fteqw/engine/client/p_classic.c

1160 lines
27 KiB
C

/*
Copyright (C) 1996-1997 Id Software, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the included (GNU.txt) GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include "quakedef.h"
#ifdef PSET_CLASSIC
#include "glquake.h"
#include "shader.h"
#include "renderque.h"
#define POLYS
#ifdef FTE_TARGET_WEB
#define rand myrand //emscripten's libc is doing a terrible job of this.
static int rand(void)
{ //ripped from glibc
static int state = 0xdeadbeef;
int val = ((state * 1103515245) + 12345) & 0x7fffffff;
state = val;
return val;
}
#endif
typedef enum {
DODGY,
ROCKET_TRAIL,
ALT_ROCKET_TRAIL,
BLOOD_TRAIL,
GRENADE_TRAIL,
BIG_BLOOD_TRAIL,
TRACER1_TRAIL,
TRACER2_TRAIL,
VOOR_TRAIL,
BRIGHTFIELD_POINT,
BLOBEXPLOSION_POINT,
LAVASPLASH_POINT,
EXPLOSION_POINT,
EXPLOSION2_POINT,
TELEPORTSPLASH_POINT,
MUZZLEFLASH_POINT,
EFFECTTYPE_MAX
} effect_type_t;
typedef struct cparticle_s
{
avec3_t org;
float die;
avec3_t vel;
float ramp;
enum
{
pt_static,
pt_fire,
pt_explode,
pt_explode2,
pt_blob,
pt_blob2,
pt_grav,
pt_slowgrav,
pt_oneframe
} type;
unsigned int rgb;
struct cparticle_s *next;
} cparticle_t;
#define DEFAULT_NUM_PARTICLES 2048
#define ABSOLUTE_MIN_PARTICLES 512
#define ABSOLUTE_MAX_PARTICLES 8192
static int r_numparticles;
static cparticle_t *particles, *active_particles, *free_particles;
extern cvar_t r_part_density, r_part_classic_expgrav, r_part_classic_opaque;
static unsigned int particleframe;
extern qbyte default_quakepal[]; /*for ramps more than anything else*/
static int ramp1[8] = {0x6f, 0x6d, 0x6b, 0x69, 0x67, 0x65, 0x63, 0x61};
static int ramp2[8] = {0x6f, 0x6e, 0x6d, 0x6c, 0x6b, 0x6a, 0x68, 0x66};
static int ramp3[8] = {0x6d, 0x6b, 6, 5, 4, 3};
#define qpal(q) ((default_quakepal[(q)*3+0]<<0) | (default_quakepal[(q)*3+1]<<8) | (default_quakepal[(q)*3+2]<<16))
#ifndef POLYS
#define BUFFERVERTS 2048*3
static vecV_t classicverts[BUFFERVERTS];
static union c
{
byte_vec4_t b;
unsigned int i;
} classiccolours[BUFFERVERTS];
static vec2_t classictexcoords[BUFFERVERTS];
static index_t classicindexes[BUFFERVERTS];
static mesh_t classicmesh;
#endif
static shader_t *classicshader;
//obtains an index for the name, even if it is unknown (one can be loaded after. will only fail if the effect limit is reached)
//technically this function is not meant to fail often, but thats fine so long as the other functions are meant to safely reject invalid effect numbers.
