fteqw/engine/gl/ltface.c

954 lines
19 KiB
C

#include "quakedef.h"
#ifdef RUNTIMELIGHTING
#if defined(GLQUAKE) || defined(D3DQUAKE)
extern model_t *lightmodel;
#define bsptexinfo(i) (*i)
#define dsurfedges lightmodel->surfedges
#define dvertexes lightmodel->vertexes
#define dedges lightmodel->edges
#define texinfo_t mtexinfo_t
#define Q_PI M_PI
#define Error Host_Error
#define byte qbyte
#define dfaces lightmodel->surfaces
#define dplanes lightmodel->planes
#define dface_t msurface_t
#define dvertex_t mvertex_t
#define point position
#define side flags & SURF_PLANEBACK
#define scaledist 1
#define rangescale 0.5
#define extrasamples 1
#define scalecos 0.5
typedef struct mentity_s {
vec3_t origin;
float light;
float angle;
float cone;
int style;
vec3_t colour;
char classname[64];
char target[64];
char targetname[64];
struct mentity_s *targetent;
} mentity_t;
static mentity_t entities[8192];
static int num_entities;
#define bsp_origin vec3_origin
/*
============
CastRay
Returns the distance between the points, or -1 if blocked
=============
*/
vec_t CastRay (vec3_t p1, vec3_t p2)
{
trace_t trace;
vec3_t move;
lightmodel->funcs.NativeTrace (lightmodel, 0, 0, NULL, p1, p2, vec3_origin, vec3_origin, FTECONTENTS_SOLID, &trace);
if (trace.fraction < 1)
return -1;
VectorSubtract(p1, p2, move);
return VectorLength(move);
}
static void ParseEpair (mentity_t *mapent, char *key, char *value)
{
double vec[3];
if (!strcmp(key, "classname"))
strcpy(mapent->classname, value);
else if (!strcmp(key, "target"))
strcpy(mapent->target, value);
else if (!strcmp(key, "targetname"))
strcpy(mapent->targetname, value);
else if (!strcmp(key, "light") || !strcmp(key, "_light"))
mapent->light = atoi(value);
else if (!strcmp(key, "style") || !strcmp(key, "_style"))
mapent->style = atoi(value);
else if (!strcmp(key, "angle") || !strcmp(key, "_angle"))
mapent->angle = atof(value);
else if (!strcmp(key, "cone") || !strcmp(key, "_cone"))
mapent->cone = atof(value);
else if (!strcmp(key, "origin"))
{
sscanf (value, "%lf %lf %lf", &vec[0], &vec[1], &vec[2]);
mapent->origin[0]=vec[0];
mapent->origin[1]=vec[1];
mapent->origin[2]=vec[2];
}
else if (!strcmp(key, "colour") || !strcmp(key, "color") || !strcmp(key, "_colour") || !strcmp(key, "_color"))
{
sscanf (value, "%lf %lf %lf", &vec[0], &vec[1], &vec[2]);
mapent->colour[0]=vec[0];
mapent->colour[1]=vec[1];
mapent->colour[2]=vec[2];
}
}
void LightLoadEntities(char *entstring)
{
#define DEFAULTLIGHTLEVEL 300
mentity_t *mapent;
char key[1024];
int i;
int switchedstyle=32;
num_entities = 0;
while(1)
{
entstring = COM_Parse(entstring);
if (!entstring || !*com_token)
break;
if (strcmp(com_token, "{"))
{ //someone messed up. Stop parsing.
