mesa/src/gallium/drivers/llvmpipe/lp_state_fs.c

1016 lines
34 KiB
C
Raw Normal View History

/**************************************************************************
*
* Copyright 2009 VMware, Inc.
* Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/**
* @file
* Code generate the whole fragment pipeline.
*
* The fragment pipeline consists of the following stages:
* - stipple (TBI)
* - early depth test
* - fragment shader
* - alpha test
* - depth/stencil test (stencil TBI)
* - blending
*
* This file has only the glue to assembly the fragment pipeline. The actual
* plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
* lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
* muster the LLVM JIT execution engine to create a function that follows an
* established binary interface and that can be called from C directly.
*
* A big source of complexity here is that we often want to run different
* stages with different precisions and data types and precisions. For example,
* the fragment shader needs typically to be done in floats, but the
* depth/stencil test and blending is better done in the type that most closely
* matches the depth/stencil and color buffer respectively.
*
* Since the width of a SIMD vector register stays the same regardless of the
* element type, different types imply different number of elements, so we must
* code generate more instances of the stages with larger types to be able to
* feed/consume the stages with smaller types.
*
* @author Jose Fonseca <jfonseca@vmware.com>
*/
#include <limits.h>
#include "pipe/p_defines.h"
#include "util/u_memory.h"
#include "util/u_format.h"
#include "util/u_debug_dump.h"
#include "pipe/internal/p_winsys_screen.h"
#include "pipe/p_shader_tokens.h"
#include "draw/draw_context.h"
#include "tgsi/tgsi_dump.h"
#include "tgsi/tgsi_scan.h"
#include "tgsi/tgsi_parse.h"
#include "lp_bld_type.h"
#include "lp_bld_const.h"
#include "lp_bld_conv.h"
#include "lp_bld_intr.h"
#include "lp_bld_logic.h"
#include "lp_bld_depth.h"
#include "lp_bld_interp.h"
#include "lp_bld_tgsi.h"
#include "lp_bld_alpha.h"
#include "lp_bld_blend.h"
#include "lp_bld_swizzle.h"
2009-08-21 13:49:10 +01:00
#include "lp_bld_flow.h"
#include "lp_bld_debug.h"
#include "lp_screen.h"
#include "lp_context.h"
#include "lp_buffer.h"
#include "lp_setup.h"
#include "lp_state.h"
#include "lp_tex_sample.h"
2009-10-09 14:59:35 +01:00
#include "lp_debug.h"
static const unsigned char quad_offset_x[4] = {0, 1, 0, 1};
static const unsigned char quad_offset_y[4] = {0, 0, 1, 1};
/*
* Derive from the quad's upper left scalar coordinates the coordinates for
* all other quad pixels
*/
static void
generate_pos0(LLVMBuilderRef builder,
LLVMValueRef x,
LLVMValueRef y,
LLVMValueRef *x0,
LLVMValueRef *y0)
{
LLVMTypeRef int_elem_type = LLVMInt32Type();
LLVMTypeRef int_vec_type = LLVMVectorType(int_elem_type, QUAD_SIZE);
LLVMTypeRef elem_type = LLVMFloatType();
LLVMTypeRef vec_type = LLVMVectorType(elem_type, QUAD_SIZE);
LLVMValueRef x_offsets[QUAD_SIZE];
LLVMValueRef y_offsets[QUAD_SIZE];
unsigned i;
x = lp_build_broadcast(builder, int_vec_type, x);
y = lp_build_broadcast(builder, int_vec_type, y);
for(i = 0; i < QUAD_SIZE; ++i) {
x_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_x[i], 0);
y_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_y[i], 0);
}
x = LLVMBuildAdd(builder, x, LLVMConstVector(x_offsets, QUAD_SIZE), "");
y = LLVMBuildAdd(builder, y, LLVMConstVector(y_offsets, QUAD_SIZE), "");
*x0 = LLVMBuildSIToFP(builder, x, vec_type, "");
*y0 = LLVMBuildSIToFP(builder, y, vec_type, "");
}
/**
* Generate the depth test.
