mesa/src/compiler/nir/nir_print.c

2746 lines
80 KiB
C

/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Connor Abbott (cwabbott0@gmail.com)
*
*/
#include <inttypes.h> /* for PRIx64 macro */
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "compiler/shader_enums.h"
#include "util/half_float.h"
#include "util/memstream.h"
#include "util/mesa-sha1.h"
#include "vulkan/vulkan_core.h"
#include "nir.h"
static void
print_indentation(unsigned levels, FILE *fp)
{
for (unsigned i = 0; i < levels; i++)
fprintf(fp, " ");
}
typedef struct {
FILE *fp;
nir_shader *shader;
/** map from nir_variable -> printable name */
struct hash_table *ht;
/** set of names used so far for nir_variables */
struct set *syms;
/* an index used to make new non-conflicting names */
unsigned index;
/* Used with nir_gather_types() to identify best representation
* to print terse inline constant values together with SSA sources.
* Updated per nir_function_impl being printed.
*/
BITSET_WORD *float_types;
BITSET_WORD *int_types;
/**
* Optional table of annotations mapping nir object
* (such as instr or var) to message to print.
*/
struct hash_table *annotations;
/* Maximum length for SSA or Reg index in the current impl */
unsigned max_dest_index;
/* Padding for instructions without destination to make
* them align with the `=` for instructions with destination.
*/
unsigned padding_for_no_dest;
} print_state;
static void
print_annotation(print_state *state, void *obj)
{
FILE *fp = state->fp;
if (!state->annotations)
return;
struct hash_entry *entry = _mesa_hash_table_search(state->annotations, obj);
if (!entry)
return;
const char *note = entry->data;
_mesa_hash_table_remove(state->annotations, entry);
fprintf(fp, "%s\n\n", note);
}
/* For 1 element, the size is intentionally omitted. */
static const char *sizes[] = { "x??", " ", "x2 ", "x3 ", "x4 ",
"x5 ", "x??", "x??", "x8 ",
"x??", "x??", "x??", "x??",
"x??", "x??", "x??", "x16" };
static const char *
divergence_status(print_state *state, bool divergent)
{
if (state->shader->info.divergence_analysis_run)
return divergent ? "div " : "con ";
return "";
}
static unsigned
count_digits(unsigned n)
{
return n ? (unsigned)floor(log10(n)) + 1u : 1u;
}
static void
print_def(nir_def *def, print_state *state)
{
FILE *fp = state->fp;
const unsigned ssa_padding = state->max_dest_index ? count_digits(state->max_dest_index) - count_digits(def->index) : 0;
const unsigned padding = (def->bit_size == 1) + 1 + ssa_padding;
fprintf(fp, "%s%u%s%*s%%%u",
divergence_status(state, def->divergent),
def->bit_size, sizes[def->num_components],
padding, "", def->index);
}
static unsigned
calculate_padding_for_no_dest(print_state *state)
{
const unsigned div = state->shader->info.divergence_analysis_run ? 4 : 0;
const unsigned ssa_size = 5;
const unsigned percent = 1;
const unsigned ssa_index = count_digits(state->max_dest_index);
const unsigned equals = 1;
return ssa_size + 1 + div + percent + ssa_index + 1 + equals + 1;
}
static void
print_no_dest_padding(print_state *state)
{
FILE *fp = state->fp;
if (state->padding_for_no_dest)
fprintf(fp, "%*s", state->padding_for_no_dest, "");
}
static void
print_hex_padded_const_value(const nir_const_value *value, unsigned bit_size, FILE *fp)
{
switch (bit_size) {
case 64:
fprintf(fp, "0x%016" PRIx64, value->u64);
break;
case 32:
fprintf(fp, "0x%08x", value->u32);
break;
case 16:
fprintf(fp, "0x%04x", value->u16);
break;
case 8:
fprintf(fp, "0x%02x", value->u8);
break;
default:
unreachable("unhandled bit size");
}
}
static void