Con_Printf("token wasn't an open brace\n");
break;
}
mapent = &entities[num_entities];
memset(mapent, 0, sizeof(*mapent));
mapent->colour[0] = 0;
mapent->colour[1] = 0;
mapent->colour[2] = 0;
while(1)
{
entstring = COM_Parse(entstring);
if (!strcmp(com_token, "}"))
break;
strcpy(key, com_token);
entstring = COM_Parse(entstring);
ParseEpair(mapent, key, com_token);
}
if (!mapent->colour[0] && !mapent->colour[1] && !mapent->colour[2])
{
int cont;
vec3_t v;
v[0] = mapent->origin[0];
v[1] = mapent->origin[1];
cont=0;
for (i = 0; i < 256; i+=16)
{
v[2] = mapent->origin[2]-i;
cont = lightmodel->funcs.PointContents (lightmodel, NULL, v);
if (cont & (FTECONTENTS_LAVA | FTECONTENTS_SLIME | FTECONTENTS_SOLID))
break;
}
if (cont & FTECONTENTS_LAVA)
{
mapent->colour[0] = 1;
mapent->colour[1] = i/256.0;
mapent->colour[2] = i/256.0;
}
else if (cont & FTECONTENTS_SLIME)
{
mapent->colour[0] = 0.5+0.5*i/256.0;
mapent->colour[1] = 1;
mapent->colour[2] = 0.5+0.5*i/256.0;
}
else
{
if (mapent->style == 9) //hmm..
{
mapent->colour[1] = 1;
}
else
{
if (!strncmp(mapent->classname, "light_torch_small_walltorch", 12))
{
mapent->colour[0] = 1;
mapent->colour[1] = 0.7;
mapent->colour[2] = 0.7;
}
else
{
mapent->colour[0] = 1;
mapent->colour[1] = 1;
if (strncmp(mapent->classname, "light_fluoro", 12))
mapent->colour[2] = 1;
}
}
}
}
if (!mapent->light && !strncmp (mapent->classname, "light", 5))
mapent->light = DEFAULTLIGHTLEVEL;
if (*mapent->targetname && !mapent->style && !strcmp(mapent->classname, "light"))
{
for (i = 0; i <= num_entities; i++)
{
if (entities[i].style >= 32 && !strcmp(entities[i].targetname, mapent->targetname))
{
mapent->style = entities[i].style;
break;
}
}
if (i == num_entities)
mapent->style = switchedstyle++;
}
num_entities++;
}
for (mapent = entities; mapent < &entities[num_entities]; mapent++)
{
if (*mapent->target)
{
for (i = 0; i < num_entities; i++)
{
if (mapent == &entities[i])
continue;
if (!strcmp(mapent->target, entities[i].targetname))
{
mapent->targetent = &entities[i];
break;
}
}
}
}
}
#else
#define mentity_t entity_t
#define UTILITY
#include "light.h"
#define bsptexinfo(i) texinfo[i]
/*
============
CastRay
Returns the distance between the points, or -1 if blocked
=============
*/
vec_t CastRay (vec3_t p1, vec3_t p2)
{
int i;
vec_t t;
qboolean trace;
trace = TestLine (p1, p2);
if (!trace)
return -1; // ray was blocked
t = 0;
for (i=0 ; i< 3 ; i++)
t += (p2[i]-p1[i]) * (p2[i]-p1[i]);
if (t < 1)
t = 1; // don't blow up...
return sqrt(t);
}
#endif
/*
===============================================================================
SAMPLE POINT DETERMINATION
void SetupBlock (dface_t *f) Returns with surfpt[] set
This is a little tricky because the lightmap covers more area than the face.
If done in the straightforward fashion, some of the
sample points will be inside walls or on the other side of walls, causing
false shadows and light bleeds.
To solve this, I only consider a sample point valid if a line can be drawn
between it and the exact midpoint of the face. If invalid, it is adjusted
towards the center until it is valid.
