mesa/src/gallium/frontends/rusticl/api/kernel.rs

771 lines
31 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use crate::api::event::create_and_queue;
use crate::api::icd::*;
use crate::api::util::*;
use crate::core::device::*;
use crate::core::event::*;
use crate::core::kernel::*;
use crate::core::memory::*;
use crate::core::program::*;
use crate::core::queue::*;
use mesa_rust_util::ptr::*;
use mesa_rust_util::string::*;
use rusticl_opencl_gen::*;
use rusticl_proc_macros::cl_entrypoint;
use rusticl_proc_macros::cl_info_entrypoint;
use std::cmp;
use std::mem::{self, MaybeUninit};
use std::os::raw::c_void;
use std::ptr;
use std::slice;
use std::sync::Arc;
#[cl_info_entrypoint(cl_get_kernel_info)]
impl CLInfo<cl_kernel_info> for cl_kernel {
fn query(&self, q: cl_kernel_info, _: &[u8]) -> CLResult<Vec<MaybeUninit<u8>>> {
let kernel = Kernel::ref_from_raw(*self)?;
Ok(match q {
CL_KERNEL_ATTRIBUTES => cl_prop::<&str>(&kernel.kernel_info.attributes_string),
CL_KERNEL_CONTEXT => {
let ptr = Arc::as_ptr(&kernel.prog.context);
cl_prop::<cl_context>(cl_context::from_ptr(ptr))
}
CL_KERNEL_FUNCTION_NAME => cl_prop::<&str>(&kernel.name),
CL_KERNEL_NUM_ARGS => cl_prop::<cl_uint>(kernel.kernel_info.args.len() as cl_uint),
CL_KERNEL_PROGRAM => {
let ptr = Arc::as_ptr(&kernel.prog);
cl_prop::<cl_program>(cl_program::from_ptr(ptr))
}
CL_KERNEL_REFERENCE_COUNT => cl_prop::<cl_uint>(Kernel::refcnt(*self)?),
// CL_INVALID_VALUE if param_name is not one of the supported values
_ => return Err(CL_INVALID_VALUE),
})
}
}
#[cl_info_entrypoint(cl_get_kernel_arg_info)]
impl CLInfoObj<cl_kernel_arg_info, cl_uint> for cl_kernel {
fn query(&self, idx: cl_uint, q: cl_kernel_arg_info) -> CLResult<Vec<MaybeUninit<u8>>> {
let kernel = Kernel::ref_from_raw(*self)?;
// CL_INVALID_ARG_INDEX if arg_index is not a valid argument index.
if idx as usize >= kernel.kernel_info.args.len() {
return Err(CL_INVALID_ARG_INDEX);
}
Ok(match *q {
CL_KERNEL_ARG_ACCESS_QUALIFIER => {
cl_prop::<cl_kernel_arg_access_qualifier>(kernel.access_qualifier(idx))
}
CL_KERNEL_ARG_ADDRESS_QUALIFIER => {
cl_prop::<cl_kernel_arg_address_qualifier>(kernel.address_qualifier(idx))
}
CL_KERNEL_ARG_NAME => cl_prop::<&str>(kernel.arg_name(idx)),
CL_KERNEL_ARG_TYPE_NAME => cl_prop::<&str>(kernel.arg_type_name(idx)),
CL_KERNEL_ARG_TYPE_QUALIFIER => {
cl_prop::<cl_kernel_arg_type_qualifier>(kernel.type_qualifier(idx))
}
// CL_INVALID_VALUE if param_name is not one of the supported values
_ => return Err(CL_INVALID_VALUE),
})
}
}
#[cl_info_entrypoint(cl_get_kernel_work_group_info)]
impl CLInfoObj<cl_kernel_work_group_info, cl_device_id> for cl_kernel {
fn query(
&self,
dev: cl_device_id,
q: cl_kernel_work_group_info,
) -> CLResult<Vec<MaybeUninit<u8>>> {
let kernel = Kernel::ref_from_raw(*self)?;
// CL_INVALID_DEVICE [..] if device is NULL but there is more than one device associated with kernel.
let dev = if dev.is_null() {
if kernel.prog.devs.len() > 1 {
return Err(CL_INVALID_DEVICE);
} else {
kernel.prog.devs[0]
}
} else {
Device::ref_from_raw(dev)?
