fteqw/engine/gl/gl_backend.c

3614 lines
93 KiB
C
Raw Normal View History

#include "quakedef.h"
//#define FORCESTATE
//#define WIREFRAME
#ifdef GLQUAKE
#include "glquake.h"
#include "shader.h"
#ifdef _WIN32
#include <malloc.h>
#else
#include <alloca.h>
#endif
#ifdef FORCESTATE
#pragma warningmsg("FORCESTATE is active")
#endif
extern cvar_t gl_overbright;
static const char LIGHTPASS_SHADER[] = "\
{\n\
program rtlight%s\n\
{\n\
map $diffuse\n\
blendfunc add\n\
}\n\
{\n\
map $normalmap\n\
}\n\
{\n\
map $specular\n\
}\n\
}";
static const char RTLIGHTCUBE_SHADER[] = "\
{\n\
program rtlight%s\n\
{\n\
map $diffuse\n\
blendfunc add\n\
}\n\
{\n\
map $normalmap\n\
}\n\
{\n\
map $specular\n\
}\n\
{\n\
map $lightcubemap\n\
}\n\
}";
static const char PCFPASS_SHADER[] = "\
{\n\
program rtlight#PCF%s\n"/*\
program\n\
{\n\
#define LIGHTPASS\n\
//#define CUBE\n\
#define PCF\n\
%s%s\n\
}\n*/"\
\
{\n\
map $diffuse\n\
blendfunc add\n\
}\n\
{\n\
map $normalmap\n\
}\n\
{\n\
map $specular\n\
}\n\
{\n\
map $shadowmap\n\
}\n\
}";
extern cvar_t r_glsl_offsetmapping, r_noportals;
static void BE_SendPassBlendDepthMask(unsigned int sbits);
void GLBE_SubmitBatch(batch_t *batch);
struct {
//internal state
struct {
int lastpasstmus;
int vbo_colour;
int vbo_texcoords[SHADER_PASS_MAX];
int vbo_deforms; //holds verticies... in case you didn't realise.
qboolean inited_shader_rtlight;
const shader_t *shader_rtlight;
qboolean inited_shader_cube;
const shader_t *shader_cube;
qboolean inited_shader_smap;
const shader_t *shader_smap;
qboolean inited_shader_spot;
const shader_t *shader_spot;
const shader_t *crepskyshader;
const shader_t *crepopaqueshader;
qboolean initeddepthnorm;
const shader_t *depthnormshader;
texid_t tex_normals;
texid_t tex_diffuse;
int fbo_diffuse;
texid_t tex_sourcecol; /*this is used by $sourcecolour tgen*/
texid_t tex_sourcedepth;
int fbo_depthless;
qboolean force2d;
int currenttmu;
int blendmode[SHADER_PASS_MAX];
int texenvmode[SHADER_PASS_MAX];
int currenttextures[SHADER_PASS_MAX];
GLenum curtexturetype[SHADER_PASS_MAX];
unsigned int tmuarrayactive;
polyoffset_t curpolyoffset;
unsigned int curcull;
texid_t curshadowmap;
unsigned int shaderbits;
unsigned int sha_attr;
int currentprogram;
int lastuniform; /*program which was last set, so using the same prog for multiple surfaces on the same ent (ie: world) does not require lots of extra uniform chnges*/
vbo_t dummyvbo;
int colourarraytype;
int currentvbo;
int currentebo;
mesh_t **meshes;
unsigned int meshcount;
float modelmatrix[16];
float modelmatrixinv[16];
float modelviewmatrix[16];
int pendingvertexvbo;
void *pendingvertexpointer;
int curvertexvbo;
void *curvertexpointer;
float identitylighting; //set to how bright lightmaps should be (reduced for overbright or realtime_world_lightmaps)
texid_t temptexture; //$current
texid_t fogtexture;
float fogfar;
};
//exterior state (paramters)
struct {
backendmode_t mode;
unsigned int flags;
vbo_t *sourcevbo;
const shader_t *curshader;
const entity_t *curentity;
const texnums_t *curtexnums;
texid_t curlightmap;
texid_t curdeluxmap;
float curtime;
float updatetime;
vec3_t lightorg;
vec3_t lightcolours;
vec3_t lightcolourscale;
float lightradius;
texid_t lighttexture;
texid_t lightcubemap;
float lightprojmatrix[16]; /*world space*/
};
int wbatch;
int maxwbatches;
batch_t *wbatches;
} shaderstate;
struct {
int numlights;
int shadowsurfcount;
} bench;
static void BE_PolyOffset(qboolean pushdepth)
{
if (pushdepth)
{
/*some quake doors etc are flush with the walls that they're meant to be hidden behind, or plats the same height as the floor, etc
we move them back very slightly using polygonoffset to avoid really ugly z-fighting*/
extern cvar_t r_polygonoffset_submodel_offset, r_polygonoffset_submodel_factor;
polyoffset_t po;
po.factor = shaderstate.curshader->polyoffset.factor + r_polygonoffset_submodel_factor.value;
po.unit = shaderstate.curshader->polyoffset.unit + r_polygonoffset_submodel_offset.value;
#ifndef FORCESTATE
if (((int*)&shaderstate.curpolyoffset)[0] != ((int*)&po)[0] || ((int*)&shaderstate.curpolyoffset)[1] != ((int*)&po)[1])
#endif
{
shaderstate.curpolyoffset = po;
if (shaderstate.curpolyoffset.factor || shaderstate.curpolyoffset.unit)
{
qglEnable(GL_POLYGON_OFFSET_FILL);
qglPolygonOffset(shaderstate.curpolyoffset.factor, shaderstate.curpolyoffset.unit);
}
else
qglDisable(GL_POLYGON_OFFSET_FILL);
}
}
else
{
#ifndef FORCESTATE
if (*(int*)&shaderstate.curpolyoffset != *(int*)&shaderstate.curshader->polyoffset || *(int*)&shaderstate.curpolyoffset != *(int*)&shaderstate.curshader->polyoffset)
#endif
{
shaderstate.curpolyoffset = shaderstate.curshader->polyoffset;
if (shaderstate.curpolyoffset.factor || shaderstate.curpolyoffset.unit)
{
qglEnable(GL_POLYGON_OFFSET_FILL);
qglPolygonOffset(shaderstate.curpolyoffset.factor, shaderstate.curpolyoffset.unit);
}
else
qglDisable(GL_POLYGON_OFFSET_FILL);
}
}
}
void GL_TexEnv(GLenum mode)
{
#ifndef FORCESTATE
if (mode != shaderstate.texenvmode[shaderstate.currenttmu])
#endif
{
#ifdef ANDROID
/*android appears to have a bug, and requires f and not i*/
qglTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, mode);
#else
qglTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, mode);
#endif
shaderstate.texenvmode[shaderstate.currenttmu] = mode;
}
}
static void BE_SetPassBlendMode(int tmu, int pbm)
{
#ifndef FORCESTATE
if (shaderstate.blendmode[tmu] != pbm)
#endif
{
shaderstate.blendmode[tmu] = pbm;
#ifndef FORCESTATE
if (shaderstate.currenttmu != tmu)
#endif
GL_SelectTexture(tmu);
switch (pbm)
{
case PBM_DOTPRODUCT:
GL_TexEnv(GL_COMBINE_ARB);
qglTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_TEXTURE);
qglTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_PREVIOUS_ARB);
qglTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_DOT3_RGB_ARB);
qglTexEnvf(GL_TEXTURE_ENV, GL_RGB_SCALE_ARB, 1);
break;
case PBM_REPLACELIGHT:
if (shaderstate.identitylighting != 1)
goto forcemod;
GL_TexEnv(GL_REPLACE);
break;
case PBM_REPLACE:
GL_TexEnv(GL_REPLACE);
break;
case PBM_DECAL:
if (tmu == 0)
goto forcemod;
GL_TexEnv(GL_DECAL);
break;
case PBM_ADD:
if (tmu == 0)
goto forcemod;
GL_TexEnv(GL_ADD);
break;
case PBM_OVERBRIGHT:
GL_TexEnv(GL_COMBINE_ARB);
qglTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_TEXTURE);
qglTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_PREVIOUS_ARB);
qglTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_MODULATE);
qglTexEnvf(GL_TEXTURE_ENV, GL_RGB_SCALE_ARB, 1<<gl_overbright.ival);
break;
default:
case PBM_MODULATE:
forcemod:
GL_TexEnv(GL_MODULATE);
break;
}
}
}
/*OpenGL requires glDepthMask(GL_TRUE) or glClear(GL_DEPTH_BUFFER_BIT) will fail*/
void GL_ForceDepthWritable(void)
{
#ifndef FORCESTATE
if (!(shaderstate.shaderbits & SBITS_MISC_DEPTHWRITE))
#endif
{
shaderstate.shaderbits |= SBITS_MISC_DEPTHWRITE;
qglDepthMask(GL_TRUE);
}
}
void GL_SetShaderState2D(qboolean is2d)
{
shaderstate.updatetime = realtime;
shaderstate.force2d = is2d;
#ifdef WIREFRAME
if (!is2d)
qglPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
else
qglPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
#endif
if (is2d)
memcpy(shaderstate.modelviewmatrix, r_refdef.m_view, sizeof(shaderstate.modelviewmatrix));
BE_SelectMode(BEM_STANDARD);
}
void GL_SelectTexture(int target)
{
shaderstate.currenttmu = target;
if (qglActiveTextureARB)
qglActiveTextureARB(target + mtexid0);
else if (qglSelectTextureSGIS)
qglSelectTextureSGIS(target + mtexid0);
}
void GL_SelectVBO(int vbo)
{
#ifndef FORCESTATE
if (shaderstate.currentvbo != vbo)
#endif
{
shaderstate.currentvbo = vbo;
qglBindBufferARB(GL_ARRAY_BUFFER_ARB, shaderstate.currentvbo);
}
}
void GL_SelectEBO(int vbo)
{
#ifndef FORCESTATE
if (shaderstate.currentebo != vbo)
#endif
{
shaderstate.currentebo = vbo;
qglBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, shaderstate.currentebo);
}
}
static void GL_ApplyVertexPointer(void)
{
#ifndef FORCESTATE
if (shaderstate.curvertexpointer != shaderstate.pendingvertexpointer || shaderstate.pendingvertexvbo != shaderstate.curvertexvbo)
#endif
{
shaderstate.curvertexpointer = shaderstate.pendingvertexpointer;
shaderstate.curvertexvbo = shaderstate.pendingvertexvbo;
GL_SelectVBO(shaderstate.curvertexvbo);
qglVertexPointer(3, GL_FLOAT, sizeof(vecV_t), shaderstate.curvertexpointer);
}
}
void GL_MTBind(int tmu, int target, texid_t texnum)
{
GL_SelectTexture(tmu);
#ifndef FORCESTATE
if (shaderstate.currenttextures[tmu] == texnum.num)
return;
#endif
shaderstate.currenttextures[tmu] = texnum.num;
if (target)
bindTexFunc (target, texnum.num);
#ifndef FORCESTATE
if (shaderstate.curtexturetype[tmu] != target && !gl_config.nofixedfunc)
#endif
{
if (shaderstate.curtexturetype[tmu])
qglDisable(shaderstate.curtexturetype[tmu]);
shaderstate.curtexturetype[tmu] = target;
if (target)
qglEnable(target);
}
#ifndef FORCESTATE
if (((shaderstate.tmuarrayactive>>tmu) & 1) != 0)
#endif
{
qglClientActiveTextureARB(tmu + mtexid0);
if (0)
{
shaderstate.tmuarrayactive |= 1u<<tmu;
qglEnableClientState(GL_TEXTURE_COORD_ARRAY);
}
else
{
shaderstate.tmuarrayactive &= ~(1u<<tmu);
qglDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
}
}
void GL_LazyBind(int tmu, int target, texid_t texnum, qboolean arrays)
{
#ifndef FORCESTATE
if (shaderstate.currenttextures[tmu] != texnum.num)
#endif
{
GL_SelectTexture(tmu);
shaderstate.currenttextures[shaderstate.currenttmu] = texnum.num;
if (target)
bindTexFunc (target, texnum.num);
#ifndef FORCESTATE
if (shaderstate.curtexturetype[tmu] != target && !gl_config.nofixedfunc)
#endif
{
if (shaderstate.curtexturetype[tmu])
qglDisable(shaderstate.curtexturetype[tmu]);
shaderstate.curtexturetype[tmu] = target;
if (target)
qglEnable(target);
}
}
if (!target)
arrays = false;
#ifndef FORCESTATE
if (((shaderstate.tmuarrayactive>>tmu) & 1) != arrays)
#endif
{
qglClientActiveTextureARB(mtexid0 + tmu);
if (arrays)
{
shaderstate.tmuarrayactive |= 1u<<tmu;
qglEnableClientState(GL_TEXTURE_COORD_ARRAY);
}
else
{
shaderstate.tmuarrayactive &= ~(1u<<tmu);
qglDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
}
}
static void BE_EnableShaderAttributes(unsigned int newm)
{
unsigned int i;
if (newm == shaderstate.sha_attr)
return;
for (i = 0; i < 10; i++)
{
#ifndef FORCESTATE
if ((newm^shaderstate.sha_attr) & (1u<<i))
#endif
{
if (newm & (1u<<i))
qglEnableVertexAttribArray(i);
else
qglDisableVertexAttribArray(i);
}
}
shaderstate.sha_attr = newm;
}
void GL_SelectProgram(int program)
{
if (shaderstate.currentprogram != program)
{
qglUseProgramObjectARB(program);
shaderstate.currentprogram = program;
}
}
void GLBE_RenderShadowBuffer(unsigned int numverts, int vbo, vecV_t *verts, unsigned numindicies, int ibo, index_t *indicies)
{
GL_SelectVBO(vbo);
GL_SelectEBO(ibo);
qglEnableClientState(GL_VERTEX_ARRAY);
//draw cached world shadow mesh
qglVertexPointer(3, GL_FLOAT, sizeof(vecV_t), verts);
qglDrawRangeElements(GL_TRIANGLES, 0, numverts, numindicies, GL_INDEX_TYPE, indicies);
RQuantAdd(RQUANT_SHADOWFACES, numindicies);
GL_SelectVBO(0);