static int PClassic_FindParticleType(const char *name)
{
if (!stricmp("tr_rocket", name))
return ROCKET_TRAIL;
if (!stricmp("tr_altrocket", name))
return ALT_ROCKET_TRAIL;
if (!stricmp("tr_slightblood", name))
return BLOOD_TRAIL;
if (!stricmp("tr_grenade", name))
return GRENADE_TRAIL;
if (!stricmp("tr_blood", name))
return BIG_BLOOD_TRAIL;
if (!stricmp("tr_wizspike", name))
return TRACER1_TRAIL;
if (!stricmp("tr_knightspike", name))
return TRACER2_TRAIL;
if (!stricmp("tr_vorespike", name))
return VOOR_TRAIL;
if (!stricmp("te_tarexplosion", name))
return BLOBEXPLOSION_POINT;
if (!stricmp("te_lavasplash", name))
return LAVASPLASH_POINT;
if (!stricmp("te_explosion", name))
return EXPLOSION_POINT;
if (!strnicmp("te_explosion2_", name, 14))
{
char *e;
int start = strtoul(name+14, &e, 10);
int len = strtoul((*e == '_')?e+1:e, &e, 10);
if (!*e && start >= 0 && start <= 255 && len >= 0 && len <= 255)
return EXPLOSION2_POINT | (start<<8)|(len<<16);
}
if (!stricmp("te_teleport", name))
return TELEPORTSPLASH_POINT;
if (!stricmp("te_muzzleflash", name))
return MUZZLEFLASH_POINT;
if (!stricmp("ef_brightfield", name))
return BRIGHTFIELD_POINT;
return P_INVALID;
}
static qboolean PClassic_Query(int type, int body, char *outstr, int outstrlen)
{
char *n = NULL;
switch(type&0xff)
{
case ROCKET_TRAIL:
n = "tr_rocket";
break;
case ALT_ROCKET_TRAIL:
n = "tr_altrocket";
break;
case BLOOD_TRAIL:
n = "tr_slightblood";
break;
case GRENADE_TRAIL:
n = "tr_grenade";
break;
case BIG_BLOOD_TRAIL:
n = "tr_blood";
break;
case TRACER1_TRAIL:
n = "tr_wizspike";
break;
case TRACER2_TRAIL:
n = "tr_knightspike";
break;
case VOOR_TRAIL:
n = "tr_vorespike";
break;
case BLOBEXPLOSION_POINT:
n = "te_tarexplosion";
break;
case LAVASPLASH_POINT:
n = "te_lavasplash";
break;
case EXPLOSION_POINT:
n = "te_explosion";
break;
case EXPLOSION2_POINT:
n = va("te_explosion2_%i_%i", (type>>8)&0xff, (type>>16)&0xff);
break;
case TELEPORTSPLASH_POINT:
n = "te_teleport";
break;
case BRIGHTFIELD_POINT:
n = "ef_brightfield";
break;
}
if (!n)
return false;
if (body == 0)
{
Q_strncpyz(outstr, n, outstrlen);
return true;
}
return false;
}
//a convienience function.
static int PClassic_RunParticleEffectTypeString (vec3_t org, vec3_t dir, float count, char *name)
{
int efnum = P_FindParticleType(name);
return P_RunParticleEffectState(org, dir, count, efnum, NULL);
}
//DP extension: add particles within a box that look like rain or snow.
static void PClassic_RunParticleWeather(vec3_t minb, vec3_t maxb, vec3_t dir, float count, int colour, char *efname)
{
}
//DP extension: add particles within a box.
static void PClassic_RunParticleCube(int ptype, vec3_t minb, vec3_t maxb, vec3_t dir_min, vec3_t dir_max, float count, int colour, qboolean gravity, float jitter)
{
}
//hexen2 support: add particles flying out from a point with a randomized speed
static void PClassic_RunParticleEffect2 (vec3_t org, vec3_t dmin, vec3_t dmax, int color, int effect, int count)
{
}
//hexen2 support: add particles within a box.
static void PClassic_RunParticleEffect3 (vec3_t org, vec3_t box, int color, int effect, int count)
{
}
//hexen2 support: add particles around the spot in a radius. no idea what the 'effect' field is.
static void PClassic_RunParticleEffect4 (vec3_t org, float radius, int color, int effect, int count)
{
}
//this function is used as a fallback in case a trail effect is unknown.
static void PClassic_ParticleTrailIndex (vec3_t start, vec3_t end, int type, int color, int crnd, trailstate_t **tsk)
{
}
//the one-time initialisation function, called no mater which renderer is active.