*/
static void
generate_depth(LLVMBuilderRef builder,
const struct lp_fragment_shader_variant_key *key,
struct lp_type src_type,
struct lp_build_mask_context *mask,
LLVMValueRef src,
LLVMValueRef dst_ptr)
{
const struct util_format_description *format_desc;
struct lp_type dst_type;
if(!key->depth.enabled)
return;
format_desc = util_format_description(key->zsbuf_format);
assert(format_desc);
/*
* Depths are expected to be between 0 and 1, even if they are stored in
* floats. Setting these bits here will ensure that the lp_build_conv() call
* below won't try to unnecessarily clamp the incoming values.
*/
if(src_type.floating) {
src_type.sign = FALSE;
src_type.norm = TRUE;
}
else {
assert(!src_type.sign);
assert(src_type.norm);
}
/* Pick the depth type. */
dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
/* FIXME: Cope with a depth test type with a different bit width. */
assert(dst_type.width == src_type.width);
assert(dst_type.length == src_type.length);
lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
dst_ptr = LLVMBuildBitCast(builder,
dst_ptr,
LLVMPointerType(lp_build_vec_type(dst_type), 0), "");
lp_build_depth_test(builder,
&key->depth,
dst_type,
format_desc,
mask,
src,
dst_ptr);
}
/**
* Generate the code to do inside/outside triangle testing for the
* four pixels in a 2x2 quad. This will set the four elements of the
* quad mask vector to 0 or ~0.
* \param i which quad of the quad group to test, in [0,3]
*/
static void
generate_tri_edge_mask(LLVMBuilderRef builder,
unsigned i,
LLVMValueRef *mask, /* ivec4, out */
LLVMValueRef c0, /* int32 */
LLVMValueRef c1, /* int32 */
LLVMValueRef c2, /* int32 */
LLVMValueRef step0_ptr, /* ivec4 */
LLVMValueRef step1_ptr, /* ivec4 */
LLVMValueRef step2_ptr) /* ivec4 */
{
/*
c0_vec = splat(c0)
c1_vec = splat(c1)
c2_vec = splat(c2)
m0_vec = step0_ptr[i] > c0_vec
m1_vec = step1_ptr[i] > c1_vec
m2_vec = step2_ptr[i] > c2_vec
mask = m0_vec & m1_vec & m2_vec
*/
struct lp_build_flow_context *flow;
struct lp_build_if_state ifctx;
struct lp_type i32_type;
LLVMTypeRef i32vec4_type, mask_type;
LLVMValueRef c0_vec, c1_vec, c2_vec;
LLVMValueRef int_min_vec;
LLVMValueRef not_draw_all;
LLVMValueRef in_out_mask;
assert(i < 4);
/* int32 vector type */
memset(&i32_type, 0, sizeof i32_type);
i32_type.floating = FALSE; /* values are integers */
i32_type.sign = TRUE; /* values are signed */
i32_type.norm = FALSE; /* values are not normalized */
i32_type.width = 32; /* 32-bit int values */
i32_type.length = 4; /* 4 elements per vector */
i32vec4_type = lp_build_int32_vec4_type();
mask_type = LLVMIntType(32 * 4);
/* int_min_vec = {INT_MIN, INT_MIN, INT_MIN, INT_MIN} */
int_min_vec = lp_build_int_const_scalar(i32_type, INT_MIN);
/* c0_vec = {c0, c0, c0, c0}
* Note that we emit this code four times but LLVM optimizes away
* three instances of it.
*/
c0_vec = lp_build_broadcast(builder, i32vec4_type, c0);
c1_vec = lp_build_broadcast(builder, i32vec4_type, c1);
c2_vec = lp_build_broadcast(builder, i32vec4_type, c2);
lp_build_name(c0_vec, "edgeconst0vec");
lp_build_name(c1_vec, "edgeconst1vec");
lp_build_name(c2_vec, "edgeconst2vec");
/*
* Use a conditional here to do detailed pixel in/out testing.
