mesa/src/asahi/compiler/agx_compile.c

2446 lines
76 KiB
C

/*
* Copyright 2021 Alyssa Rosenzweig
* Copyright 2020 Collabora Ltd.
* Copyright 2016 Broadcom
* SPDX-License-Identifier: MIT
*/
#include "agx_compile.h"
#include "compiler/nir/nir_builder.h"
#include "compiler/nir_types.h"
#include "util/glheader.h"
#include "util/u_debug.h"
#include "agx_builder.h"
#include "agx_compiler.h"
#include "agx_debug.h"
#include "agx_internal_formats.h"
#include "agx_nir.h"
/* Alignment for shader programs. I'm not sure what the optimal value is. */
#define AGX_CODE_ALIGN 0x100
/* clang-format off */
static const struct debug_named_value agx_debug_options[] = {
{"msgs", AGX_DBG_MSGS, "Print debug messages"},
{"shaders", AGX_DBG_SHADERS, "Dump shaders in NIR and AIR"},
{"shaderdb", AGX_DBG_SHADERDB, "Print statistics"},
{"verbose", AGX_DBG_VERBOSE, "Disassemble verbosely"},
{"internal", AGX_DBG_INTERNAL, "Dump even internal shaders"},
{"novalidate",AGX_DBG_NOVALIDATE,"Skip IR validation in debug builds"},
{"noopt", AGX_DBG_NOOPT, "Disable backend optimizations"},
{"wait", AGX_DBG_WAIT, "Wait after all async instructions"},
{"nopreamble",AGX_DBG_NOPREAMBLE,"Do not use shader preambles"},
DEBUG_NAMED_VALUE_END
};
/* clang-format on */
DEBUG_GET_ONCE_FLAGS_OPTION(agx_compiler_debug, "AGX_MESA_DEBUG",
agx_debug_options, 0)
int agx_compiler_debug = 0;
#define DBG(fmt, ...) \
do { \
if (agx_compiler_debug & AGX_DBG_MSGS) \
fprintf(stderr, "%s:%d: " fmt, __func__, __LINE__, ##__VA_ARGS__); \
} while (0)
static agx_index
agx_cached_preload(agx_context *ctx, agx_index *cache, unsigned base,
enum agx_size size)
{
if (agx_is_null(*cache)) {
agx_block *block = agx_start_block(ctx);
agx_builder b = agx_init_builder(ctx, agx_before_block(block));
*cache = agx_preload(&b, agx_register(base, size));
}
return *cache;
}
static agx_index
agx_vertex_id(agx_builder *b)
{
return agx_cached_preload(b->shader, &b->shader->vertex_id, 10, AGX_SIZE_32);
}
static agx_index
agx_instance_id(agx_builder *b)
{
return agx_cached_preload(b->shader, &b->shader->instance_id, 12,
AGX_SIZE_32);
}
static agx_index
agx_get_cf(agx_context *ctx, bool smooth, bool perspective,
gl_varying_slot slot, unsigned offset, unsigned count)
{
struct agx_varyings_fs *varyings = &ctx->out->varyings.fs;
unsigned cf_base = varyings->nr_cf;
if (slot == VARYING_SLOT_POS) {
assert(offset == 2 || offset == 3);
varyings->reads_z |= (offset == 2);
}
/* First, search for an appropriate binding. This is O(n) to the number of
* bindings, which isn't great, but n should be small in practice.
*/
for (unsigned b = 0; b < varyings->nr_bindings; ++b) {
if ((varyings->bindings[b].slot == slot) &&
(varyings->bindings[b].offset == offset) &&
(varyings->bindings[b].count == count) &&
(varyings->bindings[b].smooth == smooth) &&
(varyings->bindings[b].perspective == perspective)) {
return agx_immediate(varyings->bindings[b].cf_base);
}
}
/* If we didn't find one, make one */
unsigned b = varyings->nr_bindings++;
varyings->bindings[b].cf_base = varyings->nr_cf;
varyings->bindings[b].slot = slot;
varyings->bindings[b].offset = offset;
varyings->bindings[b].count = count;
varyings->bindings[b].smooth = smooth;
varyings->bindings[b].perspective = perspective;
varyings->nr_cf += count;
return agx_immediate(cf_base);
}
/* Builds a 64-bit hash table key for an index */
static uint64_t
agx_index_to_key(agx_index idx)
{
STATIC_ASSERT(sizeof(idx) <= sizeof(uint64_t));
uint64_t key = 0;
memcpy(&key, &idx, sizeof(idx));
return key;
}
/*
* Extract a single channel out of a vector source. We split vectors with
* p_split so we can use the split components directly, without emitting a
* machine instruction. This has advantages of RA, as the split can usually be
* optimized away.
*/
static agx_index
agx_emit_extract(agx_builder *b, agx_index vec, unsigned channel)
{
agx_index *components = _mesa_hash_table_u64_search(b->shader->allocated_vec,
agx_index_to_key(vec));
assert(components != NULL && "missing agx_emit_collect_to");
return components[channel];
}
static agx_index
agx_extract_nir_src(agx_builder *b, nir_src src, unsigned channel)
{
agx_index idx = agx_src_index(&src);
/* We only deal with scalars, extract a single scalar if needed */
if (nir_src_num_components(src) > 1)
return agx_emit_extract(b, idx, channel);
else
return idx;
}
static void
agx_cache_collect(agx_builder *b, agx_index dst, unsigned nr_srcs,
agx_index *srcs)
{
/* Lifetime of a hash table entry has to be at least as long as the table */
agx_index *channels = ralloc_array(b->shader, agx_index, nr_srcs);
for (unsigned i = 0; i < nr_srcs; ++i)
channels[i] = srcs[i];
_mesa_hash_table_u64_insert(b->shader->allocated_vec, agx_index_to_key(dst),
channels);
}
/*
* Combine multiple scalars into a vector destination. This corresponds to
* collect, lowered to moves (a shuffle in general) after register allocation.
*
* To optimize vector extractions, we record the individual channels
*/
static agx_instr *
agx_emit_collect_to(agx_builder *b, agx_index dst, unsigned nr_srcs,
agx_index *srcs)
{
agx_cache_collect(b, dst, nr_srcs, srcs);
if (nr_srcs == 1)
return agx_mov_to(b, dst, srcs[0]);
agx_instr *I = agx_collect_to(b, dst, nr_srcs);
agx_foreach_src(I, s)
I->src[s] = srcs[s];
return I;
}
static agx_index
agx_emit_collect(agx_builder *b, unsigned nr_srcs, agx_index *srcs)
{
agx_index dst = agx_temp(b->shader, srcs[0].size);
agx_emit_collect_to(b, dst, nr_srcs, srcs);
return dst;
}
static agx_index
agx_vec2(agx_builder *b, agx_index s0, agx_index s1)
{
return agx_emit_collect(b, 2, (agx_index[]){s0, s1});
}
/*
* Extract the lower or upper N-bits from a (2*N)-bit quantity. We use a split
* without null destinations to let us CSE (and coalesce) the splits when both x
* and y are split.
*/
static agx_instr *
agx_subdivide_to(agx_builder *b, agx_index dst, agx_index s0, unsigned comp)
{
assert((s0.size == (dst.size + 1)) && "only 2x subdivide handled");
assert((comp == 0 || comp == 1) && "too many components");
agx_instr *split = agx_split(b, 2, s0);
split->dest[comp] = dst;
split->dest[1 - comp] = agx_temp(b->shader, dst.size);
return split;
}
static void
agx_block_add_successor(agx_block *block, agx_block *successor)
{
assert(block != NULL && successor != NULL);
/* Cull impossible edges */
if (block->unconditional_jumps)
return;
for (unsigned i = 0; i < ARRAY_SIZE(block->successors); ++i) {
if (block->successors[i]) {
if (block->successors[i] == successor)
return;
else
continue;
}
block->successors[i] = successor;
util_dynarray_append(&successor->predecessors, agx_block *, block);
return;
}
unreachable("Too many successors");
}
/*
* Splits an n-component vector (vec) into n scalar destinations (dests) using a
* split pseudo-instruction.
*
* Pre-condition: dests is filled with agx_null().
*/
static void
agx_emit_split(agx_builder *b, agx_index *dests, agx_index vec, unsigned n)
{
agx_instr *I = agx_split(b, n, vec);
agx_foreach_dest(I, d) {
dests[d] = agx_temp(b->shader, vec.size);
I->dest[d] = dests[d];
}
}
static void
agx_emit_cached_split(agx_builder *b, agx_index vec, unsigned n)
{
agx_index dests[4] = {agx_null(), agx_null(), agx_null(), agx_null()};
agx_emit_split(b, dests, vec, n);
agx_cache_collect(b, vec, n, dests);
}
static void
agx_emit_load_const(agx_builder *b, nir_load_const_instr *instr)
{
/* Ensure we've been scalarized and bit size lowered */
unsigned bit_size = instr->def.bit_size;
assert(instr->def.num_components == 1);
/* Emit move, later passes can inline/push if useful */
agx_mov_imm_to(b, agx_nir_ssa_index(&instr->def),
nir_const_value_as_uint(instr->value[0], bit_size));
}
/*
* Implement umul_high of 32-bit sources by doing a 32x32->64-bit multiply and
* extracting only the high word.
*/
static agx_instr *
agx_umul_high_to(agx_builder *b, agx_index dst, agx_index P, agx_index Q)
{
assert(P.size == Q.size && "source sizes must match");
assert(P.size == dst.size && "dest size must match");
assert(P.size != AGX_SIZE_64 && "64x64 multiply should have been lowered");
static_assert(AGX_SIZE_64 == (AGX_SIZE_32 + 1), "enum wrong");
static_assert(AGX_SIZE_32 == (AGX_SIZE_16 + 1), "enum wrong");
agx_index product = agx_temp(b->shader, P.size + 1);
agx_imad_to(b, product, agx_abs(P), agx_abs(Q), agx_zero(), 0);
return agx_subdivide_to(b, dst, product, 1);
}
static enum agx_format
agx_format_for_pipe(enum pipe_format format)
{
#define CASE(x) \
if (format == (enum pipe_format)AGX_INTERNAL_FORMAT_##x) \
return AGX_FORMAT_##x;
CASE(I8);
CASE(I16);
CASE(I32);
CASE(F16);
CASE(U8NORM);
CASE(S8NORM);
CASE(U16NORM);
CASE(S16NORM);
CASE(RGB10A2);
CASE(SRGBA8);
CASE(RG11B10F);
CASE(RGB9E5);
#undef CASE
unreachable("Invalid format");
}
static void
agx_emit_load_vary_flat(agx_builder *b, agx_index dest,
nir_intrinsic_instr *instr)
{
unsigned components = instr->num_components;
assert(components >= 1 && components <= 4);
nir_io_semantics sem = nir_intrinsic_io_semantics(instr);
nir_src *offset = nir_get_io_offset_src(instr);
assert(nir_src_is_const(*offset) && "no indirects");
assert(nir_dest_bit_size(instr->dest) == 32 && "no 16-bit flat shading");
/* Get all coefficient registers up front. This ensures the driver emits a
* single vectorized binding.