static qboolean PClassic_InitParticles (void)
{
int i;
if ((i = COM_CheckParm ("-particles")) && i + 1 < com_argc)
{
r_numparticles = (int) (Q_atoi(com_argv[i + 1]));
r_numparticles = bound(ABSOLUTE_MIN_PARTICLES, r_numparticles, ABSOLUTE_MAX_PARTICLES);
}
else
{
r_numparticles = DEFAULT_NUM_PARTICLES;
}
particles = (cparticle_t *) BZ_Malloc (r_numparticles * sizeof(cparticle_t));
#ifndef POLYS
for (i = 0; i < BUFFERVERTS; i += 3)
{
classictexcoords[i+1][0] = 1;
classictexcoords[i+2][1] = 1;
classicindexes[i+0] = i+0;
classicindexes[i+1] = i+1;
classicindexes[i+2] = i+2;
}
classicmesh.xyz_array = classicverts;
classicmesh.st_array = classictexcoords;
classicmesh.colors4b_array = (byte_vec4_t*)classiccolours;
classicmesh.indexes = classicindexes;
#endif
classicshader = R_RegisterShader("particles_classic", SUF_NONE,
"{\n"
"program defaultsprite\n"
"nomipmaps\n"
"surfaceparm nodlight\n"
"{\n"
"if r_part_classic_square\n"
"map classicparticle_square\n"
"else\n"
"map classicparticle\n"
"endif\n"
"rgbgen vertex\n"
"alphagen vertex\n"
"blendfunc blend\n"
"}\n"
"}\n"
);
return true;
}
static void PClassic_ShutdownParticles(void)
{
BZ_Free(particles);
particles = NULL;
}
// a classic trailstate is really just a float stored in a pointer variable...
// assuming float alignment/size is more strict than pointer
static float Classic_GetLeftover(trailstate_t **tsk)
{
float *f = (float *)tsk;
if (!f)
return 0;
return *f;
}
static void Classic_SetLeftover(trailstate_t **tsk, float leftover)
{
float *f = (float *)tsk;
if (f)
*f = leftover;
}
//called when an entity is removed from the world, taking its trailstate with it.
static void PClassic_DelinkTrailstate(trailstate_t **tsk)
{
*tsk = NULL;
}
//wipes all the particles ready for the next map.
static void PClassic_ClearParticles (void)
{
int i;
free_particles = &particles[0];
active_particles = NULL;
for (i = 0;i < r_numparticles; i++)
particles[i].next = &particles[i+1];
particles[r_numparticles - 1].next = NULL;
}
//some particles (brightfield) must last only one frame
static void PClassic_ClearPerFrame(void)
{
if (particleframe != -1 && particleframe != cl_framecount)
{
cparticle_t **link, *kill;
for (link = &active_particles; *link; )
{
if ((*link)->type == pt_oneframe)
{
kill = *link;
*link = kill->next;
kill->next = free_particles;
free_particles = kill;
}
else
link = &(*link)->next;
}
}
}
//draws all the active particles.
static void PClassic_DrawParticles(void)
{
cparticle_t *p, *kill;
int i;
float time2, time3, time1, dvel, frametime, grav;
vec3_t up, right;
float dist, scale, r_partscale=0;
#ifdef POLYS
scenetris_t *scenetri;
#else
union c usecolours;
#endif
static float oldtime;
RSpeedMark();
if (!active_particles)
{
oldtime = cl.time;
return;
}
if (particleframe != -1 && particleframe != cl_framecount)
{
PClassic_ClearPerFrame();
particleframe = -1;
}
if (r_refdef.useperspective)
r_partscale = 0.004 * tan (r_refdef.fov_x * (M_PI / 180) * 0.5f);
else
r_partscale = 0;
VectorScale (vup, 1.5, up);
VectorScale (vright, 1.5, right);
frametime = cl.time - oldtime;
oldtime = cl.time;
frametime = bound(0, frametime, 1);
