fteqw/engine/common/zone.c

2265 lines
43 KiB
C
Raw Normal View History

/*
Copyright (C) 1996-1997 Id Software, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
// Z_zone.c
#include "quakedef.h"
#ifdef _WIN32
#include "winquake.h"
#endif
#undef malloc
#undef free
#define NOZONE
#define NOCACHE
#ifdef _WIN32
#define NOHIGH
#endif
void Cache_FreeLow (int new_low_hunk);
void Cache_FreeHigh (int new_high_hunk);
#ifdef _DEBUG
//#define MEMDEBUG 8192 //Debugging adds sentinels (the number is the size - I have the ram)
#endif
//must be multiple of 4.
#define TEMPDEBUG 4
#define ZONEDEBUG 4
#define HUNKDEBUG 4
#define CACHEDEBUG 4
//these need to be defined because it makes some bits of code simpler
#ifndef HUNKDEBUG
#define HUNKDEBUG 0
#endif
#ifndef ZONEDEBUG
#define ZONEDEBUG 0
#endif
#ifndef TEMPDEBUG
#define TEMPDEBUG 0
#endif
#ifndef CACHEDEBUG
#define CACHEDEBUG 0
#endif
#if ZONEDEBUG>0 || HUNKDEBUG>0 || TEMPDEBUG>0||CACHEDEBUG>0
qbyte sentinalkey;
#endif
#define TAGLESS 1
typedef struct memheader_s {
int size;
int tag;
} memheader_t;
typedef struct zone_s {
struct zone_s *next;
struct zone_s *pvdn; // down if first, previous if not
memheader_t mh;
} zone_t;
zone_t *zone_head;
#ifdef MULTITHREAD
void *zonelock;
#endif
static void Z_DumpTree()
{
zone_t *zone;
zone_t *nextlist;
zone_t *t;
zone_t *prev;
zone = zone_head;
while(zone)
{
nextlist = zone->pvdn;
fprintf(stderr, " +-+ %016x (tag: %08x)\n", zone, zone->mh.tag);
prev = zone;
t = zone->next;
while(t)
{
if (t->pvdn != prev)
fprintf(stderr, "Previous link failure\n");
prev = t;
t = t->next;
}
while(zone)
{
fprintf(stderr, " +-- %016x\n", zone);
zone = zone->next;
}
zone = nextlist;
}
}
void *VARGS Z_TagMalloc(int size, int tag)
{
zone_t *zone;
zone = (zone_t *)malloc(size + sizeof(zone_t));
if (!zone)
Sys_Error("Z_Malloc: Failed on allocation of %i bytes", size);
Q_memset(zone, 0, size + sizeof(zone_t));
zone->mh.tag = tag;
zone->mh.size = size;
#ifdef MULTITHREAD
if (zonelock)
Sys_LockMutex(zonelock);
#endif
#if 0
fprintf(stderr, "Before alloc:\n");
Z_DumpTree();
fprintf(stderr, "\n");
#endif
if (zone_head == NULL)
zone_head = zone;
else
{
zone_t *s = zone_head;
while (s && s->mh.tag != tag)
s = s->pvdn;
if (s)
{ // tag match
zone->next = s->next;
if (s->next)
s->next->pvdn = zone;
zone->pvdn = s;
s->next = zone;
}
else
{
zone->pvdn = zone_head;
if (s->next)
s->next->pvdn = zone;
zone_head = zone;
}
}
#if 0
fprintf(stderr, "After alloc:\n");
Z_DumpTree();
fprintf(stderr, "\n");
#endif
#ifdef MULTITHREAD
if (zonelock)
Sys_UnlockMutex(zonelock);
#endif
return (void *)(zone + 1);
}
void *ZF_Malloc(int size)
{
return calloc(size, 1);
}
void *Z_Malloc(int size)
{
void *mem = ZF_Malloc(size);
if (!mem)
Sys_Error("Z_Malloc: Failed on allocation of %i bytes", size);
return mem;
}
void VARGS Z_TagFree(void *mem)
{
zone_t *zone = ((zone_t *)mem) - 1;
#if 0
fprintf(stderr, "Before free:\n");
Z_DumpTree();
fprintf(stderr, "\n");
#endif
#ifdef MULTITHREAD
if (zonelock)
Sys_LockMutex(zonelock);
#endif
if (zone->next)
zone->next->pvdn = zone->pvdn;
if (zone->pvdn && zone->pvdn->mh.tag == zone->mh.tag)
zone->pvdn->next = zone->next;
else
{ // zone is first entry in a tag list
zone_t *s = zone_head;
if (zone != s)
{ // traverse and update down list
while (s->pvdn != zone)
s = s->pvdn;
if (zone->next)
s->pvdn = zone->next;
else
s->pvdn = zone->pvdn;
}
}
if (zone == zone_head)
{ // freeing head node so update head pointer
if (zone->next) // move to next, pvdn should be maintained properly
zone_head = zone->next;
else // no more entries with this tag so move head down
zone_head = zone->pvdn;
}
#if 0
fprintf(stderr, "After free:\n");
Z_DumpTree();
fprintf(stderr, "\n");
#endif
#ifdef MULTITHREAD
if (zonelock)
Sys_UnlockMutex(zonelock);
#endif
free(zone);
}
void VARGS Z_Free(void *mem)
{
free(mem);
}
void VARGS Z_FreeTags(int tag)
{
zone_t *taglist;
zone_t *t;
#ifdef MULTITHREAD
if (zonelock)
Sys_LockMutex(zonelock);
#endif
if (zone_head)
{
if (zone_head->mh.tag == tag)
{ // just pull off the head
taglist = zone_head;
zone_head = zone_head->pvdn;
}
else
{ // search for tag list and isolate it
zone_t *z;
z = zone_head;
while (z->pvdn != NULL && z->pvdn->mh.tag != tag)
z = z->pvdn;
if (z->next == NULL)
taglist = NULL;
else
{
taglist = z->pvdn;
z->pvdn = z->pvdn->pvdn;
}
}
}
else
taglist = NULL;
#ifdef MULTITHREAD
if (zonelock)
Sys_UnlockMutex(zonelock);
#endif
// actually free list
while (taglist != NULL)
{
t = taglist->next;
free(taglist);
taglist = t;
}
}
/*
void *Z_Realloc(void *data, int newsize)
{
memheader_t *memref;
if (!data)
return Z_Malloc(newsize);
memref = ((memheader_t *)data) - 1;
if (memref[0].tag != TAGLESS)
{ // allocate a new block and copy since we need to maintain the lists
zone_t *zone = ((zone_t *)data) - 1;
int size = zone->mh.size;
if (size != newsize)
{
void *newdata = Z_Malloc(newsize);
if (size > newsize)
size = newsize;
memcpy(newdata, data, size);
Z_Free(data);
data = newdata;
}
}
else
{
int oldsize = memref[0].size;
memref = realloc(memref, newsize + sizeof(memheader_t));
memref->size = newsize;
if (newsize > oldsize)
memset((qbyte *)memref + sizeof(memheader_t) + oldsize, 0, newsize - oldsize);
data = ((memheader_t *)memref) + 1;
}
return data;
}
*/
void *BZF_Malloc(int size) //BZ_Malloc but allowed to fail - like straight malloc.