print_hex_terse_const_value(const nir_const_value *value, unsigned bit_size, FILE *fp)
{
switch (bit_size) {
case 64:
fprintf(fp, "0x%" PRIx64, value->u64);
break;
case 32:
fprintf(fp, "0x%x", value->u32);
break;
case 16:
fprintf(fp, "0x%x", value->u16);
break;
case 8:
fprintf(fp, "0x%x", value->u8);
break;
default:
unreachable("unhandled bit size");
}
}
static void
print_float_const_value(const nir_const_value *value, unsigned bit_size, FILE *fp)
{
switch (bit_size) {
case 64:
fprintf(fp, "%f", value->f64);
break;
case 32:
fprintf(fp, "%f", value->f32);
break;
case 16:
fprintf(fp, "%f", _mesa_half_to_float(value->u16));
break;
default:
unreachable("unhandled bit size");
}
}
static void
print_int_const_value(const nir_const_value *value, unsigned bit_size, FILE *fp)
{
switch (bit_size) {
case 64:
fprintf(fp, "%+" PRIi64, value->i64);
break;
case 32:
fprintf(fp, "%+d", value->i32);
break;
case 16:
fprintf(fp, "%+d", value->i16);
break;
case 8:
fprintf(fp, "%+d", value->i8);
break;
default:
unreachable("unhandled bit size");
}
}
static void
print_uint_const_value(const nir_const_value *value, unsigned bit_size, FILE *fp)
{
switch (bit_size) {
case 64:
fprintf(fp, "%" PRIu64, value->u64);
break;
case 32:
fprintf(fp, "%u", value->u32);
break;
case 16:
fprintf(fp, "%u", value->u16);
break;
case 8:
fprintf(fp, "%u", value->u8);
break;
default:
unreachable("unhandled bit size");
}
}
static void
print_const_from_load(nir_load_const_instr *instr, print_state *state, nir_alu_type type)
{
FILE *fp = state->fp;
const unsigned bit_size = instr->def.bit_size;
const unsigned num_components = instr->def.num_components;
type = nir_alu_type_get_base_type(type);
/* There's only one way to print booleans. */
if (bit_size == 1 || type == nir_type_bool) {
fprintf(fp, "(");
for (unsigned i = 0; i < num_components; i++) {
if (i != 0)
fprintf(fp, ", ");
fprintf(fp, "%s", instr->value[i].b ? "true" : "false");
}
fprintf(fp, ")");
return;
}
fprintf(fp, "(");
if (type != nir_type_invalid) {
for (unsigned i = 0; i < num_components; i++) {
const nir_const_value *v = &instr->value[i];
if (i != 0)
fprintf(fp, ", ");
switch (type) {
case nir_type_float:
print_float_const_value(v, bit_size, fp);
break;
case nir_type_int:
case nir_type_uint:
print_hex_terse_const_value(v, bit_size, fp);
break;
default:
unreachable("invalid nir alu base type");
}
}
} else {
#define PRINT_VALUES(F) \
do { \
for (unsigned i = 0; i < num_components; i++) { \
if (i != 0) \
fprintf(fp, ", "); \
F(&instr->value[i], bit_size, fp); \
} \
} while (0)
#define SEPARATOR() \
if (num_components > 1) \
fprintf(fp, ") = ("); \
else \
fprintf(fp, " = ")
bool needs_float = bit_size > 8;
bool needs_signed = false;
bool needs_decimal = false;
for (unsigned i = 0; i < num_components; i++) {
const nir_const_value *v = &instr->value[i];
switch (bit_size) {
case 64:
needs_signed |= v->i64 < 0;
needs_decimal |= v->u64 >= 10;
break;
case 32:
needs_signed |= v->i32 < 0;
needs_decimal |= v->u32 >= 10;
break;
case 16:
needs_signed |= v->i16 < 0;
needs_decimal |= v->u16 >= 10;
break;
case 8:
needs_signed |= v->i8 < 0;
needs_decimal |= v->u8 >= 10;
break;
default:
unreachable("invalid bit size");
}
}
if (state->int_types) {
const unsigned index = instr->def.index;
const bool inferred_int = BITSET_TEST(state->int_types, index);
const bool inferred_float = BITSET_TEST(state->float_types, index);
if (inferred_int && !inferred_float) {
needs_float = false;
} else if (inferred_float && !inferred_int) {
needs_signed = false;
needs_decimal = false;
}
}
PRINT_VALUES(print_hex_padded_const_value);
if (needs_float) {