*/
agx_index cf = agx_get_cf(b->shader, false, false,
sem.location + nir_src_as_uint(*offset),
nir_intrinsic_component(instr), components);
agx_index dests[4] = {agx_null()};
for (unsigned i = 0; i < components; ++i) {
/* vec3 for each vertex, unknown what first 2 channels are for */
agx_index d[3] = {agx_null()};
agx_index tmp = agx_temp(b->shader, AGX_SIZE_32);
agx_ldcf_to(b, tmp, cf, 1);
agx_emit_split(b, d, tmp, 3);
dests[i] = d[2];
/* Each component accesses a sequential coefficient register */
cf.value++;
}
agx_emit_collect_to(b, dest, components, dests);
}
static void
agx_emit_load_vary(agx_builder *b, agx_index dest, nir_intrinsic_instr *instr)
{
ASSERTED unsigned components = instr->num_components;
nir_intrinsic_instr *bary = nir_src_as_intrinsic(instr->src[0]);
assert(components >= 1 && components <= 4);
/* TODO: Interpolation modes */
assert(bary != NULL);
assert(bary->intrinsic == nir_intrinsic_load_barycentric_pixel);
bool perspective =
nir_intrinsic_interp_mode(bary) != INTERP_MODE_NOPERSPECTIVE;
nir_io_semantics sem = nir_intrinsic_io_semantics(instr);
nir_src *offset = nir_get_io_offset_src(instr);
assert(nir_src_is_const(*offset) && "no indirects");
assert(nir_ssa_def_components_read(&instr->dest.ssa) ==
nir_component_mask(components) &&
"iter does not handle write-after-write hazards");
/* For perspective interpolation, we need W */
agx_index J =
!perspective ? agx_zero()
: agx_get_cf(b->shader, true, false, VARYING_SLOT_POS, 3, 1);
agx_index I = agx_get_cf(b->shader, true, perspective,
sem.location + nir_src_as_uint(*offset),
nir_intrinsic_component(instr), components);
agx_iter_to(b, dest, I, J, components, perspective);
agx_emit_cached_split(b, dest, components);
}
static agx_instr *
agx_emit_store_vary(agx_builder *b, nir_intrinsic_instr *instr)
{
nir_io_semantics sem = nir_intrinsic_io_semantics(instr);
nir_src *offset = nir_get_io_offset_src(instr);
assert(nir_src_is_const(*offset) && "todo: indirects");
unsigned imm_index = b->shader->out->varyings.vs.slots[sem.location];
assert(imm_index < ~0);
imm_index += (nir_src_as_uint(*offset) * 4) + nir_intrinsic_component(instr);
/* nir_lower_io_to_scalar */
assert(nir_intrinsic_write_mask(instr) == 0x1);
return agx_st_vary(b, agx_immediate(imm_index),
agx_src_index(&instr->src[0]));
}
static void
agx_write_sample_mask_1(agx_builder *b)
{
if (b->shader->nir->info.fs.uses_discard && !b->shader->did_sample_mask) {
/* If the shader uses discard, the sample mask must be written by the
* shader on all execution paths. If we've reached the end of the shader,
* we are therefore still active and need to write a full sample mask.
* TODO: interactions with MSAA and gl_SampleMask writes
*/
agx_sample_mask(b, agx_immediate(1));
agx_signal_pix(b, 1);
b->shader->did_sample_mask = true;
assert(!(b->shader->nir->info.outputs_written &
(BITFIELD64_BIT(FRAG_RESULT_DEPTH) |
BITFIELD64_BIT(FRAG_RESULT_STENCIL))) &&
"incompatible");
}
}
static agx_instr *
agx_emit_local_store_pixel(agx_builder *b, nir_intrinsic_instr *instr)
{
/* TODO: Reverse-engineer interactions with MRT */
if (b->shader->key->fs.ignore_tib_dependencies) {
assert(b->shader->nir->info.internal && "only for clear shaders");
} else if (b->shader->did_writeout) {
agx_wait_pix(b, 0x0004);
} else {
agx_wait_pix(b, 0x000C);
}
agx_write_sample_mask_1(b);
/* Compact the registers according to the mask */
agx_index compacted[4] = {agx_null()};
unsigned compact_count = 0;
u_foreach_bit(i, nir_intrinsic_write_mask(instr)) {
compacted[compact_count++] = agx_extract_nir_src(b, instr->src[0], i);
}
agx_index collected = agx_emit_collect(b, compact_count, compacted);
b->shader->did_writeout = true;
return agx_st_tile(b, collected, agx_src_index(&instr->src[1]),
agx_format_for_pipe(nir_intrinsic_format(instr)),
nir_intrinsic_write_mask(instr),
nir_intrinsic_base(instr));
}
static agx_instr *
agx_emit_store_zs(agx_builder *b, nir_intrinsic_instr *instr)
{
unsigned base = nir_intrinsic_base(instr);
bool write_z = base & 1;
bool write_s = base & 2;
/* TODO: Handle better */
assert(!b->shader->key->fs.ignore_tib_dependencies && "not used");
agx_wait_pix(b, 0x0001);
agx_index z = agx_src_index(&instr->src[1]);
agx_index s = agx_src_index(&instr->src[2]);
agx_index zs = (write_z && write_s) ? agx_vec2(b, z, s) : write_z ? z : s;
/* Not necessarily a sample mask but overlapping hw mechanism... Should
* maybe rename this flag to something more general.
*/
b->shader->out->writes_sample_mask = true;
assert(!b->shader->did_sample_mask && "incompatible");
return agx_zs_emit(b, agx_src_index(&instr->src[0]), zs, base);
}
static void
agx_emit_local_load_pixel(agx_builder *b, agx_index dest,
nir_intrinsic_instr *instr)
{
/* TODO: Reverse-engineer interactions with MRT */
assert(!b->shader->key->fs.ignore_tib_dependencies && "invalid usage");
agx_wait_pix(b, 0x0008);
b->shader->did_writeout = true;
b->shader->out->reads_tib = true;
unsigned nr_comps = nir_dest_num_components(instr->dest);
agx_ld_tile_to(b, dest, agx_src_index(&instr->src[0]),
agx_format_for_pipe(nir_intrinsic_format(instr)),
BITFIELD_MASK(nr_comps), nir_intrinsic_base(instr));
agx_emit_cached_split(b, dest, nr_comps);
}
static void
agx_emit_load(agx_builder *b, agx_index dest, nir_intrinsic_instr *instr)
{
agx_index addr = agx_src_index(&instr->src[0]);
agx_index offset = agx_src_index(&instr->src[1]);
enum agx_format fmt = agx_format_for_pipe(nir_intrinsic_format(instr));
unsigned shift = nir_intrinsic_base(instr);
/* Zero-extend offset if we're not sign-extending */
if (!nir_intrinsic_sign_extend(instr))
offset = agx_abs(offset);
agx_device_load_to(b, dest, addr, offset, fmt,
BITFIELD_MASK(nir_dest_num_components(instr->dest)),
shift, 0);
agx_emit_cached_split(b, dest, nir_dest_num_components(instr->dest));
}
static void
agx_emit_store(agx_builder *b, nir_intrinsic_instr *instr)
{
agx_index value = agx_src_index(&instr->src[0]);
agx_index addr = agx_src_index(&instr->src[1]);
agx_index offset = agx_src_index(&instr->src[2]);
enum agx_format fmt = agx_format_for_pipe(nir_intrinsic_format(instr));
unsigned shift = nir_intrinsic_base(instr);
/* Zero-extend offset if we're not sign-extending */
if (!nir_intrinsic_sign_extend(instr))
offset = agx_abs(offset);
agx_device_store(b, value, addr, offset, fmt,
BITFIELD_MASK(nir_src_num_components(instr->src[0])), shift,
0);
}
/* Preambles write directly to uniform registers, so move from uniform to GPR */
static agx_instr *
agx_emit_load_preamble(agx_builder *b, agx_index dst,
nir_intrinsic_instr *instr)
{
agx_index srcs[4] = {agx_null()};
unsigned dim = nir_dest_num_components(instr->dest);
assert(dim <= ARRAY_SIZE(srcs) && "shouldn't see larger vectors");
unsigned base = nir_intrinsic_base(instr);
unsigned stride = agx_size_align_16(dst.size);
for (unsigned i = 0; i < dim; ++i)
srcs[i] = agx_uniform(base + i * stride, dst.size);
return agx_emit_collect_to(b, dst, dim, srcs);
}
static agx_instr *
agx_emit_store_preamble(agx_builder *b, nir_intrinsic_instr *instr)
{
agx_index vec = agx_src_index(&instr->src[0]);
unsigned base = nir_intrinsic_base(instr);
unsigned stride = agx_size_align_16(vec.size);
for (unsigned i = 0; i < nir_src_num_components(instr->src[0]); ++i) {
agx_uniform_store(b, agx_extract_nir_src(b, instr->src[0], i),
agx_immediate(base + i * stride));
}
return NULL;
}
static enum agx_dim
agx_tex_dim(enum glsl_sampler_dim dim, bool array)
{
switch (dim) {
case GLSL_SAMPLER_DIM_1D:
return array ? AGX_DIM_1D_ARRAY : AGX_DIM_1D;
case GLSL_SAMPLER_DIM_2D:
case GLSL_SAMPLER_DIM_RECT:
case GLSL_SAMPLER_DIM_EXTERNAL:
return array ? AGX_DIM_2D_ARRAY : AGX_DIM_2D;
case GLSL_SAMPLER_DIM_MS:
return array ? AGX_DIM_2D_MS_ARRAY : AGX_DIM_2D_MS;
case GLSL_SAMPLER_DIM_3D:
assert(!array && "3D arrays unsupported");
return AGX_DIM_3D;
case GLSL_SAMPLER_DIM_CUBE:
return array ? AGX_DIM_CUBE_ARRAY : AGX_DIM_CUBE;
case GLSL_SAMPLER_DIM_BUF:
unreachable("Buffer textures should have been lowered");
default:
unreachable("Invalid sampler dim\n");
}
}
static agx_instr *
agx_emit_block_image_store(agx_builder *b, nir_intrinsic_instr *instr)
{
unsigned image = nir_src_as_uint(instr->src[0]);
agx_index offset = agx_src_index(&instr->src[1]);
enum agx_format format = agx_format_for_pipe(nir_intrinsic_format(instr));
enum agx_dim dim = agx_tex_dim(nir_intrinsic_image_dim(instr), false);
// XXX: how does this possibly work
if (format == AGX_FORMAT_F16)
format = AGX_FORMAT_I16;
return agx_block_image_store(b, agx_immediate(image), offset, format, dim);
}
/*
* Emit code to generate gl_FragCoord. The xy components are calculated from
* special registers, whereas the zw components are interpolated varyings.