{
return malloc(size);
}
void *BZ_Malloc(int size) //Doesn't clear. The expectation is a large file, rather than sensative data structures.
{
void *mem = BZF_Malloc(size);
if (!mem)
Sys_Error("BZ_Malloc: Failed on allocation of %i bytes", size);
return mem;
}
void *BZF_Realloc(void *data, int newsize)
{
return realloc(data, newsize);
}
void *BZ_Realloc(void *data, int newsize)
{
void *mem = BZF_Realloc(data, newsize);
if (!mem)
Sys_Error("BZ_Realloc: Failed on reallocation of %i bytes", newsize);
return mem;
}
void BZ_Free(void *data)
{
free(data);
}
#if 0 //NOZONE //zone memory is for small dynamic things.
/*
void *Z_TagMalloc(int size, int tag)
{
return malloc(size);
}
void *Z_Malloc(int size)
{
qbyte *buf;
buf = Z_TagMalloc(size, 1);
if (!buf)
Sys_Error("Z_Malloc: Failed on allocation of %i bytes", size);
Q_memset(buf, 0, size);
return buf;
}
void Z_Free (void *buf)
{
free(buf);
}
void Z_FreeTags (void *buf)
{
free(buf);
}
*/
#define ZONEID 0x1d4a11
#define ZONESENTINAL 0xdeadbeaf
typedef struct zone_s {
// int sentinal1;
struct zone_s *next;
struct zone_s *prev;
int size;
int tag;
// int sentinal2;
} zone_t;
zone_t *zone_head;
/*
void Z_CheckSentinals(void)
{
zone_t *zone;
for(zone = zone_head; zone; zone=zone->next)
{
if (zone->sentinal1 != ZONESENTINAL || zone->sentinal2 != ZONESENTINAL)
Sys_Error("Memory sentinal destroyed\n");
}
}*/
void VARGS Z_Free (void *c)
{
zone_t *nz;
nz = ((zone_t *)((char*)c-ZONEDEBUG))-1;
// Z_CheckSentinals();
#if ZONEDEBUG>0
{
int i;
qbyte *buf;
buf = (qbyte *)(nz+1);
for (i = 0; i < ZONEDEBUG; i++)
{
if (buf[i] != sentinalkey)
Sys_Error("corrupt memory block (%i? bytes)\n", nz->size);
}
buf+=ZONEDEBUG;
//app data
buf += nz->size;
for (i = 0; i < ZONEDEBUG; i++)
{
if (buf[i] != sentinalkey)
Sys_Error("corrupt memory block (%i? bytes)\n", nz->size);
}
}
#endif
// if (nz->sentinal1 != ZONESENTINAL || nz->sentinal2 != ZONESENTINAL)
// Sys_Error("zone was not z_malloced\n");
if (nz->next)
nz->next->prev = nz->prev;
if (nz->prev)
nz->prev->next = nz->next;
if (nz == zone_head)
zone_head = nz->next;
// Con_Printf("Free of %i bytes\n", nz->size);
free(nz);
}
void BZ_CheckSentinals(void *c)
{
#if ZONEDEBUG>0
zone_t *nz;
nz = ((zone_t *)((char*)c-ZONEDEBUG))-1;
// Z_CheckSentinals();
{
int i;
qbyte *buf;
buf = (qbyte *)(nz+1);
for (i = 0; i < ZONEDEBUG; i++)
{
if (buf[i] != sentinalkey)
Sys_Error("corrupt memory block (%i? bytes)\n", nz->size);
}
buf+=ZONEDEBUG;
//app data
buf += nz->size;
for (i = 0; i < ZONEDEBUG; i++)
{
if (buf[i] != sentinalkey)
Sys_Error("corrupt memory block (%i? bytes)\n", nz->size);
}
}
#endif
}
//revive this function each time you get memory corruption and need to trace it.
void BZ_CheckAllSentinals(void)
{
zone_t *zone;
for(zone = zone_head; zone; zone=zone->next)
{
int i;
qbyte *buf;
buf = (qbyte *)(zone+1);
for (i = 0; i < ZONEDEBUG; i++)
{
if (buf[i] != sentinalkey)
Sys_Error("corrupt memory block (%i? bytes)\n", zone->size);
}
buf+=ZONEDEBUG;
//app data
buf += zone->size;
for (i = 0; i < ZONEDEBUG; i++)
{
if (buf[i] != sentinalkey)
Sys_Error("corrupt memory block (%i? bytes)\n", zone->size);
}
}
}
void VARGS Z_FreeTags(int tag)
{
zone_t *zone, *next;
for(zone = zone_head; zone; zone=next)
{
next = zone->next;
if (zone->tag == tag)
Z_Free((char*)(zone+1)+ZONEDEBUG);
}
}
#ifdef NAMEDMALLOCS
void *Z_BaseTagMalloc (int size, int tag, qboolean clear, char *descrip, ...)
