mesa/src/compiler/nir/nir_builder.h

1427 lines
43 KiB
C
Raw Normal View History

/*
* Copyright © 2014-2015 Broadcom
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifndef NIR_BUILDER_H
#define NIR_BUILDER_H
#include "nir_control_flow.h"
#include "util/bitscan.h"
#include "util/half_float.h"
struct exec_list;
typedef struct nir_builder {
nir_cursor cursor;
/* Whether new ALU instructions will be marked "exact" */
bool exact;
nir_shader *shader;
nir_function_impl *impl;
} nir_builder;
static inline void
nir_builder_init(nir_builder *build, nir_function_impl *impl)
{
memset(build, 0, sizeof(*build));
build->exact = false;
build->impl = impl;
build->shader = impl->function->shader;
}
static inline void
nir_builder_init_simple_shader(nir_builder *build, void *mem_ctx,
gl_shader_stage stage,
const nir_shader_compiler_options *options)
{
build->shader = nir_shader_create(mem_ctx, stage, options, NULL);
nir_function *func = nir_function_create(build->shader, "main");
func->is_entrypoint = true;
build->exact = false;
build->impl = nir_function_impl_create(func);
build->cursor = nir_after_cf_list(&build->impl->body);
}
static inline void
nir_builder_instr_insert(nir_builder *build, nir_instr *instr)
{
nir_instr_insert(build->cursor, instr);
/* Move the cursor forward. */
build->cursor = nir_after_instr(instr);
}
static inline nir_instr *
nir_builder_last_instr(nir_builder *build)
{
assert(build->cursor.option == nir_cursor_after_instr);
return build->cursor.instr;
}
static inline void
nir_builder_cf_insert(nir_builder *build, nir_cf_node *cf)
{
nir_cf_node_insert(build->cursor, cf);
}
static inline bool
nir_builder_is_inside_cf(nir_builder *build, nir_cf_node *cf_node)
{
nir_block *block = nir_cursor_current_block(build->cursor);
for (nir_cf_node *n = &block->cf_node; n; n = n->parent) {
if (n == cf_node)
return true;
}
return false;
}
static inline nir_if *
nir_push_if(nir_builder *build, nir_ssa_def *condition)
{
nir_if *nif = nir_if_create(build->shader);
nif->condition = nir_src_for_ssa(condition);
nir_builder_cf_insert(build, &nif->cf_node);
build->cursor = nir_before_cf_list(&nif->then_list);
return nif;
}
static inline nir_if *
nir_push_else(nir_builder *build, nir_if *nif)
{
if (nif) {
assert(nir_builder_is_inside_cf(build, &nif->cf_node));
} else {
nir_block *block = nir_cursor_current_block(build->cursor);
nif = nir_cf_node_as_if(block->cf_node.parent);
}
build->cursor = nir_before_cf_list(&nif->else_list);
return nif;
}
static inline void
nir_pop_if(nir_builder *build, nir_if *nif)
{
if (nif) {
assert(nir_builder_is_inside_cf(build, &nif->cf_node));
} else {
nir_block *block = nir_cursor_current_block(build->cursor);
nif = nir_cf_node_as_if(block->cf_node.parent);
}
build->cursor = nir_after_cf_node(&nif->cf_node);
}
static inline nir_ssa_def *
nir_if_phi(nir_builder *build, nir_ssa_def *then_def, nir_ssa_def *else_def)
{
nir_block *block = nir_cursor_current_block(build->cursor);
nir_if *nif = nir_cf_node_as_if(nir_cf_node_prev(&block->cf_node));
nir_phi_instr *phi = nir_phi_instr_create(build->shader);
nir_phi_src *src = ralloc(phi, nir_phi_src);
src->pred = nir_if_last_then_block(nif);
src->src = nir_src_for_ssa(then_def);
exec_list_push_tail(&phi->srcs, &src->node);
src = ralloc(phi, nir_phi_src);
src->pred = nir_if_last_else_block(nif);
src->src = nir_src_for_ssa(else_def);
exec_list_push_tail(&phi->srcs, &src->node);
assert(then_def->num_components == else_def->num_components);
assert(then_def->bit_size == else_def->bit_size);
nir_ssa_dest_init(&phi->instr, &phi->dest,
then_def->num_components, then_def->bit_size, NULL);
nir_builder_instr_insert(build, &phi->instr);
return &phi->dest.ssa;
}
static inline nir_loop *
nir_push_loop(nir_builder *build)
{
nir_loop *loop = nir_loop_create(build->shader);
nir_builder_cf_insert(build, &loop->cf_node);
build->cursor = nir_before_cf_list(&loop->body);
return loop;
}
static inline void
nir_pop_loop(nir_builder *build, nir_loop *loop)
{
if (loop) {
assert(nir_builder_is_inside_cf(build, &loop->cf_node));
} else {
nir_block *block = nir_cursor_current_block(build->cursor);
loop = nir_cf_node_as_loop(block->cf_node.parent);
}
build->cursor = nir_after_cf_node(&loop->cf_node);
}
static inline nir_ssa_def *
nir_ssa_undef(nir_builder *build, unsigned num_components, unsigned bit_size)
{
nir_ssa_undef_instr *undef =
nir_ssa_undef_instr_create(build->shader, num_components, bit_size);
if (!undef)
return NULL;
nir_instr_insert(nir_before_cf_list(&build->impl->body), &undef->instr);
return &undef->def;
}
static inline nir_ssa_def *
nir_build_imm(nir_builder *build, unsigned num_components,
unsigned bit_size, const nir_const_value *value)
{
nir_load_const_instr *load_const =
nir_load_const_instr_create(build->shader, num_components, bit_size);
if (!load_const)
return NULL;
memcpy(load_const->value, value, sizeof(nir_const_value) * num_components);
nir_builder_instr_insert(build, &load_const->instr);
return &load_const->def;
}
static inline nir_ssa_def *
nir_imm_zero(nir_builder *build, unsigned num_components, unsigned bit_size)
{
nir_load_const_instr *load_const =
nir_load_const_instr_create(build->shader, num_components, bit_size);
/* nir_load_const_instr_create uses rzalloc so it's already zero */
nir_builder_instr_insert(build, &load_const->instr);
return &load_const->def;
}
static inline nir_ssa_def *
nir_imm_boolN_t(nir_builder *build, bool x, unsigned bit_size)
{
nir_const_value v = nir_const_value_for_bool(x, bit_size);
return nir_build_imm(build, 1, bit_size, &v);
}
static inline nir_ssa_def *
nir_imm_bool(nir_builder *build, bool x)
{
return nir_imm_boolN_t(build, x, 1);
}
static inline nir_ssa_def *
nir_imm_true(nir_builder *build)
{
return nir_imm_bool(build, true);
}
static inline nir_ssa_def *
nir_imm_false(nir_builder *build)
{
return nir_imm_bool(build, false);
}
static inline nir_ssa_def *
nir_imm_floatN_t(nir_builder *build, double x, unsigned bit_size)
{