(this doesn't completely work)
===============================================================================
*/
#define SINGLEMAP (18*18*4)
typedef struct
{
vec3_t lightmaps[MAXLIGHTMAPS][SINGLEMAP];
vec3_t lightnorm[MAXLIGHTMAPS][SINGLEMAP];
int numlightstyles;
vec_t *light;
vec_t facedist;
vec3_t facenormal;
int numsurfpt;
vec3_t surfpt[SINGLEMAP];
vec3_t texorg;
vec3_t worldtotex[2]; // s = (world - texorg) . worldtotex[0]
vec3_t textoworld[2]; // world = texorg + s * textoworld[0]
vec_t exactmins[2], exactmaxs[2];
int texmins[2], texsize[2];
int lightstyles[256];
int surfnum;
dface_t *face;
} llightinfo_t;
/*
================
CalcFaceVectors
Fills in texorg, worldtotex. and textoworld
================
*/
static void LightCalcFaceVectors (llightinfo_t *l)
{
texinfo_t *tex;
int i, j;
vec3_t texnormal;
float distscale;
vec_t dist, len;
tex = &bsptexinfo(l->face->texinfo);
// convert from float to vec_t
for (i=0 ; i<2 ; i++)
for (j=0 ; j<3 ; j++)
l->worldtotex[i][j] = tex->vecs[i][j];
// calculate a normal to the texture axis. points can be moved along this
// without changing their S/T
texnormal[0] = tex->vecs[1][1]*tex->vecs[0][2]
- tex->vecs[1][2]*tex->vecs[0][1];
texnormal[1] = tex->vecs[1][2]*tex->vecs[0][0]
- tex->vecs[1][0]*tex->vecs[0][2];
texnormal[2] = tex->vecs[1][0]*tex->vecs[0][1]
- tex->vecs[1][1]*tex->vecs[0][0];
VectorNormalize (texnormal);
// flip it towards plane normal
distscale = DotProduct (texnormal, l->facenormal);
if (!distscale)
Error ("Texture axis perpendicular to face");
if (distscale < 0)
{
distscale = -distscale;
VectorNegate (texnormal, texnormal);
}
// distscale is the ratio of the distance along the texture normal to
// the distance along the plane normal
distscale = 1/distscale;
for (i=0 ; i<2 ; i++)
{
len = VectorLength (l->worldtotex[i]);
dist = DotProduct (l->worldtotex[i], l->facenormal);
dist *= distscale;
VectorMA (l->worldtotex[i], -dist, texnormal, l->textoworld[i]);
VectorScale (l->textoworld[i], (1/len)*(1/len), l->textoworld[i]);
}
// calculate texorg on the texture plane
for (i=0 ; i<3 ; i++)
l->texorg[i] = -tex->vecs[0][3]* l->textoworld[0][i] - tex->vecs[1][3] * l->textoworld[1][i];
// project back to the face plane
dist = DotProduct (l->texorg, l->facenormal) - l->facedist - 1;
dist *= distscale;
VectorMA (l->texorg, -dist, texnormal, l->texorg);
}
/*
================
CalcFaceExtents
Fills in s->texmins[] and s->texsize[]
also sets exactmins[] and exactmaxs[]
================
*/
static void LightCalcFaceExtents (llightinfo_t *l)
{
dface_t *s;
vec_t mins[2], maxs[2], val;
int i,j, e;
dvertex_t *v;
texinfo_t *tex;
s = l->face;
mins[0] = mins[1] = 999999;
maxs[0] = maxs[1] = -99999;
tex = &bsptexinfo(s->texinfo);
for (i=0 ; i<s->numedges ; i++)
{
e = dsurfedges[s->firstedge+i];
if (e >= 0)
v = dvertexes + dedges[e].v[0];
else
v = dvertexes + dedges[-e].v[1];
for (j=0 ; j<2 ; j++)
{
val = v->point[0] * tex->vecs[j][0] +
v->point[1] * tex->vecs[j][1] +
v->point[2] * tex->vecs[j][2] +
tex->vecs[j][3];
if (val < mins[j])
mins[j] = val;
if (val > maxs[j])
maxs[j] = val;
}
}
for (i=0 ; i<2 ; i++)
{
l->exactmins[i] = mins[i];
l->exactmaxs[i] = maxs[i];
mins[i] = floor(mins[i]/16);
maxs[i] = ceil(maxs[i]/16);
l->texmins[i] = mins[i];
l->texsize[i] = maxs[i] - mins[i];
if (l->texsize[i] > 17)
Error ("Bad surface extents");
}
}
/*
=================
CalcPoints
For each texture aligned grid point, back project onto the plane
to get the world xyz value of the sample point
=================
*/
int c_bad;
static void LightCalcPoints (llightinfo_t *l)
{
int i;
int s, t, j;
int w, h, step;
vec_t starts, startt, us, ut;
vec_t *surf;
vec_t mids, midt;
vec3_t facemid, move;
//
// fill in surforg