if (cl.paused || r_secondaryview || r_refdef.recurse)
frametime = 0;
time3 = frametime * 15;
time2 = frametime * 10; // 15;
time1 = frametime * 5;
grav = frametime * 800 * 0.05;
dvel = 4 * frametime;
#ifdef POLYS
// if (cl_numstris && cl_stris[cl_numstris-1].shader == classicshader && cl_stris[cl_numstris-1].numvert + 8 <= MAX_INDICIES)
// scenetri = &cl_stris[cl_numstris-1];
// else
{
if (cl_numstris == cl_maxstris)
{
cl_maxstris+=8;
cl_stris = BZ_Realloc(cl_stris, sizeof(*cl_stris)*cl_maxstris);
}
scenetri = &cl_stris[cl_numstris++];
scenetri->shader = classicshader;
scenetri->flags = BEF_NODLIGHT|BEF_NOSHADOWS;
scenetri->firstidx = cl_numstrisidx;
scenetri->firstvert = cl_numstrisvert;
scenetri->numvert = 0;
scenetri->numidx = 0;
}
#endif
while(1)
{
kill = active_particles;
if (kill && kill->die < cl.time)
{
active_particles = kill->next;
kill->next = free_particles;
free_particles = kill;
continue;
}
break;
}
for (p = active_particles; p ; p = p->next)
{
while (1)
{
kill = p->next;
if (kill && kill->die < cl.time)
{
p->next = kill->next;
kill->next = free_particles;
free_particles = kill;
continue;
}
break;
}
// hack a scale up to keep particles from disapearing
dist = (p->org[0] - r_origin[0]) * vpn[0] + (p->org[1] - r_origin[1]) * vpn[1] + (p->org[2] - r_origin[2]) * vpn[2];
scale = 1 + dist * r_partscale;
#ifdef POLYS
if (cl_numstrisvert+3 > cl_maxstrisvert)
{
cl_maxstrisvert+=1024*3;
cl_strisvertv = BZ_Realloc(cl_strisvertv, sizeof(*cl_strisvertv)*cl_maxstrisvert);
cl_strisvertt = BZ_Realloc(cl_strisvertt, sizeof(*cl_strisvertt)*cl_maxstrisvert);
cl_strisvertc = BZ_Realloc(cl_strisvertc, sizeof(*cl_strisvertc)*cl_maxstrisvert);
}
// Vector4Set(cl_strisvertc[cl_numstrisvert+0],1,1,1,1);
// Vector4Set(cl_strisvertc[cl_numstrisvert+1],1,1,1,1);
// Vector4Set(cl_strisvertc[cl_numstrisvert+2],1,1,1,1);
Vector4Set(cl_strisvertc[cl_numstrisvert+0], ((p->rgb&0xff)>>0)/256.0, ((p->rgb&0xff00)>>8)/256.0, ((p->rgb&0xff0000)>>16)/256.0, ((p->type == pt_fire && !r_part_classic_opaque.ival)?((6 - p->ramp) *0.166666):1.0));
Vector4Copy(cl_strisvertc[cl_numstrisvert+0], cl_strisvertc[cl_numstrisvert+1]);
Vector4Copy(cl_strisvertc[cl_numstrisvert+0], cl_strisvertc[cl_numstrisvert+2]);
Vector2Set(cl_strisvertt[cl_numstrisvert+0], 0, 0);
Vector2Set(cl_strisvertt[cl_numstrisvert+1], 1, 0);
Vector2Set(cl_strisvertt[cl_numstrisvert+2], 0, 1);
VectorCopy(p->org, cl_strisvertv[cl_numstrisvert+0]);
VectorMA(p->org, scale, up, cl_strisvertv[cl_numstrisvert+1]);
VectorMA(p->org, scale, right, cl_strisvertv[cl_numstrisvert+2]);
if (cl_numstrisidx+3 > cl_maxstrisidx)
{
cl_maxstrisidx += 1024*3;
cl_strisidx = BZ_Realloc(cl_strisidx, sizeof(*cl_strisidx)*cl_maxstrisidx);
}
cl_strisidx[cl_numstrisidx++] = (cl_numstrisvert - scenetri->firstvert) + 0;
cl_strisidx[cl_numstrisidx++] = (cl_numstrisvert - scenetri->firstvert) + 1;
cl_strisidx[cl_numstrisidx++] = (cl_numstrisvert - scenetri->firstvert) + 2;
cl_numstrisvert += 3;
scenetri->numvert += 3;
scenetri->numidx += 3;
#else
if (classicmesh.numvertexes >= BUFFERVERTS-3)
{
classicmesh.numindexes = classicmesh.numvertexes;
BE_DrawMesh_Single(classicshader, &classicmesh, NULL, &classicshader->defaulttextures, 0);