nir_const_value v = nir_const_value_for_float(x, bit_size);
return nir_build_imm(build, 1, bit_size, &v);
}
static inline nir_ssa_def *
nir_imm_float16(nir_builder *build, float x)
{
return nir_imm_floatN_t(build, x, 16);
}
static inline nir_ssa_def *
nir_imm_float(nir_builder *build, float x)
{
return nir_imm_floatN_t(build, x, 32);
}
static inline nir_ssa_def *
nir_imm_double(nir_builder *build, double x)
{
return nir_imm_floatN_t(build, x, 64);
}
static inline nir_ssa_def *
nir_imm_vec2(nir_builder *build, float x, float y)
{
nir_const_value v[2] = {
nir_const_value_for_float(x, 32),
nir_const_value_for_float(y, 32),
};
return nir_build_imm(build, 2, 32, v);
}
static inline nir_ssa_def *
nir_imm_vec4(nir_builder *build, float x, float y, float z, float w)
{
nir_const_value v[4] = {
nir_const_value_for_float(x, 32),
nir_const_value_for_float(y, 32),
nir_const_value_for_float(z, 32),
nir_const_value_for_float(w, 32),
};
return nir_build_imm(build, 4, 32, v);
}
static inline nir_ssa_def *
nir_imm_vec4_16(nir_builder *build, float x, float y, float z, float w)
{
nir_const_value v[4] = {
nir_const_value_for_float(x, 16),
nir_const_value_for_float(y, 16),
nir_const_value_for_float(z, 16),
nir_const_value_for_float(w, 16),
};
return nir_build_imm(build, 4, 16, v);
}
static inline nir_ssa_def *
nir_imm_intN_t(nir_builder *build, uint64_t x, unsigned bit_size)
{
nir_const_value v = nir_const_value_for_raw_uint(x, bit_size);
return nir_build_imm(build, 1, bit_size, &v);
}
static inline nir_ssa_def *
nir_imm_int(nir_builder *build, int x)
{
return nir_imm_intN_t(build, x, 32);
}
static inline nir_ssa_def *
nir_imm_int64(nir_builder *build, int64_t x)
{
return nir_imm_intN_t(build, x, 64);
}
static inline nir_ssa_def *
nir_imm_ivec2(nir_builder *build, int x, int y)
{
nir_const_value v[2] = {
nir_const_value_for_int(x, 32),
nir_const_value_for_int(y, 32),
};
return nir_build_imm(build, 2, 32, v);
}
static inline nir_ssa_def *
nir_imm_ivec4(nir_builder *build, int x, int y, int z, int w)
{
nir_const_value v[4] = {
nir_const_value_for_int(x, 32),
nir_const_value_for_int(y, 32),
nir_const_value_for_int(z, 32),
nir_const_value_for_int(w, 32),
};
return nir_build_imm(build, 4, 32, v);
}
static inline nir_ssa_def *
nir_builder_alu_instr_finish_and_insert(nir_builder *build, nir_alu_instr *instr)
{
const nir_op_info *op_info = &nir_op_infos[instr->op];
instr->exact = build->exact;
/* Guess the number of components the destination temporary should have
* based on our input sizes, if it's not fixed for the op.
*/
unsigned num_components = op_info->output_size;
if (num_components == 0) {
for (unsigned i = 0; i < op_info->num_inputs; i++) {
if (op_info->input_sizes[i] == 0)
num_components = MAX2(num_components,
instr->src[i].src.ssa->num_components);
}
}
assert(num_components != 0);
/* Figure out the bitwidth based on the source bitwidth if the instruction
* is variable-width.
*/
unsigned bit_size = nir_alu_type_get_type_size(op_info->output_type);
if (bit_size == 0) {
for (unsigned i = 0; i < op_info->num_inputs; i++) {
unsigned src_bit_size = instr->src[i].src.ssa->bit_size;
if (nir_alu_type_get_type_size(op_info->input_types[i]) == 0) {
if (bit_size)
assert(src_bit_size == bit_size);
else
bit_size = src_bit_size;
} else {
assert(src_bit_size ==
nir_alu_type_get_type_size(op_info->input_types[i]));
}
}
}
/* When in doubt, assume 32. */
if (bit_size == 0)
bit_size = 32;
/* Make sure we don't swizzle from outside of our source vector (like if a
* scalar value was passed into a multiply with a vector).
*/
for (unsigned i = 0; i < op_info->num_inputs; i++) {
for (unsigned j = instr->src[i].src.ssa->num_components;
j < NIR_MAX_VEC_COMPONENTS; j++) {
instr->src[i].swizzle[j] = instr->src[i].src.ssa->num_components - 1;
}
}
nir_ssa_dest_init(&instr->instr, &instr->dest.dest, num_components,
bit_size, NULL);
instr->dest.write_mask = (1 << num_components) - 1;
nir_builder_instr_insert(build, &instr->instr);
return &instr->dest.dest.ssa;
}
static inline nir_ssa_def *
nir_build_alu(nir_builder *build, nir_op op, nir_ssa_def *src0,
nir_ssa_def *src1, nir_ssa_def *src2, nir_ssa_def *src3)
{
nir_alu_instr *instr = nir_alu_instr_create(build->shader, op);
if (!instr)
return NULL;
instr->src[0].src = nir_src_for_ssa(src0);
if (src1)
instr->src[1].src = nir_src_for_ssa(src1);
if (src2)
instr->src[2].src = nir_src_for_ssa(src2);
if (src3)
instr->src[3].src = nir_src_for_ssa(src3);
return nir_builder_alu_instr_finish_and_insert(build, instr);
}
/* for the couple special cases with more than 4 src args: */
static inline nir_ssa_def *
nir_build_alu_src_arr(nir_builder *build, nir_op op, nir_ssa_def **srcs)
{
const nir_op_info *op_info = &nir_op_infos[op];
nir_alu_instr *instr = nir_alu_instr_create(build->shader, op);
if (!instr)
return NULL;
for (unsigned i = 0; i < op_info->num_inputs; i++)
instr->src[i].src = nir_src_for_ssa(srcs[i]);
return nir_builder_alu_instr_finish_and_insert(build, instr);
}
#include "nir_builder_opcodes.h"
static inline nir_ssa_def *
nir_vec(nir_builder *build, nir_ssa_def **comp, unsigned num_components)
{
return nir_build_alu_src_arr(build, nir_op_vec(num_components), comp);
}
static inline nir_ssa_def *
nir_mov_alu(nir_builder *build, nir_alu_src src, unsigned num_components)
{
assert(!src.abs && !src.negate);
if (src.src.is_ssa && src.src.ssa->num_components == num_components) {
bool any_swizzles = false;
for (unsigned i = 0; i < num_components; i++) {
if (src.swizzle[i] != i)
any_swizzles = true;
}
if (!any_swizzles)
return src.src.ssa;
}
nir_alu_instr *mov = nir_alu_instr_create(build->shader, nir_op_mov);
nir_ssa_dest_init(&mov->instr, &mov->dest.dest, num_components,
nir_src_bit_size(src.src), NULL);
mov->exact = build->exact;
mov->dest.write_mask = (1 << num_components) - 1;
mov->src[0] = src;
nir_builder_instr_insert(build, &mov->instr);
return &mov->dest.dest.ssa;
}
/**
* Construct an fmov or imov that reswizzles the source's components.