SEPARATOR();
PRINT_VALUES(print_float_const_value);
}
if (needs_signed) {
SEPARATOR();
PRINT_VALUES(print_int_const_value);
}
if (needs_decimal) {
SEPARATOR();
PRINT_VALUES(print_uint_const_value);
}
}
fprintf(fp, ")");
}
static void
print_load_const_instr(nir_load_const_instr *instr, print_state *state)
{
FILE *fp = state->fp;
print_def(&instr->def, state);
fprintf(fp, " = load_const ");
/* In the definition, print all interpretations of the value. */
print_const_from_load(instr, state, nir_type_invalid);
}
static void
print_src(const nir_src *src, print_state *state, nir_alu_type src_type)
{
FILE *fp = state->fp;
fprintf(fp, "%%%u", src->ssa->index);
nir_instr *instr = src->ssa->parent_instr;
if (instr->type == nir_instr_type_load_const && !NIR_DEBUG(PRINT_NO_INLINE_CONSTS)) {
nir_load_const_instr *load_const = nir_instr_as_load_const(instr);
fprintf(fp, " ");
nir_alu_type type = nir_alu_type_get_base_type(src_type);
if (type == nir_type_invalid && state->int_types) {
const unsigned index = load_const->def.index;
const bool inferred_int = BITSET_TEST(state->int_types, index);
const bool inferred_float = BITSET_TEST(state->float_types, index);
if (inferred_float && !inferred_int)
type = nir_type_float;
}
if (type == nir_type_invalid)
type = nir_type_uint;
/* For a constant in a source, always pick one interpretation. */
assert(type != nir_type_invalid);
print_const_from_load(load_const, state, type);
}
}
static const char *
comp_mask_string(unsigned num_components)
{
return (num_components > 4) ? "abcdefghijklmnop" : "xyzw";
}
static void
print_alu_src(nir_alu_instr *instr, unsigned src, print_state *state)
{
FILE *fp = state->fp;
const nir_op_info *info = &nir_op_infos[instr->op];
print_src(&instr->src[src].src, state, info->input_types[src]);
bool print_swizzle = false;
nir_component_mask_t used_channels = 0;
for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) {
if (!nir_alu_instr_channel_used(instr, src, i))
continue;
used_channels++;
if (instr->src[src].swizzle[i] != i) {
print_swizzle = true;
break;
}
}
unsigned live_channels = nir_src_num_components(instr->src[src].src);
if (print_swizzle || used_channels != live_channels) {
fprintf(fp, ".");
for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) {
if (!nir_alu_instr_channel_used(instr, src, i))
continue;
fprintf(fp, "%c", comp_mask_string(live_channels)[instr->src[src].swizzle[i]]);
}
}
}
static void
print_alu_instr(nir_alu_instr *instr, print_state *state)
{
FILE *fp = state->fp;
print_def(&instr->def, state);
fprintf(fp, " = %s", nir_op_infos[instr->op].name);
if (instr->exact)
fprintf(fp, "!");
if (instr->no_signed_wrap)
fprintf(fp, ".nsw");
if (instr->no_unsigned_wrap)
fprintf(fp, ".nuw");
fprintf(fp, " ");
for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
if (i != 0)
fprintf(fp, ", ");
print_alu_src(instr, i, state);
}
}
static const char *
get_var_name(nir_variable *var, print_state *state)
{
if (state->ht == NULL)
return var->name ? var->name : "unnamed";
assert(state->syms);
struct hash_entry *entry = _mesa_hash_table_search(state->ht, var);
if (entry)
return entry->data;
char *name;
if (var->name == NULL) {
name = ralloc_asprintf(state->syms, "#%u", state->index++);
} else {
struct set_entry *set_entry = _mesa_set_search(state->syms, var->name);
if (set_entry != NULL) {
/* we have a collision with another name, append an # + a unique
* index */
name = ralloc_asprintf(state->syms, "%s#%u", var->name,
state->index++);
} else {
/* Mark this one as seen */
_mesa_set_add(state->syms, var->name);