* Because interpolating varyings requires allocating coefficient registers that
* might not be used, we only emit code for components that are actually used.
*/
static void
agx_emit_load_frag_coord(agx_builder *b, agx_index dst,
nir_intrinsic_instr *instr)
{
agx_index dests[4] = {agx_null()};
u_foreach_bit(i, nir_ssa_def_components_read(&instr->dest.ssa)) {
agx_index fp32 = agx_temp(b->shader, AGX_SIZE_32);
if (i < 2) {
agx_convert_to(b, fp32, agx_immediate(AGX_CONVERT_U32_TO_F),
agx_get_sr(b, 32, AGX_SR_THREAD_POSITION_IN_GRID_X + i),
AGX_ROUND_RTE);
dests[i] = agx_fadd(b, fp32, agx_immediate_f(0.5f));
} else {
agx_index cf =
agx_get_cf(b->shader, true, false, VARYING_SLOT_POS, i, 1);
dests[i] = fp32;
agx_iter_to(b, fp32, cf, agx_null(), 1, false);
}
}
agx_emit_collect_to(b, dst, 4, dests);
}
/*
* Demoting a helper invocation is logically equivalent to zeroing the sample
* mask. Metal implement discard as such.
*
* XXX: Actually, Metal's "discard" is a demote, and what is implemented here
* is a demote. There might be a better way to implement this to get correct
* helper invocation semantics. For now, I'm kicking the can down the road.
*/
static agx_instr *
agx_emit_discard(agx_builder *b)
{
assert(!b->shader->key->fs.ignore_tib_dependencies && "invalid usage");
agx_wait_pix(b, 0x0001);
b->shader->did_writeout = true;
b->shader->out->writes_sample_mask = true;
agx_sample_mask(b, agx_immediate(0));
return agx_signal_pix(b, 1);
}
static agx_instr *
agx_load_compute_dimension(agx_builder *b, agx_index dst,
nir_intrinsic_instr *instr, enum agx_sr base)
{
unsigned dim = nir_dest_num_components(instr->dest);
unsigned size = nir_dest_bit_size(instr->dest);
assert(size == 16 || size == 32);
agx_index srcs[] = {
agx_get_sr(b, size, base + 0),
agx_get_sr(b, size, base + 1),
agx_get_sr(b, size, base + 2),
};
return agx_emit_collect_to(b, dst, dim, srcs);
}
static enum agx_atomic_opc
translate_atomic_opcode(nir_intrinsic_op op)
{
switch (op) {
case nir_intrinsic_global_atomic_add:
case nir_intrinsic_shared_atomic_add:
return AGX_ATOMIC_OPC_ADD;
case nir_intrinsic_global_atomic_imin:
case nir_intrinsic_shared_atomic_imin:
return AGX_ATOMIC_OPC_IMIN;
case nir_intrinsic_global_atomic_umin:
case nir_intrinsic_shared_atomic_umin:
return AGX_ATOMIC_OPC_UMIN;
case nir_intrinsic_global_atomic_imax:
case nir_intrinsic_shared_atomic_imax:
return AGX_ATOMIC_OPC_IMAX;
case nir_intrinsic_global_atomic_umax:
case nir_intrinsic_shared_atomic_umax:
return AGX_ATOMIC_OPC_UMAX;
case nir_intrinsic_global_atomic_and:
case nir_intrinsic_shared_atomic_and:
return AGX_ATOMIC_OPC_AND;
case nir_intrinsic_global_atomic_or:
case nir_intrinsic_shared_atomic_or:
return AGX_ATOMIC_OPC_OR;
case nir_intrinsic_global_atomic_xor:
case nir_intrinsic_shared_atomic_xor:
return AGX_ATOMIC_OPC_XOR;
case nir_intrinsic_global_atomic_exchange:
case nir_intrinsic_shared_atomic_exchange:
return AGX_ATOMIC_OPC_XCHG;
case nir_intrinsic_global_atomic_comp_swap:
case nir_intrinsic_shared_atomic_comp_swap:
return AGX_ATOMIC_OPC_CMPXCHG;
default:
unreachable("unknown atomic intrinsic");
}
}
/*
* The "base" of a local load/store/atomic can be zero but no other immediates.
* This would be a little silly to handle when inlining immediates, so we
* instead exclude these ops from immediate inlining and just handle 0 specially
* when translating.
*/
static agx_index
agx_local_base(nir_src src)
{
if (nir_src_is_const(src) && nir_src_as_uint(src) == 0)
return agx_zero();
else
return agx_src_index(&src);
}
static void
agx_emit_atomic(agx_builder *b, agx_index dst, nir_intrinsic_instr *instr,
bool local)
{
enum agx_atomic_opc op = translate_atomic_opcode(instr->intrinsic);
agx_index base =
local ? agx_local_base(instr->src[0]) : agx_src_index(&instr->src[0]);
agx_index value = agx_src_index(&instr->src[1]);
agx_index index = agx_zero(); /* TODO: optimize address arithmetic? */
/* cmpxchg (only) takes 2 sources, passed in consecutive registers */
if (op == AGX_ATOMIC_OPC_CMPXCHG) {
agx_index value2 = agx_src_index(&instr->src[2]);
value = agx_vec2(b, value2, value);
}
if (local) {
assert(base.size == AGX_SIZE_16);
agx_local_atomic_to(b, dst, value, base, index, op);
} else {
assert(base.size == AGX_SIZE_64);
agx_atomic_to(b, dst, value, base, index, op, 0);
}
}
static void
agx_emit_local_load(agx_builder *b, agx_index dst, nir_intrinsic_instr *instr)
{
agx_index base = agx_local_base(instr->src[0]);
agx_index index = agx_zero(); /* TODO: optimize address arithmetic */
assert(base.size == AGX_SIZE_16);
assert(nir_dest_bit_size(instr->dest) == 32 && "todo");
enum agx_format format = AGX_FORMAT_I32;
unsigned nr = nir_dest_num_components(instr->dest);
unsigned mask = BITFIELD_MASK(nr);
agx_local_load_to(b, dst, base, index, format, mask);
agx_emit_cached_split(b, dst, nr);
}
static void
agx_emit_local_store(agx_builder *b, nir_intrinsic_instr *instr)
{
agx_index value = agx_src_index(&instr->src[0]);
agx_index base = agx_local_base(instr->src[1]);
agx_index index = agx_zero(); /* TODO: optimize address arithmetic */
assert(base.size == AGX_SIZE_16);
assert(nir_src_bit_size(instr->src[0]) == 32 && "todo");
enum agx_format format = AGX_FORMAT_I32;
unsigned mask = BITFIELD_MASK(
nir_src_num_components(instr->src[0])); /* XXX: there's a write mask */
agx_local_store(b, value, base, index, format, mask);
}
static agx_instr *
agx_emit_intrinsic(agx_builder *b, nir_intrinsic_instr *instr)
{
agx_index dst = nir_intrinsic_infos[instr->intrinsic].has_dest
? agx_dest_index(&instr->dest)
: agx_null();
gl_shader_stage stage = b->shader->stage;
switch (instr->intrinsic) {
case nir_intrinsic_load_barycentric_pixel:
case nir_intrinsic_load_barycentric_centroid:
case nir_intrinsic_load_barycentric_sample:
case nir_intrinsic_load_barycentric_at_sample:
case nir_intrinsic_load_barycentric_at_offset:
/* handled later via load_vary */
return NULL;
case nir_intrinsic_load_interpolated_input:
assert(stage == MESA_SHADER_FRAGMENT);
agx_emit_load_vary(b, dst, instr);
return NULL;
case nir_intrinsic_load_input:
assert(stage == MESA_SHADER_FRAGMENT && "vertex loads lowered");
agx_emit_load_vary_flat(b, dst, instr);
return NULL;
case nir_intrinsic_load_agx:
case nir_intrinsic_load_constant_agx:
agx_emit_load(b, dst, instr);
return NULL;
case nir_intrinsic_store_output:
assert(stage == MESA_SHADER_VERTEX);
return agx_emit_store_vary(b, instr);
case nir_intrinsic_store_agx:
agx_emit_store(b, instr);
return NULL;
case nir_intrinsic_store_shared:
agx_emit_local_store(b, instr);
return NULL;
case nir_intrinsic_load_shared:
agx_emit_local_load(b, dst, instr);
return NULL;
case nir_intrinsic_global_atomic_add:
case nir_intrinsic_global_atomic_imin:
case nir_intrinsic_global_atomic_umin:
case nir_intrinsic_global_atomic_imax:
case nir_intrinsic_global_atomic_umax:
case nir_intrinsic_global_atomic_and:
case nir_intrinsic_global_atomic_or:
case nir_intrinsic_global_atomic_xor:
case nir_intrinsic_global_atomic_exchange:
case nir_intrinsic_global_atomic_comp_swap:
agx_emit_atomic(b, dst, instr, false);
return NULL;
case nir_intrinsic_shared_atomic_add:
case nir_intrinsic_shared_atomic_imin:
case nir_intrinsic_shared_atomic_umin:
case nir_intrinsic_shared_atomic_imax:
case nir_intrinsic_shared_atomic_umax:
case nir_intrinsic_shared_atomic_and:
case nir_intrinsic_shared_atomic_or:
case nir_intrinsic_shared_atomic_xor:
case nir_intrinsic_shared_atomic_exchange:
case nir_intrinsic_shared_atomic_comp_swap:
agx_emit_atomic(b, dst, instr, true);
return NULL;
case nir_intrinsic_store_zs_agx:
assert(stage == MESA_SHADER_FRAGMENT);
return agx_emit_store_zs(b, instr);
case nir_intrinsic_store_local_pixel_agx:
assert(stage == MESA_SHADER_FRAGMENT);
return agx_emit_local_store_pixel(b, instr);
case nir_intrinsic_load_local_pixel_agx:
assert(stage == MESA_SHADER_FRAGMENT);
agx_emit_local_load_pixel(b, dst, instr);
return NULL;
case nir_intrinsic_load_frag_coord:
agx_emit_load_frag_coord(b, dst, instr);
return NULL;
case nir_intrinsic_discard:
return agx_emit_discard(b);
case nir_intrinsic_load_back_face_agx:
return agx_get_sr_to(b, dst, AGX_SR_BACKFACING);
case nir_intrinsic_load_helper_invocation:
/* Compare special register to zero. We could lower this in NIR (letting
* us fold in an inot) but meh?