// the points are biased towards the center of the surface
// to help avoid edge cases just inside walls
//
surf = l->surfpt[0];
mids = (l->exactmaxs[0] + l->exactmins[0])/2;
midt = (l->exactmaxs[1] + l->exactmins[1])/2;
for (j=0 ; j<3 ; j++)
facemid[j] = l->texorg[j] + l->textoworld[0][j]*mids + l->textoworld[1][j]*midt;
if (extrasamples)
{ // extra filtering
h = (l->texsize[1]+1)*2;
w = (l->texsize[0]+1)*2;
starts = (l->texmins[0]-0.5)*16;
startt = (l->texmins[1]-0.5)*16;
step = 8;
}
else
{
h = l->texsize[1]+1;
w = l->texsize[0]+1;
starts = l->texmins[0]*16;
startt = l->texmins[1]*16;
step = 16;
}
l->numsurfpt = w * h;
for (t=0 ; t<h ; t++)
{
for (s=0 ; s<w ; s++, surf+=3)
{
us = starts + s*step;
ut = startt + t*step;
// if a line can be traced from surf to facemid, the point is good
for (i=0 ; i<6 ; i++)
{
// calculate texture point
for (j=0 ; j<3 ; j++)
surf[j] = l->texorg[j] + l->textoworld[0][j]*us
+ l->textoworld[1][j]*ut;
if (CastRay (facemid, surf) != -1)
break; // got it
if (i & 1)
{
if (us > mids)
{
us -= 8;
if (us < mids)
us = mids;
}
else
{
us += 8;
if (us > mids)
us = mids;
}
}
else
{
if (ut > midt)
{
ut -= 8;
if (ut < midt)
ut = midt;
}
else
{
ut += 8;
if (ut > midt)
ut = midt;
}
}
// move surf 8 pixels towards the center
VectorSubtract (facemid, surf, move);
VectorNormalize (move);
VectorMA (surf, 8, move, surf);
}
if (i == 2)
c_bad++;
}
}
}
/*
===============================================================================
FACE LIGHTING
===============================================================================
*/
int c_culldistplane, c_proper;
/*
================
SingleLightFace
================
*/
static void SingleLightFace (mentity_t *light, llightinfo_t *l)
{
vec_t dist;
vec3_t incoming;
vec_t angle;
vec_t add;
vec_t *surf;
qboolean hit;
int mapnum;
int size;
int c, i;
vec3_t rel;
vec3_t spotvec;
vec_t falloff;
vec3_t *lightsamp;
vec3_t *norms;
VectorSubtract (light->origin, bsp_origin, rel);
dist = scaledist * (DotProduct (rel, l->facenormal) - l->facedist);
// don't bother with lights behind the surface
if (dist <= 0)
return;
// don't bother with light too far away
if (dist > light->light)
{
c_culldistplane++;
return;
}
if (light->targetent)
{
VectorSubtract (light->targetent->origin, light->origin, spotvec);
VectorNormalize (spotvec);
if (!light->angle)
falloff = -cos(20*Q_PI/180);
else
falloff = -cos(light->angle/2*Q_PI/180);
}
else
falloff = 0; // shut up compiler warnings
mapnum = 0;
for (mapnum=0 ; mapnum<l->numlightstyles ; mapnum++)
if (l->lightstyles[mapnum] == light->style)
break;
lightsamp = l->lightmaps[mapnum];
norms = l->lightnorm[mapnum];
if (mapnum == l->numlightstyles)
{ // init a new light map
if (mapnum == MAXLIGHTMAPS)
{
printf ("WARNING: Too many light styles on a face\n");
return;
}
size = (l->texsize[1]+1)*(l->texsize[0]+1);
for (i=0 ; i<size ; i++)
{
lightsamp[i][0] = 0;
lightsamp[i][1] = 0;
lightsamp[i][2] = 0;
norms[i][0] = 0;
norms[i][1] = 0;
norms[i][2] = 0;
}
}
//
// check it for real
//
hit = false;
c_proper++;
surf = l->surfpt[0];
for (c=0 ; c<l->numsurfpt ; c++, surf+=3)
{
dist = CastRay(light->origin, surf)*scaledist;
if (dist < 0)
continue; // light doesn't reach
VectorSubtract (light->origin, surf, incoming);
VectorNormalize (incoming);
if (light->targetent)
{ // spotlight cutoff
if (DotProduct (spotvec, incoming) > falloff)
continue;
}
angle = DotProduct (incoming, l->facenormal);
angle = (1.0-scalecos) + scalecos*angle;
add = light->light - dist;
add *= angle;
if (add < 0)
continue;
lightsamp[c][0] += add*light->colour[0];
lightsamp[c][1] += add*light->colour[1];
lightsamp[c][2] += add*light->colour[2];
norms[c][0] -= add * incoming[0]; //Quake doesn't make sence some times.