*/
static inline nir_ssa_def *
nir_swizzle(nir_builder *build, nir_ssa_def *src, const unsigned *swiz,
unsigned num_components)
{
assert(num_components <= NIR_MAX_VEC_COMPONENTS);
nir_alu_src alu_src = { NIR_SRC_INIT };
alu_src.src = nir_src_for_ssa(src);
bool is_identity_swizzle = true;
for (unsigned i = 0; i < num_components && i < NIR_MAX_VEC_COMPONENTS; i++) {
if (swiz[i] != i)
is_identity_swizzle = false;
alu_src.swizzle[i] = swiz[i];
}
if (num_components == src->num_components && is_identity_swizzle)
return src;
return nir_mov_alu(build, alu_src, num_components);
}
/* Selects the right fdot given the number of components in each source. */
static inline nir_ssa_def *
nir_fdot(nir_builder *build, nir_ssa_def *src0, nir_ssa_def *src1)
{
assert(src0->num_components == src1->num_components);
switch (src0->num_components) {
case 1: return nir_fmul(build, src0, src1);
case 2: return nir_fdot2(build, src0, src1);
case 3: return nir_fdot3(build, src0, src1);
case 4: return nir_fdot4(build, src0, src1);
default:
unreachable("bad component size");
}
return NULL;
}
static inline nir_ssa_def *
nir_ball_iequal(nir_builder *b, nir_ssa_def *src0, nir_ssa_def *src1)
{
switch (src0->num_components) {
case 1: return nir_ieq(b, src0, src1);
case 2: return nir_ball_iequal2(b, src0, src1);
case 3: return nir_ball_iequal3(b, src0, src1);
case 4: return nir_ball_iequal4(b, src0, src1);
default:
unreachable("bad component size");
}
}
static inline nir_ssa_def *
nir_bany_inequal(nir_builder *b, nir_ssa_def *src0, nir_ssa_def *src1)
{
switch (src0->num_components) {
case 1: return nir_ine(b, src0, src1);
case 2: return nir_bany_inequal2(b, src0, src1);
case 3: return nir_bany_inequal3(b, src0, src1);
case 4: return nir_bany_inequal4(b, src0, src1);
default:
unreachable("bad component size");
}
}
static inline nir_ssa_def *
nir_bany(nir_builder *b, nir_ssa_def *src)
{
return nir_bany_inequal(b, src, nir_imm_false(b));
}
static inline nir_ssa_def *
nir_channel(nir_builder *b, nir_ssa_def *def, unsigned c)
{
return nir_swizzle(b, def, &c, 1);
}
static inline nir_ssa_def *
nir_channels(nir_builder *b, nir_ssa_def *def, nir_component_mask_t mask)
{
unsigned num_channels = 0, swizzle[NIR_MAX_VEC_COMPONENTS] = { 0 };
for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) {
if ((mask & (1 << i)) == 0)
continue;
swizzle[num_channels++] = i;
}
return nir_swizzle(b, def, swizzle, num_channels);
}
static inline nir_ssa_def *
_nir_vector_extract_helper(nir_builder *b, nir_ssa_def *vec, nir_ssa_def *c,
unsigned start, unsigned end)
{
if (start == end - 1) {
return nir_channel(b, vec, start);
} else {
unsigned mid = start + (end - start) / 2;
return nir_bcsel(b, nir_ilt(b, c, nir_imm_intN_t(b, mid, c->bit_size)),
_nir_vector_extract_helper(b, vec, c, start, mid),
_nir_vector_extract_helper(b, vec, c, mid, end));
}
}
static inline nir_ssa_def *
nir_vector_extract(nir_builder *b, nir_ssa_def *vec, nir_ssa_def *c)
{
nir_src c_src = nir_src_for_ssa(c);
if (nir_src_is_const(c_src)) {
uint64_t c_const = nir_src_as_uint(c_src);
if (c_const < vec->num_components)
return nir_channel(b, vec, c_const);
else
return nir_ssa_undef(b, 1, vec->bit_size);
} else {
return _nir_vector_extract_helper(b, vec, c, 0, vec->num_components);
}
}
/** Replaces the component of `vec` specified by `c` with `scalar` */
static inline nir_ssa_def *
nir_vector_insert_imm(nir_builder *b, nir_ssa_def *vec,
nir_ssa_def *scalar, unsigned c)
{
assert(scalar->num_components == 1);
assert(c < vec->num_components);
nir_op vec_op = nir_op_vec(vec->num_components);
nir_alu_instr *vec_instr = nir_alu_instr_create(b->shader, vec_op);
for (unsigned i = 0; i < vec->num_components; i++) {
if (i == c) {
vec_instr->src[i].src = nir_src_for_ssa(scalar);
vec_instr->src[i].swizzle[0] = 0;
} else {
vec_instr->src[i].src = nir_src_for_ssa(vec);
vec_instr->src[i].swizzle[0] = i;
}
}
return nir_builder_alu_instr_finish_and_insert(b, vec_instr);
}
/** Replaces the component of `vec` specified by `c` with `scalar` */
static inline nir_ssa_def *
nir_vector_insert(nir_builder *b, nir_ssa_def *vec, nir_ssa_def *scalar,
nir_ssa_def *c)
{
assert(scalar->num_components == 1);
assert(c->num_components == 1);
nir_src c_src = nir_src_for_ssa(c);
if (nir_src_is_const(c_src)) {
uint64_t c_const = nir_src_as_uint(c_src);
if (c_const < vec->num_components)
return nir_vector_insert_imm(b, vec, scalar, c_const);
else
return vec;
} else {
nir_const_value per_comp_idx_const[NIR_MAX_VEC_COMPONENTS];
for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++)
per_comp_idx_const[i] = nir_const_value_for_int(i, c->bit_size);
nir_ssa_def *per_comp_idx =
nir_build_imm(b, vec->num_components,
c->bit_size, per_comp_idx_const);
/* nir_builder will automatically splat out scalars to vectors so an
* insert is as simple as "if I'm the channel, replace me with the
* scalar."