*/
return agx_icmpsel_to(b, dst, agx_get_sr(b, 32, AGX_SR_IS_ACTIVE_THREAD),
agx_zero(), agx_immediate(1), agx_zero(),
AGX_ICOND_UEQ);
case nir_intrinsic_load_vertex_id:
return agx_mov_to(b, dst, agx_abs(agx_vertex_id(b)));
case nir_intrinsic_load_instance_id:
return agx_mov_to(b, dst, agx_abs(agx_instance_id(b)));
case nir_intrinsic_load_preamble:
return agx_emit_load_preamble(b, dst, instr);
case nir_intrinsic_store_preamble:
return agx_emit_store_preamble(b, instr);
case nir_intrinsic_block_image_store_agx:
return agx_emit_block_image_store(b, instr);
case nir_intrinsic_load_workgroup_id:
return agx_load_compute_dimension(b, dst, instr,
AGX_SR_THREADGROUP_POSITION_IN_GRID_X);
case nir_intrinsic_load_global_invocation_id:
return agx_load_compute_dimension(b, dst, instr,
AGX_SR_THREAD_POSITION_IN_GRID_X);
case nir_intrinsic_load_local_invocation_id:
return agx_load_compute_dimension(
b, dst, instr, AGX_SR_THREAD_POSITION_IN_THREADGROUP_X);
case nir_intrinsic_scoped_barrier: {
bool needs_threadgroup_barrier = false;
if (nir_intrinsic_execution_scope(instr) != NIR_SCOPE_NONE) {
assert(nir_intrinsic_execution_scope(instr) > NIR_SCOPE_SUBGROUP &&
"todo: subgroup barriers");
needs_threadgroup_barrier = true;
}
if (nir_intrinsic_memory_scope(instr) != NIR_SCOPE_NONE) {
nir_variable_mode modes = nir_intrinsic_memory_modes(instr);
if (modes & nir_var_mem_global)
agx_memory_barrier(b);
if (modes & nir_var_mem_shared)
needs_threadgroup_barrier = true;
if (nir_intrinsic_memory_scope(instr) >= NIR_SCOPE_WORKGROUP)
needs_threadgroup_barrier = true;
}
if (needs_threadgroup_barrier)
agx_threadgroup_barrier(b);
return NULL;
}
default:
fprintf(stderr, "Unhandled intrinsic %s\n",
nir_intrinsic_infos[instr->intrinsic].name);
unreachable("Unhandled intrinsic");
}
}
static agx_index
agx_alu_src_index(agx_builder *b, nir_alu_src src)
{
/* Check well-formedness of the input NIR */
ASSERTED unsigned bitsize = nir_src_bit_size(src.src);
unsigned comps = nir_src_num_components(src.src);
unsigned channel = src.swizzle[0];
assert(bitsize == 1 || bitsize == 8 || bitsize == 16 || bitsize == 32 ||
bitsize == 64);
assert(!(src.negate || src.abs));
assert(channel < comps);
return agx_extract_nir_src(b, src.src, channel);
}
static agx_instr *
agx_emit_alu(agx_builder *b, nir_alu_instr *instr)
{
unsigned srcs = nir_op_infos[instr->op].num_inputs;
unsigned sz = nir_dest_bit_size(instr->dest.dest);
unsigned src_sz = srcs ? nir_src_bit_size(instr->src[0].src) : 0;
ASSERTED unsigned comps = nir_dest_num_components(instr->dest.dest);
assert(comps == 1 || nir_op_is_vec(instr->op));
assert(sz == 1 || sz == 16 || sz == 32 || sz == 64);
agx_index dst = agx_dest_index(&instr->dest.dest);
agx_index s0 = srcs > 0 ? agx_alu_src_index(b, instr->src[0]) : agx_null();
agx_index s1 = srcs > 1 ? agx_alu_src_index(b, instr->src[1]) : agx_null();
agx_index s2 = srcs > 2 ? agx_alu_src_index(b, instr->src[2]) : agx_null();
agx_index s3 = srcs > 3 ? agx_alu_src_index(b, instr->src[3]) : agx_null();
agx_index i0 = agx_immediate(0);
agx_index i1 = agx_immediate(1);
#define UNOP(nop, aop) \
case nir_op_##nop: \
return agx_##aop##_to(b, dst, s0);
#define BINOP(nop, aop) \
case nir_op_##nop: \
return agx_##aop##_to(b, dst, s0, s1);
#define TRIOP(nop, aop) \
case nir_op_##nop: \
return agx_##aop##_to(b, dst, s0, s1, s2);
switch (instr->op) {
BINOP(fadd, fadd);
BINOP(fmul, fmul);
TRIOP(ffma, fma);
UNOP(f2f16, fmov);
UNOP(f2f32, fmov);
UNOP(fround_even, roundeven);
UNOP(ftrunc, trunc);
UNOP(ffloor, floor);
UNOP(fceil, ceil);
UNOP(frcp, rcp);
UNOP(frsq, rsqrt);
UNOP(flog2, log2);
UNOP(fexp2, exp2);
UNOP(fddx, dfdx);
UNOP(fddx_coarse, dfdx);
UNOP(fddx_fine, dfdx);
UNOP(fddy, dfdy);
UNOP(fddy_coarse, dfdy);
UNOP(fddy_fine, dfdy);
UNOP(mov, mov);
UNOP(u2u32, mov);
UNOP(bitfield_reverse, bitrev);
UNOP(bit_count, popcount);
UNOP(ufind_msb, ffs);
BINOP(iand, and);
BINOP(ior, or);
BINOP(ixor, xor);
case nir_op_feq:
return agx_fcmpsel_to(b, dst, s0, s1, i1, i0, AGX_FCOND_EQ);
case nir_op_flt:
return agx_fcmpsel_to(b, dst, s0, s1, i1, i0, AGX_FCOND_LT);
case nir_op_fge:
return agx_fcmpsel_to(b, dst, s0, s1, i1, i0, AGX_FCOND_GE);
case nir_op_fneu:
return agx_fcmpsel_to(b, dst, s0, s1, i0, i1, AGX_FCOND_EQ);
case nir_op_ieq:
return agx_icmpsel_to(b, dst, s0, s1, i1, i0, AGX_ICOND_UEQ);
case nir_op_ine:
return agx_icmpsel_to(b, dst, s0, s1, i0, i1, AGX_ICOND_UEQ);
case nir_op_ilt:
return agx_icmpsel_to(b, dst, s0, s1, i1, i0, AGX_ICOND_SLT);
case nir_op_ige:
return agx_icmpsel_to(b, dst, s0, s1, i0, i1, AGX_ICOND_SLT);
case nir_op_ult:
return agx_icmpsel_to(b, dst, s0, s1, i1, i0, AGX_ICOND_ULT);
case nir_op_uge:
return agx_icmpsel_to(b, dst, s0, s1, i0, i1, AGX_ICOND_ULT);
case nir_op_inot:
if (sz == 1)
return agx_xor_to(b, dst, s0, i1);
else
return agx_not_to(b, dst, s0);
case nir_op_b2b1:
return agx_icmpsel_to(b, dst, s0, i0, i0, i1, AGX_ICOND_UEQ);
case nir_op_fsqrt:
return agx_fmul_to(b, dst, s0, agx_srsqrt(b, s0));
case nir_op_fsub:
return agx_fadd_to(b, dst, s0, agx_neg(s1));
case nir_op_fabs:
return agx_fmov_to(b, dst, agx_abs(s0));
case nir_op_fneg:
return agx_fmov_to(b, dst, agx_neg(s0));
case nir_op_fmin:
return agx_fcmpsel_to(b, dst, s0, s1, s0, s1, AGX_FCOND_LTN);
case nir_op_fmax:
return agx_fcmpsel_to(b, dst, s0, s1, s0, s1, AGX_FCOND_GTN);
case nir_op_imin:
return agx_icmpsel_to(b, dst, s0, s1, s0, s1, AGX_ICOND_SLT);
case nir_op_imax:
return agx_icmpsel_to(b, dst, s0, s1, s0, s1, AGX_ICOND_SGT);
case nir_op_umin:
return agx_icmpsel_to(b, dst, s0, s1, s0, s1, AGX_ICOND_ULT);
case nir_op_umax:
return agx_icmpsel_to(b, dst, s0, s1, s0, s1, AGX_ICOND_UGT);
case nir_op_iadd:
return agx_iadd_to(b, dst, s0, s1, 0);
case nir_op_isub:
return agx_iadd_to(b, dst, s0, agx_neg(s1), 0);
case nir_op_ineg:
return agx_iadd_to(b, dst, i0, agx_neg(s0), 0);
case nir_op_imul:
return agx_imad_to(b, dst, s0, s1, i0, 0);
case nir_op_umul_2x32_64:
return agx_imad_to(b, dst, agx_abs(s0), agx_abs(s1), i0, 0);
case nir_op_imul_2x32_64:
return agx_imad_to(b, dst, s0, s1, i0, 0);
case nir_op_umul_high:
return agx_umul_high_to(b, dst, s0, s1);
case nir_op_ishl:
return agx_bfi_to(b, dst, i0, s0, s1, 0);
case nir_op_ushr:
return agx_ushr_to(b, dst, s0, s1);
case nir_op_ishr:
return agx_asr_to(b, dst, s0, s1);
case nir_op_extr_agx:
return agx_extr_to(b, dst, s0, s1, s2,
nir_src_as_uint(instr->src[3].src));
case nir_op_bcsel:
return agx_icmpsel_to(b, dst, s0, i0, s2, s1, AGX_ICOND_UEQ);
case nir_op_b2i32:
case nir_op_b2i16:
return agx_icmpsel_to(b, dst, s0, i0, i0, i1, AGX_ICOND_UEQ);
case nir_op_b2b32:
return agx_icmpsel_to(b, dst, s0, i0, i0, agx_mov_imm(b, 32, ~0),
AGX_ICOND_UEQ);
case nir_op_b2f16:
case nir_op_b2f32: {
/* At this point, boolean is just zero/nonzero, so compare with zero */
agx_index f1 = (sz == 16) ? agx_mov_imm(b, 16, _mesa_float_to_half(1.0))
: agx_mov_imm(b, 32, fui(1.0));
return agx_fcmpsel_to(b, dst, s0, i0, i0, f1, AGX_FCOND_EQ);
}
case nir_op_i2i32: {
if (src_sz == 8) {
/* Sign extend in software, NIR likes 8-bit conversions */
agx_index ishl16 = agx_bfi(b, i0, s0, agx_immediate(8), 0);
return agx_asr_to(b, dst, ishl16, agx_immediate(8));
} else {
assert(s0.size == AGX_SIZE_16 && "other conversions lowered");
return agx_iadd_to(b, dst, s0, i0, 0);
}
}
case nir_op_i2i16: {
if (src_sz == 8) {
/* Sign extend in software, NIR likes 8-bit conversions */
agx_index ishl16 = agx_bfi(b, i0, s0, agx_immediate(8), 0);
return agx_asr_to(b, dst, ishl16, agx_immediate(8));
} else {
assert(s0.size == AGX_SIZE_32 && "other conversions lowered");
return agx_subdivide_to(b, dst, s0, 0);
}
}
case nir_op_u2u16: {
if (s0.size == AGX_SIZE_32)
return agx_subdivide_to(b, dst, s0, 0);
else
