:
unreachable("not reached");
}
if (instr->is_array)
ret++;
return ret;
}
case nir_texop_lod:
return 2;
case nir_texop_texture_samples:
case nir_texop_query_levels:
case nir_texop_samples_identical:
case nir_texop_fragment_mask_fetch_amd:
return 1;
default:
if (instr->is_shadow && instr->is_new_style_shadow)
return 1;
return 4;
}
}
bool
nir_tex_instr_is_query(const nir_tex_instr *instr)
{
switch (instr->op) {
case nir_texop_txs:
case nir_texop_lod:
case nir_texop_texture_samples:
case nir_texop_query_levels:
return true;
case nir_texop_tex:
case nir_texop_txb:
case nir_texop_txl:
case nir_texop_txd:
case nir_texop_txf:
case nir_texop_txf_ms:
case nir_texop_txf_ms_fb:
case nir_texop_txf_ms_mcs_intel:
case nir_texop_tg4:
return false;
default:
unreachable("Invalid texture opcode");
}
}
bool
nir_tex_instr_has_implicit_derivative(const nir_tex_instr *instr)
{
switch (instr->op) {
case nir_texop_tex:
case nir_texop_txb:
case nir_texop_lod:
return true;
default:
return false;
}
}
nir_alu_type
nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
{
switch (instr->src[src].src_type) {
case nir_tex_src_coord:
switch (instr->op) {
case nir_texop_txf:
case nir_texop_txf_ms:
case nir_texop_txf_ms_fb:
case nir_texop_txf_ms_mcs_intel:
case nir_texop_samples_identical:
case nir_texop_fragment_fetch_amd:
case nir_texop_fragment_mask_fetch_amd:
return nir_type_int;
default:
return nir_type_float;
}
case nir_tex_src_lod:
switch (instr->op) {
case nir_texop_txs:
case nir_texop_txf:
case nir_texop_txf_ms:
case nir_texop_fragment_fetch_amd:
case nir_texop_fragment_mask_fetch_amd:
return nir_type_int;
default:
return nir_type_float;
}
case nir_tex_src_projector:
case nir_tex_src_comparator:
case nir_tex_src_bias:
case nir_tex_src_min_lod:
case nir_tex_src_ddx:
case nir_tex_src_ddy:
case nir_tex_src_backend1:
case nir_tex_src_backend2:
return nir_type_float;
case nir_tex_src_offset:
case nir_tex_src_ms_index:
case nir_tex_src_plane:
return nir_type_int;
case nir_tex_src_ms_mcs_intel:
case nir_tex_src_texture_deref:
case nir_tex_src_sampler_deref:
case nir_tex_src_texture_offset:
case nir_tex_src_sampler_offset:
case nir_tex_src_texture_handle:
case nir_tex_src_sampler_handle:
return nir_type_uint;
case nir_num_tex_src_types:
unreachable("nir_num_tex_src_types is not a valid source type");
}
unreachable("Invalid texture source type");
}
unsigned
nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
{
if (instr->src[src].src_type == nir_tex_src_coord)
return instr->coord_components;
/* The MCS value is expected to be a vec4 returned by a txf_ms_mcs_intel */
if (instr->src[src].src_type == nir_tex_src_ms_mcs_intel)
return 4;
if (instr->src[src].src_type == nir_tex_src_ddx ||
instr->src[src].src_type == nir_tex_src_ddy) {
if (instr->is_array && !instr->array_is_lowered_cube)
return instr->coord_components - 1;
else
return instr->coord_components;
}
if (instr->src[src].src_type == nir_tex_src_offset) {
if (instr->is_array)
return instr->coord_components - 1;
else
return instr->coord_components;
}
if (instr->src[src].src_type == nir_tex_src_backend1 ||
instr->src[src].src_type == nir_tex_src_backend2)
return nir_src_num_components(instr->src[src].src);
/* For AMD, this can be a vec8/vec4 image/sampler descriptor. */
if (instr->src[src].src_type == nir_tex_src_texture_handle ||
instr->src[src].src_type == nir_tex_src_sampler_handle)
return 0;
return 1;
}
/**
* Return which components are written into transform feedback buffers.
* The result is relative to 0, not "component".
*/
unsigned
nir_instr_xfb_write_mask(nir_intrinsic_instr *instr)
{
unsigned mask = 0;
if (nir_intrinsic_has_io_xfb(instr)) {
unsigned wr_mask = nir_intrinsic_write_mask(instr) <<
nir_intrinsic_component(instr);
assert((wr_mask & ~0xf) == 0); /* only 4 components allowed */
unsigned iter_mask = wr_mask;
while (iter_mask) {
unsigned i = u_bit_scan(&iter_mask);
nir_io_xfb xfb = i < 2 ? nir_intrinsic_io_xfb(instr) :
nir_intrinsic_io_xfb2(instr);
if (xfb.out[i % 2].num_components)
mask |= BITFIELD_RANGE(i, xfb.out[i % 2].num_components) & wr_mask;
}
}
return mask;
}
/**
* Whether an output slot is consumed by fixed-function logic.