};
// CL_INVALID_DEVICE if device is not in the list of devices associated with kernel
if !kernel.prog.devs.contains(&dev) {
return Err(CL_INVALID_DEVICE);
}
Ok(match *q {
CL_KERNEL_COMPILE_WORK_GROUP_SIZE => cl_prop::<[usize; 3]>(kernel.work_group_size()),
CL_KERNEL_LOCAL_MEM_SIZE => cl_prop::<cl_ulong>(kernel.local_mem_size(dev)),
CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE => {
cl_prop::<usize>(kernel.preferred_simd_size(dev))
}
CL_KERNEL_PRIVATE_MEM_SIZE => cl_prop::<cl_ulong>(kernel.priv_mem_size(dev)),
CL_KERNEL_WORK_GROUP_SIZE => cl_prop::<usize>(kernel.max_threads_per_block(dev)),
// CL_INVALID_VALUE if param_name is not one of the supported values
_ => return Err(CL_INVALID_VALUE),
})
}
}
impl CLInfoObj<cl_kernel_sub_group_info, (cl_device_id, usize, *const c_void, usize)>
for cl_kernel
{
fn query(
&self,
(dev, input_value_size, input_value, output_value_size): (
cl_device_id,
usize,
*const c_void,
usize,
),
q: cl_program_build_info,
) -> CLResult<Vec<MaybeUninit<u8>>> {
let kernel = Kernel::ref_from_raw(*self)?;
// CL_INVALID_DEVICE [..] if device is NULL but there is more than one device associated
// with kernel.
let dev = if dev.is_null() {
if kernel.prog.devs.len() > 1 {
return Err(CL_INVALID_DEVICE);
} else {
kernel.prog.devs[0]
}
} else {
Device::ref_from_raw(dev)?
};
// CL_INVALID_DEVICE if device is not in the list of devices associated with kernel
if !kernel.prog.devs.contains(&dev) {
return Err(CL_INVALID_DEVICE);
}
// CL_INVALID_OPERATION if device does not support subgroups.
if !dev.subgroups_supported() {
return Err(CL_INVALID_OPERATION);
}
let usize_byte = mem::size_of::<usize>();
// first we have to convert the input to a proper thing
let input: &[usize] = match q {
CL_KERNEL_MAX_SUB_GROUP_SIZE_FOR_NDRANGE | CL_KERNEL_SUB_GROUP_COUNT_FOR_NDRANGE => {
// CL_INVALID_VALUE if param_name is CL_KERNEL_MAX_SUB_GROUP_SIZE_FOR_NDRANGE,
// CL_KERNEL_SUB_GROUP_COUNT_FOR_NDRANGE or ... and the size in bytes specified by
// input_value_size is not valid or if input_value is NULL.
if ![usize_byte, 2 * usize_byte, 3 * usize_byte].contains(&input_value_size) {
return Err(CL_INVALID_VALUE);
}
// SAFETY: we verified the size as best as possible, with the rest we trust the client
unsafe { slice::from_raw_parts(input_value.cast(), input_value_size / usize_byte) }
}
CL_KERNEL_LOCAL_SIZE_FOR_SUB_GROUP_COUNT => {
// CL_INVALID_VALUE if param_name is ... CL_KERNEL_LOCAL_SIZE_FOR_SUB_GROUP_COUNT
// and the size in bytes specified by input_value_size is not valid or if
// input_value is NULL.