*/
return nir_bcsel(b, nir_ieq(b, c, per_comp_idx), scalar, vec);
}
}
static inline nir_ssa_def *
nir_i2i(nir_builder *build, nir_ssa_def *x, unsigned dest_bit_size)
{
if (x->bit_size == dest_bit_size)
return x;
switch (dest_bit_size) {
case 64: return nir_i2i64(build, x);
case 32: return nir_i2i32(build, x);
case 16: return nir_i2i16(build, x);
case 8: return nir_i2i8(build, x);
default: unreachable("Invalid bit size");
}
}
static inline nir_ssa_def *
nir_u2u(nir_builder *build, nir_ssa_def *x, unsigned dest_bit_size)
{
if (x->bit_size == dest_bit_size)
return x;
switch (dest_bit_size) {
case 64: return nir_u2u64(build, x);
case 32: return nir_u2u32(build, x);
case 16: return nir_u2u16(build, x);
case 8: return nir_u2u8(build, x);
default: unreachable("Invalid bit size");
}
}
static inline nir_ssa_def *
nir_iadd_imm(nir_builder *build, nir_ssa_def *x, uint64_t y)
{
assert(x->bit_size <= 64);
if (x->bit_size < 64)
y &= (1ull << x->bit_size) - 1;
if (y == 0) {
return x;
} else {
return nir_iadd(build, x, nir_imm_intN_t(build, y, x->bit_size));
}
}
static inline nir_ssa_def *
_nir_mul_imm(nir_builder *build, nir_ssa_def *x, uint64_t y, bool amul)
{
assert(x->bit_size <= 64);
if (x->bit_size < 64)
y &= (1ull << x->bit_size) - 1;
if (y == 0) {
return nir_imm_intN_t(build, 0, x->bit_size);
} else if (y == 1) {
return x;
} else if (!build->shader->options->lower_bitops &&
util_is_power_of_two_or_zero64(y)) {
return nir_ishl(build, x, nir_imm_int(build, ffsll(y) - 1));
} else if (amul) {
return nir_amul(build, x, nir_imm_intN_t(build, y, x->bit_size));
} else {
return nir_imul(build, x, nir_imm_intN_t(build, y, x->bit_size));
}
}
static inline nir_ssa_def *
nir_imul_imm(nir_builder *build, nir_ssa_def *x, uint64_t y)
{
return _nir_mul_imm(build, x, y, false);
}
static inline nir_ssa_def *
nir_amul_imm(nir_builder *build, nir_ssa_def *x, uint64_t y)
{
return _nir_mul_imm(build, x, y, true);
}
static inline nir_ssa_def *
nir_fadd_imm(nir_builder *build, nir_ssa_def *x, double y)
{
return nir_fadd(build, x, nir_imm_floatN_t(build, y, x->bit_size));
}
static inline nir_ssa_def *
nir_fmul_imm(nir_builder *build, nir_ssa_def *x, double y)
{
return nir_fmul(build, x, nir_imm_floatN_t(build, y, x->bit_size));
}
static inline nir_ssa_def *
nir_pack_bits(nir_builder *b, nir_ssa_def *src, unsigned dest_bit_size)
{
assert(src->num_components * src->bit_size == dest_bit_size);
switch (dest_bit_size) {
case 64:
switch (src->bit_size) {
case 32: return nir_pack_64_2x32(b, src);
case 16: return nir_pack_64_4x16(b, src);
default: break;
}
break;
case 32:
if (src->bit_size == 16)
return nir_pack_32_2x16(b, src);
break;
default:
break;
}
/* If we got here, we have no dedicated unpack opcode. */
nir_ssa_def *dest = nir_imm_intN_t(b, 0, dest_bit_size);
for (unsigned i = 0; i < src->num_components; i++) {
nir_ssa_def *val = nir_u2u(b, nir_channel(b, src, i), dest_bit_size);
val = nir_ishl(b, val, nir_imm_int(b, i * src->bit_size));
dest = nir_ior(b, dest, val);
}
return dest;
}
static inline nir_ssa_def *
nir_unpack_bits(nir_builder *b, nir_ssa_def *src, unsigned dest_bit_size)
{
assert(src->num_components == 1);
assert(src->bit_size > dest_bit_size);
const unsigned dest_num_components = src->bit_size / dest_bit_size;
assert(dest_num_components <= NIR_MAX_VEC_COMPONENTS);
switch (src->bit_size) {
case 64:
switch (dest_bit_size) {
case 32: return nir_unpack_64_2x32(b, src);
case 16: return nir_unpack_64_4x16(b, src);
default: break;
}
break;
case 32:
if (dest_bit_size == 16)
return nir_unpack_32_2x16(b, src);
break;
default:
break;
}
/* If we got here, we have no dedicated unpack opcode. */
nir_ssa_def *dest_comps[NIR_MAX_VEC_COMPONENTS];
for (unsigned i = 0; i < dest_num_components; i++) {
nir_ssa_def *val = nir_ushr(b, src, nir_imm_int(b, i * dest_bit_size));
dest_comps[i] = nir_u2u(b, val, dest_bit_size);
}
return nir_vec(b, dest_comps, dest_num_components);
}
/**
* Treats srcs as if it's one big blob of bits and extracts the range of bits
* given by
*
* [first_bit, first_bit + dest_num_components * dest_bit_size)
*
* The range can have any alignment or size as long as it's an integer number
* of destination components and fits inside the concatenated sources.
*
* TODO: The one caveat here is that we can't handle byte alignment if 64-bit
* values are involved because that would require pack/unpack to/from a vec8
* which NIR currently does not support.
*/
static inline nir_ssa_def *
nir_extract_bits(nir_builder *b, nir_ssa_def **srcs, unsigned num_srcs,
unsigned first_bit,
unsigned dest_num_components, unsigned dest_bit_size)
{
const unsigned num_bits = dest_num_components * dest_bit_size;
/* Figure out the common bit size */
unsigned common_bit_size = dest_bit_size;
for (unsigned i = 0; i < num_srcs; i++)
common_bit_size = MIN2(common_bit_size, srcs[i]->bit_size);
if (first_bit > 0)
common_bit_size = MIN2(common_bit_size, (1u << (ffs(first_bit) - 1)));
/* We don't want to have to deal with 1-bit values */
assert(common_bit_size >= 8);
nir_ssa_def *common_comps[NIR_MAX_VEC_COMPONENTS * sizeof(uint64_t)];
assert(num_bits / common_bit_size <= ARRAY_SIZE(common_comps));
/* First, unpack to the common bit size and select the components from the
* source.