GL_SelectEBO(0);
}
static void GL_DeSelectProgram(void)
{
if (shaderstate.currentprogram != 0)
{
qglUseProgramObjectARB(0);
shaderstate.currentprogram = 0;
/*if disabling a program, we need to kill off custom attributes*/
BE_EnableShaderAttributes(0);
/*ATI tends to use a true 100% alias here, so make sure this state is reenabled*/
qglEnableClientState(GL_VERTEX_ARRAY);
}
}
void GL_CullFace(unsigned int sflags)
{
#ifndef FORCESTATE
if (shaderstate.curcull == sflags)
return;
#endif
shaderstate.curcull = sflags;
if (shaderstate.curcull & SHADER_CULL_FRONT)
{
qglEnable(GL_CULL_FACE);
qglCullFace(r_refdef.flipcull?GL_BACK:GL_FRONT);
}
else if (shaderstate.curcull & SHADER_CULL_BACK)
{
qglEnable(GL_CULL_FACE);
qglCullFace(r_refdef.flipcull?GL_FRONT:GL_BACK);
}
else
{
qglDisable(GL_CULL_FACE);
}
}
void R_FetchTopColour(int *retred, int *retgreen, int *retblue)
{
int i;
if (shaderstate.curentity->scoreboard)
{
i = shaderstate.curentity->scoreboard->ttopcolor;
}
else
i = TOP_RANGE>>4;
if (i > 8)
{
i<<=4;
}
else
{
i<<=4;
i+=15;
}
i*=3;
*retred = host_basepal[i+0];
*retgreen = host_basepal[i+1];
*retblue = host_basepal[i+2];
/* if (!gammaworks)
{
*retred = gammatable[*retred];
*retgreen = gammatable[*retgreen];
*retblue = gammatable[*retblue];
}*/
}
void R_FetchBottomColour(int *retred, int *retgreen, int *retblue)
{
int i;
if (shaderstate.curentity->scoreboard)
{
i = shaderstate.curentity->scoreboard->tbottomcolor;
}
else
i = BOTTOM_RANGE>>4;
if (i > 8)
{
i<<=4;
}
else
{
i<<=4;
i+=15;
}
i*=3;
*retred = host_basepal[i+0];
*retgreen = host_basepal[i+1];
*retblue = host_basepal[i+2];
/* if (!gammaworks)
{
*retred = gammatable[*retred];
*retgreen = gammatable[*retgreen];
*retblue = gammatable[*retblue];
}*/
}
static void RevertToKnownState(void)
{
shaderstate.curvertexvbo = ~0;
GL_SelectVBO(0);
GL_SelectEBO(0);
while(shaderstate.lastpasstmus>0)
{
GL_LazyBind(--shaderstate.lastpasstmus, 0, r_nulltex, false);
}
GL_SelectTexture(0);
qglEnableClientState(GL_VERTEX_ARRAY);
BE_SetPassBlendMode(0, PBM_REPLACE);
if (qglColor3f)
qglColor3f(1,1,1);
shaderstate.shaderbits &= ~(SBITS_MISC_DEPTHEQUALONLY|SBITS_MISC_DEPTHCLOSERONLY|SBITS_MASK_BITS);
shaderstate.shaderbits |= SBITS_MISC_DEPTHWRITE;
shaderstate.shaderbits &= ~(SBITS_BLEND_BITS);
qglDisable(GL_BLEND);
qglDepthFunc(GL_LEQUAL);
qglDepthMask(GL_TRUE);
qglColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
GL_DeSelectProgram();
}
void PPL_RevertToKnownState(void)
{
RevertToKnownState();
}
void R_IBrokeTheArrays(void)
{
RevertToKnownState();
}
void GL_FlushBackEnd(void)
{
memset(&shaderstate, 0, sizeof(shaderstate));
shaderstate.curcull = ~0;
}
void R_BackendInit(void)
{
}
qboolean R_MeshWillExceed(mesh_t *mesh)
{
return false;
}
#ifdef RTLIGHTS
//called from gl_shadow
void BE_SetupForShadowMap(void)
{
while(shaderstate.lastpasstmus>0)
{
GL_LazyBind(--shaderstate.lastpasstmus, 0, r_nulltex, false);
}
qglShadeModel(GL_FLAT);
BE_SetPassBlendMode(0, PBM_REPLACE);
qglDepthMask(GL_TRUE);
shaderstate.shaderbits |= SBITS_MISC_DEPTHWRITE;
// qglColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
BE_SelectMode(BEM_DEPTHONLY);
}
#endif
static void T_Gen_CurrentRender(int tmu)
{
int vwidth, vheight;
if (gl_config.arb_texture_non_power_of_two)
{
vwidth = vid.pixelwidth;
vheight = vid.pixelheight;
}
else
{
vwidth = 1;
vheight = 1;
while (vwidth < vid.pixelwidth)
{
vwidth *= 2;
}
while (vheight < vid.pixelheight)
{
vheight *= 2;
}
}
// copy the scene to texture
if (!TEXVALID(shaderstate.temptexture))
TEXASSIGN(shaderstate.temptexture, GL_AllocNewTexture("***$currentrender***", vwidth, vheight));
GL_MTBind(tmu, GL_TEXTURE_2D, shaderstate.temptexture);
qglCopyTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 0, 0, vwidth, vheight, 0);
qglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
qglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
qglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
qglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}
static void Shader_BindTextureForPass(int tmu, const shaderpass_t *pass, qboolean useclientarray)
{
extern texid_t missing_texture;
extern texid_t scenepp_postproc_cube;
texid_t t;
switch(pass->texgen)
{
default:
case T_GEN_SINGLEMAP:
t = pass->anim_frames[0];
break;
case T_GEN_ANIMMAP:
t = pass->anim_frames[(int)(pass->anim_fps * shaderstate.curtime) % pass->anim_numframes];
break;
case T_GEN_LIGHTMAP:
t = shaderstate.curlightmap;
break;
case T_GEN_DELUXMAP:
t = shaderstate.curdeluxmap;
break;
case T_GEN_DIFFUSE:
t = (shaderstate.curtexnums && TEXVALID(shaderstate.curtexnums->base))?shaderstate.curtexnums->base:missing_texture;
break;
case T_GEN_NORMALMAP:
t = shaderstate.curtexnums?shaderstate.curtexnums->bump:r_nulltex; /*FIXME: nulltex is not correct*/
break;
case T_GEN_SPECULAR:
t = shaderstate.curtexnums->specular;
break;
case T_GEN_UPPEROVERLAY:
t = shaderstate.curtexnums->upperoverlay;
break;
case T_GEN_LOWEROVERLAY:
t = shaderstate.curtexnums->loweroverlay;
break;
case T_GEN_FULLBRIGHT:
t = shaderstate.curtexnums->fullbright;
break;
case T_GEN_SHADOWMAP:
t = shaderstate.curshadowmap;
break;
case T_GEN_LIGHTCUBEMAP:
GL_LazyBind(tmu, GL_TEXTURE_CUBE_MAP_ARB, shaderstate.lightcubemap, useclientarray);
return;
case T_GEN_CUBEMAP:
t = pass->anim_frames[0];
GL_LazyBind(tmu, GL_TEXTURE_CUBE_MAP_ARB, t, useclientarray);
return;
case T_GEN_SOURCECUBE:
t = scenepp_postproc_cube;
GL_LazyBind(tmu, GL_TEXTURE_CUBE_MAP_ARB, t, useclientarray);
return;
case T_GEN_3DMAP:
t = pass->anim_frames[0];
GL_LazyBind(tmu, GL_TEXTURE_3D, t, useclientarray);
return;
case T_GEN_VIDEOMAP:
#ifdef NOMEDIA
t = shaderstate.curtexnums?shaderstate.curtexnums->base:r_nulltex;
#else
t = Media_UpdateForShader(pass->cin);
#endif
break;
case T_GEN_CURRENTRENDER:
T_Gen_CurrentRender(tmu);
return;
case T_GEN_SOURCECOLOUR:
t = shaderstate.tex_sourcecol;
break;
case T_GEN_SOURCEDEPTH:
t = shaderstate.tex_sourcedepth;
break;
}
GL_LazyBind(tmu, GL_TEXTURE_2D, t, useclientarray);
}
/*========================================== matrix functions =====================================*/
typedef vec3_t mat3_t[3];
static mat3_t axisDefault={{1, 0, 0},
{0, 1, 0},
{0, 0, 1}};
static void Matrix3_Transpose (mat3_t in, mat3_t out)
{
out[0][0] = in[0][0];
out[1][1] = in[1][1];
out[2][2] = in[2][2];
out[0][1] = in[1][0];
out[0][2] = in[2][0];
out[1][0] = in[0][1];
out[1][2] = in[2][1];
out[2][0] = in[0][2];
out[2][1] = in[1][2];
}
static void Matrix3_Multiply_Vec3 (mat3_t a, vec3_t b, vec3_t product)
{
product[0] = a[0][0]*b[0] + a[0][1]*b[1] + a[0][2]*b[2];
product[1] = a[1][0]*b[0] + a[1][1]*b[1] + a[1][2]*b[2];
product[2] = a[2][0]*b[0] + a[2][1]*b[1] + a[2][2]*b[2];
}
static int Matrix3_Compare(mat3_t in, mat3_t out)
{
return memcmp(in, out, sizeof(mat3_t));
}
//end matrix functions
/*========================================== tables for deforms =====================================*/
#define frand() (rand()*(1.0/RAND_MAX))
#define FTABLE_SIZE 1024
#define FTABLE_CLAMP(x) (((int)((x)*FTABLE_SIZE) & (FTABLE_SIZE-1)))
#define FTABLE_EVALUATE(table,x) (table ? table[FTABLE_CLAMP(x)] : frand()*((x)-floor(x)))
static float r_sintable[FTABLE_SIZE];
static float r_triangletable[FTABLE_SIZE];
static float r_squaretable[FTABLE_SIZE];
static float r_sawtoothtable[FTABLE_SIZE];
static float r_inversesawtoothtable[FTABLE_SIZE];
static float *FTableForFunc ( unsigned int func )
{
switch (func)
{
case SHADER_FUNC_SIN:
return r_sintable;
case SHADER_FUNC_TRIANGLE:
return r_triangletable;
case SHADER_FUNC_SQUARE:
return r_squaretable;
case SHADER_FUNC_SAWTOOTH:
return r_sawtoothtable;
case SHADER_FUNC_INVERSESAWTOOTH:
return r_inversesawtoothtable;
}
//bad values allow us to crash (so I can debug em)
return NULL;
}
void Shader_LightPass_Std(char *shortname, shader_t *s, const void *args)
{
char shadertext[8192*2];
sprintf(shadertext, LIGHTPASS_SHADER, "");
Shader_DefaultScript(shortname, s, shadertext);
}
void Shader_LightPass_Cube(char *shortname, shader_t *s, const void *args)
{
char shadertext[8192*2];
sprintf(shadertext, RTLIGHTCUBE_SHADER, "#CUBE");
Shader_DefaultScript(shortname, s, shadertext);
}
void Shader_LightPass_PCF(char *shortname, shader_t *s, const void *args)
{
char shadertext[8192*2];
sprintf(shadertext, PCFPASS_SHADER, "");
Shader_DefaultScript(shortname, s, shadertext);
}
void Shader_LightPass_Spot(char *shortname, shader_t *s, const void *args)
{
char shadertext[8192*2];
sprintf(shadertext, PCFPASS_SHADER, "#SPOT");
Shader_DefaultScript(shortname, s, shadertext);
}
void GenerateFogTexture(texid_t *tex, float density, float zscale)
{
#define FOGS 256
#define FOGT 32
byte_vec4_t fogdata[FOGS*FOGT];
int s, t;
float f, z;
for(s = 0; s < FOGS; s++)
for(t = 0; t < FOGT; t++)
{
z = (float)s / (FOGS-1);
z *= zscale;
if (0)//q3
f = pow(f, 0.5);
else if (1)//GL_EXP
f = 1-exp(-density * z);
else //GL_EXP2
f = 1-exp(-(density*density) * z);
if (f < 0)
f = 0;
if (f > 1)
f = 1;
fogdata[t*FOGS + s][0] = 255;
fogdata[t*FOGS + s][1] = 255;
fogdata[t*FOGS + s][2] = 255;
fogdata[t*FOGS + s][3] = 255*f;
}
if (!TEXVALID(*tex))
*tex = R_AllocNewTexture("***fog***", FOGS, FOGT);
R_Upload(*tex, "fog", TF_RGBA32, fogdata, NULL, FOGS, FOGT, IF_CLAMP|IF_NOMIPMAP);
}
void GLBE_Init(void)
{
int i;
double t;
shaderstate.curentity = &r_worldentity;
be_maxpasses = gl_mtexarbable;
for (i = 0; i < FTABLE_SIZE; i++)
{
t = (double)i / (double)FTABLE_SIZE;
r_sintable[i] = sin(t * 2*M_PI);
if (t < 0.25)
r_triangletable[i] = t * 4.0;
else if (t < 0.75)
r_triangletable[i] = 2 - 4.0 * t;
else
r_triangletable[i] = (t - 0.75) * 4.0 - 1.0;
if (t < 0.5)
r_squaretable[i] = 1.0f;
else
r_squaretable[i] = -1.0f;
r_sawtoothtable[i] = t;
r_inversesawtoothtable[i] = 1.0 - t;
}
shaderstate.identitylighting = 1;
/*normally we load these lazily, but if they're probably going to be used anyway, load them now to avoid stalls.*/
if (r_shadow_realtime_dlight.ival && !shaderstate.inited_shader_rtlight && gl_config.arb_shader_objects)
{
shaderstate.inited_shader_rtlight = true;
shaderstate.shader_rtlight = R_RegisterCustom("rtlight", Shader_LightPass_Std, NULL);
}
if (r_shadow_realtime_dlight.ival && !shaderstate.inited_shader_cube && gl_config.arb_shader_objects)
{
shaderstate.inited_shader_cube = true;
shaderstate.shader_cube = R_RegisterCustom("rtlight_sube", Shader_LightPass_Cube, NULL);
}
gl_overbright.modified = true; /*in case the d3d renderer does the same*/
/*lock the cvar down if the backend can't actually do it*/
if (!gl_config.tex_env_combine && !gl_config.nofixedfunc && gl_overbright.ival)
Cvar_ApplyLatchFlag(&gl_overbright, "0", CVAR_RENDERERLATCH);
shaderstate.shaderbits = ~0;
BE_SendPassBlendDepthMask(0);
if (qglEnableClientState)
qglEnableClientState(GL_VERTEX_ARRAY);
currententity = &r_worldentity;
shaderstate.fogtexture = r_nulltex;
//make sure the world draws correctly
r_worldentity.shaderRGBAf[0] = 1;
r_worldentity.shaderRGBAf[1] = 1;
r_worldentity.shaderRGBAf[2] = 1;
r_worldentity.shaderRGBAf[3] = 1;
r_worldentity.axis[0][0] = 1;
r_worldentity.axis[1][1] = 1;