*/
bool
nir_slot_is_sysval_output(gl_varying_slot slot)
{
return slot == VARYING_SLOT_POS ||
slot == VARYING_SLOT_PSIZ ||
slot == VARYING_SLOT_EDGE ||
slot == VARYING_SLOT_CLIP_VERTEX ||
slot == VARYING_SLOT_CLIP_DIST0 ||
slot == VARYING_SLOT_CLIP_DIST1 ||
slot == VARYING_SLOT_CULL_DIST0 ||
slot == VARYING_SLOT_CULL_DIST1 ||
slot == VARYING_SLOT_LAYER ||
slot == VARYING_SLOT_VIEWPORT ||
slot == VARYING_SLOT_TESS_LEVEL_OUTER ||
slot == VARYING_SLOT_TESS_LEVEL_INNER ||
slot == VARYING_SLOT_BOUNDING_BOX0 ||
slot == VARYING_SLOT_BOUNDING_BOX1 ||
slot == VARYING_SLOT_VIEW_INDEX ||
slot == VARYING_SLOT_VIEWPORT_MASK ||
slot == VARYING_SLOT_PRIMITIVE_SHADING_RATE ||
slot == VARYING_SLOT_PRIMITIVE_COUNT ||
slot == VARYING_SLOT_PRIMITIVE_INDICES ||
slot == VARYING_SLOT_TASK_COUNT;
}
/**
* Whether an input/output slot is consumed by the next shader stage,
* or written by the previous shader stage.
*/
bool
nir_slot_is_varying(gl_varying_slot slot)
{
return slot >= VARYING_SLOT_VAR0 ||
slot == VARYING_SLOT_COL0 ||
slot == VARYING_SLOT_COL1 ||
slot == VARYING_SLOT_BFC0 ||
slot == VARYING_SLOT_BFC1 ||
slot == VARYING_SLOT_FOGC ||
(slot >= VARYING_SLOT_TEX0 && slot <= VARYING_SLOT_TEX7) ||
slot == VARYING_SLOT_PNTC ||
slot == VARYING_SLOT_CLIP_DIST0 ||
slot == VARYING_SLOT_CLIP_DIST1 ||
slot == VARYING_SLOT_CULL_DIST0 ||
slot == VARYING_SLOT_CULL_DIST1 ||
slot == VARYING_SLOT_PRIMITIVE_ID ||
slot == VARYING_SLOT_LAYER ||
slot == VARYING_SLOT_VIEWPORT ||
slot == VARYING_SLOT_TESS_LEVEL_OUTER ||
slot == VARYING_SLOT_TESS_LEVEL_INNER;
}
bool
nir_slot_is_sysval_output_and_varying(gl_varying_slot slot)
{
return nir_slot_is_sysval_output(slot) &&
nir_slot_is_varying(slot);
}
/**
* This marks the output store instruction as not feeding the next shader
* stage. If the instruction has no other use, it's removed.
*/
void nir_remove_varying(nir_intrinsic_instr *intr)
{
nir_io_semantics sem = nir_intrinsic_io_semantics(intr);
if ((!sem.no_sysval_output && nir_slot_is_sysval_output(sem.location)) ||
nir_instr_xfb_write_mask(intr)) {
/* Demote the store instruction. */
sem.no_varying = true;
nir_intrinsic_set_io_semantics(intr, sem);
} else {
nir_instr_remove(&intr->instr);
}
}
/**
* This marks the output store instruction as not feeding fixed-function
* logic. If the instruction has no other use, it's removed.
*/
void nir_remove_sysval_output(nir_intrinsic_instr *intr)
{
nir_io_semantics sem = nir_intrinsic_io_semantics(intr);
if ((!sem.no_varying && nir_slot_is_varying(sem.location)) ||
nir_instr_xfb_write_mask(intr)) {
/* Demote the store instruction. */
sem.no_sysval_output = true;
nir_intrinsic_set_io_semantics(intr, sem);
} else {
nir_instr_remove(&intr->instr);
}
}
void nir_remove_non_entrypoints(nir_shader *nir)
{
foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
if (!func->is_entrypoint)
exec_node_remove(&func->node);
}
assert(exec_list_length(&nir->functions) == 1);
}