*/
int src_idx = -1;
unsigned src_start_bit = 0;
unsigned src_end_bit = 0;
for (unsigned i = 0; i < num_bits / common_bit_size; i++) {
const unsigned bit = first_bit + (i * common_bit_size);
while (bit >= src_end_bit) {
src_idx++;
assert(src_idx < (int) num_srcs);
src_start_bit = src_end_bit;
src_end_bit += srcs[src_idx]->bit_size *
srcs[src_idx]->num_components;
}
assert(bit >= src_start_bit);
assert(bit + common_bit_size <= src_end_bit);
const unsigned rel_bit = bit - src_start_bit;
const unsigned src_bit_size = srcs[src_idx]->bit_size;
nir_ssa_def *comp = nir_channel(b, srcs[src_idx],
rel_bit / src_bit_size);
if (srcs[src_idx]->bit_size > common_bit_size) {
nir_ssa_def *unpacked = nir_unpack_bits(b, comp, common_bit_size);
comp = nir_channel(b, unpacked, (rel_bit % src_bit_size) /
common_bit_size);
}
common_comps[i] = comp;
}
/* Now, re-pack the destination if we have to */
if (dest_bit_size > common_bit_size) {
unsigned common_per_dest = dest_bit_size / common_bit_size;
nir_ssa_def *dest_comps[NIR_MAX_VEC_COMPONENTS];
for (unsigned i = 0; i < dest_num_components; i++) {
nir_ssa_def *unpacked = nir_vec(b, common_comps + i * common_per_dest,
common_per_dest);
dest_comps[i] = nir_pack_bits(b, unpacked, dest_bit_size);
}
return nir_vec(b, dest_comps, dest_num_components);
} else {
assert(dest_bit_size == common_bit_size);
return nir_vec(b, common_comps, dest_num_components);
}
}
static inline nir_ssa_def *
nir_bitcast_vector(nir_builder *b, nir_ssa_def *src, unsigned dest_bit_size)
{
assert((src->bit_size * src->num_components) % dest_bit_size == 0);
const unsigned dest_num_components =
(src->bit_size * src->num_components) / dest_bit_size;
assert(dest_num_components <= NIR_MAX_VEC_COMPONENTS);
return nir_extract_bits(b, &src, 1, 0, dest_num_components, dest_bit_size);
}
/**
* Turns a nir_src into a nir_ssa_def * so it can be passed to
* nir_build_alu()-based builder calls.
*
* See nir_ssa_for_alu_src() for alu instructions.
*/
static inline nir_ssa_def *
nir_ssa_for_src(nir_builder *build, nir_src src, int num_components)
{
if (src.is_ssa && src.ssa->num_components == num_components)
return src.ssa;
nir_alu_src alu = { NIR_SRC_INIT };
alu.src = src;
for (int j = 0; j < 4; j++)
alu.swizzle[j] = j;
return nir_mov_alu(build, alu, num_components);
}
/**
* Similar to nir_ssa_for_src(), but for alu srcs, respecting the
* nir_alu_src's swizzle.
*/
static inline nir_ssa_def *
nir_ssa_for_alu_src(nir_builder *build, nir_alu_instr *instr, unsigned srcn)
{
static uint8_t trivial_swizzle[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 };
STATIC_ASSERT(ARRAY_SIZE(trivial_swizzle) == NIR_MAX_VEC_COMPONENTS);
nir_alu_src *src = &instr->src[srcn];
unsigned num_components = nir_ssa_alu_instr_src_components(instr, srcn);
if (src->src.is_ssa && (src->src.ssa->num_components == num_components) &&
!src->abs && !src->negate &&
(memcmp(src->swizzle, trivial_swizzle, num_components) == 0))
return src->src.ssa;
return nir_mov_alu(build, *src, num_components);
}
static inline unsigned
nir_get_ptr_bitsize(nir_builder *build)
{
if (build->shader->info.stage == MESA_SHADER_KERNEL)
return build->shader->info.cs.ptr_size;
return 32;
}
static inline nir_deref_instr *
nir_build_deref_var(nir_builder *build, nir_variable *var)
{
nir_deref_instr *deref =
nir_deref_instr_create(build->shader, nir_deref_type_var);
deref->mode = var->data.mode;
deref->type = var->type;
deref->var = var;
nir_ssa_dest_init(&deref->instr, &deref->dest, 1,
nir_get_ptr_bitsize(build), NULL);
nir_builder_instr_insert(build, &deref->instr);
return deref;
}
static inline nir_deref_instr *
nir_build_deref_array(nir_builder *build, nir_deref_instr *parent,
nir_ssa_def *index)
{
assert(glsl_type_is_array(parent->type) ||
glsl_type_is_matrix(parent->type) ||
glsl_type_is_vector(parent->type));
assert(index->bit_size == parent->dest.ssa.bit_size);
nir_deref_instr *deref =
nir_deref_instr_create(build->shader, nir_deref_type_array);
deref->mode = parent->mode;
deref->type = glsl_get_array_element(parent->type);
deref->parent = nir_src_for_ssa(&parent->dest.ssa);
deref->arr.index = nir_src_for_ssa(index);
nir_ssa_dest_init(&deref->instr, &deref->dest,
parent->dest.ssa.num_components,
parent->dest.ssa.bit_size, NULL);
nir_builder_instr_insert(build, &deref->instr);
return deref;
}
static inline nir_deref_instr *
nir_build_deref_array_imm(nir_builder *build, nir_deref_instr *parent,
int64_t index)
{
assert(parent->dest.is_ssa);
nir_ssa_def *idx_ssa = nir_imm_intN_t(build, index,
parent->dest.ssa.bit_size);
return nir_build_deref_array(build, parent, idx_ssa);
}
static inline nir_deref_instr *
nir_build_deref_ptr_as_array(nir_builder *build, nir_deref_instr *parent,
nir_ssa_def *index)
{
assert(parent->deref_type == nir_deref_type_array ||
parent->deref_type == nir_deref_type_ptr_as_array ||
parent->deref_type == nir_deref_type_cast);
assert(index->bit_size == parent->dest.ssa.bit_size);
nir_deref_instr *deref =
nir_deref_instr_create(build->shader, nir_deref_type_ptr_as_array);
deref->mode = parent->mode;
deref->type = parent->type;
deref->parent = nir_src_for_ssa(&parent->dest.ssa);
deref->arr.index = nir_src_for_ssa(index);
nir_ssa_dest_init(&deref->instr, &deref->dest,
parent->dest.ssa.num_components,
parent->dest.ssa.bit_size, NULL);
nir_builder_instr_insert(build, &deref->instr);
return deref;
}
static inline nir_deref_instr *
nir_build_deref_array_wildcard(nir_builder *build, nir_deref_instr *parent)
{
assert(glsl_type_is_array(parent->type) ||
glsl_type_is_matrix(parent->type));
nir_deref_instr *deref =
nir_deref_instr_create(build->shader, nir_deref_type_array_wildcard);
deref->mode = parent->mode;
deref->type = glsl_get_array_element(parent->type);
deref->parent = nir_src_for_ssa(&parent->dest.ssa);
nir_ssa_dest_init(&deref->instr, &deref->dest,
parent->dest.ssa.num_components,
parent->dest.ssa.bit_size, NULL);
nir_builder_instr_insert(build, &deref->instr);
return deref;
}
static inline nir_deref_instr *
nir_build_deref_struct(nir_builder *build, nir_deref_instr *parent,
unsigned index)
{
assert(glsl_type_is_struct_or_ifc(parent->type));
nir_deref_instr *deref =
nir_deref_instr_create(build->shader, nir_deref_type_struct);
deref->mode = parent->mode;
deref->type = glsl_get_struct_field(parent->type, index);
deref->parent = nir_src_for_ssa(&parent->dest.ssa);
deref->strct.index = index;
nir_ssa_dest_init(&deref->instr, &deref->dest,
parent->dest.ssa.num_components,
parent->dest.ssa.bit_size, NULL);
nir_builder_instr_insert(build, &deref->instr);
return deref;
}
static inline nir_deref_instr *
nir_build_deref_cast(nir_builder *build, nir_ssa_def *parent,
nir_variable_mode mode, const struct glsl_type *type,
unsigned ptr_stride)
{
nir_deref_instr *deref =
nir_deref_instr_create(build->shader, nir_deref_type_cast);
deref->mode = mode;
deref->type = type;
deref->parent = nir_src_for_ssa(parent);
deref->cast.ptr_stride = ptr_stride;
nir_ssa_dest_init(&deref->instr, &deref->dest,
parent->num_components, parent->bit_size, NULL);
nir_builder_instr_insert(build, &deref->instr);
return deref;
}
/** Returns a deref that follows another but starting from the given parent
*
* The new deref will be the same type and take the same array or struct index
* as the leader deref but it may have a different parent. This is very
* useful for walking deref paths.