* We only have to do this if c0 != {INT_MIN, INT_MIN, INT_MIN, INT_MIN}
*/
flow = lp_build_flow_create(builder);
lp_build_flow_scope_begin(flow);
#define OPTIMIZE_IN_OUT_TEST 0
#if OPTIMIZE_IN_OUT_TEST
in_out_mask = lp_build_compare(builder, i32_type, PIPE_FUNC_EQUAL, c0_vec, int_min_vec);
lp_build_name(in_out_mask, "inoutmaskvec");
not_draw_all = LLVMBuildICmp(builder,
LLVMIntEQ,
LLVMBuildBitCast(builder, in_out_mask, mask_type, ""),
LLVMConstNull(mask_type),
"");
lp_build_flow_scope_declare(flow, &in_out_mask);
lp_build_if(&ifctx, flow, builder, not_draw_all);
#endif
{
LLVMValueRef step0_vec, step1_vec, step2_vec;
LLVMValueRef m0_vec, m1_vec, m2_vec;
LLVMValueRef index, m;
index = LLVMConstInt(LLVMInt32Type(), i, 0);
step0_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step0_ptr, &index, 1, ""), "");
step1_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step1_ptr, &index, 1, ""), "");
step2_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step2_ptr, &index, 1, ""), "");
lp_build_name(step0_vec, "step0vec");
lp_build_name(step1_vec, "step1vec");
lp_build_name(step2_vec, "step2vec");
m0_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step0_vec, c0_vec);
m1_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step1_vec, c1_vec);
m2_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step2_vec, c2_vec);
m = LLVMBuildAnd(builder, m0_vec, m1_vec, "");
in_out_mask = LLVMBuildAnd(builder, m, m2_vec, "");
lp_build_name(in_out_mask, "inoutmaskvec");
/* This is the initial alive/dead pixel mask. Additional bits will get cleared
* when the Z test fails, etc.
*/
}
#if OPTIMIZE_IN_OUT_TEST
lp_build_endif(&ifctx);
#endif
lp_build_flow_scope_end(flow);
lp_build_flow_destroy(flow);
*mask = in_out_mask;
}
/**
* Generate the fragment shader, depth/stencil test, and alpha tests.
* \param i which quad in the tile, in range [0,3]
*/
static void
generate_fs(struct llvmpipe_context *lp,
struct lp_fragment_shader *shader,
const struct lp_fragment_shader_variant_key *key,
LLVMBuilderRef builder,
struct lp_type type,
LLVMValueRef context_ptr,
unsigned i,
const struct lp_build_interp_soa_context *interp,
struct lp_build_sampler_soa *sampler,
LLVMValueRef *pmask,
LLVMValueRef (*color)[4],
LLVMValueRef depth_ptr,
LLVMValueRef c0,
LLVMValueRef c1,
LLVMValueRef c2,
LLVMValueRef step0_ptr,
LLVMValueRef step1_ptr,
LLVMValueRef step2_ptr)
{
const struct tgsi_token *tokens = shader->base.tokens;
LLVMTypeRef elem_type;
LLVMTypeRef vec_type;
2009-08-16 21:01:57 +01:00
LLVMTypeRef int_vec_type;
LLVMValueRef consts_ptr;
LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
LLVMValueRef z = interp->pos[2];
struct lp_build_flow_context *flow;
struct lp_build_mask_context mask;
boolean early_depth_test;
unsigned attrib;
unsigned chan;
unsigned cbuf;
assert(i < 4);
elem_type = lp_build_elem_type(type);
vec_type = lp_build_vec_type(type);
int_vec_type = lp_build_int_vec_type(type);
consts_ptr = lp_jit_context_constants(builder, context_ptr);
flow = lp_build_flow_create(builder);
memset(outputs, 0, sizeof outputs);
lp_build_flow_scope_begin(flow);
/* Declare the color and z variables */
for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
for(chan = 0; chan < NUM_CHANNELS; ++chan) {
color[cbuf][chan] = LLVMGetUndef(vec_type);
lp_build_flow_scope_declare(flow, &color[cbuf][chan]);
}
}