r_worldentity.axis[2][2] = 1;
R_InitFlashblends();
}
//end tables
#define MAX_ARRAY_VERTS 65535
static avec4_t coloursarray[MAX_ARRAY_VERTS];
static float texcoordarray[SHADER_PASS_MAX][MAX_ARRAY_VERTS*2];
static vecV_t vertexarray[MAX_ARRAY_VERTS];
/*========================================== texture coord generation =====================================*/
static void tcgen_environment(float *st, unsigned int numverts, float *xyz, float *normal)
{
int i;
vec3_t viewer, reflected;
float d;
vec3_t rorg;
RotateLightVector(shaderstate.curentity->axis, shaderstate.curentity->origin, r_origin, rorg);
for (i = 0 ; i < numverts ; i++, xyz += sizeof(vecV_t)/sizeof(vec_t), normal += 3, st += 2 )
{
VectorSubtract (rorg, xyz, viewer);
VectorNormalizeFast (viewer);
d = DotProduct (normal, viewer);
reflected[0] = normal[0]*2*d - viewer[0];
reflected[1] = normal[1]*2*d - viewer[1];
reflected[2] = normal[2]*2*d - viewer[2];
st[0] = 0.5 + reflected[1] * 0.5;
st[1] = 0.5 - reflected[2] * 0.5;
}
}
static void tcgen_fog(float *st, unsigned int numverts, float *xyz)
{
int i;
float z;
vec4_t zmat;
//generate a simple matrix to calc only the projected z coord
zmat[0] = -shaderstate.modelviewmatrix[2];
zmat[1] = -shaderstate.modelviewmatrix[6];
zmat[2] = -shaderstate.modelviewmatrix[10];
zmat[3] = -shaderstate.modelviewmatrix[14];
Vector4Scale(zmat, shaderstate.fogfar, zmat);
for (i = 0 ; i < numverts ; i++, xyz += sizeof(vecV_t)/sizeof(vec_t), st += 2 )
{
z = DotProduct(xyz, zmat) + zmat[3];
st[0] = z;
st[1] = realtime - (int)realtime;
}
}
static float *tcgen(unsigned int tcgen, int cnt, float *dst, const mesh_t *mesh)
{
int i;
vecV_t *src;
switch (tcgen)
{
default:
case TC_GEN_BASE:
return (float*)mesh->st_array;
case TC_GEN_LIGHTMAP:
if (!mesh->lmst_array)
return (float*)mesh->st_array;
else
return (float*)mesh->lmst_array;
case TC_GEN_NORMAL:
return (float*)mesh->normals_array;
case TC_GEN_SVECTOR:
return (float*)mesh->snormals_array;
case TC_GEN_TVECTOR:
return (float*)mesh->tnormals_array;
case TC_GEN_ENVIRONMENT:
if (!mesh->normals_array)
return (float*)mesh->st_array;
tcgen_environment(dst, cnt, (float*)mesh->xyz_array, (float*)mesh->normals_array);
return dst;
case TC_GEN_FOG:
tcgen_fog(dst, cnt, (float*)mesh->xyz_array);
return dst;
// case TC_GEN_DOTPRODUCT:
// return mesh->st_array[0];
case TC_GEN_VECTOR:
src = mesh->xyz_array;
for (i = 0; i < cnt; i++, dst += 2)
{
static vec3_t tc_gen_s = { 1.0f, 0.0f, 0.0f };
static vec3_t tc_gen_t = { 0.0f, 1.0f, 0.0f };
dst[0] = DotProduct(tc_gen_s, src[i]);
dst[1] = DotProduct(tc_gen_t, src[i]);
}
return dst;
}
}
/*src and dst can be the same address when tcmods are chained*/
static void tcmod(const tcmod_t *tcmod, int cnt, const float *src, float *dst, const mesh_t *mesh)
{
float *table;
float t1, t2;
float cost, sint;
int j;
#define R_FastSin(x) sin((x)*(2*M_PI))
switch (tcmod->type)
{
case SHADER_TCMOD_ROTATE:
cost = tcmod->args[0] * shaderstate.curtime;
sint = R_FastSin(cost);
cost = R_FastSin(cost + 0.25);
for (j = 0; j < cnt; j++, dst+=2,src+=2)
{
t1 = cost * (src[0] - 0.5f) - sint * (src[1] - 0.5f) + 0.5f;
t2 = cost * (src[1] - 0.5f) + sint * (src[0] - 0.5f) + 0.5f;
dst[0] = t1;
dst[1] = t2;
}
break;
case SHADER_TCMOD_SCALE:
t1 = tcmod->args[0];
t2 = tcmod->args[1];
for (j = 0; j < cnt; j++, dst+=2,src+=2)
{
dst[0] = src[0] * t1;
dst[1] = src[1] * t2;
}
break;
case SHADER_TCMOD_TURB:
t1 = tcmod->args[2] + shaderstate.curtime * tcmod->args[3];
t2 = tcmod->args[1];
for (j = 0; j < cnt; j++, dst+=2,src+=2)
{
dst[0] = src[0] + R_FastSin (src[0]*t2+t1) * t2;
dst[1] = src[1] + R_FastSin (src[1]*t2+t1) * t2;
}
break;
case SHADER_TCMOD_STRETCH:
table = FTableForFunc(tcmod->args[0]);
t2 = tcmod->args[3] + shaderstate.curtime * tcmod->args[4];
t1 = FTABLE_EVALUATE(table, t2) * tcmod->args[2] + tcmod->args[1];
t1 = t1 ? 1.0f / t1 : 1.0f;
t2 = 0.5f - 0.5f * t1;
for (j = 0; j < cnt; j++, dst+=2,src+=2)
{
dst[0] = src[0] * t1 + t2;
dst[1] = src[1] * t1 + t2;
}
break;
case SHADER_TCMOD_SCROLL:
t1 = tcmod->args[0] * shaderstate.curtime;
t2 = tcmod->args[1] * shaderstate.curtime;
for (j = 0; j < cnt; j++, dst += 2, src+=2)
{
dst[0] = src[0] + t1;
dst[1] = src[1] + t2;
}
break;
case SHADER_TCMOD_TRANSFORM:
for (j = 0; j < cnt; j++, dst+=2, src+=2)
{
t1 = src[0];
t2 = src[1];
dst[0] = t1 * tcmod->args[0] + t2 * tcmod->args[2] + tcmod->args[4];
dst[1] = t2 * tcmod->args[1] + t1 * tcmod->args[3] + tcmod->args[5];
}
break;
default:
break;
}
}
static void GenerateTCFog(int passnum)
{
int m;
float *src;
mesh_t *mesh;
for (m = 0; m < shaderstate.meshcount; m++)
{
mesh = shaderstate.meshes[m];
src = tcgen(TC_GEN_FOG, mesh->numvertexes, texcoordarray[passnum]+mesh->vbofirstvert*2, mesh);
if (src != texcoordarray[passnum]+mesh->vbofirstvert*2)
{
//this shouldn't actually ever be true
memcpy(texcoordarray[passnum]+mesh->vbofirstvert*2, src, 8*mesh->numvertexes);
}
}
GL_SelectVBO(0);
qglTexCoordPointer(2, GL_FLOAT, 0, texcoordarray[passnum]);
}
static void GenerateTCMods(const shaderpass_t *pass, int passnum)
{
#if 1
int i, m;
float *src;
mesh_t *mesh;
for (m = 0; m < shaderstate.meshcount; m++)
{
mesh = shaderstate.meshes[m];
src = tcgen(pass->tcgen, mesh->numvertexes, texcoordarray[passnum]+mesh->vbofirstvert*2, mesh);
//tcgen might return unmodified info
if (pass->numtcmods)
{
tcmod(&pass->tcmods[0], mesh->numvertexes, src, texcoordarray[passnum]+mesh->vbofirstvert*2, mesh);
for (i = 1; i < pass->numtcmods; i++)
{
tcmod(&pass->tcmods[i], mesh->numvertexes, texcoordarray[passnum]+mesh->vbofirstvert*2, texcoordarray[passnum]+mesh->vbofirstvert*2, mesh);
}
src = texcoordarray[passnum]+mesh->vbofirstvert*2;
}
else if (src != texcoordarray[passnum]+mesh->vbofirstvert*2)
{
//this shouldn't actually ever be true
memcpy(texcoordarray[passnum]+mesh->vbofirstvert*2, src, 8*mesh->numvertexes);
}
}
GL_SelectVBO(0);
qglTexCoordPointer(2, GL_FLOAT, 0, texcoordarray[passnum]);
#else
if (!shaderstate.vbo_texcoords[passnum])
{
qglGenBuffersARB(1, &shaderstate.vbo_texcoords[passnum]);
}
GL_SelectVBO(shaderstate.vbo_texcoords[passnum]);
{
qglBufferDataARB(GL_ARRAY_BUFFER_ARB, MAX_ARRAY_VERTS*sizeof(float)*2, NULL, GL_STREAM_DRAW_ARB);
for (; meshlist; meshlist = meshlist->next)
{
int i;
float *src;
src = tcgen(pass, meshlist->numvertexes, texcoordarray[passnum], meshlist);
//tcgen might return unmodified info
if (pass->numtcmods)
{
tcmod(&pass->tcmods[0], meshlist->numvertexes, src, texcoordarray[passnum], meshlist);
for (i = 1; i < pass->numtcmods; i++)
{
tcmod(&pass->tcmods[i], meshlist->numvertexes, texcoordarray[passnum], texcoordarray[passnum], meshlist);
}
src = texcoordarray[passnum];
}
qglBufferSubDataARB(GL_ARRAY_BUFFER_ARB, meshlist->vbofirstvert*8, meshlist->numvertexes*8, src);
}
}
qglTexCoordPointer(2, GL_FLOAT, 0, NULL);
#endif
}
//end texture coords
/*========================================== colour generation =====================================*/
//source is always packed
//dest is packed too
static void colourgen(const shaderpass_t *pass, int cnt, vec4_t *src, vec4_t *dst, const mesh_t *mesh)
{
switch (pass->rgbgen)
{
case RGB_GEN_ENTITY:
while((cnt)--)
{
dst[cnt][0] = shaderstate.curentity->shaderRGBAf[0];
dst[cnt][1] = shaderstate.curentity->shaderRGBAf[1];
dst[cnt][2] = shaderstate.curentity->shaderRGBAf[2];
}
break;
case RGB_GEN_ONE_MINUS_ENTITY:
while((cnt)--)
{
dst[cnt][0] = 1-shaderstate.curentity->shaderRGBAf[0];
dst[cnt][1] = 1-shaderstate.curentity->shaderRGBAf[1];
dst[cnt][2] = 1-shaderstate.curentity->shaderRGBAf[2];
}
break;
case RGB_GEN_VERTEX_LIGHTING:
if (shaderstate.identitylighting != 1)
{
if (!src)
{
while((cnt)--)
{
dst[cnt][0] = shaderstate.identitylighting;
dst[cnt][1] = shaderstate.identitylighting;
dst[cnt][2] = shaderstate.identitylighting;
}
break;
}
while((cnt)--)
{
dst[cnt][0] = src[cnt][0]*shaderstate.identitylighting;
dst[cnt][1] = src[cnt][1]*shaderstate.identitylighting;
dst[cnt][2] = src[cnt][2]*shaderstate.identitylighting;
}
break;
}
case RGB_GEN_VERTEX_EXACT:
if (!src)
{
while((cnt)--)
{
dst[cnt][0] = 1;
dst[cnt][1] = 1;
dst[cnt][2] = 1;
}
break;
}
while((cnt)--)
{
dst[cnt][0] = src[cnt][0];
dst[cnt][1] = src[cnt][1];
dst[cnt][2] = src[cnt][2];
}
break;
case RGB_GEN_ONE_MINUS_VERTEX:
while((cnt)--)
{
dst[cnt][0] = 1-src[cnt][0];
dst[cnt][1] = 1-src[cnt][1];
dst[cnt][2] = 1-src[cnt][2];
}
break;
case RGB_GEN_IDENTITY_LIGHTING:
//compensate for overbrights
while((cnt)--)
{
dst[cnt][0] = shaderstate.identitylighting;
dst[cnt][1] = shaderstate.identitylighting;
dst[cnt][2] = shaderstate.identitylighting;
}
break;
default:
case RGB_GEN_IDENTITY:
while((cnt)--)
{
dst[cnt][0] = 1;
dst[cnt][1] = 1;
dst[cnt][2] = 1;
}
break;
case RGB_GEN_CONST:
while((cnt)--)
{
dst[cnt][0] = pass->rgbgen_func.args[0];
dst[cnt][1] = pass->rgbgen_func.args[1];
dst[cnt][2] = pass->rgbgen_func.args[2];
}
break;
case RGB_GEN_LIGHTING_DIFFUSE:
//collect lighting details for mobile entities
if (!mesh->normals_array)
{
while((cnt)--)
{
dst[cnt][0] = 1;
dst[cnt][1] = 1;
dst[cnt][2] = 1;
}
}
else
{
R_LightArrays(shaderstate.curentity, mesh->xyz_array, dst, cnt, mesh->normals_array, shaderstate.identitylighting);
}
break;
case RGB_GEN_WAVE:
{
float *table;
float c;
table = FTableForFunc(pass->rgbgen_func.type);
c = pass->rgbgen_func.args[2] + shaderstate.curtime * pass->rgbgen_func.args[3];
c = FTABLE_EVALUATE(table, c) * pass->rgbgen_func.args[1] + pass->rgbgen_func.args[0];
c = bound(0.0f, c, 1.0f);
while((cnt)--)
{
dst[cnt][0] = c;
dst[cnt][1] = c;
dst[cnt][2] = c;
}
}
break;
case RGB_GEN_TOPCOLOR:
if (cnt)
{
int r, g, b;
R_FetchTopColour(&r, &g, &b);
dst[0][0] = r/255.0f;
dst[0][1] = g/255.0f;
dst[0][2] = b/255.0f;
while((cnt)--)
{
dst[cnt][0] = dst[0][0];
dst[cnt][1] = dst[0][1];
dst[cnt][2] = dst[0][2];
}
}
break;
case RGB_GEN_BOTTOMCOLOR:
if (cnt)
{
int r, g, b;
R_FetchBottomColour(&r, &g, &b);
dst[0][0] = r/255.0f;
dst[0][1] = g/255.0f;
dst[0][2] = b/255.0f;
while((cnt)--)
{
dst[cnt][0] = dst[0][0];
dst[cnt][1] = dst[0][1];
dst[cnt][2] = dst[0][2];
}
}
break;
}
}
static void deformgen(const deformv_t *deformv, int cnt, vecV_t *src, vecV_t *dst, const mesh_t *mesh)
{
float *table;
int j, k;
float args[4];
float deflect;
switch (deformv->type)
{
default:
case DEFORMV_NONE:
if (src != dst)
memcpy(dst, src, sizeof(*src)*cnt);
break;
case DEFORMV_WAVE:
if (!mesh->normals_array)
{
if (src != dst)
memcpy(dst, src, sizeof(*src)*cnt);
return;
}
args[0] = deformv->func.args[0];
args[1] = deformv->func.args[1];
args[3] = deformv->func.args[2] + deformv->func.args[3] * shaderstate.curtime;
table = FTableForFunc(deformv->func.type);
for ( j = 0; j < cnt; j++ )
{
deflect = deformv->args[0] * (src[j][0]+src[j][1]+src[j][2]) + args[3];
deflect = FTABLE_EVALUATE(table, deflect) * args[1] + args[0];
// Deflect vertex along its normal by wave amount
VectorMA(src[j], deflect, mesh->normals_array[j], dst[j]);
}
break;
case DEFORMV_NORMAL:
//normal does not actually move the verts, but it does change the normals array
//we don't currently support that.