#else
void *Z_BaseTagMalloc (int size, int tag, qboolean clear)
#endif
{
#ifdef NAMEDMALLOCS
va_list argptr;
char buffer[512];
#endif
void *buf;
zone_t *nt;
// Z_CheckSentinals();
//Con_Printf("Malloc of %i bytes\n", size);
//if (size>20)
//Con_Printf("Big malloc\n");
if (size <= 0)
Sys_Error ("Z_Malloc: size %i", size);
#ifdef NAMEDMALLOCS
va_start (argptr, descrip);
vsprintf (buffer, descrip,argptr);
va_end (argptr);
nt = (zone_t*)malloc(size + sizeof(zone_t)+strlen(buffer)+1 + ZONEDEBUG*2);
#else
nt = (zone_t*)malloc(size + sizeof(zone_t)+ ZONEDEBUG*2);
#endif
if (!nt)
Sys_Error("Z_BaseTagMalloc: failed on allocation of %i bytes", size);
nt->next = zone_head;
nt->prev = NULL;
nt->size = size;
nt->tag = tag;
// nt->sentinal1 = ZONESENTINAL;
// nt->sentinal2 = ZONESENTINAL;
if (zone_head)
zone_head->prev = nt;
zone_head = nt;
buf = (void *)(nt+1);
#if ZONEDEBUG > 0
memset(buf, sentinalkey, ZONEDEBUG);
buf = (char*)buf+ZONEDEBUG;
memset((char*)buf+size, sentinalkey, ZONEDEBUG);
#endif
if (clear)
Q_memset(buf, 0, size);
#ifdef NAMEDMALLOCS
strcpy((char *)(nt+1) + nt->size + ZONEDEBUG*2, buffer);
#endif
return buf;
}
void *VARGS Z_TagMalloc (int size, int tag)
{
#ifdef NAMEDMALLOCS
return Z_BaseTagMalloc(size, tag, true, "");
#else
return Z_BaseTagMalloc(size, tag, true);
#endif
}
#ifdef NAMEDMALLOCS
void *Z_MallocNamed (int size, char *file, int lineno)
{
qbyte *buf;
buf = Z_BaseTagMalloc(size, 1, true, "%s: %i", file, lineno);
if (!buf)
Sys_Error("Z_Malloc: Failed on allocation of %i bytes", size);
return buf;
}
#else
void *Z_Malloc(int size)
{
qbyte *buf;
buf = (qbyte*)Z_TagMalloc(size, 1);
if (!buf)
Sys_Error("Z_Malloc: Failed on allocation of %i bytes", size);
return buf;
}
void *BZ_Malloc(int size) //Doesn't clear. The expectation is a large file, rather than sensative data structures.
{
void *data = Z_BaseTagMalloc(size, 1, true);
if (!data)
Sys_Error("BZ_Malloc failed on %i bytes", size);
return data;
}
#endif
void *BZF_Malloc(int size) //BZ_Malloc but allowed to fail - like straight malloc.
{
#ifdef NAMEDMALLOCS
return Z_BaseTagMalloc(size, 1, false, "");
#else
return Z_BaseTagMalloc(size, 1, false);
#endif
}
#ifdef NAMEDMALLOCS
void *BZ_NamedRealloc(void *data, int newsize, char *file, int lineno)
#else
void *BZ_Realloc(void *data, int newsize)
#endif
{
zone_t *oldzone;
void *newdata;
#ifdef NAMEDMALLOCS
if (!data)
return Z_MallocNamed(newsize, file, lineno);
oldzone = ((zone_t *)((char *)data-ZONEDEBUG))-1;
if (oldzone->size == newsize)
return data;
newdata = Z_MallocNamed(newsize, file, lineno);
#else
if (!data)
return Z_Malloc(newsize);
oldzone = ((zone_t *)((char *)data-ZONEDEBUG))-1;
if (oldzone->size == newsize)
return data;
newdata = BZ_Malloc(newsize);
#endif
if (oldzone->size < newsize)
{
memcpy(newdata, data, oldzone->size);
memset((char *)newdata + oldzone->size, 0, newsize - oldzone->size);
}
else
memcpy(newdata, data, newsize);
BZ_Free(data);
return newdata;
}
void BZ_Free(void *data)
{
Z_Free(data);
}
#ifdef NAMEDMALLOCS
// Zone_Groups_f: prints out zones sorting into groups
// and tracking number of allocs and total group size as
// well as a group delta against the last Zone_Group_f call
#define ZONEGROUPS 64
void Zone_Groups_f(void)
{
zone_t *zone;
char *zonename[ZONEGROUPS];
int zonesize[ZONEGROUPS];
int zoneallocs[ZONEGROUPS];
static int zonelast[ZONEGROUPS];
int groups, i;
int allocated = 0;
// initialization
for (groups = 0; groups < ZONEGROUPS; groups++)
zonename[groups] = NULL;
groups = 0;
i = 0;
for (zone = zone_head; zone; zone=zone->next)
{
char *czg = (char *)(zone+1) + zone->size+ZONEDEBUG*2;
// check against existing tracked groups
for (i = 0; i < groups; i++)
{
if (!strcmp(czg, zonename[i]))
{
// update stats for tracked group
zonesize[i] += zone->size;
zoneallocs[i]++;
break;
}
}
if (groups == i) // no existing group found
{
// track new zone group
zonename[groups] = czg;
zonesize[groups] = zone->size;
zoneallocs[groups] = 1;
groups++;
// max groups bounds check
if (groups >= ZONEGROUPS)
{
groups = ZONEGROUPS;
break;
}
}
}
// print group statistics
for (i = 0; i < groups; i++)
{
allocated += zonesize[i];
Con_Printf("%s, size: %i, allocs: %i, delta: %i\n", zonename[i], zonesize[i], zoneallocs[i], zonesize[i] - zonelast[i]);
zonelast[i] = zonesize[i]; // update delta tracking for next call
}
Con_Printf("Total: %i bytes\n", allocated);
}
#endif
void Zone_Print_f(void)
{
int overhead=0;
int allocated = 0;
int blocks = 0;
int futurehide = false;
int minsize = 0;
zone_t *zone;
#if ZONEDEBUG > 0
#ifdef NAMEDMALLOCS
int i;
qbyte *sent;
#endif
qboolean testsent = false;
if (*Cmd_Argv(1) == 't')
{
Con_Printf("Testing Zone sentinels\n");
testsent = true;
}
else
#endif
if (*Cmd_Argv(1) == 'h')
futurehide = true;
else if (*Cmd_Argv(1))
minsize = atoi(Cmd_Argv(1));
for(zone = zone_head; zone; zone=zone->next)
{
blocks++;
allocated+= zone->size;
#ifdef NAMEDMALLOCS
if (*((char *)(zone+1)+zone->size+ZONEDEBUG*2)!='#')
{
#if ZONEDEBUG > 0
if (testsent)
{
sent = (qbyte *)(zone+1);
for (i = 0; i < ZONEDEBUG; i++)
{
if (sent[i] != sentinalkey)
{
Con_Printf(CON_ERROR "%i %i-%s\n", zone->size, i, (char *)(zone+1) + zone->size+ZONEDEBUG*2);
break;
}
}
sent += zone->size+ZONEDEBUG;
for (i = 0; i < ZONEDEBUG; i++)
{
if (sent[i] != sentinalkey)
{
Con_Printf(CON_ERROR "%i %i-%s\n", zone->size, i, (char *)(zone+1) + zone->size+ZONEDEBUG*2);
break;
}
}
}
else if (zone->size >= minsize)
#endif
Con_Printf("%i-%s\n", zone->size, (char *)(zone+1) + zone->size+ZONEDEBUG*2);
if (futurehide)
*((char *)(zone+1)+zone->size+ZONEDEBUG*2) = '#';
// Sleep(10);
}
overhead += sizeof(zone_t)+ZONEDEBUG*2 + strlen((char *)(zone+1) + zone->size+ZONEDEBUG*2) +1;
#else
Con_Printf("%i-%i ", zone->size, zone->tag);
overhead += sizeof(zone_t)+ZONEDEBUG*2;
#endif
}
Con_Printf(CON_NOTICE "Zone:%i bytes in %i blocks\n", allocated, blocks);
Con_Printf(CON_NOTICE "Overhead %i bytes\n", overhead);
}
#elif 0//#else
//dmw was 0x50000 19/12/02 - playing with dynamic sound system.