if input_value_size != usize_byte || input_value.is_null() {
return Err(CL_INVALID_VALUE);
}
// SAFETY: we trust the client here
unsafe { slice::from_raw_parts(input_value.cast(), 1) }
}
_ => &[],
};
Ok(match q {
CL_KERNEL_SUB_GROUP_COUNT_FOR_NDRANGE => {
cl_prop::<usize>(kernel.subgroups_for_block(dev, input))
}
CL_KERNEL_MAX_SUB_GROUP_SIZE_FOR_NDRANGE => {
cl_prop::<usize>(kernel.subgroup_size_for_block(dev, input))
}
CL_KERNEL_LOCAL_SIZE_FOR_SUB_GROUP_COUNT => {
let subgroups = input[0];
let mut res = vec![0; 3];
for subgroup_size in kernel.subgroup_sizes(dev) {
let threads = subgroups * subgroup_size;
if threads > dev.max_threads_per_block() {
continue;
}
let block = [threads, 1, 1];
let real_subgroups = kernel.subgroups_for_block(dev, &block);
if real_subgroups == subgroups {
res = block.to_vec();
break;
}
}
res.truncate(output_value_size / usize_byte);
cl_prop::<Vec<usize>>(res)
}
CL_KERNEL_MAX_NUM_SUB_GROUPS => {
let threads = kernel.max_threads_per_block(dev);
let max_groups = dev.max_subgroups();
let mut result = 0;
for sgs in kernel.subgroup_sizes(dev) {
result = cmp::max(result, threads / sgs);
result = cmp::min(result, max_groups as usize);
}
cl_prop::<usize>(result)
}
CL_KERNEL_COMPILE_NUM_SUB_GROUPS => cl_prop::<usize>(kernel.num_subgroups()),
CL_KERNEL_COMPILE_SUB_GROUP_SIZE_INTEL => cl_prop::<usize>(kernel.subgroup_size()),
// CL_INVALID_VALUE if param_name is not one of the supported values
_ => return Err(CL_INVALID_VALUE),
})
}
}
const ZERO_ARR: [usize; 3] = [0; 3];
/// # Safety
///
/// This function is only safe when called on an array of `work_dim` length
unsafe fn kernel_work_arr_or_default<'a>(arr: *const usize, work_dim: cl_uint) -> &'a [usize] {
if !arr.is_null() {
unsafe { slice::from_raw_parts(arr, work_dim as usize) }
} else {
&ZERO_ARR
}
}
/// # Safety
///
/// This function is only safe when called on an array of `work_dim` length
unsafe fn kernel_work_arr_mut<'a>(arr: *mut usize, work_dim: cl_uint) -> Option<&'a mut [usize]> {
if !arr.is_null() {
unsafe { Some(slice::from_raw_parts_mut(arr, work_dim as usize)) }
} else {
None
}
}
#[cl_entrypoint]
fn create_kernel(
program: cl_program,
kernel_name: *const ::std::os::raw::c_char,
) -> CLResult<cl_kernel> {
let p = Program::arc_from_raw(program)?;
let name = c_string_to_string(kernel_name);
// CL_INVALID_VALUE if kernel_name is NULL.
if kernel_name.is_null() {
return Err(CL_INVALID_VALUE);
}
let build = p.build_info();
// CL_INVALID_PROGRAM_EXECUTABLE if there is no successfully built executable for program.
if build.kernels().is_empty() {
return Err(CL_INVALID_PROGRAM_EXECUTABLE);
}
// CL_INVALID_KERNEL_NAME if kernel_name is not found in program.
if !build.kernels().contains(&name) {
return Err(CL_INVALID_KERNEL_NAME);
}
// CL_INVALID_KERNEL_DEFINITION if the function definition for __kernel function given by
// kernel_name such as the number of arguments, the argument types are not the same for all
// devices for which the program executable has been built.
if !p.has_unique_kernel_signatures(&name) {
return Err(CL_INVALID_KERNEL_DEFINITION);
}
Ok(Kernel::new(name, Arc::clone(&p), &build).into_cl())
}
#[cl_entrypoint]
fn retain_kernel(kernel: cl_kernel) -> CLResult<()> {
Kernel::retain(kernel)
}
#[cl_entrypoint]
fn release_kernel(kernel: cl_kernel) -> CLResult<()> {
Kernel::release(kernel)
}
#[cl_entrypoint]
fn create_kernels_in_program(
program: cl_program,
num_kernels: cl_uint,
kernels: *mut cl_kernel,
num_kernels_ret: *mut cl_uint,
) -> CLResult<()> {
let p = Program::arc_from_raw(program)?;
let build = p.build_info();
// CL_INVALID_PROGRAM_EXECUTABLE if there is no successfully built executable for any device in
// program.