if (src != dst)
memcpy(dst, src, sizeof(*src)*cnt);
/*
args[0] = deformv->args[1] * shaderstate.curtime;
for ( j = 0; j < cnt; j++ )
{
args[1] = normalsArray[j][2] * args[0];
deflect = deformv->args[0] * R_FastSin(args[1]);
normalsArray[j][0] *= deflect;
deflect = deformv->args[0] * R_FastSin(args[1] + 0.25);
normalsArray[j][1] *= deflect;
VectorNormalizeFast(normalsArray[j]);
}
*/ break;
case DEFORMV_MOVE:
table = FTableForFunc(deformv->func.type);
deflect = deformv->func.args[2] + shaderstate.curtime * deformv->func.args[3];
deflect = FTABLE_EVALUATE(table, deflect) * deformv->func.args[1] + deformv->func.args[0];
for ( j = 0; j < cnt; j++ )
VectorMA(src[j], deflect, deformv->args, dst[j]);
break;
case DEFORMV_BULGE:
args[0] = deformv->args[0]/(2*M_PI);
args[1] = deformv->args[1];
args[2] = shaderstate.curtime * deformv->args[2]/(2*M_PI);
for (j = 0; j < cnt; j++)
{
deflect = R_FastSin(mesh->st_array[j][0]*args[0] + args[2])*args[1];
dst[j][0] = src[j][0]+deflect*mesh->normals_array[j][0];
dst[j][1] = src[j][1]+deflect*mesh->normals_array[j][1];
dst[j][2] = src[j][2]+deflect*mesh->normals_array[j][2];
}
break;
case DEFORMV_AUTOSPRITE:
if (mesh->numindexes < 6)
break;
for (j = 0; j < cnt-3; j+=4, src+=4, dst+=4)
{
vec3_t mid, d;
float radius;
mid[0] = 0.25*(src[0][0] + src[1][0] + src[2][0] + src[3][0]);
mid[1] = 0.25*(src[0][1] + src[1][1] + src[2][1] + src[3][1]);
mid[2] = 0.25*(src[0][2] + src[1][2] + src[2][2] + src[3][2]);
VectorSubtract(src[0], mid, d);
radius = 2*VectorLength(d);
for (k = 0; k < 4; k++)
{
dst[k][0] = mid[0] + radius*((mesh->st_array[k][0]-0.5)*r_refdef.m_view[0+0]-(mesh->st_array[k][1]-0.5)*r_refdef.m_view[0+1]);
dst[k][1] = mid[1] + radius*((mesh->st_array[k][0]-0.5)*r_refdef.m_view[4+0]-(mesh->st_array[k][1]-0.5)*r_refdef.m_view[4+1]);
dst[k][2] = mid[2] + radius*((mesh->st_array[k][0]-0.5)*r_refdef.m_view[8+0]-(mesh->st_array[k][1]-0.5)*r_refdef.m_view[8+1]);
}
}
break;
case DEFORMV_AUTOSPRITE2:
if (mesh->numindexes < 6)
break;
for (k = 0; k < mesh->numindexes; k += 6)
{
int long_axis, short_axis;
vec3_t axis;
float len[3];
mat3_t m0, m1, m2, result;
float *quad[4];
vec3_t rot_centre, tv;
quad[0] = (float *)(dst + mesh->indexes[k+0]);
quad[1] = (float *)(dst + mesh->indexes[k+1]);
quad[2] = (float *)(dst + mesh->indexes[k+2]);
for (j = 2; j >= 0; j--)
{
quad[3] = (float *)(dst + mesh->indexes[k+3+j]);
if (!VectorEquals (quad[3], quad[0]) &&
!VectorEquals (quad[3], quad[1]) &&
!VectorEquals (quad[3], quad[2]))
{
break;
}
}
// build a matrix were the longest axis of the billboard is the Y-Axis
VectorSubtract(quad[1], quad[0], m0[0]);
VectorSubtract(quad[2], quad[0], m0[1]);
VectorSubtract(quad[2], quad[1], m0[2]);
len[0] = DotProduct(m0[0], m0[0]);
len[1] = DotProduct(m0[1], m0[1]);
len[2] = DotProduct(m0[2], m0[2]);
if ((len[2] > len[1]) && (len[2] > len[0]))
{
if (len[1] > len[0])
{
long_axis = 1;
short_axis = 0;
}
else
{
long_axis = 0;
short_axis = 1;
}
}
else if ((len[1] > len[2]) && (len[1] > len[0]))
{
if (len[2] > len[0])
{
long_axis = 2;
short_axis = 0;
}
else
{
long_axis = 0;
short_axis = 2;
}
}
else //if ( (len[0] > len[1]) && (len[0] > len[2]) )
{
if (len[2] > len[1])
{
long_axis = 2;
short_axis = 1;
}
else
{
long_axis = 1;
short_axis = 2;
}
}
if (DotProduct(m0[long_axis], m0[short_axis]))
{
VectorNormalize2(m0[long_axis], axis);
VectorCopy(axis, m0[1]);
if (axis[0] || axis[1])
{
VectorVectors(m0[1], m0[2], m0[0]);
}
else
{
VectorVectors(m0[1], m0[0], m0[2]);
}
}
else
{
VectorNormalize2(m0[long_axis], axis);
VectorNormalize2(m0[short_axis], m0[0]);
VectorCopy(axis, m0[1]);
CrossProduct(m0[0], m0[1], m0[2]);
}
for (j = 0; j < 3; j++)
rot_centre[j] = (quad[0][j] + quad[1][j] + quad[2][j] + quad[3][j]) * 0.25;
if (shaderstate.curentity)
{
VectorAdd(shaderstate.curentity->origin, rot_centre, tv);
}
else
{
VectorCopy(rot_centre, tv);
}
VectorSubtract(r_origin, tv, tv);
// filter any longest-axis-parts off the camera-direction
deflect = -DotProduct(tv, axis);
VectorMA(tv, deflect, axis, m1[2]);
VectorNormalizeFast(m1[2]);
VectorCopy(axis, m1[1]);
CrossProduct(m1[1], m1[2], m1[0]);
Matrix3_Transpose(m1, m2);
Matrix3_Multiply(m2, m0, result);
for (j = 0; j < 4; j++)
{
VectorSubtract(quad[j], rot_centre, tv);
Matrix3_Multiply_Vec3(result, tv, quad[j]);
VectorAdd(rot_centre, quad[j], quad[j]);
}
}
break;
// case DEFORMV_PROJECTION_SHADOW:
// break;
}
}
static void GenerateVertexDeforms(const shader_t *shader)
{
int i, m;
mesh_t *meshlist;
for (m = 0; m < shaderstate.meshcount; m++)
{
meshlist = shaderstate.meshes[m];
deformgen(&shader->deforms[0], meshlist->numvertexes, meshlist->xyz_array, vertexarray+meshlist->vbofirstvert, meshlist);
for (i = 1; i < shader->numdeforms; i++)
{
deformgen(&shader->deforms[i], meshlist->numvertexes, vertexarray+meshlist->vbofirstvert, vertexarray+meshlist->vbofirstvert, meshlist);
}
}
shaderstate.pendingvertexpointer = vertexarray;
shaderstate.pendingvertexvbo = 0;
}
/*======================================alpha ===============================*/
static void alphagen(const shaderpass_t *pass, int cnt, avec4_t *const src, avec4_t *dst, const mesh_t *mesh)
{
float *table;
float t;
float f;
vec3_t v1, v2;
int i;
switch (pass->alphagen)
{
default:
case ALPHA_GEN_IDENTITY:
if (shaderstate.flags & BEF_FORCETRANSPARENT)
{
while(cnt--)
dst[cnt][3] = shaderstate.curentity->shaderRGBAf[3];
}
else
{
while(cnt--)
dst[cnt][3] = 1;
}
break;
case ALPHA_GEN_CONST:
t = pass->alphagen_func.args[0];
while(cnt--)
dst[cnt][3] = t;
break;
case ALPHA_GEN_WAVE:
table = FTableForFunc(pass->alphagen_func.type);
f = pass->alphagen_func.args[2] + shaderstate.curtime * pass->alphagen_func.args[3];
f = FTABLE_EVALUATE(table, f) * pass->alphagen_func.args[1] + pass->alphagen_func.args[0];
t = bound(0.0f, f, 1.0f);
while(cnt--)
dst[cnt][3] = t;
break;
case ALPHA_GEN_PORTAL:
//FIXME: should this be per-vert?
if (r_refdef.recurse)
f = 1;
else
{
VectorAdd(mesh->xyz_array[0], shaderstate.curentity->origin, v1);
VectorSubtract(r_origin, v1, v2);
f = VectorLength(v2) * (1.0 / shaderstate.curshader->portaldist);
f = bound(0.0f, f, 1.0f);
}
while(cnt--)
dst[cnt][3] = f;
break;
case ALPHA_GEN_VERTEX:
if (!src)
{
while(cnt--)
{
dst[cnt][3] = 1;
}
break;
}
while(cnt--)
{
dst[cnt][3] = src[cnt][3];
}
break;
case ALPHA_GEN_ENTITY:
f = bound(0, shaderstate.curentity->shaderRGBAf[3], 1);
while(cnt--)
{
dst[cnt][3] = f;
}
break;
case ALPHA_GEN_SPECULAR:
{
mat3_t axis;
AngleVectors(shaderstate.curentity->angles, axis[0], axis[1], axis[2]);
VectorSubtract(r_origin, shaderstate.curentity->origin, v1);
if (!Matrix3_Compare(axis, axisDefault))
{
Matrix3_Multiply_Vec3(axis, v1, v2);
}
else
{
VectorCopy(v1, v2);
}
for (i = 0; i < cnt; i++)
{
VectorSubtract(v2, mesh->xyz_array[i], v1);
f = DotProduct(v1, mesh->normals_array[i] ) * Q_rsqrt(DotProduct(v1,v1));
f = f * f * f * f * f;
dst[i][3] = bound (0.0f, f, 1.0f);
}
}
break;
}
}
static void GenerateColourMods(const shaderpass_t *pass)
{
unsigned int m;
mesh_t *meshlist;
meshlist = shaderstate.meshes[0];
/*if (shaderstate.sourcevbo->colours4ub)
{
//hack...
GL_SelectVBO(shaderstate.sourcevbo->colours.gl.vbo);
qglEnableClientState(GL_COLOR_ARRAY);
qglColorPointer(4, GL_UNSIGNED_BYTE, 0, shaderstate.sourcevbo->colours4ub.gl.addr);
qglShadeModel(GL_SMOOTH);
return;
}*/
if (pass->flags & SHADER_PASS_NOCOLORARRAY && qglColor4fv)
{
avec4_t scol;
colourgen(pass, 1, meshlist->colors4f_array, &scol, meshlist);
alphagen(pass, 1, meshlist->colors4f_array, &scol, meshlist);
qglDisableClientState(GL_COLOR_ARRAY);
qglColor4fv(scol);
qglShadeModel(GL_FLAT);
}
else
{
extern cvar_t r_nolightdir;
if (pass->rgbgen == RGB_GEN_LIGHTING_DIFFUSE)
{
if (shaderstate.mode == BEM_DEPTHDARK || shaderstate.mode == BEM_DEPTHONLY)
{
avec4_t scol;
scol[0] = scol[1] = scol[2] = 0;
alphagen(pass, 1, meshlist->colors4f_array, &scol, meshlist);
qglDisableClientState(GL_COLOR_ARRAY);
qglColor4fv(scol);
qglShadeModel(GL_FLAT);
return;
}
if (shaderstate.mode == BEM_LIGHT)
{
avec4_t scol;
scol[0] = scol[1] = scol[2] = 1;
alphagen(pass, 1, meshlist->colors4f_array, &scol, meshlist);
qglDisableClientState(GL_COLOR_ARRAY);
qglColor4fv(scol);
qglShadeModel(GL_FLAT);
return;
}
if (r_nolightdir.ival)
{
qglDisableClientState(GL_COLOR_ARRAY);
qglColor4f( shaderstate.curentity->light_avg[0],
shaderstate.curentity->light_avg[1],
shaderstate.curentity->light_avg[2],
shaderstate.curentity->shaderRGBAf[3]);
qglShadeModel(GL_FLAT);
return;
}
}
qglShadeModel(GL_SMOOTH);
//if its vetex lighting, just use the vbo
if (((pass->rgbgen == RGB_GEN_VERTEX_LIGHTING && shaderstate.identitylighting == 1) || pass->rgbgen == RGB_GEN_VERTEX_EXACT) && pass->alphagen == ALPHA_GEN_VERTEX)
{
GL_SelectVBO(shaderstate.sourcevbo->colours.gl.vbo);
qglColorPointer(4, shaderstate.colourarraytype, 0, shaderstate.sourcevbo->colours.gl.addr);
qglEnableClientState(GL_COLOR_ARRAY);
return;
}
for (m = 0; m < shaderstate.meshcount; m++)
{
meshlist = shaderstate.meshes[m];
colourgen(pass, meshlist->numvertexes, meshlist->colors4f_array, coloursarray + meshlist->vbofirstvert, meshlist);
alphagen(pass, meshlist->numvertexes, meshlist->colors4f_array, coloursarray + meshlist->vbofirstvert, meshlist);
}
GL_SelectVBO(0);
qglColorPointer(4, GL_FLOAT, 0, coloursarray);
qglEnableClientState(GL_COLOR_ARRAY);
}
}
static void BE_GeneratePassTC(const shaderpass_t *pass, int passno)
{
pass += passno;
qglClientActiveTextureARB(mtexid0 + passno);
if (!pass->numtcmods)
{
//if there are no tcmods, pass through here as fast as possible
if (pass->tcgen == TC_GEN_BASE)
{
GL_SelectVBO(shaderstate.sourcevbo->texcoord.gl.vbo);
qglTexCoordPointer(2, GL_FLOAT, 0, shaderstate.sourcevbo->texcoord.gl.addr);
}
else if (pass->tcgen == TC_GEN_LIGHTMAP)
{
if (!shaderstate.sourcevbo->lmcoord.gl.addr)
{
GL_SelectVBO(shaderstate.sourcevbo->texcoord.gl.vbo);
qglTexCoordPointer(2, GL_FLOAT, 0, shaderstate.sourcevbo->texcoord.gl.addr);
}
else
{
GL_SelectVBO(shaderstate.sourcevbo->lmcoord.gl.vbo);
qglTexCoordPointer(2, GL_FLOAT, 0, shaderstate.sourcevbo->lmcoord.gl.addr);
}
}
else if (pass->tcgen == TC_GEN_NORMAL)
{
GL_SelectVBO(shaderstate.sourcevbo->normals.gl.vbo);
qglTexCoordPointer(3, GL_FLOAT, 0, shaderstate.sourcevbo->normals.gl.addr);
}
else if (pass->tcgen == TC_GEN_SVECTOR)
{
GL_SelectVBO(shaderstate.sourcevbo->svector.gl.vbo);
qglTexCoordPointer(3, GL_FLOAT, 0, shaderstate.sourcevbo->svector.gl.addr);
}
else if (pass->tcgen == TC_GEN_TVECTOR)
{
GL_SelectVBO(shaderstate.sourcevbo->tvector.gl.vbo);
qglTexCoordPointer(3, GL_FLOAT, 0, shaderstate.sourcevbo->tvector.gl.addr);
}
else
{
//specular highlights and reflections have no fixed data, and must be generated.
GenerateTCMods(pass, passno);
}
}
else
{
GenerateTCMods(pass, passno);
}
}
static void BE_SendPassBlendDepthMask(unsigned int sbits)
{
unsigned int delta;
/*2d mode doesn't depth test or depth write*/
#ifdef warningmsg
#pragma warningmsg("fixme: q3 doesn't seem to have this, why do we need it?")