*/
static inline nir_deref_instr *
nir_build_deref_follower(nir_builder *b, nir_deref_instr *parent,
nir_deref_instr *leader)
{
/* If the derefs would have the same parent, don't make a new one */
assert(leader->parent.is_ssa);
if (leader->parent.ssa == &parent->dest.ssa)
return leader;
UNUSED nir_deref_instr *leader_parent = nir_src_as_deref(leader->parent);
switch (leader->deref_type) {
case nir_deref_type_var:
unreachable("A var dereference cannot have a parent");
break;
case nir_deref_type_array:
case nir_deref_type_array_wildcard:
assert(glsl_type_is_matrix(parent->type) ||
glsl_type_is_array(parent->type) ||
(leader->deref_type == nir_deref_type_array &&
glsl_type_is_vector(parent->type)));
assert(glsl_get_length(parent->type) ==
glsl_get_length(leader_parent->type));
if (leader->deref_type == nir_deref_type_array) {
assert(leader->arr.index.is_ssa);
nir_ssa_def *index = nir_i2i(b, leader->arr.index.ssa,
parent->dest.ssa.bit_size);
return nir_build_deref_array(b, parent, index);
} else {
return nir_build_deref_array_wildcard(b, parent);
}
case nir_deref_type_struct:
assert(glsl_type_is_struct_or_ifc(parent->type));
assert(glsl_get_length(parent->type) ==
glsl_get_length(leader_parent->type));
return nir_build_deref_struct(b, parent, leader->strct.index);
default:
unreachable("Invalid deref instruction type");
}
}
static inline nir_ssa_def *
nir_load_reg(nir_builder *build, nir_register *reg)
{
return nir_ssa_for_src(build, nir_src_for_reg(reg), reg->num_components);
}
static inline void
nir_store_reg(nir_builder *build, nir_register *reg,
nir_ssa_def *def, nir_component_mask_t write_mask)
{
assert(reg->num_components == def->num_components);
assert(reg->bit_size == def->bit_size);
nir_alu_instr *mov = nir_alu_instr_create(build->shader, nir_op_mov);
mov->src[0].src = nir_src_for_ssa(def);
mov->dest.dest = nir_dest_for_reg(reg);
mov->dest.write_mask = write_mask & BITFIELD_MASK(reg->num_components);
nir_builder_instr_insert(build, &mov->instr);
}
static inline nir_ssa_def *
nir_load_deref_with_access(nir_builder *build, nir_deref_instr *deref,
enum gl_access_qualifier access)
{
nir_intrinsic_instr *load =
nir_intrinsic_instr_create(build->shader, nir_intrinsic_load_deref);
load->num_components = glsl_get_vector_elements(deref->type);
load->src[0] = nir_src_for_ssa(&deref->dest.ssa);
nir_ssa_dest_init(&load->instr, &load->dest, load->num_components,
glsl_get_bit_size(deref->type), NULL);
nir_intrinsic_set_access(load, access);
nir_builder_instr_insert(build, &load->instr);
return &load->dest.ssa;
}
static inline nir_ssa_def *
nir_load_deref(nir_builder *build, nir_deref_instr *deref)
{
return nir_load_deref_with_access(build, deref, (enum gl_access_qualifier)0);
}
static inline void
nir_store_deref_with_access(nir_builder *build, nir_deref_instr *deref,
nir_ssa_def *value, unsigned writemask,
enum gl_access_qualifier access)
{
nir_intrinsic_instr *store =
nir_intrinsic_instr_create(build->shader, nir_intrinsic_store_deref);
store->num_components = glsl_get_vector_elements(deref->type);
store->src[0] = nir_src_for_ssa(&deref->dest.ssa);
store->src[1] = nir_src_for_ssa(value);
nir_intrinsic_set_write_mask(store,
writemask & ((1 << store->num_components) - 1));
nir_intrinsic_set_access(store, access);
nir_builder_instr_insert(build, &store->instr);
}
static inline void
nir_store_deref(nir_builder *build, nir_deref_instr *deref,
nir_ssa_def *value, unsigned writemask)
{
nir_store_deref_with_access(build, deref, value, writemask,
(enum gl_access_qualifier)0);
}
static inline void
nir_copy_deref_with_access(nir_builder *build, nir_deref_instr *dest,
nir_deref_instr *src,
enum gl_access_qualifier dest_access,
enum gl_access_qualifier src_access)
{
nir_intrinsic_instr *copy =
nir_intrinsic_instr_create(build->shader, nir_intrinsic_copy_deref);
copy->src[0] = nir_src_for_ssa(&dest->dest.ssa);
copy->src[1] = nir_src_for_ssa(&src->dest.ssa);
nir_intrinsic_set_dst_access(copy, dest_access);
nir_intrinsic_set_src_access(copy, src_access);
nir_builder_instr_insert(build, &copy->instr);
}
static inline void
nir_copy_deref(nir_builder *build, nir_deref_instr *dest, nir_deref_instr *src)
{
nir_copy_deref_with_access(build, dest, src,
(enum gl_access_qualifier) 0,
(enum gl_access_qualifier) 0);
}
static inline nir_ssa_def *
nir_load_var(nir_builder *build, nir_variable *var)
{
return nir_load_deref(build, nir_build_deref_var(build, var));
}
static inline void
nir: Add a writemask to store intrinsics. Tessellation control shaders need to be careful when writing outputs. Because multiple threads can concurrently write the same output variables, we need to only write the exact components we were told. Traditionally, for sub-vector writes, we've read the whole vector, updated the temporary, and written the whole vector back. This breaks down with concurrent access. This patch prepares the way for a solution by adding a writemask field to store_var intrinsics, as well as the other store intrinsics. It then updates all produces to emit a writemask of "all channels enabled". It updates nir_lower_io to copy the writemask to output store intrinsics. Finally, it updates nir_lower_vars_to_ssa to handle partial writemasks by doing a read-modify-write cycle (which is safe, because local variables are specific to a single thread). This should have no functional change, since no one actually emits partial writemasks yet. v2: Make nir_validate momentarily assert that writemasks cover the complete value - we shouldn't have partial writemasks yet (requested by Jason Ekstrand). v3: Fix accidental SSBO change that arose from merge conflicts. v4: Don't try to handle writemasks in ir3_compiler_nir - my code for indirects was likely wrong, and TTN doesn't generate partial writemasks today anyway. Change them to asserts as requested by Rob Clark. Signed-off-by: Kenneth Graunke <kenneth@whitecape.org> Reviewed-by: Jason Ekstrand <jason.ekstrand@intel.com> [v3]
2015-11-17 08:26:37 +00:00
nir_store_var(nir_builder *build, nir_variable *var, nir_ssa_def *value,
unsigned writemask)
{
nir_store_deref(build, nir_build_deref_var(build, var), value, writemask);