if build.kernels().is_empty() {
return Err(CL_INVALID_PROGRAM_EXECUTABLE);
}
// CL_INVALID_VALUE if kernels is not NULL and num_kernels is less than the number of kernels
// in program.
if !kernels.is_null() && build.kernels().len() > num_kernels as usize {
return Err(CL_INVALID_VALUE);
}
let mut num_kernels = 0;
for name in build.kernels() {
// Kernel objects are not created for any __kernel functions in program that do not have the
// same function definition across all devices for which a program executable has been
// successfully built.
if !p.has_unique_kernel_signatures(name) {
continue;
}
if !kernels.is_null() {
// we just assume the client isn't stupid
unsafe {
kernels
.add(num_kernels as usize)
.write(Kernel::new(name.clone(), p.clone(), &build).into_cl());
}
}
num_kernels += 1;
}
num_kernels_ret.write_checked(num_kernels);
Ok(())
}
#[cl_entrypoint]
fn set_kernel_arg(
kernel: cl_kernel,
arg_index: cl_uint,
arg_size: usize,
arg_value: *const ::std::os::raw::c_void,
) -> CLResult<()> {
let k = Kernel::ref_from_raw(kernel)?;
let arg_index = arg_index as usize;
// CL_INVALID_ARG_INDEX if arg_index is not a valid argument index.
if let Some(arg) = k.kernel_info.args.get(arg_index) {
// CL_INVALID_ARG_SIZE if arg_size does not match the size of the data type for an argument
// that is not a memory object or if the argument is a memory object and
// arg_size != sizeof(cl_mem) or if arg_size is zero and the argument is declared with the
// local qualifier or if the argument is a sampler and arg_size != sizeof(cl_sampler).
match arg.kind {
KernelArgType::MemLocal => {
if arg_size == 0 {
return Err(CL_INVALID_ARG_SIZE);
}
}
KernelArgType::MemGlobal
| KernelArgType::MemConstant
| KernelArgType::Image
| KernelArgType::RWImage
| KernelArgType::Texture => {
if arg_size != std::mem::size_of::<cl_mem>() {
return Err(CL_INVALID_ARG_SIZE);
}
}
_ => {
if arg.size != arg_size {
return Err(CL_INVALID_ARG_SIZE);
}
}
}
// CL_INVALID_ARG_VALUE if arg_value specified is not a valid value.
match arg.kind {
// If the argument is declared with the local qualifier, the arg_value entry must be
// NULL.
KernelArgType::MemLocal => {
if !arg_value.is_null() {
return Err(CL_INVALID_ARG_VALUE);
}
}
// If the argument is of type sampler_t, the arg_value entry must be a pointer to the
// sampler object.
KernelArgType::Constant | KernelArgType::Sampler => {
if arg_value.is_null() {
return Err(CL_INVALID_ARG_VALUE);
}
}
_ => {}
};
// let's create the arg now
let arg = unsafe {
if arg.dead {
KernelArgValue::None
} else {
match arg.kind {
KernelArgType::Constant => KernelArgValue::Constant(
slice::from_raw_parts(arg_value.cast(), arg_size).to_vec(),
),
KernelArgType::MemConstant | KernelArgType::MemGlobal => {
let ptr: *const cl_mem = arg_value.cast();
if ptr.is_null() || (*ptr).is_null() {
KernelArgValue::None
} else {
KernelArgValue::Buffer(Buffer::arc_from_raw(*ptr)?)