#endif
if (shaderstate.force2d)
{
sbits &= ~(SBITS_MISC_DEPTHWRITE|SBITS_MISC_DEPTHEQUALONLY);
sbits |= SBITS_MISC_NODEPTHTEST;
}
if (shaderstate.flags & (BEF_FORCEADDITIVE|BEF_FORCETRANSPARENT|BEF_FORCENODEPTH|BEF_FORCEDEPTHTEST|BEF_FORCEDEPTHWRITE))
{
if (shaderstate.flags & BEF_FORCEADDITIVE)
sbits = (sbits & ~(SBITS_MISC_DEPTHWRITE|SBITS_BLEND_BITS|SBITS_ATEST_BITS))
| (SBITS_SRCBLEND_SRC_ALPHA | SBITS_DSTBLEND_ONE);
else if (shaderstate.flags & BEF_FORCETRANSPARENT)
{
if ((sbits & SBITS_BLEND_BITS) == (SBITS_SRCBLEND_ONE| SBITS_DSTBLEND_ZERO) || !(sbits & SBITS_BLEND_BITS)) /*if transparency is forced, clear alpha test bits*/
sbits = (sbits & ~(SBITS_MISC_DEPTHWRITE|SBITS_BLEND_BITS|SBITS_ATEST_BITS))
| (SBITS_SRCBLEND_SRC_ALPHA | SBITS_DSTBLEND_ONE_MINUS_SRC_ALPHA);
}
if (shaderstate.flags & BEF_FORCENODEPTH) /*EF_NODEPTHTEST dp extension*/
sbits |= SBITS_MISC_NODEPTHTEST;
else
{
if (shaderstate.flags & BEF_FORCEDEPTHTEST)
sbits &= ~SBITS_MISC_NODEPTHTEST;
if (shaderstate.flags & BEF_FORCEDEPTHWRITE)
sbits |= SBITS_MISC_DEPTHWRITE;
}
}
delta = sbits^shaderstate.shaderbits;
#ifdef FORCESTATE
delta |= ~0;
#endif
if (!delta)
return;
shaderstate.shaderbits = sbits;
if (delta & SBITS_BLEND_BITS)
{
if (sbits & SBITS_BLEND_BITS)
{
int src, dst;
/*unpack the src and dst factors*/
switch(sbits & SBITS_SRCBLEND_BITS)
{
case SBITS_SRCBLEND_ZERO: src = GL_ZERO; break;
default:
case SBITS_SRCBLEND_ONE: src = GL_ONE; break;
case SBITS_SRCBLEND_DST_COLOR: src = GL_DST_COLOR; break;
case SBITS_SRCBLEND_ONE_MINUS_DST_COLOR: src = GL_ONE_MINUS_DST_COLOR; break;
case SBITS_SRCBLEND_SRC_ALPHA: src = GL_SRC_ALPHA; break;
case SBITS_SRCBLEND_ONE_MINUS_SRC_ALPHA: src = GL_ONE_MINUS_SRC_ALPHA; break;
case SBITS_SRCBLEND_DST_ALPHA: src = GL_DST_ALPHA; break;
case SBITS_SRCBLEND_ONE_MINUS_DST_ALPHA: src = GL_ONE_MINUS_DST_ALPHA; break;
case SBITS_SRCBLEND_ALPHA_SATURATE: src = GL_SRC_ALPHA_SATURATE; break;
}
switch(sbits & SBITS_DSTBLEND_BITS)
{
case SBITS_DSTBLEND_ZERO: dst = GL_ZERO; break;
default:
case SBITS_DSTBLEND_ONE: dst = GL_ONE; break;
case SBITS_DSTBLEND_SRC_COLOR: dst = GL_SRC_COLOR; break;
case SBITS_DSTBLEND_ONE_MINUS_SRC_COLOR: dst = GL_ONE_MINUS_SRC_COLOR; break;
case SBITS_DSTBLEND_SRC_ALPHA: dst = GL_SRC_ALPHA; break;
case SBITS_DSTBLEND_ONE_MINUS_SRC_ALPHA: dst = GL_ONE_MINUS_SRC_ALPHA; break;
case SBITS_DSTBLEND_DST_ALPHA: dst = GL_DST_ALPHA; break;
case SBITS_DSTBLEND_ONE_MINUS_DST_ALPHA: dst = GL_ONE_MINUS_DST_ALPHA; break;
}
qglEnable(GL_BLEND);
qglBlendFunc(src, dst);
}
else
qglDisable(GL_BLEND);
}
if (delta & SBITS_ATEST_BITS)
{
switch (sbits & SBITS_ATEST_BITS)
{
default:
qglDisable(GL_ALPHA_TEST);
break;
case SBITS_ATEST_GT0:
qglEnable(GL_ALPHA_TEST);
qglAlphaFunc(GL_GREATER, 0);
break;
case SBITS_ATEST_LT128:
qglEnable(GL_ALPHA_TEST);
qglAlphaFunc(GL_LESS, 0.5f);
break;
case SBITS_ATEST_GE128:
qglEnable(GL_ALPHA_TEST);
qglAlphaFunc(GL_GEQUAL, 0.5f);
break;
}
}
if (delta & SBITS_MISC_NODEPTHTEST)
{
if (sbits & SBITS_MISC_NODEPTHTEST)
qglDisable(GL_DEPTH_TEST);
else
qglEnable(GL_DEPTH_TEST);
}
if (delta & SBITS_MISC_DEPTHWRITE)
{
if (sbits & SBITS_MISC_DEPTHWRITE)
qglDepthMask(GL_TRUE);
else
qglDepthMask(GL_FALSE);
}
if (delta & (SBITS_MISC_DEPTHEQUALONLY|SBITS_MISC_DEPTHCLOSERONLY))
{
extern int gldepthfunc;
switch (sbits & (SBITS_MISC_DEPTHEQUALONLY|SBITS_MISC_DEPTHCLOSERONLY))
{
case SBITS_MISC_DEPTHEQUALONLY:
qglDepthFunc(GL_EQUAL);
break;
case SBITS_MISC_DEPTHCLOSERONLY:
if (gldepthfunc == GL_LEQUAL)
qglDepthFunc(GL_LESS);
else
qglDepthFunc(GL_GREATER);
break;
default:
qglDepthFunc(gldepthfunc);
break;
}
}
if (delta & (SBITS_MASK_BITS))
{
qglColorMask(
(sbits&SBITS_MASK_RED)?GL_FALSE:GL_TRUE,
(sbits&SBITS_MASK_GREEN)?GL_FALSE:GL_TRUE,
(sbits&SBITS_MASK_BLUE)?GL_FALSE:GL_TRUE,
(sbits&SBITS_MASK_ALPHA)?GL_FALSE:GL_TRUE
);
}
}
static void BE_SubmitMeshChain(void)
{
int startv, starti, endv, endi;
int m;
mesh_t *mesh;
#if 0
if (!shaderstate.currentebo)
{
if (shaderstate.meshcount == 1)
{
mesh = shaderstate.meshes[0];
qglDrawRangeElements(GL_TRIANGLES, mesh->vbofirstvert, mesh->vbofirstvert+mesh->numvertexes, mesh->numindexes, GL_INDEX_TYPE, shaderstate.sourcevbo->indicies + mesh->vbofirstelement);
RQuantAdd(RQUANT_DRAWS, 1);
return;
}
else
{
index_t *ilst;
mesh = shaderstate.meshes[0];
startv = mesh->vbofirstvert;
endv = startv + mesh->numvertexes;
endi = mesh->numindexes;
for (m = 1; m < shaderstate.meshcount; m++)
{
mesh = shaderstate.meshes[m];
endi += mesh->numindexes;
if (startv > mesh->vbofirstvert)
startv = mesh->vbofirstvert;
if (endv < mesh->vbofirstvert+mesh->numvertexes)
endv = mesh->vbofirstvert+mesh->numvertexes;
}
ilst = alloca(endi*sizeof(index_t));
endi = 0;
for (m = 0; m < shaderstate.meshcount; m++)
{
mesh = shaderstate.meshes[m];
for (starti = 0; starti < mesh->numindexes; )
ilst[endi++] = mesh->vbofirstvert + mesh->indexes[starti++];
}
qglDrawRangeElements(GL_TRIANGLES, startv, endv, endi, GL_INDEX_TYPE, ilst);
RQuantAdd(RQUANT_DRAWS, 1);
}
return;
}
#endif
/*
if (qglLockArraysEXT)
{
endv = 0;
startv = 0x7fffffff;
for (m = 0; m < shaderstate.meshcount; m++)
{
mesh = shaderstate.meshes[m];
starti = mesh->vbofirstvert;
if (starti < startv)
startv = starti;
endi = mesh->vbofirstvert+mesh->numvertexes;
if (endi > endv)
endv = endi;
}
qglLockArraysEXT(startv, endv);
}
*/
for (m = 0, mesh = shaderstate.meshes[0]; m < shaderstate.meshcount; )
{
startv = mesh->vbofirstvert;
starti = mesh->vbofirstelement;
endv = startv+mesh->numvertexes;
endi = starti+mesh->numindexes;
//find consecutive surfaces
for (++m; m < shaderstate.meshcount; m++)
{
mesh = shaderstate.meshes[m];
if (endi == mesh->vbofirstelement)
{
endv = mesh->vbofirstvert+mesh->numvertexes;
endi = mesh->vbofirstelement+mesh->numindexes;
}
else
{
break;
}
}
qglDrawRangeElements(GL_TRIANGLES, startv, endv, endi-starti, GL_INDEX_TYPE, (index_t*)shaderstate.sourcevbo->indicies.gl.addr + starti);
RQuantAdd(RQUANT_DRAWS, 1);
}
/*
if (qglUnlockArraysEXT)
qglUnlockArraysEXT();
*/
}
static void DrawPass(const shaderpass_t *pass)
{
int i;
int tmu;
int lastpass = pass->numMergedPasses;
for (i = 0; i < lastpass; i++)
{
if (pass[i].texgen == T_GEN_UPPEROVERLAY && !TEXVALID(shaderstate.curtexnums->upperoverlay))
continue;
if (pass[i].texgen == T_GEN_LOWEROVERLAY && !TEXVALID(shaderstate.curtexnums->loweroverlay))
continue;
if (pass[i].texgen == T_GEN_FULLBRIGHT && !TEXVALID(shaderstate.curtexnums->fullbright))
continue;
break;
}
if (i == lastpass)
return;
BE_SendPassBlendDepthMask(pass[i].shaderbits);
GenerateColourMods(pass+i);
tmu = 0;
for (; i < lastpass; i++)
{
if (pass[i].texgen == T_GEN_UPPEROVERLAY && !TEXVALID(shaderstate.curtexnums->upperoverlay))
continue;
if (pass[i].texgen == T_GEN_LOWEROVERLAY && !TEXVALID(shaderstate.curtexnums->loweroverlay))
continue;
if (pass[i].texgen == T_GEN_FULLBRIGHT && !TEXVALID(shaderstate.curtexnums->fullbright))
continue;
Shader_BindTextureForPass(tmu, pass+i, true);
BE_GeneratePassTC(pass, i);
BE_SetPassBlendMode(tmu, pass[i].blendmode);
tmu++;
}
for (i = tmu; i < shaderstate.lastpasstmus; i++)
{
GL_LazyBind(i, 0, r_nulltex, false);
}
shaderstate.lastpasstmus = tmu;
GL_ApplyVertexPointer();
BE_SubmitMeshChain();
}
static unsigned int BE_Program_Set_Attributes(const program_t *prog, unsigned int perm, qboolean entunchanged)
{
vec3_t param3;
int r, g, b;
int i;
unsigned int attr = 0;
const shaderprogparm_t *p;
for (i = 0; i < prog->numparams; i++)
{
p = &prog->parm[i];
if (p->handle[perm] == -1)
continue; /*not in this permutation*/
/*don't bother setting it if the ent properties are unchanged (but do if the mesh changed)*/
if (entunchanged && p->type >= SP_FIRSTUNIFORM)
break;
switch(p->type)
{
case SP_ATTR_VERTEX:
/*we still do vertex transforms for billboards and shadows and such*/
GL_SelectVBO(shaderstate.pendingvertexvbo);
qglVertexAttribPointer(p->handle[perm], 3, GL_FLOAT, GL_FALSE, sizeof(vecV_t), shaderstate.pendingvertexpointer);
attr |= 1u<<p->handle[perm];
break;
case SP_ATTR_COLOUR:
if (shaderstate.sourcevbo->colours.gl.addr)
{
GL_SelectVBO(shaderstate.sourcevbo->colours.gl.vbo);
qglVertexAttribPointer(p->handle[perm], 4, shaderstate.colourarraytype, GL_FALSE, 0, shaderstate.sourcevbo->colours.gl.addr);
attr |= 1u<<p->handle[perm];
break;
}
/* else if (shaderstate.sourcevbo->colours4ub)
{
GL_SelectVBO(shaderstate.sourcevbo->colours.gl.vbo);
qglVertexAttribPointer(p->handle[perm], 4, GL_UNSIGNED_BYTE, GL_TRUE, sizeof(byte_vec4_t), shaderstate.sourcevbo->colours.gl.addr);
return 1u<<p->handle[perm];
}*/
break;
case SP_ATTR_TEXCOORD:
GL_SelectVBO(shaderstate.sourcevbo->texcoord.gl.vbo);
qglVertexAttribPointer(p->handle[perm], 2, GL_FLOAT, GL_FALSE, sizeof(vec2_t), shaderstate.sourcevbo->texcoord.gl.addr);
attr |= 1u<<p->handle[perm];
break;
case SP_ATTR_LMCOORD:
GL_SelectVBO(shaderstate.sourcevbo->lmcoord.gl.vbo);
qglVertexAttribPointer(p->handle[perm], 2, GL_FLOAT, GL_FALSE, sizeof(vec2_t), shaderstate.sourcevbo->lmcoord.gl.addr);
attr |= 1u<<p->handle[perm];
break;
case SP_ATTR_NORMALS:
if (!shaderstate.sourcevbo->normals.gl.addr)
break;
GL_SelectVBO(shaderstate.sourcevbo->normals.gl.vbo);
qglVertexAttribPointer(p->handle[perm], 3, GL_FLOAT, GL_FALSE, sizeof(vec3_t), shaderstate.sourcevbo->normals.gl.addr);
attr |= 1u<<p->handle[perm];
break;
case SP_ATTR_SNORMALS:
if (!shaderstate.sourcevbo->svector.gl.addr)
break;
GL_SelectVBO(shaderstate.sourcevbo->svector.gl.vbo);
qglVertexAttribPointer(p->handle[perm], 3, GL_FLOAT, GL_FALSE, sizeof(vec3_t), shaderstate.sourcevbo->svector.gl.addr);
attr |= 1u<<p->handle[perm];
break;
case SP_ATTR_TNORMALS:
if (!shaderstate.sourcevbo->tvector.gl.addr)
break;
GL_SelectVBO(shaderstate.sourcevbo->tvector.gl.vbo);
qglVertexAttribPointer(p->handle[perm], 3, GL_FLOAT, GL_FALSE, sizeof(vec3_t), shaderstate.sourcevbo->tvector.gl.addr);
attr |= 1u<<p->handle[perm];
break;
case SP_ATTR_BONENUMS:
GL_SelectVBO(shaderstate.sourcevbo->bonenums.gl.vbo);
qglVertexAttribPointer(p->handle[perm], 4, GL_UNSIGNED_BYTE, GL_FALSE, sizeof(byte_vec4_t), shaderstate.sourcevbo->bonenums.gl.addr);
attr |= 1u<<p->handle[perm];
break;
case SP_ATTR_BONEWEIGHTS:
GL_SelectVBO(shaderstate.sourcevbo->boneweights.gl.vbo);