}
static inline void
nir_copy_var(nir_builder *build, nir_variable *dest, nir_variable *src)
{
nir_copy_deref(build, nir_build_deref_var(build, dest),
nir_build_deref_var(build, src));
}
static inline nir_ssa_def *
nir_load_param(nir_builder *build, uint32_t param_idx)
{
assert(param_idx < build->impl->function->num_params);
nir_parameter *param = &build->impl->function->params[param_idx];
nir_intrinsic_instr *load =
nir_intrinsic_instr_create(build->shader, nir_intrinsic_load_param);
nir_intrinsic_set_param_idx(load, param_idx);
load->num_components = param->num_components;
nir_ssa_dest_init(&load->instr, &load->dest,
param->num_components, param->bit_size, NULL);
nir_builder_instr_insert(build, &load->instr);
return &load->dest.ssa;
}
#include "nir_builder_opcodes.h"
static inline nir_ssa_def *
nir_f2b(nir_builder *build, nir_ssa_def *f)
{
return nir_f2b1(build, f);
}
static inline nir_ssa_def *
nir_i2b(nir_builder *build, nir_ssa_def *i)
{
return nir_i2b1(build, i);
}
static inline nir_ssa_def *
nir_b2f(nir_builder *build, nir_ssa_def *b, uint32_t bit_size)
{
switch (bit_size) {
case 64: return nir_b2f64(build, b);
case 32: return nir_b2f32(build, b);
case 16: return nir_b2f16(build, b);
default:
unreachable("Invalid bit-size");
};
}
static inline nir_ssa_def *
nir_b2i(nir_builder *build, nir_ssa_def *b, uint32_t bit_size)
{
switch (bit_size) {
case 64: return nir_b2i64(build, b);
case 32: return nir_b2i32(build, b);
case 16: return nir_b2i16(build, b);
case 8: return nir_b2i8(build, b);
default:
unreachable("Invalid bit-size");
};
}
nir: Add new intrinsics for fragment shader input interpolation. Backends can normally handle shader inputs solely by looking at load_input intrinsics, and ignore the nir_variables in nir->inputs. One exception is fragment shader inputs. load_input doesn't capture the necessary interpolation information - flat, smooth, noperspective mode, and centroid, sample, or pixel for the location. This means that backends have to interpolate based on the nir_variables, then associate those with the load_input intrinsics (say, by storing a map of which variables are at which locations). With GL_ARB_enhanced_layouts, we're going to have multiple varyings packed into a single vec4 location. The intrinsics make this easy: simply load N components from location <loc, component>. However, working with variables and correlating the two is very awkward; we'd much rather have intrinsics capture all the necessary information. Fragment shader input interpolation typically works by producing a set of barycentric coordinates, then using those to do a linear interpolation between the values at the triangle's corners. We represent this by introducing five new load_barycentric_* intrinsics: - load_barycentric_pixel (ordinary variable) - load_barycentric_centroid (centroid qualified variable) - load_barycentric_sample (sample qualified variable) - load_barycentric_at_sample (ARB_gpu_shader5's interpolateAtSample()) - load_barycentric_at_offset (ARB_gpu_shader5's interpolateAtOffset()) Each of these take the interpolation mode (smooth or noperspective only) as a const_index, and produce a vec2. The last two also take a sample or offset source. We then introduce a new load_interpolated_input intrinsic, which is like a normal load_input intrinsic, but with an additional barycentric coordinate source. The intention is that flat inputs will still use regular load_input intrinsics. This makes them distinguishable from normal inputs that need fancy interpolation, while also providing all the necessary data. This nicely unifies regular inputs and interpolateAt functions. Qualifiers and variables become irrelevant; there are just load_barycentric intrinsics that determine the interpolation. v2: Document the interp_mode const_index value, define a new BARYCENTRIC() helper rather than using SYSTEM_VALUE() for some of them (requested by Jason Ekstrand). Signed-off-by: Kenneth Graunke <kenneth@whitecape.org> Reviewed-by: Chris Forbes <chrisforbes@google.com> Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
2016-07-12 09:46:43 +01:00
static inline nir_ssa_def *
nir_load_barycentric(nir_builder *build, nir_intrinsic_op op,
unsigned interp_mode)
{
unsigned num_components = op == nir_intrinsic_load_barycentric_model ? 3 : 2;
nir: Add new intrinsics for fragment shader input interpolation. Backends can normally handle shader inputs solely by looking at load_input intrinsics, and ignore the nir_variables in nir->inputs. One exception is fragment shader inputs. load_input doesn't capture the necessary interpolation information - flat, smooth, noperspective mode, and centroid, sample, or pixel for the location. This means that backends have to interpolate based on the nir_variables, then associate those with the load_input intrinsics (say, by storing a map of which variables are at which locations). With GL_ARB_enhanced_layouts, we're going to have multiple varyings packed into a single vec4 location. The intrinsics make this easy: simply load N components from location <loc, component>. However, working with variables and correlating the two is very awkward; we'd much rather have intrinsics capture all the necessary information. Fragment shader input interpolation typically works by producing a set of barycentric coordinates, then using those to do a linear interpolation between the values at the triangle's corners. We represent this by introducing five new load_barycentric_* intrinsics: - load_barycentric_pixel (ordinary variable) - load_barycentric_centroid (centroid qualified variable) - load_barycentric_sample (sample qualified variable) - load_barycentric_at_sample (ARB_gpu_shader5's interpolateAtSample()) - load_barycentric_at_offset (ARB_gpu_shader5's interpolateAtOffset()) Each of these take the interpolation mode (smooth or noperspective only) as a const_index, and produce a vec2. The last two also take a sample or offset source. We then introduce a new load_interpolated_input intrinsic, which is like a normal load_input intrinsic, but with an additional barycentric coordinate source. The intention is that flat inputs will still use regular load_input intrinsics. This makes them distinguishable from normal inputs that need fancy interpolation, while also providing all the necessary data. This nicely unifies regular inputs and interpolateAt functions. Qualifiers and variables become irrelevant; there are just load_barycentric intrinsics that determine the interpolation. v2: Document the interp_mode const_index value, define a new BARYCENTRIC() helper rather than using SYSTEM_VALUE() for some of them (requested by Jason Ekstrand). Signed-off-by: Kenneth Graunke <kenneth@whitecape.org> Reviewed-by: Chris Forbes <chrisforbes@google.com> Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