2009-09-10 13:35:39 +01:00
lp_build_flow_scope_declare(flow, &z);
/* do triangle edge testing */
generate_tri_edge_mask(builder, i, pmask,
c0, c1, c2, step0_ptr, step1_ptr, step2_ptr);
/* 'mask' will control execution based on quad's pixel alive/killed state */
lp_build_mask_begin(&mask, flow, type, *pmask);
early_depth_test =
key->depth.enabled &&
!key->alpha.enabled &&
!shader->info.uses_kill &&
!shader->info.writes_z;
if(early_depth_test)
generate_depth(builder, key,
type, &mask,
z, depth_ptr);
lp_build_tgsi_soa(builder, tokens, type, &mask,
consts_ptr, interp->pos, interp->inputs,
outputs, sampler);
for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
for(chan = 0; chan < NUM_CHANNELS; ++chan) {
if(outputs[attrib][chan]) {
lp_build_name(outputs[attrib][chan], "output%u.%u.%c", i, attrib, "xyzw"[chan]);
switch (shader->info.output_semantic_name[attrib]) {
case TGSI_SEMANTIC_COLOR:
{
unsigned cbuf = shader->info.output_semantic_index[attrib];
lp_build_name(outputs[attrib][chan], "color%u.%u.%c", i, attrib, "rgba"[chan]);
/* Alpha test */
/* XXX: should the alpha reference value be passed separately? */
/* XXX: should only test the final assignment to alpha */
if(cbuf == 0 && chan == 3) {
LLVMValueRef alpha = outputs[attrib][chan];
LLVMValueRef alpha_ref_value;
alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
lp_build_alpha_test(builder, &key->alpha, type,
&mask, alpha, alpha_ref_value);
}
color[cbuf][chan] = outputs[attrib][chan];
break;
}
case TGSI_SEMANTIC_POSITION:
if(chan == 2)
z = outputs[attrib][chan];
break;
}
}
}
}
2009-09-10 13:35:39 +01:00
if(!early_depth_test)
generate_depth(builder, key,
type, &mask,
z, depth_ptr);
lp_build_mask_end(&mask);
lp_build_flow_scope_end(flow);
lp_build_flow_destroy(flow);
*pmask = mask.value;
}
/**
* Generate color blending and color output.
*/
static void
generate_blend(const struct pipe_blend_state *blend,
LLVMBuilderRef builder,
struct lp_type type,
LLVMValueRef context_ptr,
LLVMValueRef mask,
LLVMValueRef *src,
LLVMValueRef dst_ptr)
{
struct lp_build_context bld;
struct lp_build_flow_context *flow;
struct lp_build_mask_context mask_ctx;
LLVMTypeRef vec_type;
LLVMTypeRef int_vec_type;
LLVMValueRef const_ptr;
LLVMValueRef con[4];
LLVMValueRef dst[4];
LLVMValueRef res[4];
unsigned chan;
lp_build_context_init(&bld, builder, type);
flow = lp_build_flow_create(builder);
/* we'll use this mask context to skip blending if all pixels are dead */
lp_build_mask_begin(&mask_ctx, flow, type, mask);
vec_type = lp_build_vec_type(type);
int_vec_type = lp_build_int_vec_type(type);
const_ptr = lp_jit_context_blend_color(builder, context_ptr);
const_ptr = LLVMBuildBitCast(builder, const_ptr,
LLVMPointerType(vec_type, 0), "");
for(chan = 0; chan < 4; ++chan) {
LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
lp_build_name(con[chan], "con.%c", "rgba"[chan]);
lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
}
lp_build_blend_soa(builder, blend, type, src, dst, con, res);
for(chan = 0; chan < 4; ++chan) {
if(blend->colormask & (1 << chan)) {
LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
lp_build_name(res[chan], "res.%c", "rgba"[chan]);
res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
}
}
lp_build_mask_end(&mask_ctx);
lp_build_flow_destroy(flow);
}
/**
* Generate the runtime callable function for the whole fragment pipeline.