return agx_mov_to(b, dst, s0);
}
case nir_op_iadd_sat: {
agx_instr *I = agx_iadd_to(b, dst, s0, s1, 0);
I->saturate = true;
return I;
}
case nir_op_isub_sat: {
agx_instr *I = agx_iadd_to(b, dst, s0, agx_neg(s1), 0);
I->saturate = true;
return I;
}
case nir_op_uadd_sat: {
agx_instr *I = agx_iadd_to(b, dst, agx_abs(s0), agx_abs(s1), 0);
I->saturate = true;
return I;
}
case nir_op_usub_sat: {
agx_instr *I = agx_iadd_to(b, dst, agx_abs(s0), agx_neg(agx_abs(s1)), 0);
I->saturate = true;
return I;
}
case nir_op_fsat: {
agx_instr *I = agx_fadd_to(b, dst, s0, agx_negzero());
I->saturate = true;
return I;
}
case nir_op_fsin_agx: {
agx_index fixup = agx_sin_pt_1(b, s0);
agx_index sinc = agx_sin_pt_2(b, fixup);
return agx_fmul_to(b, dst, sinc, fixup);
}
case nir_op_f2i16:
return agx_convert_to(b, dst, agx_immediate(AGX_CONVERT_F_TO_S16), s0,
AGX_ROUND_RTZ);
case nir_op_f2i32:
return agx_convert_to(b, dst, agx_immediate(AGX_CONVERT_F_TO_S32), s0,
AGX_ROUND_RTZ);
case nir_op_f2u16:
return agx_convert_to(b, dst, agx_immediate(AGX_CONVERT_F_TO_U16), s0,
AGX_ROUND_RTZ);
case nir_op_f2u32:
return agx_convert_to(b, dst, agx_immediate(AGX_CONVERT_F_TO_U32), s0,
AGX_ROUND_RTZ);
case nir_op_u2f16:
case nir_op_u2f32: {
if (src_sz == 64)
unreachable("64-bit conversions unimplemented");
enum agx_convert mode = (src_sz == 32) ? AGX_CONVERT_U32_TO_F
: (src_sz == 16) ? AGX_CONVERT_U16_TO_F
: AGX_CONVERT_U8_TO_F;
return agx_convert_to(b, dst, agx_immediate(mode), s0, AGX_ROUND_RTE);
}
case nir_op_i2f16:
case nir_op_i2f32: {
if (src_sz == 64)
unreachable("64-bit conversions unimplemented");
enum agx_convert mode = (src_sz == 32) ? AGX_CONVERT_S32_TO_F
: (src_sz == 16) ? AGX_CONVERT_S16_TO_F
: AGX_CONVERT_S8_TO_F;
return agx_convert_to(b, dst, agx_immediate(mode), s0, AGX_ROUND_RTE);
}
case nir_op_pack_32_2x16_split:
case nir_op_pack_64_2x32_split: {
agx_index idx[] = {s0, s1};
return agx_emit_collect_to(b, dst, 2, idx);
}
case nir_op_unpack_64_2x32_split_x:
case nir_op_unpack_32_2x16_split_x:
return agx_subdivide_to(b, dst, s0, 0);
case nir_op_unpack_64_2x32_split_y:
case nir_op_unpack_32_2x16_split_y:
return agx_subdivide_to(b, dst, s0, 1);
case nir_op_vec2:
case nir_op_vec3:
case nir_op_vec4: {
agx_index idx[] = {s0, s1, s2, s3};
return agx_emit_collect_to(b, dst, srcs, idx);
}
case nir_op_vec8:
case nir_op_vec16:
unreachable("should've been lowered");
default:
fprintf(stderr, "Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
unreachable("Unhandled ALU instruction");
}
}
static enum agx_lod_mode
agx_lod_mode_for_nir(nir_texop op)
{
switch (op) {
case nir_texop_tex:
case nir_texop_tg4:
return AGX_LOD_MODE_AUTO_LOD;
case nir_texop_txb:
return AGX_LOD_MODE_AUTO_LOD_BIAS;
case nir_texop_txd:
return AGX_LOD_MODE_LOD_GRAD;
case nir_texop_txl:
return AGX_LOD_MODE_LOD_MIN;
case nir_texop_txf:
return AGX_LOD_MODE_LOD_MIN;
case nir_texop_txf_ms:
return AGX_LOD_MODE_AUTO_LOD; /* no mipmapping */
default:
unreachable("Unhandled texture op");
}
}
static enum agx_gather
agx_gather_for_nir(nir_tex_instr *tex)
{
if (tex->op == nir_texop_tg4) {
enum agx_gather components[] = {
AGX_GATHER_R,
AGX_GATHER_G,
AGX_GATHER_B,
AGX_GATHER_A,
};
assert(tex->component < ARRAY_SIZE(components));
return components[tex->component];
} else {
return AGX_GATHER_NONE;
}
}
static void
agx_emit_tex(agx_builder *b, nir_tex_instr *instr)
{
agx_index coords = agx_null(), texture = agx_immediate(instr->texture_index),
sampler = agx_immediate(instr->sampler_index),
lod = agx_immediate(0), compare = agx_null(),
packed_offset = agx_null();
bool txf = (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms);
/* txf loads a texture without an associated sampler, but in the hardware
* there is an associated load of a sampler. This requires that the driver
* upload a dummy sampler.
*/
b->shader->out->needs_dummy_sampler |= txf;
for (unsigned i = 0; i < instr->num_srcs; ++i) {
agx_index index = agx_src_index(&instr->src[i].src);
switch (instr->src[i].src_type) {
case nir_tex_src_backend1:
coords = index;
break;
case nir_tex_src_backend2:
packed_offset = index;
break;
case nir_tex_src_lod:
case nir_tex_src_bias:
lod = index;
break;
case nir_tex_src_comparator:
assert(index.size == AGX_SIZE_32);
compare = index;
break;
case nir_tex_src_texture_offset:
texture = index;
break;
case nir_tex_src_sampler_offset:
sampler = index;
break;
case nir_tex_src_ddx: {
int y_idx = nir_tex_instr_src_index(instr, nir_tex_src_ddy);
assert(y_idx >= 0 && "we only handle gradients");
unsigned n = nir_tex_instr_src_size(instr, y_idx);
assert((n == 2 || n == 3) && "other sizes not supported");
agx_index index2 = agx_src_index(&instr->src[y_idx].src);
/* We explicitly don't cache about the split cache for this */
lod = agx_temp(b->shader, AGX_SIZE_32);
agx_instr *I = agx_collect_to(b, lod, 2 * n);
for (unsigned i = 0; i < n; ++i) {
I->src[(2 * i) + 0] = agx_emit_extract(b, index, i);
I->src[(2 * i) + 1] = agx_emit_extract(b, index2, i);
}
break;
}
case nir_tex_src_ddy:
/* handled above */
break;
default:
unreachable("Unexpected texture source");
}
}
agx_index dst = agx_dest_index(&instr->dest);
/* Pack shadow reference value (compare) and packed offset together */
agx_index compare_offset = agx_null();
if (!agx_is_null(compare) && !agx_is_null(packed_offset))
compare_offset = agx_vec2(b, compare, packed_offset);
else if (!agx_is_null(packed_offset))
compare_offset = packed_offset;
else if (!agx_is_null(compare))
compare_offset = compare;
unsigned nr_channels = nir_dest_num_components(instr->dest);
nir_component_mask_t mask = nir_ssa_def_components_read(&instr->dest.ssa);
/* Destination masking doesn't seem to work properly for gathers (because
* it's mostly pointless), but it does show up in the lowering of
* textureGatherOffsets. Don't try to mask the destination for gathers.
*/
if (instr->op == nir_texop_tg4)
mask = BITFIELD_MASK(nr_channels);
agx_index tmp = agx_temp(b->shader, dst.size);
agx_instr *I = agx_texture_sample_to(
b, tmp, coords, lod, texture, sampler, compare_offset,
agx_tex_dim(instr->sampler_dim, instr->is_array),
agx_lod_mode_for_nir(instr->op), mask, 0, !agx_is_null(packed_offset),
!agx_is_null(compare), agx_gather_for_nir(instr));
if (txf)
I->op = AGX_OPCODE_TEXTURE_LOAD;
agx_index packed_channels[4] = {agx_null()};
agx_index unpacked_channels[4] = {agx_null()};
/* Hardware writes the masked components contiguously, expand out for NIR */
agx_emit_split(b, packed_channels, tmp, 4 /* XXX: why not nr_channels */);
for (unsigned i = 0; i < nr_channels; ++i) {
unpacked_channels[i] =
(mask & BITFIELD_BIT(i))
? packed_channels[util_bitcount(mask & BITFIELD_MASK(i))]
: agx_undef(tmp.size);
}
agx_emit_collect_to(b, dst, nr_channels, unpacked_channels);
}
/*
* Mark the logical end of the current block by emitting a p_logical_end marker.
* Note if an unconditional jump is emitted (for instance, to break out of a
* loop from inside an if), the block has already reached its logical end so we
* don't re-emit p_logical_end. The validator checks this, and correct register
* allocation depends on it.
*/
static void
agx_emit_logical_end(agx_builder *b)
{
if (!b->shader->current_block->unconditional_jumps)
agx_logical_end(b);
}
/*
* NIR loops are treated as a pair of AGX loops:
*
* do {
* do {
* ...
* } while (0);
* } while (cond);
*
* By manipulating the nesting counter, we may break out of nested loops, so
* under the model, both break and continue may be implemented as breaks, where
* break breaks out of the outer loop (2 layers) and continue breaks out of the
* inner loop (1 layer).
*
* After manipulating the nesting counter directly, pop_exec #0 must be used to
* flush the update to the execution mask.