classicmesh.numvertexes = 0;
}
usecolours.i = p->rgb;
if (p->type == pt_fire)
usecolours.b[3] = 255 * (6 - p->ramp) / 6;
else
usecolours.b[3] = 255;
classiccolours[classicmesh.numvertexes].i = usecolours.i;
VectorCopy(p->org, classicverts[classicmesh.numvertexes]);
classicmesh.numvertexes++;
classiccolours[classicmesh.numvertexes].i = usecolours.i;
VectorMA(p->org, scale, up, classicverts[classicmesh.numvertexes]);
classicmesh.numvertexes++;
classiccolours[classicmesh.numvertexes].i = usecolours.i;
VectorMA(p->org, scale, right, classicverts[classicmesh.numvertexes]);
classicmesh.numvertexes++;
#endif
p->org[0] += p->vel[0] * frametime;
p->org[1] += p->vel[1] * frametime;
p->org[2] += p->vel[2] * frametime;
switch (p->type)
{
case pt_oneframe:
case pt_static:
break;
case pt_fire:
p->ramp += time1;
if (p->ramp >= 6)
p->die = -1;
else
p->rgb = qpal(ramp3[(int) p->ramp]);
p->vel[2] += grav;
break;
case pt_explode:
p->ramp += time2;
if (p->ramp >=8)
p->die = -1;
else
p->rgb = qpal(ramp1[(int) p->ramp]);
for (i = 0; i < 3; i++)
p->vel[i] += p->vel[i] * dvel;
p->vel[2] -= grav*r_part_classic_expgrav.value;
break;
case pt_explode2:
p->ramp += time3;
if (p->ramp >=8)
p->die = -1;
else
p->rgb = qpal(ramp2[(int) p->ramp]);
for (i = 0; i < 3; i++)
p->vel[i] -= p->vel[i] * frametime;
p->vel[2] -= grav*r_part_classic_expgrav.value;
break;
case pt_blob:
for (i = 0; i < 3; i++)
p->vel[i] += p->vel[i] * dvel;
p->vel[2] -= grav;
break;
case pt_blob2:
for (i = 0; i < 2; i++)
p->vel[i] -= p->vel[i] * dvel;
p->vel[2] -= grav;
break;
case pt_slowgrav:
case pt_grav:
p->vel[2] -= grav;
break;
}
}
#ifndef POLYS
if (classicmesh.numvertexes)
{
classicmesh.numindexes = classicmesh.numvertexes;
BE_DrawMesh_Single(classicshader, &classicmesh, NULL, &classicshader->defaulttextures, 0);
classicmesh.numvertexes = 0;
}
#endif
RSpeedEnd(RSPEED_PARTICLESDRAW);
}
static void Classic_ParticleExplosion (vec3_t org)
{
int i, j;
cparticle_t *p;
int count;
count = 1024 * r_part_density.value;
for (i = 0; i < count; i++)
{
if (!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
p->die = cl.time + 5;
p->rgb = d_8to24rgbtable[ramp1[0]];
p->ramp = rand() & 3;
if (i & 1)
{
p->type = pt_explode;
for (j = 0; j < 3; j++)
{
p->org[j] = org[j] + ((rand() % 32) - 16);
p->vel[j] = (rand() % 512) - 256;
}
}
else
{
p->type = pt_explode2;
for (j = 0; j < 3; j++)
{
p->org[j] = org[j] + ((rand() % 32) - 16);
p->vel[j] = (rand()%512) - 256;
}
}
}
}
static void Classic_ParticleExplosion2 (vec3_t org, int colorStart, int colorLength)
{
int i, j;
cparticle_t *p;
int colorMod = 0;
for (i=0; i<512; i++)
{
if (!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
p->die = cl.time + 0.3;
p->rgb = d_8to24rgbtable[(colorStart + (colorMod % colorLength)) & 255];
colorMod++;
p->type = pt_blob;
for (j=0 ; j<3 ; j++)
{
p->org[j] = org[j] + ((rand()%32)-16);
p->vel[j] = (rand()%512)-256;
}
}
}
static void Classic_BlobExplosion (vec3_t org)
{
int i, j;
cparticle_t *p;
int count;
count = 1024 * r_part_density.value;
for (i = 0; i < count; i++)
{
if (!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