name = var->name;
}
}
_mesa_hash_table_insert(state->ht, var, name);
return name;
}
static const char *
get_constant_sampler_addressing_mode(enum cl_sampler_addressing_mode mode)
{
switch (mode) {
case SAMPLER_ADDRESSING_MODE_NONE:
return "none";
case SAMPLER_ADDRESSING_MODE_CLAMP_TO_EDGE:
return "clamp_to_edge";
case SAMPLER_ADDRESSING_MODE_CLAMP:
return "clamp";
case SAMPLER_ADDRESSING_MODE_REPEAT:
return "repeat";
case SAMPLER_ADDRESSING_MODE_REPEAT_MIRRORED:
return "repeat_mirrored";
default:
unreachable("Invalid addressing mode");
}
}
static const char *
get_constant_sampler_filter_mode(enum cl_sampler_filter_mode mode)
{
switch (mode) {
case SAMPLER_FILTER_MODE_NEAREST:
return "nearest";
case SAMPLER_FILTER_MODE_LINEAR:
return "linear";
default:
unreachable("Invalid filter mode");
}
}
static void
print_constant(nir_constant *c, const struct glsl_type *type, print_state *state)
{
FILE *fp = state->fp;
const unsigned rows = glsl_get_vector_elements(type);
const unsigned cols = glsl_get_matrix_columns(type);
unsigned i;
switch (glsl_get_base_type(type)) {
case GLSL_TYPE_BOOL:
/* Only float base types can be matrices. */
assert(cols == 1);
for (i = 0; i < rows; i++) {
if (i > 0)
fprintf(fp, ", ");
fprintf(fp, "%s", c->values[i].b ? "true" : "false");
}
break;
case GLSL_TYPE_UINT8:
case GLSL_TYPE_INT8:
/* Only float base types can be matrices. */
assert(cols == 1);
for (i = 0; i < rows; i++) {
if (i > 0)
fprintf(fp, ", ");
fprintf(fp, "0x%02x", c->values[i].u8);
}
break;
case GLSL_TYPE_UINT16:
case GLSL_TYPE_INT16:
/* Only float base types can be matrices. */
assert(cols == 1);
for (i = 0; i < rows; i++) {
if (i > 0)
fprintf(fp, ", ");
fprintf(fp, "0x%04x", c->values[i].u16);
}
break;
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
/* Only float base types can be matrices. */
assert(cols == 1);
for (i = 0; i < rows; i++) {
if (i > 0)
fprintf(fp, ", ");
fprintf(fp, "0x%08x", c->values[i].u32);
}
break;
case GLSL_TYPE_FLOAT16:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_DOUBLE:
if (cols > 1) {
for (i = 0; i < cols; i++) {
if (i > 0)
fprintf(fp, ", ");
print_constant(c->elements[i], glsl_get_column_type(type), state);
}
} else {
switch (glsl_get_base_type(type)) {
case GLSL_TYPE_FLOAT16:
for (i = 0; i < rows; i++) {
if (i > 0)
fprintf(fp, ", ");
fprintf(fp, "%f", _mesa_half_to_float(c->values[i].u16));
}
break;
case GLSL_TYPE_FLOAT:
for (i = 0; i < rows; i++) {
if (i > 0)
fprintf(fp, ", ");
fprintf(fp, "%f", c->values[i].f32);
}
break;
case GLSL_TYPE_DOUBLE:
for (i = 0; i < rows; i++) {
if (i > 0)
fprintf(fp, ", ");
fprintf(fp, "%f", c->values[i].f64);
}
break;
default:
unreachable("Cannot get here from the first level switch");
}
}
break;
case GLSL_TYPE_UINT64:
case GLSL_TYPE_INT64:
/* Only float base types can be matrices. */
assert(cols == 1);
for (i = 0; i < cols; i++) {
if (i > 0)
fprintf(fp, ", ");
fprintf(fp, "0x%08" PRIx64, c->values[i].u64);
}
break;
case GLSL_TYPE_STRUCT:
case GLSL_TYPE_INTERFACE:
for (i = 0; i < c->num_elements; i++) {
if (i > 0)
fprintf(fp, ", ");
fprintf(fp, "{ ");
print_constant(c->elements[i], glsl_get_struct_field(type, i), state);
fprintf(fp, " }");
}
break;
case GLSL_TYPE_ARRAY:
for (i = 0; i < c->num_elements; i++) {
if (i > 0)
fprintf(fp, ", ");
fprintf(fp, "{ ");
print_constant(c->elements[i], glsl_get_array_element(type), state);
fprintf(fp, " }");
}
break;
default:
unreachable("not reached");
}
}
static const char *
get_variable_mode_str(nir_variable_mode mode, bool want_local_global_mode)
{
switch (mode) {
case nir_var_shader_in:
return "shader_in";