}
}
KernelArgType::MemLocal => KernelArgValue::LocalMem(arg_size),
KernelArgType::Image | KernelArgType::RWImage | KernelArgType::Texture => {
let img: *const cl_mem = arg_value.cast();
KernelArgValue::Image(Image::arc_from_raw(*img)?)
}
KernelArgType::Sampler => {
let ptr: *const cl_sampler = arg_value.cast();
KernelArgValue::Sampler(Sampler::arc_from_raw(*ptr)?)
}
}
}
};
k.set_kernel_arg(arg_index, arg)
} else {
Err(CL_INVALID_ARG_INDEX)
}
//• CL_INVALID_DEVICE_QUEUE for an argument declared to be of type queue_t when the specified arg_value is not a valid device queue object. This error code is missing before version 2.0.
//• CL_INVALID_ARG_VALUE if the argument is an image declared with the read_only qualifier and arg_value refers to an image object created with cl_mem_flags of CL_MEM_WRITE_ONLY or if the image argument is declared with the write_only qualifier and arg_value refers to an image object created with cl_mem_flags of CL_MEM_READ_ONLY.
//• CL_MAX_SIZE_RESTRICTION_EXCEEDED if the size in bytes of the memory object (if the argument is a memory object) or arg_size (if the argument is declared with local qualifier) exceeds a language- specified maximum size restriction for this argument, such as the MaxByteOffset SPIR-V decoration. This error code is missing before version 2.2.
}
#[cl_entrypoint]
fn set_kernel_arg_svm_pointer(
kernel: cl_kernel,
arg_index: cl_uint,
arg_value: *const ::std::os::raw::c_void,
) -> CLResult<()> {
let kernel = Kernel::ref_from_raw(kernel)?;
let arg_index = arg_index as usize;
let arg_value = arg_value as usize;
if !kernel.has_svm_devs() {
return Err(CL_INVALID_OPERATION);
}
if let Some(arg) = kernel.kernel_info.args.get(arg_index) {
if !matches!(
arg.kind,
KernelArgType::MemConstant | KernelArgType::MemGlobal
) {
return Err(CL_INVALID_ARG_INDEX);
}
let arg_value = KernelArgValue::Constant(arg_value.to_ne_bytes().to_vec());
kernel.set_kernel_arg(arg_index, arg_value)
} else {
Err(CL_INVALID_ARG_INDEX)
}
// CL_INVALID_ARG_VALUE if arg_value specified is not a valid value.
}
#[cl_entrypoint]
fn set_kernel_exec_info(
kernel: cl_kernel,
param_name: cl_kernel_exec_info,
param_value_size: usize,
param_value: *const ::std::os::raw::c_void,
) -> CLResult<()> {
let k = Kernel::ref_from_raw(kernel)?;
// CL_INVALID_OPERATION if no devices in the context associated with kernel support SVM.
if !k.prog.devs.iter().any(|dev| dev.svm_supported()) {
return Err(CL_INVALID_OPERATION);
}
// CL_INVALID_VALUE ... if param_value is NULL
if param_value.is_null() {
return Err(CL_INVALID_VALUE);
}
// CL_INVALID_VALUE ... if the size specified by param_value_size is not valid.
match param_name {
CL_KERNEL_EXEC_INFO_SVM_PTRS | CL_KERNEL_EXEC_INFO_SVM_PTRS_ARM => {
// it's a list of pointers
if param_value_size % mem::size_of::<*const c_void>() != 0 {
return Err(CL_INVALID_VALUE);
}
}
CL_KERNEL_EXEC_INFO_SVM_FINE_GRAIN_SYSTEM
| CL_KERNEL_EXEC_INFO_SVM_FINE_GRAIN_SYSTEM_ARM => {
if param_value_size != mem::size_of::<cl_bool>() {
return Err(CL_INVALID_VALUE);
}
}
// CL_INVALID_VALUE if param_name is not valid
_ => return Err(CL_INVALID_VALUE),
}
Ok(())
// CL_INVALID_OPERATION if param_name is CL_KERNEL_EXEC_INFO_SVM_FINE_GRAIN_SYSTEM and param_value is CL_TRUE but no devices in context associated with kernel support fine-grain system SVM allocations.