p->die = cl.time + 1 + (rand() & 8) * 0.05;
if (i & 1)
{
p->type = pt_blob;
p->rgb = d_8to24rgbtable[66 + rand() % 6];
for (j = 0; j < 3; j++)
{
p->org[j] = org[j] + ((rand() % 32) - 16);
p->vel[j] = (rand() % 512) - 256;
}
}
else
{
p->type = pt_blob2;
p->rgb = d_8to24rgbtable[150 + rand() % 6];
for (j = 0; j < 3; j++)
{
p->org[j] = org[j] + ((rand() % 32) - 16);
p->vel[j] = (rand() % 512) - 256;
}
}
}
}
static void Classic_RunParticleEffect (vec3_t org, vec3_t dir, int color, int count)
{
int i, j, scale;
cparticle_t *p;
if (!dir)
dir = vec3_origin;
scale = (count > 130) ? 3 : (count > 20) ? 2 : 1;
count *= r_part_density.value;
for (i = 0; i < count; i++)
{
if (!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
p->die = cl.time + 0.1 * (rand() % 5);
p->rgb = d_8to24rgbtable[(color & ~7) + (rand() & 7)];
p->type = pt_grav;
for (j = 0; j < 3; j++)
{
p->org[j] = org[j] + scale * ((rand() & 15) - 8);
p->vel[j] = dir[j] * 15;
}
}
}
static void Classic_LavaSplash (vec3_t org)
{
int i, j, k;
cparticle_t *p;
float vel;
vec3_t dir;
for (i = -16; i < 16; i++)
{
for (j = -16; j < 16; j++)
{
for (k = 0; k < 1; k++)
{
if (!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
p->die = cl.time + 2 + (rand() & 31) * 0.02;
p->rgb = d_8to24rgbtable[224 + (rand() & 7)];
p->type = pt_grav;
dir[0] = j * 8 + (rand() & 7);
dir[1] = i * 8 + (rand() & 7);
dir[2] = 256;
p->org[0] = org[0] + dir[0];
p->org[1] = org[1] + dir[1];
p->org[2] = org[2] + (rand() & 63);
VectorNormalizeFast (dir);
vel = 50 + (rand() & 63);
VectorScale (dir, vel, p->vel);
}
}
}
}
static void Classic_TeleportSplash (vec3_t org)
{
int i, j, k;
cparticle_t *p;
float vel;
vec3_t dir;
int st = 4 / r_part_density.value;
if (st == 0)
st = 1;
for (i = -16; i < 16; i += st)
{
for (j = -16; j < 16; j += st)
{
for (k = -24; k < 32; k += st)
{
if (!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
p->die = cl.time + 0.2 + (rand() & 7) * 0.02;
p->rgb = d_8to24rgbtable[7 + (rand() & 7)];
p->type = pt_grav;
dir[0] = j * 8;
dir[1] = i * 8;
dir[2] = k * 8;
p->org[0] = org[0] + i + (rand() & 3);
p->org[1] = org[1] + j + (rand() & 3);
p->org[2] = org[2] + k + (rand() & 3);
VectorNormalizeFast (dir);
vel = 50 + (rand() & 63);
VectorScale (dir, vel, p->vel);
}
}
}
}
#define NUMVERTEXNORMALS 162
//vec3_t avelocity = {23, 7, 3};
//float partstep = 0.01;
//float timescale = 0.01;
static vec3_t avelocities[NUMVERTEXNORMALS];
static void Classic_BrightField (vec3_t org)
{
extern float r_avertexnormals[NUMVERTEXNORMALS][3];
float beamlength = 16;
int i;
cparticle_t *p;
float angle;
float sp, sy, cp, cy;
vec3_t forward;
float dist;
PClassic_ClearPerFrame();
particleframe = cl_framecount;
dist = 64;
if (!avelocities[0][0])
{
for (i=0 ; i<NUMVERTEXNORMALS ; i++)
{
avelocities[i][0] = (rand()&255) * 0.01;
avelocities[i][1] = (rand()&255) * 0.01;
avelocities[i][2] = (rand()&255) * 0.01;
}
}
for (i=0 ; i<NUMVERTEXNORMALS ; i++)
{
if (!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
angle = cl.time * avelocities[i][0];
sy = sin(angle);
cy = cos(angle);
angle = cl.time * avelocities[i][1];
sp = sin(angle);
cp = cos(angle);
//fixme: is roll important?