qglVertexAttribPointer(p->handle[perm], 4, GL_FLOAT, GL_FALSE, sizeof(vec4_t), shaderstate.sourcevbo->boneweights.gl.addr);
attr |= 1u<<p->handle[perm];
break;
case SP_M_VIEW:
qglUniformMatrix4fvARB(p->handle[perm], 1, false, r_refdef.m_view);
break;
case SP_M_PROJECTION:
qglUniformMatrix4fvARB(p->handle[perm], 1, false, r_refdef.m_projection);
break;
case SP_M_MODELVIEW:
qglUniformMatrix4fvARB(p->handle[perm], 1, false, shaderstate.modelviewmatrix);
break;
case SP_M_MODELVIEWPROJECTION:
{
float m16[16];
Matrix4_Multiply(r_refdef.m_projection, shaderstate.modelviewmatrix, m16);
qglUniformMatrix4fvARB(p->handle[perm], 1, false, m16);
}
break;
case SP_M_INVMODELVIEWPROJECTION:
{
float m16[16], inv[16];
Matrix4_Multiply(r_refdef.m_projection, shaderstate.modelviewmatrix, m16);
Matrix4_Invert(m16, inv);
qglUniformMatrix4fvARB(p->handle[perm], 1, false, inv);
}
break;
case SP_M_MODEL:
qglUniformMatrix4fvARB(p->handle[perm], 1, false, shaderstate.modelmatrix);
break;
case SP_M_ENTBONES:
{
qglUniformMatrix3x4fv(p->handle[perm], shaderstate.sourcevbo->numbones, false, shaderstate.sourcevbo->bones);
}
break;
case SP_M_INVVIEWPROJECTION:
{
float m16[16], inv[16];
Matrix4_Multiply(r_refdef.m_projection, r_refdef.m_view, m16);
Matrix4_Invert(m16, inv);
qglUniformMatrix4fvARB(p->handle[perm], 1, false, inv);
}
break;
case SP_E_LMSCALE:
{
vec4_t colscale;
if (shaderstate.mode == BEM_DEPTHDARK)
{
VectorClear(colscale);
}
else if (shaderstate.curentity->model && shaderstate.curentity->model->engineflags & MDLF_NEEDOVERBRIGHT)
{
float sc = 1<<bound(0, gl_overbright.ival, 2);
VectorScale(shaderstate.curentity->shaderRGBAf, sc, colscale);
}
else
{
VectorCopy(shaderstate.curentity->shaderRGBAf, colscale);
}
colscale[3] = shaderstate.curentity->shaderRGBAf[3];
qglUniform4fvARB(p->handle[perm], 1, (GLfloat*)colscale);
}
break;
case SP_E_GLOWMOD:
qglUniform3fvARB(p->handle[perm], 1, (GLfloat*)shaderstate.curentity->glowmod);
break;
case SP_E_ORIGIN:
qglUniform3fvARB(p->handle[perm], 1, (GLfloat*)shaderstate.curentity->origin);
break;
case SP_E_COLOURS:
qglUniform4fvARB(p->handle[perm], 1, (GLfloat*)shaderstate.curentity->shaderRGBAf);
break;
case SP_E_COLOURSIDENT:
if (shaderstate.flags & BEF_FORCECOLOURMOD)
qglUniform4fvARB(p->handle[perm], 1, (GLfloat*)shaderstate.curentity->shaderRGBAf);
else
qglUniform4fARB(p->handle[perm], 1, 1, 1, shaderstate.curentity->shaderRGBAf[3]);
break;
case SP_E_TOPCOLOURS:
R_FetchTopColour(&r, &g, &b);
param3[0] = r/255.0f;
param3[1] = g/255.0f;
param3[2] = b/255.0f;
qglUniform3fvARB(p->handle[perm], 1, param3);
break;
case SP_E_BOTTOMCOLOURS:
R_FetchBottomColour(&r, &g, &b);
param3[0] = r/255.0f;
param3[1] = g/255.0f;
param3[2] = b/255.0f;
qglUniform3fvARB(p->handle[perm], 1, param3);
break;
case SP_RENDERTEXTURESCALE:
if (gl_config.arb_texture_non_power_of_two)
{
param3[0] = 1;
param3[1] = 1;
}
else
{
r = 1;
g = 1;
while (r < vid.pixelwidth)
r *= 2;
while (g < vid.pixelheight)
g *= 2;
param3[0] = vid.pixelwidth/(float)r;
param3[1] = vid.pixelheight/(float)g;
}
param3[2] = 1;
qglUniform3fvARB(p->handle[perm], 1, param3);
break;
case SP_LIGHTSCREEN:
{
float v[4], tempv[4];
v[0] = shaderstate.lightorg[0];
v[1] = shaderstate.lightorg[1];
v[2] = shaderstate.lightorg[2];
v[3] = 1;
Matrix4x4_CM_Transform4(shaderstate.modelviewmatrix, v, tempv);
Matrix4x4_CM_Transform4(r_refdef.m_projection, tempv, v);
v[3] *= 2;
v[0] = (v[0]/v[3]) + 0.5;
v[1] = (v[1]/v[3]) + 0.5;
v[2] = (v[2]/v[3]) + 0.5;
qglUniform3fvARB(p->handle[perm], 1, v);
}
break;
case SP_LIGHTRADIUS:
qglUniform1fARB(p->handle[perm], shaderstate.lightradius);
break;
case SP_LIGHTCOLOUR:
qglUniform3fvARB(p->handle[perm], 1, shaderstate.lightcolours);
break;
case SP_W_FOG:
qglUniform4fvARB(p->handle[perm], 1, r_refdef.gfog_rgbd);
break;
case SP_V_EYEPOS:
qglUniform3fvARB(p->handle[perm], 1, r_origin);
break;
case SP_E_EYEPOS:
{
/*eye position in model space*/
vec3_t t2;
Matrix4x4_CM_Transform3(shaderstate.modelmatrixinv, r_origin, t2);
qglUniform3fvARB(p->handle[perm], 1, t2);
}
break;
case SP_LIGHTPOSITION:
{
/*light position in model space*/
vec3_t t2;
Matrix4x4_CM_Transform3(shaderstate.modelmatrixinv, shaderstate.lightorg, t2);
qglUniform3fvARB(p->handle[perm], 1, t2);
}
break;
case SP_LIGHTCOLOURSCALE:
qglUniform3fvARB(p->handle[perm], 1, shaderstate.lightcolourscale);
break;
case SP_LIGHTPROJMATRIX:
/*light's texture projection matrix*/
{
float t[16];
Matrix4_Multiply(shaderstate.lightprojmatrix, shaderstate.modelmatrix, t);
qglUniformMatrix4fvARB(p->handle[perm], 1, false, t);
}
break;
/*static lighting info*/
case SP_E_L_DIR:
qglUniform3fvARB(p->handle[perm], 1, (float*)shaderstate.curentity->light_dir);
break;
case SP_E_L_MUL:
qglUniform3fvARB(p->handle[perm], 1, (float*)shaderstate.curentity->light_range);
break;
case SP_E_L_AMBIENT:
qglUniform3fvARB(p->handle[perm], 1, (float*)shaderstate.curentity->light_avg);
break;
case SP_E_TIME:
qglUniform1fARB(p->handle[perm], shaderstate.curtime);
break;
case SP_CONSTI:
case SP_TEXTURE:
qglUniform1iARB(p->handle[perm], p->ival);
break;
case SP_CONSTF:
qglUniform1fARB(p->handle[perm], p->fval);
break;
case SP_CVARI:
qglUniform1iARB(p->handle[perm], ((cvar_t*)p->pval)->ival);
break;
case SP_CVARF:
qglUniform1fARB(p->handle[perm], ((cvar_t*)p->pval)->value);
break;
case SP_CVAR3F:
{
cvar_t *var = (cvar_t*)p->pval;
char *vs = var->string;
vs = COM_Parse(vs);
param3[0] = atof(com_token);
vs = COM_Parse(vs);
param3[1] = atof(com_token);
vs = COM_Parse(vs);
param3[2] = atof(com_token);
qglUniform3fvARB(p->handle[perm], 1, param3);
}
break;
default:
Host_EndGame("Bad shader program parameter type (%i)", p->type);
break;
}
}
return attr;
}
static void BE_RenderMeshProgram(const shader_t *shader, const shaderpass_t *pass)
{
program_t *p = shader->prog;
int i;
unsigned int attr = 0;
int perm;
perm = 0;
if (shaderstate.sourcevbo->numbones)
{
if (p->handle[perm|PERMUTATION_SKELETAL].glsl)
perm |= PERMUTATION_SKELETAL;
else
return;
}
if (TEXVALID(shaderstate.curtexnums->bump) && p->handle[perm|PERMUTATION_BUMPMAP].glsl)
perm |= PERMUTATION_BUMPMAP;
if (TEXVALID(shaderstate.curtexnums->specular) && p->handle[perm|PERMUTATION_SPECULAR].glsl)
perm |= PERMUTATION_SPECULAR;
if (TEXVALID(shaderstate.curtexnums->fullbright) && p->handle[perm|PERMUTATION_FULLBRIGHT].glsl)
perm |= PERMUTATION_FULLBRIGHT;
if (TEXVALID(shaderstate.curtexnums->loweroverlay) && p->handle[perm|PERMUTATION_LOWER].glsl)
perm |= PERMUTATION_LOWER;
if (TEXVALID(shaderstate.curtexnums->upperoverlay) && p->handle[perm|PERMUTATION_UPPER].glsl)
perm |= PERMUTATION_UPPER;
if (r_refdef.gfog_rgbd[3] && p->handle[perm|PERMUTATION_FOG].glsl)
perm |= PERMUTATION_FOG;
if (r_glsl_offsetmapping.ival && TEXVALID(shaderstate.curtexnums->bump) && p->handle[perm|PERMUTATION_OFFSET].glsl)
perm |= PERMUTATION_OFFSET;
GL_SelectProgram(p->handle[perm].glsl);
if (shaderstate.lastuniform == p->handle[perm].glsl)
i = true;
else
{
i = false;
shaderstate.lastuniform = p->handle[perm].glsl;
}
attr = BE_Program_Set_Attributes(p, perm, i);
BE_SendPassBlendDepthMask(pass->shaderbits);
if (p->nofixedcompat)
{
qglDisableClientState(GL_COLOR_ARRAY);
BE_EnableShaderAttributes(attr);
for (i = 0; i < pass->numMergedPasses; i++)
{
Shader_BindTextureForPass(i, pass+i, false);
}
//we need this loop to fix up fixed-function stuff
for (; i < shaderstate.lastpasstmus; i++)
{
GL_LazyBind(i, 0, r_nulltex, false);
}
shaderstate.lastpasstmus = pass->numMergedPasses;
if (!gl_config.nofixedfunc)
{
qglEnableClientState(GL_VERTEX_ARRAY);
GL_ApplyVertexPointer();
}
}
else
{
BE_EnableShaderAttributes(attr);
qglEnableClientState(GL_VERTEX_ARRAY);
GenerateColourMods(pass);
for (i = 0; i < pass->numMergedPasses; i++)
{
Shader_BindTextureForPass(i, pass+i, true);
BE_GeneratePassTC(pass, i);
}
for (; i < shaderstate.lastpasstmus; i++)
{
GL_LazyBind(i, 0, r_nulltex, false);
}
shaderstate.lastpasstmus = pass->numMergedPasses;
GL_ApplyVertexPointer();
}
BE_SubmitMeshChain();
}
qboolean GLBE_LightCullModel(vec3_t org, model_t *model)
{
#ifdef RTLIGHTS
if ((shaderstate.mode == BEM_LIGHT || shaderstate.mode == BEM_STENCIL))
{
float dist;
vec3_t disp;
if (model->type == mod_alias)
{
VectorSubtract(org, shaderstate.lightorg, disp);
dist = DotProduct(disp, disp);
if (dist > model->radius*model->radius + shaderstate.lightradius*shaderstate.lightradius)
return true;
}
else
{
int i;
for (i = 0; i < 3; i++)
{
if (shaderstate.lightorg[i]-shaderstate.lightradius > org[i] + model->maxs[i])
return true;
if (shaderstate.lightorg[i]+shaderstate.lightradius < org[i] + model->mins[i])
return true;
}
}
}
#endif
return false;
}
//Note: Be cautious about using BEM_LIGHT here, as it won't select the light.
void GLBE_SelectMode(backendmode_t mode)
{
extern int gldepthfunc;
if (mode != shaderstate.mode)
{
shaderstate.mode = mode;
shaderstate.flags = 0;
switch (mode)
{
case BEM_DEPTHONLY:
GL_DeSelectProgram();
/*BEM_DEPTHONLY does support mesh writing, but its not the only way its used... FIXME!*/
qglDisableClientState(GL_COLOR_ARRAY);
while(shaderstate.lastpasstmus>0)
{
GL_LazyBind(--shaderstate.lastpasstmus, 0, r_nulltex, false);
}
if (qglShadeModel)
qglShadeModel(GL_FLAT);
//we don't write or blend anything (maybe alpha test... but mneh)
BE_SendPassBlendDepthMask(SBITS_MISC_DEPTHWRITE | SBITS_MASK_BITS);
BE_SetPassBlendMode(0, PBM_REPLACE);
GL_CullFace(SHADER_CULL_FRONT);
break;
#ifdef RTLIGHTS
case BEM_STENCIL:
GL_DeSelectProgram();
if (shaderstate.curpolyoffset.factor || shaderstate.curpolyoffset.unit)
{
shaderstate.curpolyoffset.factor = 0;
shaderstate.curpolyoffset.unit = 0;
qglDisable(GL_POLYGON_OFFSET_FILL);
}
/*BEM_STENCIL doesn't support mesh writing*/
qglDisableClientState(GL_COLOR_ARRAY);
//disable all tmus
while(shaderstate.lastpasstmus>0)
{
GL_LazyBind(--shaderstate.lastpasstmus, 0, r_nulltex, false);
}
qglShadeModel(GL_FLAT);
//replace mode please
BE_SetPassBlendMode(0, PBM_REPLACE);
//we don't write or blend anything (maybe alpha test... but mneh)
BE_SendPassBlendDepthMask(SBITS_MISC_DEPTHCLOSERONLY | SBITS_MASK_BITS);
GL_CullFace(0);
//don't change cull stuff, and
//don't actually change stencil stuff - caller needs to be
//aware of how many times stuff is drawn, so they can do that themselves.