*/
static void
agx_emit_jump(agx_builder *b, nir_jump_instr *instr)
{
agx_context *ctx = b->shader;
assert(instr->type == nir_jump_break || instr->type == nir_jump_continue);
/* Break out of either one or two loops */
unsigned nestings = b->shader->loop_nesting;
if (instr->type == nir_jump_continue) {
nestings += 1;
agx_block_add_successor(ctx->current_block, ctx->continue_block);
} else if (instr->type == nir_jump_break) {
nestings += 2;
agx_block_add_successor(ctx->current_block, ctx->break_block);
}
/* Update the counter and flush */
agx_nest(b, agx_immediate(nestings));
/* Jumps must come at the end of a block */
agx_emit_logical_end(b);
agx_pop_exec(b, 0);
ctx->current_block->unconditional_jumps = true;
}
static void
agx_emit_phi(agx_builder *b, nir_phi_instr *instr)
{
agx_instr *I = agx_phi_to(b, agx_dest_index(&instr->dest),
exec_list_length(&instr->srcs));
/* Deferred */
I->phi = instr;
}
/* Look up the AGX block corresponding to a given NIR block. Used when
* translating phi nodes after emitting all blocks.
*/
static agx_block *
agx_from_nir_block(agx_context *ctx, nir_block *block)
{
return ctx->indexed_nir_blocks[block->index];
}
static void
agx_emit_phi_deferred(agx_context *ctx, agx_block *block, agx_instr *I)
{
nir_phi_instr *phi = I->phi;
/* Guaranteed by lower_phis_to_scalar */
assert(phi->dest.ssa.num_components == 1);
nir_foreach_phi_src(src, phi) {
agx_block *pred = agx_from_nir_block(ctx, src->pred);
unsigned i = agx_predecessor_index(block, pred);
assert(i < I->nr_srcs);
I->src[i] = agx_src_index(&src->src);
}
}
static void
agx_emit_phis_deferred(agx_context *ctx)
{
agx_foreach_block(ctx, block) {
agx_foreach_phi_in_block(block, I)
agx_emit_phi_deferred(ctx, block, I);
}
}
static void
agx_emit_undef(agx_builder *b, nir_ssa_undef_instr *instr)
{
/* For now, just lower undefs to zero. This doesn't matter too much, since
* the lowering happens in NIR and this just allows for late lowering passes
* to result in undefs.
*/
agx_mov_imm_to(b, agx_nir_ssa_index(&instr->def), 0);
}
static void
agx_emit_instr(agx_builder *b, struct nir_instr *instr)
{
switch (instr->type) {
case nir_instr_type_load_const:
agx_emit_load_const(b, nir_instr_as_load_const(instr));
break;
case nir_instr_type_intrinsic:
agx_emit_intrinsic(b, nir_instr_as_intrinsic(instr));
break;
case nir_instr_type_alu:
agx_emit_alu(b, nir_instr_as_alu(instr));
break;
case nir_instr_type_tex:
agx_emit_tex(b, nir_instr_as_tex(instr));
break;
case nir_instr_type_jump:
agx_emit_jump(b, nir_instr_as_jump(instr));
break;
case nir_instr_type_phi:
agx_emit_phi(b, nir_instr_as_phi(instr));
break;
case nir_instr_type_ssa_undef:
agx_emit_undef(b, nir_instr_as_ssa_undef(instr));
break;
default:
unreachable("should've been lowered");
}
}
static agx_block *
agx_create_block(agx_context *ctx)
{
agx_block *blk = rzalloc(ctx, agx_block);
util_dynarray_init(&blk->predecessors, blk);
return blk;
}
static agx_block *
emit_block(agx_context *ctx, nir_block *block)
{
if (ctx->after_block) {
ctx->current_block = ctx->after_block;
ctx->after_block = NULL;
} else {
ctx->current_block = agx_create_block(ctx);
}
agx_block *blk = ctx->current_block;
list_addtail(&blk->link, &ctx->blocks);
list_inithead(&blk->instructions);
ctx->indexed_nir_blocks[block->index] = blk;
agx_builder _b = agx_init_builder(ctx, agx_after_block(blk));
nir_foreach_instr(instr, block) {
agx_emit_instr(&_b, instr);
}
return blk;
}
static agx_block *emit_cf_list(agx_context *ctx, struct exec_list *list);
/* Emit if-else as
*
* if_icmp cond != 0
* ...
* else_icmp cond == 0
* ...
* pop_exec
*
* If the else is empty, we can omit the else_icmp. This happens elsewhere, as
* an empty else block can become nonempty after RA due to phi lowering. This is
* not usually optimal, but it's a start.
*/
static void
emit_if(agx_context *ctx, nir_if *nif)
{
agx_block *first_block = ctx->current_block;
agx_builder _b = agx_init_builder(ctx, agx_after_block(first_block));
agx_index cond = agx_src_index(&nif->condition);
agx_emit_logical_end(&_b);
agx_if_icmp(&_b, cond, agx_zero(), 1, AGX_ICOND_UEQ, true);
ctx->loop_nesting++;
/* Emit the two subblocks. */
agx_block *if_block = emit_cf_list(ctx, &nif->then_list);
agx_block *end_then = ctx->current_block;
_b.cursor = agx_after_block(ctx->current_block);
agx_emit_logical_end(&_b);
agx_else_icmp(&_b, cond, agx_zero(), 1, AGX_ICOND_UEQ, false);
agx_block *else_block = emit_cf_list(ctx, &nif->else_list);
agx_block *end_else = ctx->current_block;
ctx->after_block = agx_create_block(ctx);
agx_block_add_successor(first_block, if_block);
agx_block_add_successor(first_block, else_block);
agx_block_add_successor(end_then, ctx->after_block);
agx_block_add_successor(end_else, ctx->after_block);
_b.cursor = agx_after_block(ctx->current_block);
agx_emit_logical_end(&_b);
agx_pop_exec(&_b, 1);
ctx->loop_nesting--;
}
static void
emit_loop(agx_context *ctx, nir_loop *nloop)
{
assert(!nir_loop_has_continue_construct(nloop));
/* We only track nesting within the innermost loop, so push and reset */
unsigned pushed_nesting = ctx->loop_nesting;
ctx->loop_nesting = 0;
agx_block *popped_break = ctx->break_block;
agx_block *popped_continue = ctx->continue_block;
ctx->break_block = agx_create_block(ctx);
ctx->continue_block = agx_create_block(ctx);
/* Make room for break/continue nesting (TODO: skip if no divergent CF) */
agx_builder _b = agx_init_builder(ctx, agx_after_block(ctx->current_block));
agx_emit_logical_end(&_b);
agx_push_exec(&_b, 2);
/* Fallthrough to body */
agx_block_add_successor(ctx->current_block, ctx->continue_block);
/* Emit the body */
ctx->after_block = ctx->continue_block;
agx_block *start_block = emit_cf_list(ctx, &nloop->body);
/* Fix up the nesting counter via an always true while_icmp, and branch back
* to start of loop if any lanes are active */
_b.cursor = agx_after_block(ctx->current_block);
agx_emit_logical_end(&_b);
agx_while_icmp(&_b, agx_zero(), agx_zero(), 2, AGX_ICOND_UEQ, false);
agx_jmp_exec_any(&_b, start_block);
agx_pop_exec(&_b, 2);
agx_block_add_successor(ctx->current_block, ctx->continue_block);
/* Pop off */
ctx->after_block = ctx->break_block;
ctx->break_block = popped_break;
ctx->continue_block = popped_continue;
/* Update shader-db stats */
++ctx->loop_count;
/* All nested control flow must have finished */
assert(ctx->loop_nesting == 0);
/* Restore loop nesting (we might be inside an if inside an outer loop) */
ctx->loop_nesting = pushed_nesting;
}
/* Before the first control flow structure, the nesting counter needs to be
* zeroed for correct operation. This only happens at most once, since by
* definition this occurs at the end of the first block, which dominates the
* rest of the program. */
static void
emit_first_cf(agx_context *ctx)
{
if (ctx->any_cf)
return;
agx_builder _b = agx_init_builder(ctx, agx_after_block(ctx->current_block));
agx_nest(&_b, agx_immediate(0));
ctx->any_cf = true;
}
static agx_block *
emit_cf_list(agx_context *ctx, struct exec_list *list)
{
agx_block *start_block = NULL;
foreach_list_typed(nir_cf_node, node, node, list) {
switch (node->type) {
case nir_cf_node_block: {
agx_block *block = emit_block(ctx, nir_cf_node_as_block(node));
if (!start_block)
start_block = block;
break;
}
case nir_cf_node_if:
emit_first_cf(ctx);
emit_if(ctx, nir_cf_node_as_if(node));
break;
case nir_cf_node_loop:
emit_first_cf(ctx);
emit_loop(ctx, nir_cf_node_as_loop(node));
break;
default:
unreachable("Unknown control flow");
}
}
return start_block;
}
static void
agx_set_st_vary_final(agx_context *ctx)
{
agx_foreach_instr_global_rev(ctx, I) {
if (I->op == AGX_OPCODE_ST_VARY) {
I->last = true;
return;
}
}
/* If we got here, there was no varying written. We need to mark that. */
agx_block *last_block = list_last_entry(&ctx->blocks, agx_block, link);
agx_builder _b = agx_init_builder(ctx, agx_after_block_logical(last_block));
agx_no_varyings(&_b);
}
static int
agx_dump_stats(agx_context *ctx, unsigned size, char **out)
{
unsigned nr_ins = 0;
/* Count instructions */
agx_foreach_instr_global(ctx, I)
nr_ins++;
unsigned nr_threads =
agx_occupancy_for_register_count(ctx->max_reg).max_threads;
return asprintf(out,
"%s shader: %u inst, %u bytes, %u halfregs, %u threads, "
"%u loops, %u:%u spills:fills",
gl_shader_stage_name(ctx->stage), nr_ins, size, ctx->max_reg,
nr_threads, ctx->loop_count, ctx->spills, ctx->fills);
}
static int
glsl_type_size(const struct glsl_type *type, bool bindless)
{
return glsl_count_attribute_slots(type, false);
}
static bool
agx_lower_sincos_filter(const nir_instr *instr, UNUSED const void *_)
{
if (instr->type != nir_instr_type_alu)
return false;
nir_alu_instr *alu = nir_instr_as_alu(instr);
return alu->op == nir_op_fsin || alu->op == nir_op_fcos;
}
/* Sine and cosine are implemented via the sin_pt_1 and sin_pt_2 opcodes for
* heavy lifting. sin_pt_2 implements sinc in the first quadrant, expressed in
* turns (sin (tau x) / x), while sin_pt_1 implements a piecewise sign/offset
* fixup to transform a quadrant angle [0, 4] to [-1, 1]. The NIR opcode
* fsin_agx models the fixup, sinc, and multiply to obtain sine, so we just
* need to change units from radians to quadrants modulo turns. Cosine is
* implemented by shifting by one quadrant: cos(x) = sin(x + tau/4).