//was 0x80000 15/01/03 - playing with genuine pk3 files
#define DYNAMIC_SIZE 0x100000
#define ZONEID 0x1d4a11
#define MINFRAGMENT 64
typedef struct memblock_s
{
int size; // including the header and possibly tiny fragments
int tag; // a tag of 0 is a free block
int id; // should be ZONEID
struct memblock_s *next, *prev;
int pad; // pad to 64 bit boundary
} memblock_t;
typedef struct
{
int size; // total bytes malloced, including header
memblock_t blocklist; // start / end cap for linked list
memblock_t *rover;
} memzone_t;
/*
==============================================================================
ZONE MEMORY ALLOCATION
There is never any space between memblocks, and there will never be two
contiguous free memblocks.
The rover can be left pointing at a non-empty block
The zone calls are pretty much only used for small strings and structures,
all big things are allocated on the hunk.
==============================================================================
*/
memzone_t *mainzone;
void Z_ClearZone (memzone_t *zone, int size);
/*
========================
Z_ClearZone
========================
*/
void Z_ClearZone (memzone_t *zone, int size)
{
memblock_t *block;
// set the entire zone to one free block
zone->blocklist.next = zone->blocklist.prev = block =
(memblock_t *)( (qbyte *)zone + sizeof(memzone_t) );
zone->blocklist.tag = 1; // in use block
zone->blocklist.id = 0;
zone->blocklist.size = 0;
zone->rover = block;
block->prev = block->next = &zone->blocklist;
block->tag = 0; // free block
block->id = ZONEID;
block->size = size - sizeof(memzone_t);
}
/*
========================
Z_Free
========================
*/
void Z_Free (void *ptr)
{
memblock_t *block, *other;
if (!ptr)
Sys_Error ("Z_Free: NULL pointer");
block = (memblock_t *) ( (qbyte *)ptr - sizeof(memblock_t));
if (block->id != ZONEID)
Sys_Error ("Z_Free: freed a pointer without ZONEID");
if (block->tag == 0)
Sys_Error ("Z_Free: freed a freed pointer");
block->tag = 0; // mark as free
other = block->prev;
if (!other->tag)
{ // merge with previous free block
other->size += block->size;
other->next = block->next;
other->next->prev = other;
if (block == mainzone->rover)
mainzone->rover = other;
block = other;
}
other = block->next;
if (!other->tag)
{ // merge the next free block onto the end
block->size += other->size;
block->next = other->next;
block->next->prev = block;
if (other == mainzone->rover)
mainzone->rover = block;
}
}
/*
========================
Z_Malloc
========================
*/
#undef Z_Malloc
void *Z_Malloc (int size)
{
void *buf;
Z_CheckHeap (); // DEBUG
buf = Z_TagMalloc (size, 1);
if (!buf)
Sys_Error ("Z_Malloc: failed on allocation of %i bytes",size);
Q_memset (buf, 0, size);
return buf;
}
void *Z_MallocNamed (int size, char *name)
{
void *buf;
Z_CheckHeap (); // DEBUG
buf = Z_TagMalloc (size, 1);
if (!buf)
Sys_Error ("Z_Malloc: %s failed on allocation of %i bytes", name, size);
// Sys_DebugLog("zmalloc.log", "%s allocates %i bytes\n", name, size);
Q_memset (buf, 0, size);
return buf;
}
void *Z_MallocNamed2 (int size, char *name, int line)
{
void *buf;
Z_CheckHeap (); // DEBUG
buf = Z_TagMalloc (size, 1);
if (!buf)
Sys_Error ("Z_Malloc: %s %i failed on allocation of %i bytes", name, line, size);
// Sys_DebugLog("zmalloc.log", "%s %i allocates %i bytes\n", name, line, size);
Q_memset (buf, 0, size);
return buf;
}
void *Z_TagMalloc (int size, int tag)
{
int extra;
memblock_t *start, *rover, *newz, *base;
if (!tag)
Sys_Error ("Z_TagMalloc: tried to use a 0 tag");
//
// scan through the block list looking for the first free block
// of sufficient size
//
size += sizeof(memblock_t); // account for size of block header
size += 4; // space for memory trash tester
size = (size + 7) & ~7; // align to 8-qbyte boundary
base = rover = mainzone->rover;
start = base->prev;
do
{
if (rover == start) // scaned all the way around the list
return NULL;
if (rover->tag)
base = rover = rover->next;
else
rover = rover->next;
} while (base->tag || base->size < size);
//
// found a block big enough
//
extra = base->size - size;
if (extra > MINFRAGMENT)
{ // there will be a free fragment after the allocated block
newz = (memblock_t *) ((qbyte *)base + size );
newz->size = extra;
newz->tag = 0; // free block
newz->prev = base;
newz->id = ZONEID;
newz->next = base->next;
newz->next->prev = newz;
base->next = newz;
base->size = size;
}
base->tag = tag; // no longer a free block
mainzone->rover = base->next; // next allocation will start looking here
base->id = ZONEID;
// marker for memory trash testing
*(int *)((qbyte *)base + base->size - 4) = ZONEID;
return (void *) ((qbyte *)base + sizeof(memblock_t));
}
/*
========================
Z_Print
========================
*/
void Z_Print (memzone_t *zone)
{
memblock_t *block;
Con_Printf ("zone size: %i location: %p\n",mainzone->size,mainzone);
for (block = zone->blocklist.next ; ; block = block->next)
{
Con_Printf ("block:%p size:%7i tag:%3i\n",
block, block->size, block->tag);
if (block->next == &zone->blocklist)
break; // all blocks have been hit
if ( (qbyte *)block + block->size != (qbyte *)block->next)
Con_Printf ("ERROR: block size does not touch the next block\n");
if ( block->next->prev != block)
Con_Printf ("ERROR: next block doesn't have proper back link\n");
if (!block->tag && !block->next->tag)
Con_Printf ("ERROR: two consecutive free blocks\n");
}
}
void *BZ_Malloc(int size)
{
void *data;
data = malloc(size);
memset(data, 0, size);
return data;
}
void BZ_Free(void *data)
{
free(data);
}
#endif
//============================================================================
#define HUNK_SENTINAL 0x1df001ed
typedef struct
{
int sentinal;
int size; // including sizeof(hunk_t), -1 = not allocated
char name[8];
} hunk_t;
qbyte *hunk_base;
int hunk_size;
int hunk_low_used;
int hunk_high_used;
qboolean hunk_tempactive;
int hunk_tempmark;
void R_FreeTextures (void);
/*
==============
Hunk_Check
Run consistancy and sentinal trahing checks
==============
*/
void Hunk_Check (void)
{
hunk_t *h;
for (h = (hunk_t *)hunk_base ; (qbyte *)h != hunk_base + hunk_low_used ; )
{
if (h->sentinal != HUNK_SENTINAL)
Sys_Error ("Hunk_Check: trahsed sentinal");
if (h->size < 16+HUNKDEBUG*2 || h->size + (qbyte *)h - hunk_base > hunk_size)
Sys_Error ("Hunk_Check: bad size");
#if HUNKDEBUG > 0
{
qbyte *present;
qbyte *postsent;
int i;
present = (qbyte *)(h+1);
postsent = (qbyte *)h + h->size-HUNKDEBUG;
for (i = 0; i < HUNKDEBUG; i++)
{
if (present[i] != sentinalkey)
*(int*)0 = -3;
if (postsent[i] != sentinalkey)
*(int*)0 = -3;
}
}
#endif
h = (hunk_t *)((qbyte *)h+h->size);
}
}
/*
==============
Hunk_Print
If "all" is specified, every single allocation is printed.