break;
case BEM_SMAPLIGHT:
if (!shaderstate.inited_shader_smap)
{
shaderstate.inited_shader_smap = true;
shaderstate.shader_smap = R_RegisterCustom("rtlight_shadowmap", Shader_LightPass_PCF, NULL);
}
break;
case BEM_SMAPLIGHTSPOT:
if (!shaderstate.inited_shader_spot)
{
shaderstate.inited_shader_spot = true;
shaderstate.shader_spot = R_RegisterCustom("rtlight_spot", Shader_LightPass_Spot, NULL);
}
break;
case BEM_LIGHT:
if (!shaderstate.inited_shader_rtlight)
{
shaderstate.inited_shader_rtlight = true;
shaderstate.shader_rtlight = R_RegisterCustom("rtlight", Shader_LightPass_Std, NULL);
}
if (!shaderstate.inited_shader_cube)
{
shaderstate.inited_shader_cube = true;
shaderstate.shader_cube = R_RegisterCustom("rtlight_sube", Shader_LightPass_Cube, NULL);
}
break;
case BEM_CREPUSCULAR:
if (!shaderstate.crepopaqueshader)
{
shaderstate.crepopaqueshader = R_RegisterShader("crepuscular_opaque",
"{\n"
"program crepuscular_opaque\n"
"}\n"
);
}
if (!shaderstate.crepskyshader)
{
shaderstate.crepskyshader = R_RegisterShader("crepuscular_sky",
"{\n"
"program crepuscular_sky\n"
"{\n"
"map $diffuse\n"
"}\n"
"{\n"
"map $fullbright\n"
"}\n"
"}\n"
);
}
break;
#endif
case BEM_FOG:
while(shaderstate.lastpasstmus>0)
{
GL_LazyBind(--shaderstate.lastpasstmus, 0, r_nulltex, false);
}
GL_LazyBind(0, GL_TEXTURE_2D, shaderstate.fogtexture, true);
shaderstate.lastpasstmus = 1;
qglDisableClientState(GL_COLOR_ARRAY);
qglColor4f(1, 1, 1, 1);
qglShadeModel(GL_FLAT);
BE_SetPassBlendMode(0, PBM_MODULATE);
BE_SendPassBlendDepthMask(SBITS_SRCBLEND_SRC_ALPHA | SBITS_DSTBLEND_ONE_MINUS_SRC_ALPHA | SBITS_MISC_DEPTHEQUALONLY);
break;
}
}
}
void GLBE_SelectEntity(entity_t *ent)
{
if (shaderstate.curentity->flags & Q2RF_DEPTHHACK && qglDepthRange)
qglDepthRange (gldepthmin, gldepthmax);
shaderstate.curentity = ent;
currententity = ent;
R_RotateForEntity(shaderstate.modelmatrix, shaderstate.modelviewmatrix, shaderstate.curentity, shaderstate.curentity->model);
Matrix4_Invert(shaderstate.modelmatrix, shaderstate.modelmatrixinv);
if (qglLoadMatrixf)
qglLoadMatrixf(shaderstate.modelviewmatrix);
if (shaderstate.curentity->flags & Q2RF_DEPTHHACK && qglDepthRange)
qglDepthRange (gldepthmin, gldepthmin + 0.3*(gldepthmax-gldepthmin));
shaderstate.lastuniform = 0;
}
void BE_SelectFog(vec3_t colour, float alpha, float density)
{
float zscale;
density /= 64;
zscale = 2048; /*this value is meant to be the distance at which fog the value becomes as good as fully fogged, just hack it to 2048...*/
GenerateFogTexture(&shaderstate.fogtexture, density, zscale);
shaderstate.fogfar = 1/zscale; /*scaler for z coords*/
qglColor4f(colour[0], colour[1], colour[2], alpha);
}
void GLBE_SelectDLight(dlight_t *dl, vec3_t colour)
{
static float shadowprojectionbias[16] =
{
0.5f, 0.0f, 0.0f, 0.0f,
0.0f, 0.5f, 0.0f, 0.0f,
0.0f, 0.0f, 0.5f, 0.0f,
0.5f, 0.5f, 0.4993f, 1.0f
};
float view[16], proj[16], t[16];
/*generate light projection information*/
float nearplane = 4;
if (dl->fov)
Matrix4x4_CM_Projection_Far(proj, dl->fov, dl->fov, nearplane, dl->radius);
else
Matrix4x4_CM_Projection_Far(proj, 90, 90, nearplane, dl->radius);
Matrix4x4_CM_ModelViewMatrixFromAxis(view, dl->axis[0], dl->axis[1], dl->axis[2], dl->origin);
Matrix4_Multiply(shadowprojectionbias, proj, t);
Matrix4_Multiply(proj, view, shaderstate.lightprojmatrix);
/*simple info*/
shaderstate.lightradius = dl->radius;
VectorCopy(dl->origin, shaderstate.lightorg);
VectorCopy(dl->lightcolourscales, shaderstate.lightcolourscale);
VectorCopy(colour, shaderstate.lightcolours);
#ifdef RTLIGHTS
shaderstate.curshadowmap = dl->stexture;
#endif
#ifdef RTLIGHTS
shaderstate.lightcubemap = dl->cubetexture;
#endif
shaderstate.lastuniform = 0;
}
void BE_PushOffsetShadow(qboolean pushdepth)
{
if (pushdepth)
{
/*some quake doors etc are flush with the walls that they're meant to be hidden behind, or plats the same height as the floor, etc
we move them back very slightly using polygonoffset to avoid really ugly z-fighting*/
extern cvar_t r_polygonoffset_submodel_offset, r_polygonoffset_submodel_factor;
polyoffset_t po;
po.factor = r_polygonoffset_submodel_factor.value;
po.unit = r_polygonoffset_submodel_offset.value;
#ifndef FORCESTATE
if (((int*)&shaderstate.curpolyoffset)[0] != ((int*)&po)[0] || ((int*)&shaderstate.curpolyoffset)[1] != ((int*)&po)[1])
#endif
{
shaderstate.curpolyoffset = po;
if (shaderstate.curpolyoffset.factor || shaderstate.curpolyoffset.unit)
{
qglEnable(GL_POLYGON_OFFSET_FILL);
qglPolygonOffset(shaderstate.curpolyoffset.factor, shaderstate.curpolyoffset.unit);
}
else
qglDisable(GL_POLYGON_OFFSET_FILL);
}
}
else
{
#ifndef FORCESTATE
if (*(int*)&shaderstate.curpolyoffset != 0 || *(int*)&shaderstate.curpolyoffset != 0)
#endif
{
shaderstate.curpolyoffset = shaderstate.curshader->polyoffset;
if (shaderstate.curpolyoffset.factor || shaderstate.curpolyoffset.unit)
{
qglEnable(GL_POLYGON_OFFSET_FILL);
qglPolygonOffset(shaderstate.curpolyoffset.factor, shaderstate.curpolyoffset.unit);
}
else
qglDisable(GL_POLYGON_OFFSET_FILL);
}
}
}
static void DrawMeshes(void)
{
const shaderpass_t *p;
int passno;
passno = 0;
if (shaderstate.force2d)
{
RQuantAdd(RQUANT_2DBATCHES, 1);
}
else if (shaderstate.curentity == &r_worldentity)
{
RQuantAdd(RQUANT_WORLDBATCHES, 1);
}
else
{
RQuantAdd(RQUANT_ENTBATCHES, 1);
}
GL_SelectEBO(shaderstate.sourcevbo->indicies.gl.vbo);
if (shaderstate.curshader->numdeforms)
GenerateVertexDeforms(shaderstate.curshader);
else
{
shaderstate.pendingvertexpointer = shaderstate.sourcevbo->coord.gl.addr;
shaderstate.pendingvertexvbo = shaderstate.sourcevbo->coord.gl.vbo;
}
#ifndef FORCESTATE
if (shaderstate.curcull != (shaderstate.curshader->flags & (SHADER_CULL_FRONT|SHADER_CULL_BACK)))
#endif
{
shaderstate.curcull = (shaderstate.curshader->flags & (SHADER_CULL_FRONT|SHADER_CULL_BACK));
if (shaderstate.curcull & SHADER_CULL_FRONT)
{
qglEnable(GL_CULL_FACE);
qglCullFace(r_refdef.flipcull?GL_BACK:GL_FRONT);
}
else if (shaderstate.curcull & SHADER_CULL_BACK)
{
qglEnable(GL_CULL_FACE);
qglCullFace(r_refdef.flipcull?GL_FRONT:GL_BACK);
}
else
{
qglDisable(GL_CULL_FACE);
}
}
BE_PolyOffset(shaderstate.flags & BEF_PUSHDEPTH);
switch(shaderstate.mode)
{
case BEM_STENCIL:
Host_Error("Shader system is not meant to accept stencil meshes\n");
break;
#ifdef RTLIGHTS
case BEM_SMAPLIGHTSPOT:
BE_RenderMeshProgram(shaderstate.shader_spot, shaderstate.shader_spot->passes);
break;
case BEM_SMAPLIGHT:
BE_RenderMeshProgram(shaderstate.shader_smap, shaderstate.shader_smap->passes);
break;
case BEM_LIGHT:
if (TEXVALID(shaderstate.lightcubemap))
BE_RenderMeshProgram(shaderstate.shader_cube, shaderstate.shader_cube->passes);
else
BE_RenderMeshProgram(shaderstate.shader_rtlight, shaderstate.shader_rtlight->passes);
break;
case BEM_DEPTHNORM:
BE_RenderMeshProgram(shaderstate.depthnormshader, shaderstate.depthnormshader->passes);
break;
#endif
case BEM_CREPUSCULAR:
if (shaderstate.curshader->flags & SHADER_SKY)
BE_RenderMeshProgram(shaderstate.crepskyshader, shaderstate.crepskyshader->passes);
else
BE_RenderMeshProgram(shaderstate.crepopaqueshader, shaderstate.crepopaqueshader->passes);
break;
case BEM_DEPTHONLY:
GL_DeSelectProgram();
#ifdef warningmsg
#pragma warningmsg("fixme: support alpha test")
#endif
GL_ApplyVertexPointer();
BE_SubmitMeshChain();
break;
case BEM_FOG:
GL_DeSelectProgram();
GenerateTCFog(0);
GL_ApplyVertexPointer();
BE_SubmitMeshChain();
break;
case BEM_DEPTHDARK:
if ((shaderstate.curshader->flags & SHADER_HASLIGHTMAP) && !TEXVALID(shaderstate.curtexnums->fullbright))
{
GL_DeSelectProgram();
qglColor3f(0,0,0);
qglDisableClientState(GL_COLOR_ARRAY);
while(shaderstate.lastpasstmus>0)
{
GL_LazyBind(--shaderstate.lastpasstmus, 0, r_nulltex, false);
}
BE_SetPassBlendMode(0, PBM_REPLACE);
BE_SendPassBlendDepthMask(shaderstate.curshader->passes[0].shaderbits);
GL_ApplyVertexPointer();
BE_SubmitMeshChain();
break;
}
//fallthrough
case BEM_STANDARD:
default:
if (shaderstate.curshader->prog)
{
BE_RenderMeshProgram(shaderstate.curshader, shaderstate.curshader->passes);
}
else if (gl_config.nofixedfunc)
break;
else
{
GL_DeSelectProgram();
while (passno < shaderstate.curshader->numpasses)
{
p = &shaderstate.curshader->passes[passno];
passno += p->numMergedPasses;
// if (p->flags & SHADER_PASS_DETAIL)
// continue;
DrawPass(p);
}
}
break;
}
}
void GLBE_DrawMesh_List(shader_t *shader, int nummeshes, mesh_t **meshlist, vbo_t *vbo, texnums_t *texnums, unsigned int beflags)
{
if (!vbo)
{
mesh_t *m;
shaderstate.sourcevbo = &shaderstate.dummyvbo;
shaderstate.curshader = shader;
shaderstate.flags = beflags;
if (shaderstate.curentity != &r_worldentity)
{
BE_SelectEntity(&r_worldentity);
shaderstate.curtime = shaderstate.updatetime - shaderstate.curentity->shaderTime;
}
shaderstate.curtexnums = texnums;
shaderstate.curlightmap = r_nulltex;
shaderstate.curdeluxmap = r_nulltex;
while (nummeshes--)
{
m = *meshlist++;
shaderstate.dummyvbo.coord.gl.addr = m->xyz_array;
shaderstate.dummyvbo.texcoord.gl.addr = m->st_array;
shaderstate.dummyvbo.indicies.gl.addr = m->indexes;
shaderstate.dummyvbo.normals.gl.addr = m->normals_array;
shaderstate.dummyvbo.svector.gl.addr = m->snormals_array;
shaderstate.dummyvbo.tvector.gl.addr = m->tnormals_array;
if (m->colors4f_array)
{
shaderstate.colourarraytype = GL_FLOAT;
shaderstate.dummyvbo.colours.gl.addr = m->colors4f_array;
}
else
{
shaderstate.colourarraytype = GL_UNSIGNED_BYTE;
shaderstate.dummyvbo.colours.gl.addr = m->colors4b_array;
}
shaderstate.dummyvbo.bones = m->bones;
shaderstate.dummyvbo.numbones = m->numbones;
shaderstate.dummyvbo.bonenums.gl.addr = m->bonenums;
shaderstate.dummyvbo.boneweights.gl.addr = m->boneweights;
shaderstate.meshcount = 1;
shaderstate.meshes = &m;
DrawMeshes();
}
}
else
{
shaderstate.sourcevbo = vbo;
shaderstate.colourarraytype = GL_FLOAT;
shaderstate.curshader = shader;
shaderstate.flags = beflags;
if (shaderstate.curentity != &r_worldentity)
{
BE_SelectEntity(&r_worldentity);
shaderstate.curtime = shaderstate.updatetime - shaderstate.curentity->shaderTime;
}
shaderstate.curtexnums = texnums;
shaderstate.curlightmap = r_nulltex;
shaderstate.curdeluxmap = r_nulltex;
shaderstate.meshcount = nummeshes;
shaderstate.meshes = meshlist;
DrawMeshes();
}
}
void GLBE_DrawMesh_Single(shader_t *shader, mesh_t *mesh, vbo_t *vbo, texnums_t *texnums, unsigned int beflags)
{
shader->next = NULL;
BE_DrawMesh_List(shader, 1, &mesh, NULL, texnums, beflags);
}
void GLBE_SubmitBatch(batch_t *batch)
{
int lm;
if (batch->texture)
{
shaderstate.sourcevbo = &batch->texture->vbo;
shaderstate.colourarraytype = GL_FLOAT;
lm = batch->lightmap;
}
else
{
shaderstate.dummyvbo.coord.gl.addr = batch->mesh[0]->xyz_array;
shaderstate.dummyvbo.texcoord.gl.addr = batch->mesh[0]->st_array;
shaderstate.dummyvbo.indicies.gl.addr = batch->mesh[0]->indexes;
shaderstate.dummyvbo.normals.gl.addr = batch->mesh[0]->normals_array;
shaderstate.dummyvbo.svector.gl.addr = batch->mesh[0]->snormals_array;
shaderstate.dummyvbo.tvector.gl.addr = batch->mesh[0]->tnormals_array;
if (batch->mesh[0]->colors4f_array)
{
shaderstate.colourarraytype = GL_FLOAT;
shaderstate.dummyvbo.colours.gl.addr = batch->mesh[0]->colors4f_array;
}
else
{
shaderstate.colourarraytype = GL_UNSIGNED_BYTE;
shaderstate.dummyvbo.colours.gl.addr = batch->mesh[0]->colors4b_array;
}
shaderstate.dummyvbo.bones = batch->mesh[0]->bones;
shaderstate.dummyvbo.numbones = batch->mesh[0]->numbones;
shaderstate.dummyvbo.bonenums.gl.addr = batch->mesh[0]->bonenums;
shaderstate.dummyvbo.boneweights.gl.addr = batch->mesh[0]->boneweights;
shaderstate.sourcevbo = &shaderstate.dummyvbo;
lm = -1;
}
if (lm < 0)
{
shaderstate.curlightmap = r_nulltex;
shaderstate.curdeluxmap = r_nulltex;
}
else
{
shaderstate.curlightmap = lightmap_textures[lm];
shaderstate.curdeluxmap = deluxmap_textures[lm];
}
shaderstate.curshader = batch->shader;
shaderstate.flags = batch->flags;
if (shaderstate.curentity != batch->ent)
{
BE_SelectEntity(batch->ent);
shaderstate.curtime = r_refdef.time - shaderstate.curentity->shaderTime;