norms[c][1] -= add * incoming[1];
norms[c][2] -= add * incoming[2];
if (add > 1) // ignore real tiny lights
hit = true;
}
if (mapnum == l->numlightstyles && hit)
{
l->lightstyles[mapnum] = light->style;
l->numlightstyles++; // the style has some real data now
}
}
/*
============
FixMinlight
============
*/
static void FixMinlight (llightinfo_t *l)
{
int i, j;
float minlight;
minlight = 0;
// if minlight is set, there must be a style 0 light map
if (!minlight)
return;
for (i=0 ; i< l->numlightstyles ; i++)
{
if (l->lightstyles[i] == 0)
break;
}
if (i == l->numlightstyles)
{
if (l->numlightstyles == MAXLIGHTMAPS)
return; // oh well..
for (j=0 ; j<l->numsurfpt ; j++)
{
l->lightmaps[i][j][0] = minlight;
l->lightmaps[i][j][1] = minlight;
l->lightmaps[i][j][2] = minlight;
}
l->lightstyles[i] = 0;
l->numlightstyles++;
}
else
{
for (j=0 ; j<l->numsurfpt ; j++)
{
if ( l->lightmaps[i][j][0] < minlight)
l->lightmaps[i][j][0] = minlight;
if ( l->lightmaps[i][j][1] < minlight)
l->lightmaps[i][j][1] = minlight;
if ( l->lightmaps[i][j][2] < minlight)
l->lightmaps[i][j][2] = minlight;
}
}
}
/*
============
LightFace
============
*/
void LightFace (int surfnum)
{
dface_t *f;
llightinfo_t l;
int s, t;
int i,j,c,ch;
vec_t total, mean;
int size;
int lightmapwidth, lightmapsize;
#ifdef UTILITY
byte *out;
#endif
byte *rgbout;
byte *dulout;
vec3_t *light, *norm;
vec3_t wnorm, temp, svector, tvector;
int w, h;
f = dfaces + surfnum;
//
// some surfaces don't need lightmaps
//
#ifdef UTILITY
for (j=0 ; j<MAXLIGHTMAPS ; j++)
f->styles[j] = 255;
#endif
if ( bsptexinfo(f->texinfo).flags & TEX_SPECIAL)
{ // non-lit texture
#ifdef UTILITY
f->lightofs = -1;
#endif
return;
}
#ifndef UTILITY
if (!f->samples)
return;
#endif
memset (&l, 0, sizeof(l));
l.surfnum = surfnum;
l.face = f;
//
// rotate plane
//
#ifndef UTILITY
VectorCopy (f->plane->normal, l.facenormal);
l.facedist = f->plane->dist;
#else
VectorCopy (dplanes[f->planenum].normal, l.facenormal);
l.facedist = dplanes[f->planenum].dist;
#endif
if (f->side)
{
VectorNegate (l.facenormal, l.facenormal);
l.facedist = -l.facedist;
}
LightCalcFaceVectors (&l);
LightCalcFaceExtents (&l);
LightCalcPoints (&l);
lightmapwidth = l.texsize[0]+1;
size = lightmapwidth*(l.texsize[1]+1);
if (size > SINGLEMAP)
Error ("Bad lightmap size");
for (i=0 ; i<MAXLIGHTMAPS ; i++)
l.lightstyles[i] = 255;
//