*/
static nir_ssa_def *
agx_lower_sincos_impl(struct nir_builder *b, nir_instr *instr, UNUSED void *_)
{
nir_alu_instr *alu = nir_instr_as_alu(instr);
nir_ssa_def *x = nir_mov_alu(b, alu->src[0], 1);
nir_ssa_def *turns = nir_fmul_imm(b, x, M_1_PI * 0.5f);
if (alu->op == nir_op_fcos)
turns = nir_fadd_imm(b, turns, 0.25f);
nir_ssa_def *quadrants = nir_fmul_imm(b, nir_ffract(b, turns), 4.0);
return nir_fsin_agx(b, quadrants);
}
static bool
agx_lower_sincos(nir_shader *shader)
{
return nir_shader_lower_instructions(shader, agx_lower_sincos_filter,
agx_lower_sincos_impl, NULL);
}
static bool
agx_lower_front_face(struct nir_builder *b, nir_instr *instr, UNUSED void *data)
{
if (instr->type != nir_instr_type_intrinsic)
return false;
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
if (intr->intrinsic != nir_intrinsic_load_front_face)
return false;
assert(intr->dest.is_ssa);
nir_ssa_def *def = &intr->dest.ssa;
assert(def->bit_size == 1);
b->cursor = nir_before_instr(&intr->instr);
nir_ssa_def_rewrite_uses(def, nir_inot(b, nir_load_back_face_agx(b, 1)));
return true;
}
/*
* Standard NIR optimization loop. This is run in agx_preprocess_nir, then once
* again at shader variant compile time. Unless there was a complex shader key,
* the latter run should be almost a no-op.
*/
static void
agx_optimize_loop_nir(nir_shader *nir)
{
bool progress;
do {
progress = false;
NIR_PASS(progress, nir, nir_lower_var_copies);
NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
NIR_PASS(progress, nir, nir_copy_prop);
NIR_PASS(progress, nir, nir_opt_remove_phis);
NIR_PASS(progress, nir, nir_lower_phis_to_scalar, true);
NIR_PASS(progress, nir, nir_opt_dce);
NIR_PASS(progress, nir, nir_opt_dead_cf);
NIR_PASS(progress, nir, nir_opt_cse);
NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
NIR_PASS(progress, nir, nir_opt_phi_precision);
NIR_PASS(progress, nir, nir_opt_algebraic);
NIR_PASS(progress, nir, nir_opt_constant_folding);
NIR_PASS(progress, nir, nir_opt_undef);
NIR_PASS(progress, nir, nir_lower_undef_to_zero);
NIR_PASS(progress, nir, nir_opt_loop_unroll);
} while (progress);
}
static bool
combine_all_barriers(nir_intrinsic_instr *a, nir_intrinsic_instr *b, void *_)
{
nir_intrinsic_set_memory_modes(
a, nir_intrinsic_memory_modes(a) | nir_intrinsic_memory_modes(b));
nir_intrinsic_set_memory_semantics(
a, nir_intrinsic_memory_semantics(a) | nir_intrinsic_memory_semantics(b));
nir_intrinsic_set_memory_scope(
a, MAX2(nir_intrinsic_memory_scope(a), nir_intrinsic_memory_scope(b)));
return true;
}
static void
agx_optimize_nir(nir_shader *nir, unsigned *preamble_size)
{
agx_optimize_loop_nir(nir);
bool progress = false;
NIR_PASS(progress, nir, agx_nir_lower_address);
/* If address lowering made progress, clean up before forming preambles.
* Otherwise the optimized preambles might just be constants! Do it before
* lowering int64 too, to avoid lowering constant int64 arithmetic.
*/
if (progress) {
NIR_PASS_V(nir, nir_opt_constant_folding);
NIR_PASS_V(nir, nir_opt_dce);
}
/* Only lower int64 after optimizing address arithmetic, so that u2u64/i2i64
* conversions remain.
*/
progress = false;
NIR_PASS(progress, nir, nir_lower_int64);
/* If we lowered actual int64 arithmetic (not folded into the address
* calculations), then clean up after the lowering.
*/
if (progress) {
do {
progress = false;
NIR_PASS(progress, nir, nir_opt_algebraic);
NIR_PASS(progress, nir, nir_opt_dce);
} while (progress);
}
if (likely(!(agx_compiler_debug & AGX_DBG_NOPREAMBLE)))
NIR_PASS_V(nir, agx_nir_opt_preamble, preamble_size);
/* Forming preambles may dramatically reduce the instruction count
* in certain blocks, causing some if-else statements to become
* trivial. We want to peephole select those, given that control flow
* prediction instructions are costly.
*/
NIR_PASS_V(nir, nir_opt_peephole_select, 64, false, true);
NIR_PASS_V(nir, nir_opt_algebraic_late);
NIR_PASS_V(nir, agx_nir_lower_algebraic_late);
NIR_PASS_V(nir, nir_opt_constant_folding);
NIR_PASS_V(nir, nir_opt_combine_barriers, combine_all_barriers, NULL);
/* Must run after uses are fixed but before a last round of copyprop + DCE */
if (nir->info.stage == MESA_SHADER_FRAGMENT)
NIR_PASS_V(nir, agx_nir_lower_load_mask);
NIR_PASS_V(nir, nir_copy_prop);
NIR_PASS_V(nir, nir_opt_dce);
NIR_PASS_V(nir, nir_opt_cse);
NIR_PASS_V(nir, nir_lower_alu_to_scalar, NULL, NULL);
NIR_PASS_V(nir, nir_lower_load_const_to_scalar);
/* Cleanup optimizations */
nir_move_options move_all = nir_move_const_undef | nir_move_load_ubo |
nir_move_load_input | nir_move_comparisons |
nir_move_copies | nir_move_load_ssbo;
NIR_PASS_V(nir, nir_opt_sink, move_all);
NIR_PASS_V(nir, nir_opt_move, move_all);
NIR_PASS_V(nir, nir_lower_phis_to_scalar, true);
}
/* ABI: position first, then user, then psiz */
static void
agx_remap_varyings_vs(nir_shader *nir, struct agx_varyings_vs *varyings)
{
unsigned base = 0;
/* Initialize to "nothing is written" */
for (unsigned i = 0; i < ARRAY_SIZE(varyings->slots); ++i)
varyings->slots[i] = ~0;
/* gl_Position is implicitly written, although it may validly be absent in
* vertex programs run only for transform feedback. Those ignore their
* varyings so it doesn't matter what we do here as long as we don't fail.
*/
varyings->slots[VARYING_SLOT_POS] = base;
base += 4;
u_foreach_bit64(loc, nir->info.outputs_written)
{
if (loc == VARYING_SLOT_POS || loc == VARYING_SLOT_PSIZ)
continue;
varyings->slots[loc] = base;
base += 4;
}
/* TODO: Link FP16 varyings */
varyings->base_index_fp16 = base;
if (nir->info.outputs_written & VARYING_BIT_PSIZ) {
varyings->slots[VARYING_SLOT_PSIZ] = base;
base += 1;
}
/* All varyings linked now */
varyings->nr_index = base;
}
/*
* Varyings that are used as texture coordinates should be kept at fp32, because
* fp16 does not have enough precision for large textures. It's technically
* conformant not to, but every app gets this wrong.
*/
static bool
agx_gather_texcoords(nir_builder *b, nir_instr *instr, void *data)
{
uint64_t *mask = data;
if (instr->type != nir_instr_type_tex)
return false;
nir_tex_instr *tex = nir_instr_as_tex(instr);
int coord_idx = nir_tex_instr_src_index(tex, nir_tex_src_coord);
if (coord_idx < 0)
return false;
nir_src src = tex->src[coord_idx].src;
nir_ssa_scalar x = nir_ssa_scalar_resolved(src.ssa, 0);
nir_ssa_scalar y = nir_ssa_scalar_resolved(src.ssa, 1);
if (x.def != y.def)
return false;
nir_instr *parent = x.def->parent_instr;
if (parent->type != nir_instr_type_intrinsic)
return false;
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(parent);
if (intr->intrinsic != nir_intrinsic_load_interpolated_input)
return false;
nir_io_semantics sem = nir_intrinsic_io_semantics(intr);
*mask |= BITFIELD64_BIT(sem.location);
return false;
}
static bool
agx_gather_flat(nir_builder *b, nir_instr *instr, void *data)
{
uint64_t *mask = data;
if (instr->type != nir_instr_type_intrinsic)
return false;
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
if (intr->intrinsic != nir_intrinsic_load_input)
return false;
nir_io_semantics sem = nir_intrinsic_io_semantics(intr);
*mask |= BITFIELD64_BIT(sem.location);
return false;
}
/*
* Build a bit mask of varyings (by location) that are flatshaded or used as
* texture coordinates. This information is needed by lower_mediump_io.
*/
static uint64_t
agx_fp32_varying_mask(nir_shader *nir)
{
assert(nir->info.stage == MESA_SHADER_FRAGMENT);
uint64_t mask = 0;
nir_shader_instructions_pass(nir, agx_gather_flat, nir_metadata_all, &mask);
nir_shader_instructions_pass(nir, agx_gather_texcoords, nir_metadata_all,
&mask);
return mask;
}
static nir_mem_access_size_align
mem_access_size_align_cb(nir_intrinsic_op intrin, uint8_t bytes, uint32_t align,
uint32_t align_offset, bool offset_is_const,
const void *cb_data)
{
align = nir_combined_align(align, align_offset);
assert(util_is_power_of_two_nonzero(align));
unsigned bit_size = (bytes & 1) ? 8 : (bytes & 2) ? 16 : 32;
if (align == 2)
bit_size = MIN2(bit_size, 16);
else if (align == 1)
bit_size = 8;
return (nir_mem_access_size_align){
.num_components = bytes / (bit_size / 8),
.bit_size = bit_size,
.align = bit_size / 8,
};
}
static bool
agx_should_dump(nir_shader *nir, unsigned agx_dbg_bit)
{
return (agx_compiler_debug & agx_dbg_bit) &&
!(nir->info.internal && !(agx_compiler_debug & AGX_DBG_INTERNAL));
}
static unsigned
agx_compile_function_nir(nir_shader *nir, nir_function_impl *impl,
struct agx_shader_key *key,
struct util_debug_callback *debug,
struct util_dynarray *binary,
struct agx_shader_info *out)
{
nir_index_blocks(impl);
agx_context *ctx = rzalloc(NULL, agx_context);
ctx->nir = nir;
ctx->out = out;
ctx->key = key;
ctx->stage = nir->info.stage;
ctx->allocated_vec = _mesa_hash_table_u64_create(ctx);
ctx->indexed_nir_blocks = rzalloc_array(ctx, agx_block *, impl->num_blocks);
list_inithead(&ctx->blocks);
ctx->alloc = impl->ssa_alloc;
emit_cf_list(ctx, &impl->body);
agx_emit_phis_deferred(ctx);
/* Stop the main shader or preamble shader after the exit block. For real
* functions, we would return here.