forward[0] = cp*cy;
forward[1] = cp*sy;
forward[2] = -sp;
p->die = cl.time;// + 0.01;
p->rgb = d_8to24rgbtable[0x6f];
p->type = pt_oneframe;
p->org[0] = org[0] + r_avertexnormals[i][0]*dist + forward[0]*beamlength;
p->org[1] = org[1] + r_avertexnormals[i][1]*dist + forward[1]*beamlength;
p->org[2] = org[2] + r_avertexnormals[i][2]*dist + forward[2]*beamlength;
}
}
//svc_tempentity support: this is the function that handles 'special' point effects.
//use the trail state so fast/slow frames keep the correct particle counts on certain every-frame effects
static int PClassic_RunParticleEffectState (vec3_t org, vec3_t dir, float count, int typenum, trailstate_t **tsk)
{
switch(typenum&0xff)
{
case BRIGHTFIELD_POINT:
Classic_BrightField(org);
break;
case BLOBEXPLOSION_POINT:
Classic_BlobExplosion(org);
break;
case LAVASPLASH_POINT:
Classic_LavaSplash(org);
break;
case EXPLOSION_POINT:
Classic_ParticleExplosion(org);
break;
case EXPLOSION2_POINT:
Classic_ParticleExplosion2(org, (typenum>>8)&0xff, (typenum>>16)&0xff);
break;
case TELEPORTSPLASH_POINT:
Classic_TeleportSplash(org);
break;
case MUZZLEFLASH_POINT:
{
dlight_t *dl = CL_AllocDlight (0);
if (dir)
VectorCopy(dir, dl->axis[0]);
else
VectorSet(dir, 0, 0, 1);
VectorVectors(dl->axis[0], dl->axis[1], dl->axis[2]);
VectorInverse(dl->axis[1]);
if (dir)
VectorMA (org, 15, dl->axis[0], dl->origin);
else
VectorCopy (org, dl->origin);
dl->radius = 200 + (rand()&31);
dl->minlight = 32;
dl->die = cl.time + 0.1;
dl->color[0] = 1.5;
dl->color[1] = 1.3;
dl->color[2] = 1.0;
dl->channelfade[0] = 1.5;
dl->channelfade[1] = 0.75;
dl->channelfade[2] = 0.375;
dl->decay = 1000;
#ifdef RTLIGHTS
dl->lightcolourscales[2] = 4;
#endif
}
break;
default:
return 1;
}
return 0;
}
static float Classic_ParticleTrail (vec3_t start, vec3_t end, float leftover, effect_type_t type)
{
vec3_t point, delta, dir;
float len, rlen, scale;
int i, j, num_particles;
cparticle_t *p;
static int tracercount;
if (type >= BRIGHTFIELD_POINT)
{
PClassic_RunParticleEffectState(end, vec3_origin, 1, type, NULL);
return 0;
}
VectorCopy (start, point);
VectorSubtract (end, start, delta);
if (!(len = VectorLength (delta)))
goto done;
VectorScale(delta, 1 / len, dir); //unit vector in direction of trail
VectorMA(point, -leftover, dir, point);
len += leftover;
rlen = len;
switch (type)
{
case ALT_ROCKET_TRAIL:
scale = 1.5; break;
case BLOOD_TRAIL:
scale = 6; break;
default:
scale = 3; break;
case TRACER1_TRAIL:
case TRACER2_TRAIL:
scale = (r_part_density.value < 0.5)?6*r_part_density.value:3;
break;
}
scale /= r_part_density.value;
VectorScale (dir, scale, dir);
len /= scale;
leftover = rlen - ((int)(len) * scale);
num_particles = (int) len;
for (i = 0; i < num_particles && free_particles; i++)
{
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
VectorClear (p->vel);
p->die = cl.time + 2;
switch(type)
{
case GRENADE_TRAIL:
p->ramp = (rand() & 3) + 2;
p->rgb = d_8to24rgbtable[ramp3[(int) p->ramp]];
p->type = pt_fire;
for (j = 0; j < 3; j++)
p->org[j] = point[j] + ((rand() % 6) - 3);
break;