Otherwise, allocations with the same name will be totaled up before printing.
==============
*/
void Hunk_Print (qboolean all)
{
hunk_t *h, *next, *endlow, *starthigh, *endhigh;
int count, sum;
int totalblocks;
char name[9];
name[8] = 0;
count = 0;
sum = 0;
totalblocks = 0;
h = (hunk_t *)hunk_base;
endlow = (hunk_t *)(hunk_base + hunk_low_used);
starthigh = (hunk_t *)(hunk_base + hunk_size - hunk_high_used);
endhigh = (hunk_t *)(hunk_base + hunk_size);
Con_Printf (" :%8i total hunk size\n", hunk_size);
Con_Printf ("-------------------------\n");
while (1)
{
//
// skip to the high hunk if done with low hunk
//
if ( h == endlow )
{
Con_Printf ("-------------------------\n");
Con_Printf (" :%8i REMAINING\n", hunk_size - hunk_low_used - hunk_high_used);
Con_Printf (" :%8i USED\n", hunk_low_used + hunk_high_used);
Con_Printf ("-------------------------\n");
h = starthigh;
}
//
// if totally done, break
//
if ( h == endhigh )
break;
//
// run consistancy checks
//
if (h->sentinal != HUNK_SENTINAL)
Sys_Error ("Hunk_Check: trahsed sentinal");
if (h->size < 16 || h->size + (qbyte *)h - hunk_base > hunk_size)
Sys_Error ("Hunk_Check: bad size");
#if HUNKDEBUG > 0
{
qbyte *present;
qbyte *postsent;
int i;
present = (qbyte *)(h+1);
postsent = (qbyte *)h + h->size-HUNKDEBUG;
for (i = 0; i < HUNKDEBUG; i++)
{
if (present[i] != sentinalkey)
*(int*)0 = -3;
if (postsent[i] != sentinalkey)
*(int*)0 = -3;
}
}
#endif
next = (hunk_t *)((qbyte *)h+h->size);
count++;
totalblocks++;
sum += h->size;
//
// print the single block
//
memcpy (name, h->name, 8);
if (all)
Con_Printf ("%8p :%8i %8s\n",h, h->size, name);
//
// print the total
//
if (next == endlow || next == endhigh ||
strncmp (h->name, next->name, 8) )
{
if (!all)
Con_Printf (" :%8i %8s (TOTAL)\n",sum, name);
count = 0;
sum = 0;
}
h = next;
}
Con_Printf ("-------------------------\n");
Con_Printf ("%8i total blocks\n", totalblocks);
}
/*
===================
Hunk_AllocName
===================
*/
void *Hunk_AllocName (int size, char *name)
{
#ifdef NOHIGH
int roundup;
int roundupold;
#endif
hunk_t *h;
#ifdef PARANOID
Hunk_Check ();
#endif
if (size < 0)
Sys_Error ("Hunk_Alloc: bad size: %i", size);
size = sizeof(hunk_t) + HUNKDEBUG*2 + ((size+15)&~15);
#ifndef _WIN32
if (hunk_size - hunk_low_used - hunk_high_used < size)
// Sys_Error ("Hunk_Alloc: failed on %i bytes",size);
#ifdef _WIN32
Sys_Error ("Not enough RAM allocated on allocation of \"%s\". Try starting using \"-heapsize 16000\" on the QuakeWorld command line.", name);
#else
Sys_Error ("Not enough RAM allocated. Try starting using \"-mem 16\" on the QuakeWorld command line.");
#endif
#endif
h = (hunk_t *)(hunk_base + hunk_low_used);
#ifdef NOHIGH
roundupold = hunk_low_used+sizeof(hunk_t);
roundupold += 1024*128;
roundupold &= ~(1024*128 - 1);
roundup = hunk_low_used+size+sizeof(hunk_t);
roundup += 1024*128;
roundup &= ~(1024*128 - 1);
if (!hunk_low_used || roundup != roundupold)
if (!VirtualAlloc (hunk_base, roundup, MEM_COMMIT, PAGE_READWRITE))
{
char *buf;
Hunk_Print(true);
FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM, NULL, GetLastError(), MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPTSTR) &buf, 0, NULL);
Sys_Error ("VirtualCommit failed\nNot enough RAM allocated on allocation of \"%s\". Try starting using \"-heapsize 64000\" on the QuakeWorld command line.", name);
}
#endif
hunk_low_used += size;
Cache_FreeLow (hunk_low_used);
memset (h, 0, size-HUNKDEBUG);
#if HUNKDEBUG>0
memset ((h+1), sentinalkey, HUNKDEBUG);
memset ((qbyte *)h+size-HUNKDEBUG, sentinalkey, HUNKDEBUG);
#endif
h->size = size;
h->sentinal = HUNK_SENTINAL;
Q_strncpyz (h->name, COM_SkipPath(name), sizeof(h->name));
return (void *)((char *)(h+1)+HUNKDEBUG);
}
/*
===================
Hunk_Alloc
===================
*/
void *Hunk_Alloc (int size)
{
return Hunk_AllocName (size, "unknown");
}
int Hunk_LowMark (void)
{
return hunk_low_used;
}
int Hunk_LowMemAvailable(void)
{
return hunk_size - hunk_low_used - hunk_high_used;
}
void Hunk_FreeToLowMark (int mark)
{
if (mark < 0 || mark > hunk_low_used)
Sys_Error ("Hunk_FreeToLowMark: bad mark %i", mark);
memset (hunk_base + mark, 0, hunk_low_used - mark);
hunk_low_used = mark;
#ifdef NOHIGH
if (!VirtualAlloc (hunk_base, hunk_low_used+sizeof(hunk_t), MEM_COMMIT, PAGE_READWRITE))
{
char *buf;
FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM, NULL, GetLastError(), MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPTSTR) &buf, 0, NULL);