*/
agx_block *last_block = list_last_entry(&ctx->blocks, agx_block, link);
agx_builder _b = agx_init_builder(ctx, agx_after_block(last_block));
if (ctx->stage == MESA_SHADER_FRAGMENT && !impl->function->is_preamble)
agx_write_sample_mask_1(&_b);
agx_logical_end(&_b);
agx_stop(&_b);
/* Index blocks now that we're done emitting so the order is consistent */
agx_foreach_block(ctx, block)
block->index = ctx->num_blocks++;
agx_validate(ctx, "IR translation");
if (likely(!(agx_compiler_debug & AGX_DBG_NOOPT))) {
/* Eliminate dead instructions before CSE to avoid silly scheduling */
agx_dce(ctx, false);
/* CSE before eliminating dead destinations so that subdivision is
* optimized properly.
*/
agx_opt_cse(ctx);
/* After DCE, use counts are right so we can run the optimizer. */
agx_optimizer(ctx);
}
/* For correctness, lower uniform sources after copyprop (for correctness,
* as copyprop creates uniform sources). To keep register pressure in
* check, lower after CSE, since moves are cheaper than registers.
*/
agx_lower_uniform_sources(ctx);
/* RA correctness depends on DCE */
agx_dce(ctx, true);
agx_validate(ctx, "Pre-RA passes");
if (agx_should_dump(nir, AGX_DBG_SHADERS))
agx_print_shader(ctx, stdout);
agx_ra(ctx);
agx_lower_64bit_postra(ctx);
if (ctx->stage == MESA_SHADER_VERTEX && !impl->function->is_preamble)
agx_set_st_vary_final(ctx);
agx_lower_pseudo(ctx);
agx_insert_waits(ctx);
if (agx_should_dump(nir, AGX_DBG_SHADERS))
agx_print_shader(ctx, stdout);
/* Pad binary */
if (binary->size % AGX_CODE_ALIGN) {
unsigned ngrow = AGX_CODE_ALIGN - (binary->size % AGX_CODE_ALIGN);
memset(util_dynarray_grow_bytes(binary, ngrow, 1), 0, ngrow);
}
unsigned offset = binary->size;
assert((offset % AGX_CODE_ALIGN) == 0);
agx_pack_binary(ctx, binary);
unsigned nr_gprs = ctx->max_reg + 1;
if (impl->function->is_preamble)
out->nr_preamble_gprs = nr_gprs;
else
out->nr_gprs = nr_gprs;
/* Don't dump statistics for preambles, since they're not worth optimizing */
if (!impl->function->is_preamble) {
char *stats;
int ret = agx_dump_stats(ctx, binary->size, &stats);
if (ret >= 0) {
if (agx_should_dump(nir, AGX_DBG_SHADERDB)) {
fprintf(stderr, "SHADER-DB: %s - %s\n", nir->info.label ?: "",
stats);
}
if (debug)
util_debug_message(debug, SHADER_INFO, "%s", stats);
free(stats);
}
}
ralloc_free(ctx);
return offset;
}
/*
* Preprocess NIR. In particular, this lowers I/O. Drivers should call this
* as soon as they don't need unlowered I/O.
*
* This also lowers as much as possible. After preprocessing NIR, the following
* NIR passes are called by the GL driver:
*
* - nir_lower_blend
* - nir_lower_texcoord_replace_late
* - agx_nir_lower_vbo
* - agx_nir_lower_tilebuffer
*
* Unless an instruction is constructed by one of the above passes, it should be
* lowered here to avoid duplicate work with shader variants.
*/
void
agx_preprocess_nir(nir_shader *nir, bool support_lod_bias)
{
NIR_PASS_V(nir, nir_lower_vars_to_ssa);
if (nir->info.stage == MESA_SHADER_VERTEX) {
NIR_PASS_V(nir, nir_lower_point_size, 1.0, 0.0);
} else if (nir->info.stage == MESA_SHADER_FRAGMENT) {
/* Lower to maximum colour buffers, the excess stores will get cleaned up
* by tilebuffer lowering so they won't become real shader code. However,
* that depends on the shader key which we don't have at this point.
*/
NIR_PASS_V(nir, nir_lower_fragcolor, 8);
}
/* Lower large arrays to scratch and small arrays to csel */
NIR_PASS_V(nir, nir_lower_vars_to_scratch, nir_var_function_temp, 16,
glsl_get_natural_size_align_bytes);
NIR_PASS_V(nir, nir_lower_indirect_derefs, nir_var_function_temp, ~0);
NIR_PASS_V(nir, nir_split_var_copies);
NIR_PASS_V(nir, nir_lower_global_vars_to_local);
NIR_PASS_V(nir, nir_lower_var_copies);
NIR_PASS_V(nir, nir_lower_vars_to_ssa);
NIR_PASS_V(nir, nir_lower_io, nir_var_shader_in | nir_var_shader_out,
glsl_type_size, 0);
NIR_PASS_V(nir, nir_lower_ssbo);
if (nir->info.stage == MESA_SHADER_FRAGMENT) {
NIR_PASS_V(nir, agx_nir_lower_frag_sidefx);
/* Interpolate varyings at fp16 and write to the tilebuffer at fp16. As an
* exception, interpolate flat shaded at fp32. This works around a
* hardware limitation. The resulting code (with an extra f2f16 at the end
* if needed) matches what Metal produces.
*/
NIR_PASS_V(nir, nir_lower_mediump_io,
nir_var_shader_in | nir_var_shader_out,
~agx_fp32_varying_mask(nir), false);
}
/* Varying output is scalar, other I/O is vector */
if (nir->info.stage == MESA_SHADER_VERTEX) {
NIR_PASS_V(nir, nir_lower_io_to_scalar, nir_var_shader_out);
}
/* Clean up deref gunk after lowering I/O */
NIR_PASS_V(nir, nir_opt_dce);
NIR_PASS_V(nir, agx_nir_lower_texture, support_lod_bias);
nir_lower_idiv_options idiv_options = {
.allow_fp16 = true,
};
NIR_PASS_V(nir, nir_lower_regs_to_ssa);
NIR_PASS_V(nir, nir_lower_idiv, &idiv_options);
NIR_PASS_V(nir, nir_lower_frexp);
NIR_PASS_V(nir, nir_lower_alu_to_scalar, NULL, NULL);
NIR_PASS_V(nir, nir_lower_load_const_to_scalar);
NIR_PASS_V(nir, nir_lower_flrp, 16 | 32 | 64, false);
NIR_PASS_V(nir, agx_lower_sincos);
NIR_PASS_V(nir, nir_shader_instructions_pass, agx_lower_front_face,
nir_metadata_block_index | nir_metadata_dominance, NULL);
/* After lowering, run through the standard suite of NIR optimizations. We
* will run through the loop later, once we have the shader key, but if we
* run now, that run will ideally be almost a no-op.
*/
agx_optimize_loop_nir(nir);
/* We're lowered away all variables. Remove them all for smaller shaders. */
NIR_PASS_V(nir, nir_remove_dead_variables, nir_var_all, NULL);
nir->info.io_lowered = true;
/* Move before lowering */
nir_move_options move_all = nir_move_const_undef | nir_move_load_ubo |
nir_move_load_input | nir_move_comparisons |
nir_move_copies | nir_move_load_ssbo;
NIR_PASS_V(nir, nir_opt_sink, move_all);
NIR_PASS_V(nir, nir_opt_move, move_all);
NIR_PASS_V(nir, agx_nir_lower_ubo);
NIR_PASS_V(nir, agx_nir_lower_shared_bitsize);
}
void
agx_compile_shader_nir(nir_shader *nir, struct agx_shader_key *key,
struct util_debug_callback *debug,
struct util_dynarray *binary,
struct agx_shader_info *out)
{
agx_compiler_debug = debug_get_option_agx_compiler_debug();
memset(out, 0, sizeof *out);
assert(nir->info.io_lowered &&
"agx_preprocess_nir is called first, then the shader is specalized,"
"then the specialized shader is compiled");
if (nir->info.stage == MESA_SHADER_VERTEX) {
out->writes_psiz =
nir->info.outputs_written & BITFIELD_BIT(VARYING_SLOT_PSIZ);
} else if (nir->info.stage == MESA_SHADER_FRAGMENT) {
out->no_colour_output = !(nir->info.outputs_written >> FRAG_RESULT_DATA0);
out->disable_tri_merging = nir->info.fs.needs_all_helper_invocations ||
nir->info.fs.needs_quad_helper_invocations ||
nir->info.writes_memory;
/* Report a canonical depth layout */
enum gl_frag_depth_layout layout = nir->info.fs.depth_layout;
if (!(nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)))
out->depth_layout = FRAG_DEPTH_LAYOUT_UNCHANGED;
else if (layout == FRAG_DEPTH_LAYOUT_NONE)
out->depth_layout = FRAG_DEPTH_LAYOUT_ANY;
else
out->depth_layout = layout;
}
out->nr_bindful_textures = nir->info.num_textures;
/* Late clip plane lowering created discards */
if (nir->info.stage == MESA_SHADER_FRAGMENT) {
NIR_PASS_V(nir, agx_nir_lower_zs_emit);
}
/* Late sysval lowering creates large loads. Load lowering creates unpacks */
NIR_PASS_V(nir, nir_lower_mem_access_bit_sizes,
nir_var_mem_ssbo | nir_var_mem_constant |
nir_var_mem_task_payload | nir_var_shader_temp |
nir_var_function_temp | nir_var_mem_global |
nir_var_mem_shared,
mem_access_size_align_cb, NULL);
NIR_PASS_V(nir, nir_lower_pack);
/* Late blend lowering creates vectors */
NIR_PASS_V(nir, nir_lower_alu_to_scalar, NULL, NULL);
NIR_PASS_V(nir, nir_lower_load_const_to_scalar);
/* Late VBO lowering creates constant udiv instructions */
NIR_PASS_V(nir, nir_opt_idiv_const, 16);
out->push_count = key->reserved_preamble;
agx_optimize_nir(nir, &out->push_count);
/* Implement conditional discard with real control flow like Metal */
NIR_PASS_V(nir, nir_lower_discard_if,
(nir_lower_discard_if_to_cf | nir_lower_demote_if_to_cf |
nir_lower_terminate_if_to_cf));
/* Must be last since NIR passes can remap driver_location freely */
if (nir->info.stage == MESA_SHADER_VERTEX)
agx_remap_varyings_vs(nir, &out->varyings.vs);
if (agx_should_dump(nir, AGX_DBG_SHADERS))
nir_print_shader(nir, stdout);
nir_foreach_function(func, nir) {
if (!func->impl)
continue;
unsigned offset =
agx_compile_function_nir(nir, func->impl, key, debug, binary, out);
if (func->is_preamble) {
out->preamble_offset = offset;
out->has_preamble = true;
} else if (func->is_entrypoint) {
out->main_offset = offset;
} else {
unreachable("General functions not yet supported");
}
}
}