case nir_var_shader_out:
return "shader_out";
case nir_var_uniform:
return "uniform";
case nir_var_mem_ubo:
return "ubo";
case nir_var_system_value:
return "system";
case nir_var_mem_ssbo:
return "ssbo";
case nir_var_mem_shared:
return "shared";
case nir_var_mem_global:
return "global";
case nir_var_mem_push_const:
return "push_const";
case nir_var_mem_constant:
return "constant";
case nir_var_image:
return "image";
case nir_var_shader_temp:
return want_local_global_mode ? "shader_temp" : "";
case nir_var_function_temp:
return want_local_global_mode ? "function_temp" : "";
case nir_var_shader_call_data:
return "shader_call_data";
case nir_var_ray_hit_attrib:
return "ray_hit_attrib";
case nir_var_mem_task_payload:
return "task_payload";
case nir_var_mem_node_payload:
return "node_payload";
case nir_var_mem_node_payload_in:
return "node_payload_in";
default:
if (mode && (mode & nir_var_mem_generic) == mode)
return "generic";
return "";
}
}
static const char *
get_location_str(unsigned location, gl_shader_stage stage,
nir_variable_mode mode, char *buf)
{
switch (stage) {
case MESA_SHADER_VERTEX:
if (mode == nir_var_shader_in)
return gl_vert_attrib_name(location);
else if (mode == nir_var_shader_out)
return gl_varying_slot_name_for_stage(location, stage);
break;
case MESA_SHADER_TESS_CTRL:
case MESA_SHADER_TESS_EVAL:
case MESA_SHADER_TASK:
case MESA_SHADER_MESH:
case MESA_SHADER_GEOMETRY:
if (mode == nir_var_shader_in || mode == nir_var_shader_out)
return gl_varying_slot_name_for_stage(location, stage);
break;
case MESA_SHADER_FRAGMENT:
if (mode == nir_var_shader_in)
return gl_varying_slot_name_for_stage(location, stage);
else if (mode == nir_var_shader_out)
return gl_frag_result_name(location);
break;
case MESA_SHADER_COMPUTE:
case MESA_SHADER_KERNEL:
default:
/* TODO */
break;
}
if (mode == nir_var_system_value)
return gl_system_value_name(location);
if (location == ~0) {
return "~0";
} else {
snprintf(buf, 4, "%u", location);
return buf;
}
}
static void
print_access(enum gl_access_qualifier access, print_state *state, const char *separator)
{
if (!access) {
fputs("none", state->fp);
return;
}
static const struct {
enum gl_access_qualifier bit;
const char *name;
} modes[] = {
{ ACCESS_COHERENT, "coherent" },
{ ACCESS_VOLATILE, "volatile" },
{ ACCESS_RESTRICT, "restrict" },
{ ACCESS_NON_WRITEABLE, "readonly" },
{ ACCESS_NON_READABLE, "writeonly" },
{ ACCESS_CAN_REORDER, "reorderable" },
{ ACCESS_CAN_SPECULATE, "speculatable" },
{ ACCESS_NON_TEMPORAL, "non-temporal" },
{ ACCESS_INCLUDE_HELPERS, "include-helpers" },
};
bool first = true;
for (unsigned i = 0; i < ARRAY_SIZE(modes); ++i) {
if (access & modes[i].bit) {
fprintf(state->fp, "%s%s", first ? "" : separator, modes[i].name);
first = false;
}
}
}
static void
print_var_decl(nir_variable *var, print_state *state)
{
FILE *fp = state->fp;
fprintf(fp, "decl_var ");
const char *const bindless = (var->data.bindless) ? "bindless " : "";
const char *const cent = (var->data.centroid) ? "centroid " : "";
const char *const samp = (var->data.sample) ? "sample " : "";
const char *const patch = (var->data.patch) ? "patch " : "";
const char *const inv = (var->data.invariant) ? "invariant " : "";
const char *const per_view = (var->data.per_view) ? "per_view " : "";
const char *const per_primitive = (var->data.per_primitive) ? "per_primitive " : "";
const char *const ray_query = (var->data.ray_query) ? "ray_query " : "";
fprintf(fp, "%s%s%s%s%s%s%s%s%s %s ",
bindless, cent, samp, patch, inv, per_view, per_primitive, ray_query,