Sys_Error ("VirtualAlloc commit failed.\n%s", buf);
}
#endif
}
int Hunk_HighMark (void)
{
if (hunk_tempactive)
{
hunk_tempactive = false;
Hunk_FreeToHighMark (hunk_tempmark);
}
return hunk_high_used;
}
void Hunk_FreeToHighMark (int mark)
{
if (hunk_tempactive)
{
hunk_tempactive = false;
Hunk_FreeToHighMark (hunk_tempmark);
}
if (mark < 0 || mark > hunk_high_used)
Sys_Error ("Hunk_FreeToHighMark: bad mark %i", mark);
memset (hunk_base + hunk_size - hunk_high_used, 0, hunk_high_used - mark);
hunk_high_used = mark;
}
/*
===================
Hunk_HighAllocName
===================
*/
void *Hunk_HighAllocName (int size, char *name)
{
#ifdef NOHIGH
Sys_Error("High hunk was disabled");
return NULL;
#else
hunk_t *h;
if (size < 0)
Sys_Error ("Hunk_HighAllocName: bad size: %i", size);
if (hunk_tempactive)
{
Hunk_FreeToHighMark (hunk_tempmark);
hunk_tempactive = false;
}
#ifdef PARANOID
Hunk_Check ();
#endif
size = sizeof(hunk_t) + ((size+15)&~15);
if (hunk_size - hunk_low_used - hunk_high_used < size)
{
Con_Printf ("Hunk_HighAlloc: failed on %i bytes\n",size);
return NULL;
}
hunk_high_used += size;
Cache_FreeHigh (hunk_high_used);
h = (hunk_t *)(hunk_base + hunk_size - hunk_high_used);
memset (h, 0, size);
h->size = size;
h->sentinal = HUNK_SENTINAL;
Q_strncpyz (h->name, name, sizeof(h->name));
return (void *)(h+1);
#endif
}
/*
=================
Hunk_TempAlloc
Return space from the top of the hunk
clears old temp.
=================
*/
#ifdef NOHIGH
typedef struct hnktemps_s {
struct hnktemps_s *next;
#if TEMPDEBUG>0
int len;
#endif
} hnktemps_t;
hnktemps_t *hnktemps;
void Hunk_TempFree(void)
{
hnktemps_t *nt;
while (hnktemps)
{
#if TEMPDEBUG>0
int i;
qbyte *buf;
buf = (qbyte *)(hnktemps+1);
for (i = 0; i < TEMPDEBUG; i++)
{
if (buf[i] != sentinalkey)
*(int*)0 = -3; //force a crash... this'll get our attention.
}
buf+=TEMPDEBUG;
//app data
buf += hnktemps->len;
for (i = 0; i < TEMPDEBUG; i++)
{
if (buf[i] != sentinalkey)
*(int*)0 = -3; //force a crash... this'll get our attention.
}
#endif
nt = hnktemps->next;
free(hnktemps);
hnktemps = nt;
}
}
#endif
//allocates without clearing previous temp.
//safer than my hack that fuh moaned about...
void *Hunk_TempAllocMore (int size)
{
void *buf;
#ifdef NOHIGH
#if TEMPDEBUG>0
hnktemps_t *nt;
nt = (hnktemps_t*)malloc(size + sizeof(hnktemps_t) + TEMPDEBUG*2);
nt->next = hnktemps;
nt->len = size;
hnktemps = nt;
buf = (void *)(nt+1);
memset(buf, sentinalkey, TEMPDEBUG);
buf = (char *)buf + TEMPDEBUG;
memset(buf, 0, size);
memset((char *)buf + size, sentinalkey, TEMPDEBUG);
return buf;
#else
hnktemps_t *nt;
nt = (hnktemps_t*)malloc(size + sizeof(hnktemps_t));
nt->next = hnktemps;
hnktemps = nt;
buf = (void *)(nt+1);
memset(buf, 0, size);
return buf;
#endif
#else
if (!hunk_tempactive)
return Hunk_TempAlloc(size);
size = (size+15)&~15;
hunk_tempactive = false; //so it doesn't wipe old temp.
buf = Hunk_HighAllocName (size, "mtmp");
hunk_tempactive = true;
return buf;
#endif
}
void *Hunk_TempAlloc (int size)
{
#ifdef NOHIGH
Hunk_TempFree();
return Hunk_TempAllocMore(size);
#else
void *buf;
size = (size+15)&~15;
if (hunk_tempactive)
{
Hunk_FreeToHighMark (hunk_tempmark);
hunk_tempactive = false;
}
hunk_tempmark = Hunk_HighMark ();
buf = Hunk_HighAllocName (size, "temp");
hunk_tempactive = true;
return buf;
#endif
}
/*
===============================================================================
CACHE MEMORY
===============================================================================
*/
#ifdef NOCACHE
typedef struct cache_system_s {
cache_user_t *user;
struct cache_system_s *next;
struct cache_system_s *prev;
int size;
char name[16];
} cache_system_t;
cache_system_t *cache_head;
void Cache_Free (cache_user_t *c)
{
cache_system_t *cs;
if (c->data == NULL)
{
cache_head = NULL; //this is evil and should never happen
Sys_Error("Cache was already free\n");
return;
}
cs = ((cache_system_t *)c->data)-1;
cs = (cache_system_t*)((char*)cs - CACHEDEBUG);
cs->user->data = NULL;
#if CACHEDEBUG>0
{
int i;
qbyte *buf;
buf = (qbyte *)(cs+1);
for (i = 0; i < CACHEDEBUG; i++)
{
if (buf[i] != sentinalkey)
Sys_Error("Cache memory corrupted (%i? bytes)", cs->size);
}
buf+=CACHEDEBUG;
//app data
buf += cs->size;
for (i = 0; i < CACHEDEBUG; i++)
{
if (buf[i] != sentinalkey)
Sys_Error("Cache memory corrupted (%i? bytes)", cs->size);
}
}
#endif
if (cs->next)
cs->next->prev = cs->prev;