* Note that the function which we generate operates on a block of 16
* pixels at at time. The block contains 2x2 quads. Each quad contains
* 2x2 pixels.
*/
static struct lp_fragment_shader_variant *
generate_fragment(struct llvmpipe_context *lp,
struct lp_fragment_shader *shader,
const struct lp_fragment_shader_variant_key *key)
{
struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
struct lp_fragment_shader_variant *variant;
struct lp_type fs_type;
struct lp_type blend_type;
LLVMTypeRef fs_elem_type;
LLVMTypeRef fs_vec_type;
LLVMTypeRef fs_int_vec_type;
LLVMTypeRef blend_vec_type;
LLVMTypeRef blend_int_vec_type;
LLVMTypeRef arg_types[14];
LLVMTypeRef func_type;
LLVMTypeRef int32_vec4_type = lp_build_int32_vec4_type();
LLVMValueRef context_ptr;
LLVMValueRef x;
LLVMValueRef y;
LLVMValueRef a0_ptr;
LLVMValueRef dadx_ptr;
LLVMValueRef dady_ptr;
LLVMValueRef color_ptr_ptr;
LLVMValueRef depth_ptr;
LLVMValueRef c0, c1, c2, step0_ptr, step1_ptr, step2_ptr;
LLVMBasicBlockRef block;
LLVMBuilderRef builder;
LLVMValueRef x0;
LLVMValueRef y0;
struct lp_build_sampler_soa *sampler;
struct lp_build_interp_soa_context interp;
LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
LLVMValueRef blend_mask;
LLVMValueRef blend_in_color[NUM_CHANNELS];
unsigned num_fs;
unsigned i;
unsigned chan;
unsigned cbuf;
2009-10-09 14:59:35 +01:00
if (LP_DEBUG & DEBUG_JIT) {
tgsi_dump(shader->base.tokens, 0);
if(key->depth.enabled) {
debug_printf("depth.format = %s\n", pf_name(key->zsbuf_format));
2009-10-09 14:59:35 +01:00
debug_printf("depth.func = %s\n", debug_dump_func(key->depth.func, TRUE));
debug_printf("depth.writemask = %u\n", key->depth.writemask);
}
if(key->alpha.enabled) {
debug_printf("alpha.func = %s\n", debug_dump_func(key->alpha.func, TRUE));
debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
}
if(key->blend.logicop_enable) {
debug_printf("blend.logicop_func = %u\n", key->blend.logicop_func);
}
else if(key->blend.blend_enable) {
debug_printf("blend.rgb_func = %s\n", debug_dump_blend_func (key->blend.rgb_func, TRUE));
debug_printf("rgb_src_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_src_factor, TRUE));
debug_printf("rgb_dst_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_dst_factor, TRUE));
debug_printf("alpha_func = %s\n", debug_dump_blend_func (key->blend.alpha_func, TRUE));
debug_printf("alpha_src_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_src_factor, TRUE));
debug_printf("alpha_dst_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_dst_factor, TRUE));
2009-10-09 14:59:35 +01:00
}
debug_printf("blend.colormask = 0x%x\n", key->blend.colormask);
for(i = 0; i < PIPE_MAX_SAMPLERS; ++i) {
if(key->sampler[i].format) {
debug_printf("sampler[%u] = \n", i);
debug_printf(" .format = %s\n",
pf_name(key->sampler[i].format));
debug_printf(" .target = %s\n",
debug_dump_tex_target(key->sampler[i].target, TRUE));
debug_printf(" .pot = %u %u %u\n",
key->sampler[i].pot_width,
key->sampler[i].pot_height,
key->sampler[i].pot_depth);
debug_printf(" .wrap = %s %s %s\n",
debug_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
debug_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
debug_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
debug_printf(" .min_img_filter = %s\n",
debug_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
debug_printf(" .min_mip_filter = %s\n",
debug_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
debug_printf(" .mag_img_filter = %s\n",
debug_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
if(key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
debug_printf(" .compare_func = %s\n", debug_dump_func(key->sampler[i].compare_func, TRUE));
debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
debug_printf(" .prefilter = %u\n", key->sampler[i].prefilter);
}
}
}
variant = CALLOC_STRUCT(lp_fragment_shader_variant);
if(!variant)
return NULL;
variant->shader = shader;
memcpy(&variant->key, key, sizeof *key);
/* TODO: actually pick these based on the fs and color buffer
* characteristics. */
memset(&fs_type, 0, sizeof fs_type);
fs_type.floating = TRUE; /* floating point values */
fs_type.sign = TRUE; /* values are signed */
fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
fs_type.width = 32; /* 32-bit float */
fs_type.length = 4; /* 4 elements per vector */
num_fs = 4; /* number of quads per block */
memset(&blend_type, 0, sizeof blend_type);
blend_type.floating = FALSE; /* values are integers */
blend_type.sign = FALSE; /* values are unsigned */
blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
blend_type.width = 8; /* 8-bit ubyte values */
blend_type.length = 16; /* 16 elements per vector */
/*
* Generate the function prototype. Any change here must be reflected in
* lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
*/
fs_elem_type = lp_build_elem_type(fs_type);
fs_vec_type = lp_build_vec_type(fs_type);
fs_int_vec_type = lp_build_int_vec_type(fs_type);
blend_vec_type = lp_build_vec_type(blend_type);
blend_int_vec_type = lp_build_int_vec_type(blend_type);
arg_types[0] = screen->context_ptr_type; /* context */
arg_types[1] = LLVMInt32Type(); /* x */
arg_types[2] = LLVMInt32Type(); /* y */
arg_types[3] = LLVMPointerType(fs_elem_type, 0); /* a0 */
arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* dadx */
arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dady */
arg_types[6] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
arg_types[7] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
arg_types[8] = LLVMInt32Type(); /* c0 */
arg_types[9] = LLVMInt32Type(); /* c1 */
arg_types[10] = LLVMInt32Type(); /* c2 */
/* Note: the step arrays are built as int32[16] but we interpret
* them here as int32_vec4[4].
*/
arg_types[11] = LLVMPointerType(int32_vec4_type, 0);/* step0 */
arg_types[12] = LLVMPointerType(int32_vec4_type, 0);/* step1 */
arg_types[13] = LLVMPointerType(int32_vec4_type, 0);/* step2 */
func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
variant->function = LLVMAddFunction(screen->module, "shader", func_type);
LLVMSetFunctionCallConv(variant->function, LLVMCCallConv);
/* XXX: need to propagate noalias down into color param now we are
* passing a pointer-to-pointer?
*/
for(i = 0; i < Elements(arg_types); ++i)
if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
LLVMAddAttribute(LLVMGetParam(variant->function, i), LLVMNoAliasAttribute);
context_ptr = LLVMGetParam(variant->function, 0);
x = LLVMGetParam(variant->function, 1);
y = LLVMGetParam(variant->function, 2);
a0_ptr = LLVMGetParam(variant->function, 3);
dadx_ptr = LLVMGetParam(variant->function, 4);
dady_ptr = LLVMGetParam(variant->function, 5);
color_ptr_ptr = LLVMGetParam(variant->function, 6);
depth_ptr = LLVMGetParam(variant->function, 7);
c0 = LLVMGetParam(variant->function, 8);
c1 = LLVMGetParam(variant->function, 9);
c2 = LLVMGetParam(variant->function, 10);
step0_ptr = LLVMGetParam(variant->function, 11);
step1_ptr = LLVMGetParam(variant->function, 12);
step2_ptr = LLVMGetParam(variant->function, 13);
lp_build_name(context_ptr, "context");
lp_build_name(x, "x");
lp_build_name(y, "y");
lp_build_name(a0_ptr, "a0");
lp_build_name(dadx_ptr, "dadx");
lp_build_name(dady_ptr, "dady");
lp_build_name(color_ptr_ptr, "color_ptr");
lp_build_name(depth_ptr, "depth");