}
#[cl_entrypoint]
fn enqueue_ndrange_kernel(
command_queue: cl_command_queue,
kernel: cl_kernel,
work_dim: cl_uint,
global_work_offset: *const usize,
global_work_size: *const usize,
local_work_size: *const usize,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<()> {
let q = Queue::arc_from_raw(command_queue)?;
let k = Kernel::arc_from_raw(kernel)?;
let evs = event_list_from_cl(&q, num_events_in_wait_list, event_wait_list)?;
// CL_INVALID_CONTEXT if context associated with command_queue and kernel are not the same
if q.context != k.prog.context {
return Err(CL_INVALID_CONTEXT);
}
// CL_INVALID_PROGRAM_EXECUTABLE if there is no successfully built program executable available
// for device associated with command_queue.
if k.prog.status(q.device) != CL_BUILD_SUCCESS as cl_build_status {
return Err(CL_INVALID_PROGRAM_EXECUTABLE);
}
// CL_INVALID_KERNEL_ARGS if the kernel argument values have not been specified.
if k.arg_values().iter().any(|v| v.is_none()) {
return Err(CL_INVALID_KERNEL_ARGS);
}
// CL_INVALID_WORK_DIMENSION if work_dim is not a valid value (i.e. a value between 1 and
// CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS).
if work_dim == 0 || work_dim > q.device.max_grid_dimensions() {
return Err(CL_INVALID_WORK_DIMENSION);
}
// we assume the application gets it right and doesn't pass shorter arrays then actually needed.
let global_work_size = unsafe { kernel_work_arr_or_default(global_work_size, work_dim) };
let local_work_size = unsafe { kernel_work_arr_or_default(local_work_size, work_dim) };
let global_work_offset = unsafe { kernel_work_arr_or_default(global_work_offset, work_dim) };
let device_bits = q.device.address_bits();
let device_max = u64::MAX >> (u64::BITS - device_bits);
let mut threads = 0;
for i in 0..work_dim as usize {
let lws = local_work_size[i];
let gws = global_work_size[i];
let gwo = global_work_offset[i];
threads *= lws;
// CL_INVALID_WORK_ITEM_SIZE if the number of work-items specified in any of
// local_work_size[0], … local_work_size[work_dim - 1] is greater than the corresponding
// values specified by
// CL_DEVICE_MAX_WORK_ITEM_SIZES[0], …, CL_DEVICE_MAX_WORK_ITEM_SIZES[work_dim - 1].
if lws > q.device.max_block_sizes()[i] {
return Err(CL_INVALID_WORK_ITEM_SIZE);
}
// CL_INVALID_WORK_GROUP_SIZE if the work-group size must be uniform and the
// local_work_size is not NULL, [...] if the global_work_size is not evenly divisible by
// the local_work_size.
if lws != 0 && gws % lws != 0 {
return Err(CL_INVALID_WORK_GROUP_SIZE);
}
// CL_INVALID_WORK_GROUP_SIZE if local_work_size is specified and does not match the
// required work-group size for kernel in the program source.
if lws != 0 && k.work_group_size()[i] != 0 && lws != k.work_group_size()[i] {
return Err(CL_INVALID_WORK_GROUP_SIZE);
}
// CL_INVALID_GLOBAL_WORK_SIZE if any of the values specified in global_work_size[0], …
// global_work_size[work_dim - 1] exceed the maximum value representable by size_t on
// the device on which the kernel-instance will be enqueued.
if gws as u64 > device_max {
return Err(CL_INVALID_GLOBAL_WORK_SIZE);
}
// CL_INVALID_GLOBAL_OFFSET if the value specified in global_work_size + the
// corresponding values in global_work_offset for any dimensions is greater than the
// maximum value representable by size t on the device on which the kernel-instance
// will be enqueued
if u64::checked_add(gws as u64, gwo as u64)
.filter(|&x| x <= device_max)
.is_none()
{
return Err(CL_INVALID_GLOBAL_OFFSET);
}
}
// CL_INVALID_WORK_GROUP_SIZE if local_work_size is specified and the total number of work-items
// in the work-group computed as local_work_size[0] × … local_work_size[work_dim - 1] is greater
// than the value specified by CL_KERNEL_WORK_GROUP_SIZE in the Kernel Object Device Queries
// table.