if (cs->prev)
cs->prev->next = cs->next;
if (cs == cache_head)
cache_head = cs->next;
BZ_Free(cs);
}
void *Cache_Check(cache_user_t *c)
{
if (!c->data)
return NULL;
return c->data;
}
void Cache_Flush(void)
{
while(cache_head)
{
Cache_Free(cache_head->user);
}
}
void *Cache_Alloc (cache_user_t *c, int size, char *name)
{
void *buf;
cache_system_t *nt;
if (c->data)
Sys_Error ("Cache_Alloc: already allocated");
if (size <= 0)
Sys_Error ("Cache_Alloc: size %i", size);
// size = (size + 15) & ~15;
nt = (cache_system_t*)BZ_Malloc(size + sizeof(cache_system_t) + CACHEDEBUG*2);
if (!nt)
Sys_Error("Cache_Alloc: failed on allocation of %i bytes", size);
nt->next = cache_head;
nt->prev = NULL;
nt->user = c;
nt->size = size;
Q_strncpyz(nt->name, name, sizeof(nt->name));
if (cache_head)
cache_head->prev = nt;
cache_head = nt;
nt->user->fake = false;
buf = (void *)(nt+1);
memset(buf, sentinalkey, CACHEDEBUG);
buf = (char*)buf+CACHEDEBUG;
memset(buf, 0, size);
memset((char *)buf+size, sentinalkey, CACHEDEBUG);
c->data = buf;
return c->data;
}
void Cache_FreeLow(int newlow)
{
}
void Cache_FreeHigh(int newhigh)
{
}
void Cache_Report (void)
{
}
void Hunk_Print_f (void)
{
cache_system_t *cs;
int zoneblocks;
int cacheused;
int zoneused;
Hunk_Print(true);
cacheused = 0;
zoneused = 0;
zoneblocks = 0;
for (cs = cache_head; cs; cs = cs->next)
{
cacheused += cs->size;
}
Con_Printf("Cache: %iKB\n", cacheused/1024);
#if 0
{
zone_t *zone;
for(zone = zone_head; zone; zone=zone->next)
{
zoneused += zone->size + sizeof(zone_t);
zoneblocks++;
}
Con_Printf("Zone: %i containing %iKB\n", zoneblocks, zoneused/1024);
}
#endif
}
void Cache_Init(void)
{
Cmd_AddCommand ("flush", Cache_Flush);
Cmd_AddCommand ("hunkprint", Hunk_Print_f);
#if 0
Cmd_AddCommand ("zoneprint", Zone_Print_f);
#endif
#ifdef NAMEDMALLOCS
Cmd_AddCommand ("zonegroups", Zone_Groups_f);
#endif
}
#else
typedef struct cache_system_s
{
int size; // including this header
cache_user_t *user;
char name[16];
struct cache_system_s *prev, *next;
struct cache_system_s *lru_prev, *lru_next; // for LRU flushing
} cache_system_t;
cache_system_t *Cache_TryAlloc (int size, qboolean nobottom);
cache_system_t cache_head;
/*
===========
Cache_Move
===========
*/
void Cache_Move ( cache_system_t *c)
{
cache_system_t *newc;
// we are clearing up space at the bottom, so only allocate it late
newc = Cache_TryAlloc (c->size, true);
if (newc)
{
// Con_Printf ("cache_move ok\n");
Q_memcpy ( newc+1, c+1, c->size - sizeof(cache_system_t) );
newc->user = c->user;
Q_memcpy (newc->name, c->name, sizeof(newc->name));
Cache_Free (c->user);
newc->user->data = (void *)(newc+1);
}
else
{
// Con_Printf ("cache_move failed\n");
Cache_Free (c->user); // tough luck...
}
}
/*
============
Cache_FreeLow
Throw things out until the hunk can be expanded to the given point
============
*/
void Cache_FreeLow (int new_low_hunk)
{
cache_system_t *c;
while (1)
{
c = cache_head.next;
if (c == &cache_head)
return; // nothing in cache at all
if ((qbyte *)c >= hunk_base + new_low_hunk)
return; // there is space to grow the hunk
Cache_Move ( c ); // reclaim the space
}
}
/*
============
Cache_FreeHigh
Throw things out until the hunk can be expanded to the given point
============
*/
void Cache_FreeHigh (int new_high_hunk)
{
cache_system_t *c, *prev;
prev = NULL;
while (1)
{
c = cache_head.prev;
if (c == &cache_head)
return; // nothing in cache at all
if ( (qbyte *)c + c->size <= hunk_base + hunk_size - new_high_hunk)
return; // there is space to grow the hunk
if (c == prev)
Cache_Free (c->user); // didn't move out of the way
else
{
Cache_Move (c); // try to move it
prev = c;
}
}
}
void Cache_UnlinkLRU (cache_system_t *cs)
{
if (!cs->lru_next || !cs->lru_prev)
Sys_Error ("Cache_UnlinkLRU: NULL link");
cs->lru_next->lru_prev = cs->lru_prev;
cs->lru_prev->lru_next = cs->lru_next;
cs->lru_prev = cs->lru_next = NULL;
}
void Cache_MakeLRU (cache_system_t *cs)
{
if (cs->lru_next || cs->lru_prev)
Sys_Error ("Cache_MakeLRU: active link");
cache_head.lru_next->lru_prev = cs;
cs->lru_next = cache_head.lru_next;
cs->lru_prev = &cache_head;
cache_head.lru_next = cs;
}
/*
============
Cache_TryAlloc
Looks for a free block of memory between the high and low hunk marks
Size should already include the header and padding
============
*/
cache_system_t *Cache_TryAlloc (int size, qboolean nobottom)
{
cache_system_t *cs, *newc;
// is the cache completely empty?