}
if (batch->skin)
shaderstate.curtexnums = batch->skin;
else
shaderstate.curtexnums = &shaderstate.curshader->defaulttextures;
if (0)
{
int i;
for (i = batch->firstmesh; i < batch->meshes; i++)
{
shaderstate.meshcount = 1;
shaderstate.meshes = &batch->mesh[i];
DrawMeshes();
}
}
else
{
shaderstate.meshcount = batch->meshes - batch->firstmesh;
shaderstate.meshes = batch->mesh+batch->firstmesh;
DrawMeshes();
}
}
static void BE_SubmitMeshesPortals(batch_t **worldlist, batch_t *dynamiclist)
{
batch_t *batch, *old;
int i;
/*attempt to draw portal shaders*/
if (shaderstate.mode == BEM_STANDARD)
{
for (i = 0; i < 2; i++)
{
for (batch = i?dynamiclist:worldlist[SHADER_SORT_PORTAL]; batch; batch = batch->next)
{
if (batch->meshes == batch->firstmesh)
continue;
if (batch->buildmeshes)
batch->buildmeshes(batch);
else
batch->shader = R_TextureAnimation(batch->ent->framestate.g[FS_REG].frame[0], batch->texture)->shader;
/*draw already-drawn portals as depth-only, to ensure that their contents are not harmed*/
BE_SelectMode(BEM_DEPTHONLY);
for (old = worldlist[SHADER_SORT_PORTAL]; old && old != batch; old = old->next)
{
if (old->meshes == old->firstmesh)
continue;
BE_SubmitBatch(old);
}
if (!old)
{
for (old = dynamiclist; old != batch; old = old->next)
{
if (old->meshes == old->firstmesh)
continue;
BE_SubmitBatch(old);
}
}
BE_SelectMode(BEM_STANDARD);
GLR_DrawPortal(batch, worldlist);
/*clear depth again*/
GL_ForceDepthWritable();
qglClear(GL_DEPTH_BUFFER_BIT);
currententity = &r_worldentity;
}
}
}
}
static void BE_SubmitMeshesSortList(batch_t *sortlist)
{
batch_t *batch;
for (batch = sortlist; batch; batch = batch->next)
{
if (batch->meshes == batch->firstmesh)
continue;
if (batch->flags & BEF_NODLIGHT)
if (shaderstate.mode == BEM_LIGHT || shaderstate.mode == BEM_SMAPLIGHT)
continue;
if (batch->flags & BEF_NOSHADOWS)
if (shaderstate.mode == BEM_STENCIL)
continue;
if (batch->buildmeshes)
batch->buildmeshes(batch);
else if (batch->texture)
batch->shader = R_TextureAnimation(batch->ent->framestate.g[FS_REG].frame[0], batch->texture)->shader;
if (batch->shader->flags & SHADER_NODRAW)
continue;
if (batch->shader->flags & SHADER_NODLIGHT)
if (shaderstate.mode == BEM_LIGHT || shaderstate.mode == BEM_SMAPLIGHT)
continue;
if (batch->shader->flags & SHADER_SKY)
{
if (shaderstate.mode == BEM_STANDARD || shaderstate.mode == BEM_DEPTHDARK)
{
if (!batch->shader->prog)
{
R_DrawSkyChain (batch);
continue;
}
}
else if (shaderstate.mode != BEM_FOG && shaderstate.mode != BEM_CREPUSCULAR)
continue;
}
BE_SubmitBatch(batch);
}
}
void GLBE_SubmitMeshes (qboolean drawworld, batch_t **blist, int start, int stop)
{
model_t *model = cl.worldmodel;
int i;
for (i = start; i <= stop; i++)
{
if (drawworld)
{
if (i == SHADER_SORT_PORTAL && !r_noportals.ival && !r_refdef.recurse)
BE_SubmitMeshesPortals(model->batches, blist[i]);
BE_SubmitMeshesSortList(model->batches[i]);
}
BE_SubmitMeshesSortList(blist[i]);
}
}
static void BE_UpdateLightmaps(void)
{
int lm;
for (lm = 0; lm < numlightmaps; lm++)
{
if (!lightmap[lm])
continue;
if (lightmap[lm]->modified)
{
glRect_t *theRect;
lightmap[lm]->modified = false;
theRect = &lightmap[lm]->rectchange;
GL_MTBind(0, GL_TEXTURE_2D, lightmap_textures[lm]);
switch (lightmap_bytes)
{
case 4:
qglTexSubImage2D(GL_TEXTURE_2D, 0, 0, theRect->t,
LMBLOCK_WIDTH, theRect->h, (lightmap_bgra?GL_BGRA_EXT:GL_RGBA), GL_UNSIGNED_INT_8_8_8_8_REV,
lightmap[lm]->lightmaps+(theRect->t) *LMBLOCK_WIDTH*4);
break;
case 3:
qglTexSubImage2D(GL_TEXTURE_2D, 0, 0, theRect->t,
LMBLOCK_WIDTH, theRect->h, (lightmap_bgra?GL_BGR_EXT:GL_RGB), GL_UNSIGNED_BYTE,
lightmap[lm]->lightmaps+(theRect->t) *LMBLOCK_WIDTH*3);
break;
case 1:
qglTexSubImage2D(GL_TEXTURE_2D, 0, 0, theRect->t,
LMBLOCK_WIDTH, theRect->h, GL_LUMINANCE, GL_UNSIGNED_BYTE,
lightmap[lm]->lightmaps+(theRect->t) *LMBLOCK_WIDTH);
break;
}
theRect->l = LMBLOCK_WIDTH;
theRect->t = LMBLOCK_HEIGHT;
theRect->h = 0;
theRect->w = 0;
if (lightmap[lm]->deluxmodified)
{
lightmap[lm]->deluxmodified = false;
theRect = &lightmap[lm]->deluxrectchange;
GL_MTBind(0, GL_TEXTURE_2D, deluxmap_textures[lm]);
qglTexSubImage2D(GL_TEXTURE_2D, 0, 0, theRect->t,
LMBLOCK_WIDTH, theRect->h, GL_RGB, GL_UNSIGNED_BYTE,
lightmap[lm]->deluxmaps+(theRect->t) *LMBLOCK_WIDTH*3);
theRect->l = LMBLOCK_WIDTH;
theRect->t = LMBLOCK_HEIGHT;
theRect->h = 0;
theRect->w = 0;
}
}
}
}
batch_t *GLBE_GetTempBatch(void)
{
if (shaderstate.wbatch >= shaderstate.maxwbatches)
{
shaderstate.wbatch++;
return NULL;
}
return &shaderstate.wbatches[shaderstate.wbatch++];
}
/*called from shadowmapping code*/
#ifdef RTLIGHTS
void GLBE_BaseEntTextures(void)
{
batch_t *batches[SHADER_SORT_COUNT];
BE_GenModelBatches(batches);
GLBE_SubmitMeshes(false, batches, SHADER_SORT_PORTAL, SHADER_SORT_DECAL);
BE_SelectEntity(&r_worldentity);
}
#endif
void GLBE_RenderToTexture(texid_t sourcecol, texid_t sourcedepth, texid_t destcol, texid_t destdepth, qboolean usedepth)
{
shaderstate.tex_sourcecol = sourcecol;
shaderstate.tex_sourcedepth = sourcedepth;
if (!destcol.num)
qglBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);
else
{
if (!shaderstate.fbo_depthless)
{
qglGenFramebuffersEXT(1, &shaderstate.fbo_depthless);
qglBindFramebufferEXT(GL_FRAMEBUFFER_EXT, shaderstate.fbo_depthless);
qglDrawBuffer(GL_COLOR_ATTACHMENT0_EXT);
qglReadBuffer(GL_NONE);
}
else
qglBindFramebufferEXT(GL_FRAMEBUFFER_EXT, shaderstate.fbo_depthless);
qglFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_2D, destcol.num, 0);
}
}
void GLBE_DrawLightPrePass(qbyte *vis, batch_t **batches)
{
extern cvar_t temp1;
if (!shaderstate.initeddepthnorm)
{
shaderstate.initeddepthnorm = true;
shaderstate.depthnormshader = R_RegisterShader("lpp_depthnorm",
"{\n"
"program lpp_depthnorm\n"
"{\n"
"map $normalmap\n"
"tcgen base\n"
"}\n"
"}\n"
);
}
if (!shaderstate.depthnormshader)
{
Con_Printf("%s requires content support\n", r_lightprepass.name);
r_lightprepass.ival = 0;
return;
}
/*do portals*/
BE_SelectMode(BEM_STANDARD);
GLBE_SubmitMeshes(true, batches, SHADER_SORT_PORTAL, SHADER_SORT_PORTAL);
BE_SelectMode(BEM_DEPTHNORM);
if (!shaderstate.depthnormshader)
{
BE_SelectMode(BEM_STANDARD);
return;
}
#define GL_RGBA16F_ARB 0x881A
#define GL_RGBA32F_ARB 0x8814
if (!TEXVALID(shaderstate.tex_normals))
{
shaderstate.tex_normals = GL_AllocNewTexture("***prepass normals***", vid.pixelwidth, vid.pixelheight);
r_lightprepass.modified = true;
}
if (r_lightprepass.modified)
{
GL_MTBind(0, GL_TEXTURE_2D, shaderstate.tex_normals);
qglTexImage2D(GL_TEXTURE_2D, 0, (r_lightprepass.ival==2)?GL_RGBA32F_ARB:GL_RGBA16F_ARB, vid.pixelwidth, vid.pixelheight, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
qglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
qglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
r_lightprepass.modified = false;
}
if (!TEXVALID(shaderstate.tex_diffuse))
{
int drb;
shaderstate.tex_diffuse = GL_AllocNewTexture("***prepass diffuse***", vid.pixelwidth, vid.pixelheight);
GL_MTBind(0, GL_TEXTURE_2D, shaderstate.tex_diffuse);
qglTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, vid.pixelwidth, vid.pixelheight, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
qglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
qglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
GL_MTBind(0, GL_TEXTURE_2D, shaderstate.tex_normals);
qglTexImage2D(GL_TEXTURE_2D, 0, (r_lightprepass.ival==2)?GL_RGBA32F_ARB:GL_RGBA16F_ARB, vid.pixelwidth, vid.pixelheight, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
r_lightprepass.modified = false;
qglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
qglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
qglGenFramebuffersEXT(1, &shaderstate.fbo_diffuse);
qglBindFramebufferEXT(GL_FRAMEBUFFER_EXT, shaderstate.fbo_diffuse);
qglGenRenderbuffersEXT(1, &drb);
qglBindRenderbufferEXT(GL_RENDERBUFFER_EXT, drb);
qglRenderbufferStorageEXT(GL_RENDERBUFFER_EXT, GL_DEPTH_COMPONENT24_ARB, vid.pixelwidth, vid.pixelheight);
qglFramebufferRenderbufferEXT(GL_FRAMEBUFFER_EXT, GL_DEPTH_ATTACHMENT_EXT, GL_RENDERBUFFER_EXT, drb);
qglDrawBuffer(GL_COLOR_ATTACHMENT0_EXT);
// qglReadBuffer(GL_NONE);
}
else
qglBindFramebufferEXT(GL_FRAMEBUFFER_EXT, shaderstate.fbo_diffuse);
/*set the FB up to draw surface info*/
qglFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_2D, shaderstate.tex_normals.num, 0);
GL_ForceDepthWritable();
qglClear(GL_DEPTH_BUFFER_BIT);
if (GL_FRAMEBUFFER_COMPLETE_EXT != qglCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT))
{
Con_Printf("Bad framebuffer\n");
return;
}
/*draw surfaces that can be drawn this way*/
GLBE_SubmitMeshes(true, batches, SHADER_SORT_OPAQUE, SHADER_SORT_OPAQUE);
/*reconfigure - now drawing diffuse light info using the previous fb image as a source image*/
shaderstate.tex_sourcecol = shaderstate.tex_normals;
qglFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_2D, shaderstate.tex_diffuse.num, 0);
BE_SelectMode(BEM_STANDARD);
qglClearColor (0,0,0,0);
qglClear(GL_COLOR_BUFFER_BIT);
BE_SelectEntity(&r_worldentity);
/*now draw the prelights*/
GLBE_SubmitMeshes(true, batches, SHADER_SORT_PRELIGHT, SHADER_SORT_PRELIGHT);
/*final reconfigure - now drawing final surface data onto true framebuffer*/
qglBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);
shaderstate.tex_sourcecol = shaderstate.tex_diffuse;
qglDrawBuffer(GL_BACK);
/*now draw the postlight passes (this includes blended stuff which will NOT be lit)*/
BE_SelectEntity(&r_worldentity);
GLBE_SubmitMeshes(true, batches, SHADER_SORT_SKY, SHADER_SORT_NEAREST);
#ifdef RTLIGHTS
/*regular lighting now*/
BE_SelectEntity(&r_worldentity);
Sh_DrawLights(vis, batches);
#endif
shaderstate.tex_sourcecol = r_nulltex;
shaderstate.tex_sourcedepth = r_nulltex;
qglClearColor (1,0,0,1);
}
void GLBE_DrawWorld (qbyte *vis)
{
extern cvar_t r_shadow_realtime_world, r_shadow_realtime_world_lightmaps;
batch_t *batches[SHADER_SORT_COUNT];
RSpeedLocals();
GL_DoSwap();
if (!r_refdef.recurse)
{
if (shaderstate.wbatch + 50 > shaderstate.maxwbatches)
{
int newm = shaderstate.wbatch + 100;
shaderstate.wbatches = BZ_Realloc(shaderstate.wbatches, newm * sizeof(*shaderstate.wbatches));
memset(shaderstate.wbatches + shaderstate.maxwbatches, 0, (newm - shaderstate.maxwbatches) * sizeof(*shaderstate.wbatches));
shaderstate.maxwbatches = newm;
}
shaderstate.wbatch = 0;
}
BE_GenModelBatches(batches);
R_GenDlightBatches(batches);
shaderstate.curentity = &r_worldentity;
shaderstate.updatetime = cl.servertime;
BE_SelectEntity(&r_worldentity);
if (vis)
{
BE_UpdateLightmaps();
if (gl_overbright.modified)
{
int i;
gl_overbright.modified = false;
if (gl_overbright.ival > 2)
gl_overbright.ival = 2;
for (i = 0; i < SHADER_PASS_MAX; i++)
shaderstate.blendmode[i] = -1;
}
#ifdef RTLIGHTS
if (r_shadow_realtime_world.value && gl_config.arb_shader_objects)
shaderstate.identitylighting = r_shadow_realtime_world_lightmaps.value;
else
#endif
shaderstate.identitylighting = 1;
// shaderstate.identitylighting /= 1<<gl_overbright.ival;
#ifdef RTLIGHTS
if (r_lightprepass.ival)
{
GLBE_DrawLightPrePass(vis, batches);
}
else
#endif
{
if (shaderstate.identitylighting == 0)
BE_SelectMode(BEM_DEPTHDARK);
else
BE_SelectMode(BEM_STANDARD);
RSpeedRemark();
GLBE_SubmitMeshes(true, batches, SHADER_SORT_PORTAL, SHADER_SORT_DECAL);
RSpeedEnd(RSPEED_WORLD);
}
#ifdef RTLIGHTS
RSpeedRemark();
BE_SelectEntity(&r_worldentity);
Sh_DrawLights(vis, batches);
RSpeedEnd(RSPEED_STENCILSHADOWS);
#endif
shaderstate.identitylighting = 1;
GLBE_SubmitMeshes(true, batches, SHADER_SORT_DECAL, SHADER_SORT_NEAREST);
/* if (r_refdef.gfog_alpha)
{
BE_SelectMode(BEM_FOG);
BE_SelectFog(r_refdef.gfog_rgb, r_refdef.gfog_alpha, r_refdef.gfog_density);
GLBE_SubmitMeshes(true, batches, SHADER_SORT_PORTAL, SHADER_SORT_NEAREST);
}
*/
}
else
{
GLBE_SubmitMeshes(false, batches, SHADER_SORT_PORTAL, SHADER_SORT_NEAREST);
}
BE_SelectEntity(&r_worldentity);
shaderstate.curtime = shaderstate.updatetime = realtime;
shaderstate.identitylighting = 1;
}
#endif