if threads != 0 && threads > k.max_threads_per_block(q.device) {
return Err(CL_INVALID_WORK_GROUP_SIZE);
}
// If global_work_size is NULL, or the value in any passed dimension is 0 then the kernel
// command will trivially succeed after its event dependencies are satisfied and subsequently
// update its completion event.
let cb: EventSig = if global_work_size.contains(&0) {
Box::new(|_, _| Ok(()))
} else {
k.launch(
&q,
work_dim,
local_work_size,
global_work_size,
global_work_offset,
)?
};
create_and_queue(q, CL_COMMAND_NDRANGE_KERNEL, evs, event, false, cb)
//• CL_INVALID_WORK_GROUP_SIZE if local_work_size is specified and is not consistent with the required number of sub-groups for kernel in the program source.
//• CL_MISALIGNED_SUB_BUFFER_OFFSET if a sub-buffer object is specified as the value for an argument that is a buffer object and the offset specified when the sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue. This error code
//• CL_INVALID_IMAGE_SIZE if an image object is specified as an argument value and the image dimensions (image width, height, specified or compute row and/or slice pitch) are not supported by device associated with queue.
//• CL_IMAGE_FORMAT_NOT_SUPPORTED if an image object is specified as an argument value and the image format (image channel order and data type) is not supported by device associated with queue.
//• CL_OUT_OF_RESOURCES if there is a failure to queue the execution instance of kernel on the command-queue because of insufficient resources needed to execute the kernel. For example, the explicitly specified local_work_size causes a failure to execute the kernel because of insufficient resources such as registers or local memory. Another example would be the number of read-only image args used in kernel exceed the CL_DEVICE_MAX_READ_IMAGE_ARGS value for device or the number of write-only and read-write image args used in kernel exceed the CL_DEVICE_MAX_READ_WRITE_IMAGE_ARGS value for device or the number of samplers used in kernel exceed CL_DEVICE_MAX_SAMPLERS for device.
//• CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store associated with image or buffer objects specified as arguments to kernel.
//• CL_INVALID_OPERATION if SVM pointers are passed as arguments to a kernel and the device does not support SVM or if system pointers are passed as arguments to a kernel and/or stored inside SVM allocations passed as kernel arguments and the device does not support fine grain system SVM allocations.
}
#[cl_entrypoint]
fn enqueue_task(
command_queue: cl_command_queue,
kernel: cl_kernel,
num_events_in_wait_list: cl_uint,
event_wait_list: *const cl_event,
event: *mut cl_event,
) -> CLResult<()> {
// clEnqueueTask is equivalent to calling clEnqueueNDRangeKernel with work_dim set to 1,
// global_work_offset set to NULL, global_work_size[0] set to 1, and local_work_size[0] set to
// 1.
enqueue_ndrange_kernel(
command_queue,
kernel,
1,
ptr::null(),
[1, 1, 1].as_ptr(),
[1, 0, 0].as_ptr(),
num_events_in_wait_list,
event_wait_list,
event,
)
}
#[cl_entrypoint]
fn clone_kernel(source_kernel: cl_kernel) -> CLResult<cl_kernel> {
let k = Kernel::ref_from_raw(source_kernel)?;
Ok(Arc::new(k.clone()).into_cl())
}
#[cl_entrypoint]
fn get_kernel_suggested_local_work_size_khr(
command_queue: cl_command_queue,
kernel: cl_kernel,
work_dim: cl_uint,
global_work_offset: *const usize,
global_work_size: *const usize,
suggested_local_work_size: *mut usize,
) -> CLResult<()> {
// CL_INVALID_GLOBAL_WORK_SIZE if global_work_size is NULL or if any of the values specified in
// global_work_size are 0.