lp_build_name(c0, "c0");
lp_build_name(c1, "c1");
lp_build_name(c2, "c2");
lp_build_name(step0_ptr, "step0");
lp_build_name(step1_ptr, "step1");
lp_build_name(step2_ptr, "step2");
/*
* Function body
*/
block = LLVMAppendBasicBlock(variant->function, "entry");
builder = LLVMCreateBuilder();
LLVMPositionBuilderAtEnd(builder, block);
generate_pos0(builder, x, y, &x0, &y0);
lp_build_interp_soa_init(&interp, shader->base.tokens, builder, fs_type,
a0_ptr, dadx_ptr, dady_ptr,
x0, y0);
/* code generated texture sampling */
sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
/* loop over quads in the block */
for(i = 0; i < num_fs; ++i) {
LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
LLVMValueRef depth_ptr_i;
int cbuf;
if(i != 0)
lp_build_interp_soa_update(&interp, i);
depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
generate_fs(lp, shader, key,
builder,
fs_type,
context_ptr,
i,
&interp,
sampler,
&fs_mask[i], /* output */
out_color,
depth_ptr_i,
c0, c1, c2,
step0_ptr, step1_ptr, step2_ptr);
for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
for(chan = 0; chan < NUM_CHANNELS; ++chan)
fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
}
sampler->destroy(sampler);
/* Loop over color outputs / color buffers to do blending.
*/
for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
LLVMValueRef color_ptr;
LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
/*
* Convert the fs's output color and mask to fit to the blending type.
*/
for(chan = 0; chan < NUM_CHANNELS; ++chan) {
lp_build_conv(builder, fs_type, blend_type,
fs_out_color[cbuf][chan], num_fs,
&blend_in_color[chan], 1);
lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
}
lp_build_conv_mask(builder, fs_type, blend_type,
fs_mask, num_fs,
&blend_mask, 1);
color_ptr = LLVMBuildLoad(builder,
LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
"");
lp_build_name(color_ptr, "color_ptr%d", cbuf);
/*
* Blending.
*/
generate_blend(&key->blend,
builder,
blend_type,
context_ptr,
blend_mask,
blend_in_color,
color_ptr);
}
LLVMBuildRetVoid(builder);
LLVMDisposeBuilder(builder);
/* Verify the LLVM IR. If invalid, dump and abort */
#ifdef DEBUG
if(LLVMVerifyFunction(variant->function, LLVMPrintMessageAction)) {
if (1)
LLVMDumpValue(variant->function);
abort();
}
#endif
/* Apply optimizations to LLVM IR */
if (1)
LLVMRunFunctionPassManager(screen->pass, variant->function);
2009-10-09 14:59:35 +01:00
if (LP_DEBUG & DEBUG_JIT) {
/* Print the LLVM IR to stderr */
2009-10-09 14:59:35 +01:00
LLVMDumpValue(variant->function);
debug_printf("\n");
}
/*
* Translate the LLVM IR into machine code.
*/
variant->jit_function = (lp_jit_frag_func)LLVMGetPointerToGlobal(screen->engine, variant->function);
2009-10-09 14:59:35 +01:00
if (LP_DEBUG & DEBUG_ASM)
lp_disassemble(variant->jit_function);
variant->next = shader->variants;
shader->variants = variant;
return variant;
}
void *
llvmpipe_create_fs_state(struct pipe_context *pipe,
const struct pipe_shader_state *templ)
{
struct lp_fragment_shader *shader;
shader = CALLOC_STRUCT(lp_fragment_shader);
if (!shader)
return NULL;
/* get/save the summary info for this shader */
tgsi_scan_shader(templ->tokens, &shader->info);
/* we need to keep a local copy of the tokens */
shader->base.tokens = tgsi_dup_tokens(templ->tokens);
return shader;
}
void
llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
{
struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
if (llvmpipe->fs == fs)
return;
draw_flush(llvmpipe->draw);
llvmpipe->fs = fs;
llvmpipe->dirty |= LP_NEW_FS;
}
void
llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
{
struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
struct llvmpipe_screen *screen = llvmpipe_screen(pipe->screen);
struct lp_fragment_shader *shader = fs;
struct lp_fragment_shader_variant *variant;
assert(fs != llvmpipe->fs);
2009-12-28 08:44:30 +00:00
(void) llvmpipe;
variant = shader->variants;
while(variant) {
struct lp_fragment_shader_variant *next = variant->next;
if(variant->function) {
if(variant->jit_function)
LLVMFreeMachineCodeForFunction(screen->engine, variant->function);
LLVMDeleteFunction(variant->function);
}
FREE(variant);
variant = next;
}
FREE((void *) shader->base.tokens);
FREE(shader);
}
void
llvmpipe_set_constant_buffer(struct pipe_context *pipe,
uint shader, uint index,
const struct pipe_constant_buffer *constants)
{
struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
struct pipe_buffer *buffer = constants ? constants->buffer : NULL;
unsigned size = buffer ? buffer->size : 0;
const void *data = buffer ? llvmpipe_buffer(buffer)->data : NULL;
assert(shader < PIPE_SHADER_TYPES);
assert(index == 0);
2009-10-09 13:41:33 +01:00
if(llvmpipe->constants[shader].buffer == buffer)
return;
draw_flush(llvmpipe->draw);
/* note: reference counting */
pipe_buffer_reference(&llvmpipe->constants[shader].buffer, buffer);
if(shader == PIPE_SHADER_VERTEX) {
draw_set_mapped_constant_buffer(llvmpipe->draw, PIPE_SHADER_VERTEX,
data, size);
}
llvmpipe->dirty |= LP_NEW_CONSTANTS;
}
/**
* We need to generate several variants of the fragment pipeline to match
* all the combinations of the contributing state atoms.
*
* TODO: there is actually no reason to tie this to context state -- the
* generated code could be cached globally in the screen.
*/
static void
make_variant_key(struct llvmpipe_context *lp,
struct lp_fragment_shader *shader,
struct lp_fragment_shader_variant_key *key)
{
unsigned i;
memset(key, 0, sizeof *key);
if(lp->framebuffer.zsbuf &&
lp->depth_stencil->depth.enabled) {
key->zsbuf_format = lp->framebuffer.zsbuf->format;
memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
}
key->alpha.enabled = lp->depth_stencil->alpha.enabled;
if(key->alpha.enabled)
key->alpha.func = lp->depth_stencil->alpha.func;
/* alpha.ref_value is passed in jit_context */
if (lp->framebuffer.nr_cbufs) {
memcpy(&key->blend, lp->blend, sizeof key->blend);
}
key->nr_cbufs = lp->framebuffer.nr_cbufs;
for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
const struct util_format_description *format_desc;
unsigned chan;
format_desc = util_format_description(lp->framebuffer.cbufs[i]->format);
assert(format_desc->layout == UTIL_FORMAT_COLORSPACE_RGB ||
format_desc->layout == UTIL_FORMAT_COLORSPACE_SRGB);
/* mask out color channels not present in the color buffer.
* Should be simple to incorporate per-cbuf writemasks:
*/
for(chan = 0; chan < 4; ++chan) {
enum util_format_swizzle swizzle = format_desc->swizzle[chan];
if(swizzle <= UTIL_FORMAT_SWIZZLE_W)
key->cbuf_blend[i].colormask |= (1 << chan);
}
}
for(i = 0; i < PIPE_MAX_SAMPLERS; ++i)
if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i))
lp_sampler_static_state(&key->sampler[i], lp->texture[i], lp->sampler[i]);
}
void
llvmpipe_update_fs(struct llvmpipe_context *lp)
{
struct lp_fragment_shader *shader = lp->fs;
struct lp_fragment_shader_variant_key key;
struct lp_fragment_shader_variant *variant;
make_variant_key(lp, shader, &key);
variant = shader->variants;
while(variant) {
if(memcmp(&variant->key, &key, sizeof key) == 0)
break;
variant = variant->next;
}
if(!variant)
variant = generate_fragment(lp, shader, &key);
shader->current = variant;
lp_setup_set_fs_function(lp->setup,
shader->current->jit_function);
}