case BLOOD_TRAIL:
p->type = pt_slowgrav;
p->rgb = d_8to24rgbtable[67 + (rand() & 3)];
for (j = 0; j < 3; j++)
p->org[j] = point[j] + ((rand() % 6) - 3);
break;
case BIG_BLOOD_TRAIL:
p->type = pt_slowgrav;
p->rgb = d_8to24rgbtable[67 + (rand() & 3)];
for (j = 0; j < 3; j++)
p->org[j] = point[j] + ((rand() % 6) - 3);
break;
case TRACER1_TRAIL:
case TRACER2_TRAIL:
p->die = cl.time + 0.5;
p->type = pt_static;
if (type == TRACER1_TRAIL)
p->rgb = d_8to24rgbtable[52 + ((tracercount & 4) << 1)];
else
p->rgb = d_8to24rgbtable[230 + ((tracercount & 4) << 1)];
tracercount++;
VectorCopy (point, p->org);
if (tracercount & 1)
{
p->vel[0] = 90 * dir[1];
p->vel[1] = 90 * -dir[0];
}
else
{
p->vel[0] = 90 * -dir[1];
p->vel[1] = 90 * dir[0];
}
break;
case VOOR_TRAIL:
p->rgb = d_8to24rgbtable[9 * 16 + 8 + (rand() & 3)];
p->type = pt_static;
p->die = cl.time + 0.3;
for (j = 0; j < 3; j++)
p->org[j] = point[j] + ((rand() & 15) - 8);
break;
case ALT_ROCKET_TRAIL:
p->ramp = (rand() & 3);
p->rgb = d_8to24rgbtable[ramp3[(int) p->ramp]];
p->type = pt_fire;
for (j = 0; j < 3; j++)
p->org[j] = point[j] + ((rand() % 6) - 3);
break;
case ROCKET_TRAIL:
default:
p->ramp = (rand() & 3);
p->rgb = d_8to24rgbtable[ramp3[(int) p->ramp]];
p->type = pt_fire;
for (j = 0; j < 3; j++)
p->org[j] = point[j] + ((rand() % 6) - 3);
break;
}
VectorAdd (point, dir, point);
}
done:
return leftover;
}
int PClassic_PointFile(int c, vec3_t point)
{
cparticle_t *p;
if (!free_particles)
return 0;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
VectorClear (p->vel);
p->die = 99999;
p->rgb = d_8to24rgbtable[(-c) & 0xff];
p->type = pt_static;
VectorCopy(point, p->org);
return 1;
}
//builds a trail from here to there. The trail state can be used to remember how far you got last frame.
static int PClassic_ParticleTrail (vec3_t startpos, vec3_t end, int type, int dlkey, vec3_t dlaxis[3], trailstate_t **tsk)
{
float leftover;
if (type == P_INVALID)
return 1;
leftover = Classic_ParticleTrail(startpos, end, Classic_GetLeftover(tsk), type);
Classic_SetLeftover(tsk, leftover);
return 0;
}
//svc_particle support: add X particles with the given colour, velocity, and aproximate origin.
static void PClassic_RunParticleEffect (vec3_t org, vec3_t dir, int color, int count)
{
Classic_RunParticleEffect(org, dir, color, count);
}
static void PClassic_RunParticleEffectPalette (const char *nameprefix, vec3_t org, vec3_t dir, int color, int count)
{
Classic_RunParticleEffect(org, dir, color, count);
}
particleengine_t pe_classic =
{
"Classic",
NULL,
PClassic_FindParticleType,
PClassic_Query,
PClassic_RunParticleEffectTypeString,
PClassic_ParticleTrail,
PClassic_RunParticleEffectState,
PClassic_RunParticleWeather,
PClassic_RunParticleCube,
PClassic_RunParticleEffect,
PClassic_RunParticleEffect2,
PClassic_RunParticleEffect3,
PClassic_RunParticleEffect4,
PClassic_RunParticleEffectPalette,
PClassic_ParticleTrailIndex,
PClassic_InitParticles,
PClassic_ShutdownParticles,
PClassic_DelinkTrailstate,
PClassic_ClearParticles,
PClassic_DrawParticles
};
#endif