if global_work_size.is_null() {
return Err(CL_INVALID_GLOBAL_WORK_SIZE);
}
if global_work_offset.is_null() {
return Err(CL_INVALID_GLOBAL_OFFSET);
}
// CL_INVALID_VALUE if suggested_local_work_size is NULL.
if suggested_local_work_size.is_null() {
return Err(CL_INVALID_VALUE);
}
// CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.
let queue = Queue::ref_from_raw(command_queue)?;
// CL_INVALID_KERNEL if kernel is not a valid kernel object.
let kernel = Kernel::ref_from_raw(kernel)?;
// CL_INVALID_CONTEXT if the context associated with kernel is not the same as the context
// associated with command_queue.
if queue.context != kernel.prog.context {
return Err(CL_INVALID_CONTEXT);
}
// CL_INVALID_PROGRAM_EXECUTABLE if there is no successfully built program executable available
// for kernel for the device associated with command_queue.
if kernel.prog.status(queue.device) != CL_BUILD_SUCCESS as cl_build_status {
return Err(CL_INVALID_PROGRAM_EXECUTABLE);
}
// CL_INVALID_KERNEL_ARGS if all argument values for kernel have not been set.
if kernel.arg_values().iter().any(|v| v.is_none()) {
return Err(CL_INVALID_KERNEL_ARGS);
}
// CL_INVALID_WORK_DIMENSION if work_dim is not a valid value (i.e. a value between 1 and
// CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS).
if work_dim == 0 || work_dim > queue.device.max_grid_dimensions() {
return Err(CL_INVALID_WORK_DIMENSION);
}
let mut global_work_size =
unsafe { kernel_work_arr_or_default(global_work_size, work_dim).to_vec() };
let suggested_local_work_size = unsafe {
kernel_work_arr_mut(suggested_local_work_size, work_dim).ok_or(CL_INVALID_VALUE)?
};
let global_work_offset = unsafe { kernel_work_arr_or_default(global_work_offset, work_dim) };
let device_bits = queue.device.address_bits();
let device_max = u64::MAX >> (u64::BITS - device_bits);
for i in 0..work_dim as usize {
let gws = global_work_size[i];
let gwo = global_work_offset[i];
// CL_INVALID_GLOBAL_WORK_SIZE if global_work_size is NULL or if any of the values specified
// in global_work_size are 0.
if gws == 0 {
return Err(CL_INVALID_GLOBAL_WORK_SIZE);
}
// CL_INVALID_GLOBAL_WORK_SIZE if any of the values specified in global_work_size exceed the
// maximum value representable by size_t on the device associated with command_queue.
if gws as u64 > device_max {
return Err(CL_INVALID_GLOBAL_WORK_SIZE);
}
// CL_INVALID_GLOBAL_OFFSET if the value specified in global_work_size plus the
// corresponding value in global_work_offset for dimension exceeds the maximum value
// representable by size_t on the device associated with command_queue.
if u64::checked_add(gws as u64, gwo as u64)
.filter(|&x| x <= device_max)
.is_none()
{
return Err(CL_INVALID_GLOBAL_OFFSET);
}
}
kernel.suggest_local_size(
queue.device,
work_dim as usize,
&mut global_work_size,
suggested_local_work_size,
);
Ok(())
// CL_MISALIGNED_SUB_BUFFER_OFFSET if a sub-buffer object is set as an argument to kernel and the offset specified when the sub-buffer object was created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN for the device associated with command_queue.
// CL_INVALID_IMAGE_SIZE if an image object is set as an argument to kernel and the image dimensions are not supported by device associated with command_queue.
// CL_IMAGE_FORMAT_NOT_SUPPORTED if an image object is set as an argument to kernel and the image format is not supported by the device associated with command_queue.
// CL_INVALID_OPERATION if an SVM pointer is set as an argument to kernel and the device associated with command_queue does not support SVM or the required SVM capabilities for the SVM pointer.
// CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL implementation on the device.
// CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL implementation on the host.
}