2016-07-12 09:46:43 +01:00
nir_intrinsic_instr *bary = nir_intrinsic_instr_create(build->shader, op);
nir_ssa_dest_init(&bary->instr, &bary->dest, num_components, 32, NULL);
nir: Add new intrinsics for fragment shader input interpolation. Backends can normally handle shader inputs solely by looking at load_input intrinsics, and ignore the nir_variables in nir->inputs. One exception is fragment shader inputs. load_input doesn't capture the necessary interpolation information - flat, smooth, noperspective mode, and centroid, sample, or pixel for the location. This means that backends have to interpolate based on the nir_variables, then associate those with the load_input intrinsics (say, by storing a map of which variables are at which locations). With GL_ARB_enhanced_layouts, we're going to have multiple varyings packed into a single vec4 location. The intrinsics make this easy: simply load N components from location <loc, component>. However, working with variables and correlating the two is very awkward; we'd much rather have intrinsics capture all the necessary information. Fragment shader input interpolation typically works by producing a set of barycentric coordinates, then using those to do a linear interpolation between the values at the triangle's corners. We represent this by introducing five new load_barycentric_* intrinsics: - load_barycentric_pixel (ordinary variable) - load_barycentric_centroid (centroid qualified variable) - load_barycentric_sample (sample qualified variable) - load_barycentric_at_sample (ARB_gpu_shader5's interpolateAtSample()) - load_barycentric_at_offset (ARB_gpu_shader5's interpolateAtOffset()) Each of these take the interpolation mode (smooth or noperspective only) as a const_index, and produce a vec2. The last two also take a sample or offset source. We then introduce a new load_interpolated_input intrinsic, which is like a normal load_input intrinsic, but with an additional barycentric coordinate source. The intention is that flat inputs will still use regular load_input intrinsics. This makes them distinguishable from normal inputs that need fancy interpolation, while also providing all the necessary data. This nicely unifies regular inputs and interpolateAt functions. Qualifiers and variables become irrelevant; there are just load_barycentric intrinsics that determine the interpolation. v2: Document the interp_mode const_index value, define a new BARYCENTRIC() helper rather than using SYSTEM_VALUE() for some of them (requested by Jason Ekstrand). Signed-off-by: Kenneth Graunke <kenneth@whitecape.org> Reviewed-by: Chris Forbes <chrisforbes@google.com> Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
2016-07-12 09:46:43 +01:00
nir_intrinsic_set_interp_mode(bary, interp_mode);
nir_builder_instr_insert(build, &bary->instr);
return &bary->dest.ssa;
}
static inline void
nir_jump(nir_builder *build, nir_jump_type jump_type)
{
nir_jump_instr *jump = nir_jump_instr_create(build->shader, jump_type);
nir_builder_instr_insert(build, &jump->instr);
}
static inline nir_ssa_def *
nir_compare_func(nir_builder *b, enum compare_func func,
nir_ssa_def *src0, nir_ssa_def *src1)
{
switch (func) {
case COMPARE_FUNC_NEVER:
return nir_imm_int(b, 0);
case COMPARE_FUNC_ALWAYS:
return nir_imm_int(b, ~0);
case COMPARE_FUNC_EQUAL:
return nir_feq(b, src0, src1);
case COMPARE_FUNC_NOTEQUAL:
return nir_fne(b, src0, src1);
case COMPARE_FUNC_GREATER:
return nir_flt(b, src1, src0);
case COMPARE_FUNC_GEQUAL:
return nir_fge(b, src0, src1);
case COMPARE_FUNC_LESS:
return nir_flt(b, src0, src1);
case COMPARE_FUNC_LEQUAL:
return nir_fge(b, src1, src0);
}
unreachable("bad compare func");
}
static inline void
nir_scoped_barrier(nir_builder *b,
nir_scope exec_scope,
nir_scope mem_scope,
nir_memory_semantics mem_semantics,
nir_variable_mode mem_modes)
{
nir_intrinsic_instr *intrin =
nir_intrinsic_instr_create(b->shader, nir_intrinsic_scoped_barrier);
nir_intrinsic_set_execution_scope(intrin, exec_scope);
nir_intrinsic_set_memory_scope(intrin, mem_scope);
nir_intrinsic_set_memory_semantics(intrin, mem_semantics);
nir_intrinsic_set_memory_modes(intrin, mem_modes);
nir_builder_instr_insert(b, &intrin->instr);
}
static inline void
nir_scoped_memory_barrier(nir_builder *b,
nir_scope scope,
nir_memory_semantics semantics,
nir_variable_mode modes)
{
nir_scoped_barrier(b, NIR_SCOPE_NONE, scope, semantics, modes);
}
static inline nir_ssa_def *
nir_convert_to_bit_size(nir_builder *b,
nir_ssa_def *src,
nir_alu_type type,
unsigned bit_size)
{
nir_alu_type base_type = nir_alu_type_get_base_type(type);
nir_alu_type dst_type = (nir_alu_type)(bit_size | base_type);
nir_op opcode =
nir_type_conversion_op(type, dst_type, nir_rounding_mode_undef);
return nir_build_alu(b, opcode, src, NULL, NULL, NULL);
}
static inline nir_ssa_def *
nir_i2iN(nir_builder *b, nir_ssa_def *src, unsigned bit_size)
{
return nir_convert_to_bit_size(b, src, nir_type_int, bit_size);
}
static inline nir_ssa_def *
nir_u2uN(nir_builder *b, nir_ssa_def *src, unsigned bit_size)
{
return nir_convert_to_bit_size(b, src, nir_type_uint, bit_size);
}
static inline nir_ssa_def *
nir_b2bN(nir_builder *b, nir_ssa_def *src, unsigned bit_size)
{
return nir_convert_to_bit_size(b, src, nir_type_bool, bit_size);
}
static inline nir_ssa_def *
nir_f2fN(nir_builder *b, nir_ssa_def *src, unsigned bit_size)
{
return nir_convert_to_bit_size(b, src, nir_type_float, bit_size);
}
#endif /* NIR_BUILDER_H */