if (!nobottom && cache_head.prev == &cache_head)
{
if (hunk_size - hunk_high_used - hunk_low_used < size)
Sys_Error ("Cache_TryAlloc: %i is greater then free hunk", size);
newc = (cache_system_t *) (hunk_base + hunk_low_used);
memset (newc, 0, sizeof(*newc));
newc->size = size;
cache_head.prev = cache_head.next = newc;
newc->prev = newc->next = &cache_head;
Cache_MakeLRU (newc);
return newc;
}
// search from the bottom up for space
newc = (cache_system_t *) (hunk_base + hunk_low_used);
cs = cache_head.next;
do
{
if (!nobottom || cs != cache_head.next)
{
if ( (qbyte *)cs - (qbyte *)newc >= size)
{ // found space
memset (newc, 0, sizeof(*newc));
newc->size = size;
newc->next = cs;
newc->prev = cs->prev;
cs->prev->next = newc;
cs->prev = newc;
Cache_MakeLRU (newc);
return newc;
}
}
// continue looking
newc = (cache_system_t *)((qbyte *)cs + cs->size);
cs = cs->next;
} while (cs != &cache_head);
// try to allocate one at the very end
if ( hunk_base + hunk_size - hunk_high_used - (qbyte *)newc >= size)
{
memset (newc, 0, sizeof(*newc));
newc->size = size;
newc->next = &cache_head;
newc->prev = cache_head.prev;
cache_head.prev->next = newc;
cache_head.prev = newc;
Cache_MakeLRU (newc);
return newc;
}
return NULL; // couldn't allocate
}
/*
============
Cache_Flush
Throw everything out, so new data will be demand cached
============
*/
void Cache_Flush (void)
{
while (cache_head.next != &cache_head)
Cache_Free ( cache_head.next->user ); // reclaim the space
}
/*
============
Cache_Print
============
*/
void Cache_Print (void)
{
cache_system_t *cd;
for (cd = cache_head.next ; cd != &cache_head ; cd = cd->next)
{
Con_Printf ("%8i : %s\n", cd->size, cd->name);
}
}
/*
============
Cache_Report
============
*/
void Cache_Report (void)
{
Con_DPrintf ("%4.1f megabyte data cache\n", (hunk_size - hunk_high_used - hunk_low_used) / (float)(1024*1024) );
}
/*
============
Cache_Compact
============
*/
void Cache_Compact (void)
{
}
/*
============
Cache_Init
============
*/
void Hunk_Print_f (void) {Hunk_Print(true);}
void Cache_Init (void)
{
cache_head.next = cache_head.prev = &cache_head;
cache_head.lru_next = cache_head.lru_prev = &cache_head;
Cmd_AddCommand ("flush", Cache_Flush);
Cmd_AddCommand ("hp", Hunk_Print_f);
}
/*
==============
Cache_Free
Frees the memory and removes it from the LRU list
==============
*/
void Cache_Free (cache_user_t *c)
{
cache_system_t *cs;
if (!c->data)
Sys_Error ("Cache_Free: not allocated");
cs = ((cache_system_t *)c->data) - 1;
cs->prev->next = cs->next;
cs->next->prev = cs->prev;
cs->next = cs->prev = NULL;
c->data = NULL;
Cache_UnlinkLRU (cs);
}
/*
==============
Cache_Check
==============
*/
void *Cache_Check (cache_user_t *c)
{
cache_system_t *cs;
if (!c->data)
return NULL;
if (c->fake) //malloc or somesuch.
return c->data;
cs = ((cache_system_t *)c->data) - 1;
// move to head of LRU
Cache_UnlinkLRU (cs);
Cache_MakeLRU (cs);
return c->data;
}
/*
==============
Cache_Alloc
==============
*/
void *Cache_Alloc (cache_user_t *c, int size, char *name)
{
cache_system_t *cs;
if (c->data)
Sys_Error ("Cache_Alloc: already allocated");
if (size <= 0)
Sys_Error ("Cache_Alloc: size %i", size);
size = (size + sizeof(cache_system_t) + 15) & ~15;
// find memory for it
while (1)
{
cs = Cache_TryAlloc (size, false);
if (cs)
{
strncpy (cs->name, name, sizeof(cs->name)-1);
c->data = (void *)(cs+1);
cs->user = c;
break;
}
// free the least recently used cahedat
if (cache_head.lru_prev == &cache_head)
Sys_Error ("Cache_Alloc: out of memory");
// not enough memory at all
Cache_Free ( cache_head.lru_prev->user );
}
return Cache_Check (c);
}
#endif
//============================================================================
// Constant block functions
// CB_Malloc: creates a usable const_block
const_block_t *CB_Malloc (int size, int step)
{
// alloc new const block
const_block_t *cb = Z_Malloc(sizeof(const_block_t));
// init cb members
cb->block = BZ_Malloc(size);
cb->point = cb->block;
cb->curleft = size;
cb->cursize = size;
cb->memstep = step;
return cb;
}
// CB_Slice: slices a chunk of memory off of the const block, and
// reallocs if necessary
char *CB_Slice (const_block_t *cb, int size)
{
char *c;
while (size > cb->curleft)
{
cb->block = BZ_Realloc(cb->block, cb->cursize + cb->memstep);
cb->point = cb->block + (cb->cursize - cb->curleft);
cb->cursize += cb->memstep;
cb->curleft += cb->memstep;
}
c = cb->point;
cb->point += size;
cb->curleft -= size;
return c;
}
// CB_Copy: copies a stream of bytes into a const block, returns
// pointer of copied string
char *CB_Copy (const_block_t *cb, char *data, int size)
{
char *c;
c = CB_Slice(cb, size);
Q_memcpy(c, data, size);
return c;
}
// CB_Free: frees a const block
void CB_Free (const_block_t *cb)
{
BZ_Free(cb->block);
Z_Free(cb);
}
#if 0
// CB_Reset: resets a const block to size
void CB_Reset (const_block_t *cb, int size)
{
if (cb->cursize != size)
{
cb->block = BZ_Realloc(cb->block, size);
cb->cursize = size;
}
cb->point = cb->block;
cb->curleft = cb->cursize;
}
// CB_Trim: trims a const block to minimal size
void CB_Trim (const_block_t *cb)
{
if (cb->curleft > 0)
{
cb->cursize -= cb->curleft;
cb->block = BZ_Realloc(cb->block, cb->cursize);
cb->point = cb->block + cb->cursize;
}
cb->curleft = 0;
}
#endif
/*
========================
Memory_Init
========================
*/
void Memory_Init (void *buf, int size)
{
#if 0 //ndef NOZONE
int p;
int zonesize = DYNAMIC_SIZE;
#endif
hunk_base = (qbyte*)buf;
hunk_size = size;
hunk_low_used = 0;
hunk_high_used = 0;
#if ZONEDEBUG>0 || HUNKDEBUG>0 || TEMPDEBUG>0||CACHEDEBUG>0
srand(time(0));
sentinalkey = rand();
#endif
Cache_Init ();
#ifdef MULTITHREAD
if (!zonelock)
zonelock = Sys_CreateMutex(); // this can fail!
#endif
#if 0 //ndef NOZONE
p = COM_CheckParm ("-zone");
if (p)
{
if (p < com_argc-1)
zonesize = Q_atoi (com_argv[p+1]) * 1024;
else
Sys_Error ("Memory_Init: you must specify a size in KB after -zone");
}
mainzone = Hunk_AllocName ( zonesize, "zone" );
Z_ClearZone (mainzone, zonesize);
#endif
}
void Memory_DeInit(void)
{
#ifdef MULTITHREAD
if (zonelock)
{
Sys_DestroyMutex(zonelock);
zonelock = NULL;
}
#endif
}