// cast all lights
//
l.numlightstyles = 0;
for (i=0 ; i<num_entities ; i++)
{
if (entities[i].light)
SingleLightFace (&entities[i], &l);
}
FixMinlight (&l);
if (!l.numlightstyles)
{ // no light hitting it
#ifdef UTILITY
f->lightofs = -1;
#endif
return;
}
#ifndef UTILITY
for (j=0 ; j<MAXLIGHTMAPS ; j++)
f->styles[j] = 255;
#endif
//
// save out the values
//
for (i=0 ; i <MAXLIGHTMAPS ; i++)
f->styles[i] = l.lightstyles[i];
lightmapsize = size*l.numlightstyles;
#ifdef UTILITY
if (runningrgblightdatabase)
{
out = GetFakeFileSpace(&f->lightofs, size);
rgbout = runningrgblightdatabase + f->lightofs*3;
dulout = runninglightnormbase + f->lightofs*3;
}
else
{
out = GetFileSpace (&f->lightofs, lightmapsize);
rgbout = GetRGBFileSpace (f->lightofs, lightmapsize);
dulout = GetNormFileSpace (f->lightofs, lightmapsize);
}
#else
rgbout = f->samples;
if (lightmodel->deluxdata)
{
dulout = f->samples - lightmodel->lightdata + lightmodel->deluxdata;
VectorCopy(bsptexinfo(f->texinfo).vecs[0], svector);
VectorNegate(bsptexinfo(f->texinfo).vecs[1], tvector);
VectorNormalize(svector);
VectorNormalize(tvector);
}
else
dulout = NULL;
#endif
// extra filtering
h = (l.texsize[1]+1)*2;
w = (l.texsize[0]+1)*2;
for (i=0 ; i< l.numlightstyles ; i++)
{
if (l.lightstyles[i] == 0xff)
Error ("Wrote empty lightmap");
light = l.lightmaps[i];
norm = l.lightnorm[i];
c = 0;
for (t=0 ; t<=l.texsize[1] ; t++)
{
for (s=0 ; s<=l.texsize[0] ; s++, c++)
{
mean = 0;
for (ch = 0; ch < 3; ch++)
{
if (extrasamples)
{ // filtered sample
total = light[t*2*w+s*2][ch] + light[t*2*w+s*2+1][ch]
+ light[(t*2+1)*w+s*2][ch] + light[(t*2+1)*w+s*2+1][ch];
total *= 0.25;
wnorm[ch] = norm[t*2*w+s*2][ch] + norm[t*2*w+s*2+1][ch]
+ norm[(t*2+1)*w+s*2][ch] + norm[(t*2+1)*w+s*2+1][ch];
}
else
{
total = light[c][ch];
wnorm[ch] = norm[c][ch];
}
total *= rangescale; // scale before clamping
#ifndef UTILITY
if (total > *rgbout) //sorry - for qw
total = *rgbout;
#endif
if (total < 0)
Error ("light < 0");
*rgbout++ = total;
mean += total;
}
#ifdef UTILITY
*out++ = mean/3;
#endif
if (dulout)
{
temp[0] = DotProduct(wnorm, svector);
temp[1] = DotProduct(wnorm, tvector);
temp[2] = DotProduct(wnorm, l.facenormal);
VectorNormalize(temp);
temp[2] += 0.5;
VectorNormalize(temp);
*dulout++ = (-temp[0]+1)*128;
*dulout++ = (-temp[1]+1)*128;
*dulout++ = (-temp[2]+1)*128;
}
}
}
}
}
#endif