get_variable_mode_str(var->data.mode, false),
glsl_interp_mode_name(var->data.interpolation));
print_access(var->data.access, state, " ");
fprintf(fp, " ");
if (glsl_get_base_type(glsl_without_array(var->type)) == GLSL_TYPE_IMAGE) {
fprintf(fp, "%s ", util_format_short_name(var->data.image.format));
}
if (var->data.precision) {
const char *precisions[] = {
"",
"highp",
"mediump",
"lowp",
};
fprintf(fp, "%s ", precisions[var->data.precision]);
}
fprintf(fp, "%s %s", glsl_get_type_name(var->type),
get_var_name(var, state));
if (var->data.mode & (nir_var_shader_in |
nir_var_shader_out |
nir_var_uniform |
nir_var_system_value |
nir_var_mem_ubo |
nir_var_mem_ssbo |
nir_var_image)) {
char buf[4];
const char *loc = get_location_str(var->data.location,
state->shader->info.stage,
var->data.mode, buf);
/* For shader I/O vars that have been split to components or packed,
* print the fractional location within the input/output.
*/
unsigned int num_components =
glsl_get_components(glsl_without_array(var->type));
const char *components = "";
char components_local[18] = { '.' /* the rest is 0-filled */ };
switch (var->data.mode) {
case nir_var_shader_in:
case nir_var_shader_out:
if (num_components < 16 && num_components != 0) {
const char *xyzw = comp_mask_string(num_components);
for (int i = 0; i < num_components; i++)
components_local[i + 1] = xyzw[i + var->data.location_frac];
components = components_local;
}
break;
default:
break;
}
if (var->data.mode & nir_var_system_value) {
fprintf(fp, " (%s%s)", loc, components);
} else {
fprintf(fp, " (%s%s, %u, %u)%s", loc,
components,
var->data.driver_location, var->data.binding,
var->data.compact ? " compact" : "");
}
}
if (var->constant_initializer) {
if (var->constant_initializer->is_null_constant) {
fprintf(fp, " = null");
} else {
fprintf(fp, " = { ");
print_constant(var->constant_initializer, var->type, state);
fprintf(fp, " }");
}
}
if (glsl_type_is_sampler(var->type) && var->data.sampler.is_inline_sampler) {
fprintf(fp, " = { %s, %s, %s }",
get_constant_sampler_addressing_mode(var->data.sampler.addressing_mode),
var->data.sampler.normalized_coordinates ? "true" : "false",
get_constant_sampler_filter_mode(var->data.sampler.filter_mode));
}
if (var->pointer_initializer)
fprintf(fp, " = &%s", get_var_name(var->pointer_initializer, state));
fprintf(fp, "\n");
print_annotation(state, var);
}
static void
print_deref_link(const nir_deref_instr *instr, bool whole_chain, print_state *state)
{
FILE *fp = state->fp;
if (instr->deref_type == nir_deref_type_var) {
fprintf(fp, "%s", get_var_name(instr->var, state));
return;
} else if (instr->deref_type == nir_deref_type_cast) {
fprintf(fp, "(%s *)", glsl_get_type_name(instr->type));
print_src(&instr->parent, state, nir_type_invalid);
return;
}
nir_deref_instr *parent =
nir_instr_as_deref(instr->parent.ssa->parent_instr);
/* Is the parent we're going to print a bare cast? */
const bool is_parent_cast =
whole_chain && parent->deref_type == nir_deref_type_cast;
/* If we're not printing the whole chain, the parent we print will be a SSA
* value that represents a pointer. The only deref type that naturally
* gives a pointer is a cast.
*/
const bool is_parent_pointer =
!whole_chain || parent->deref_type == nir_deref_type_cast;
/* Struct derefs have a nice syntax that works on pointers, arrays derefs
* do not.
*/
const bool need_deref =
is_parent_pointer && instr->deref_type != nir_deref_type_struct;
/* Cast need extra parens and so * dereferences */
if (is_parent_cast || need_deref)
fprintf(fp, "(");
if (need_deref)
fprintf(fp, "*");
if (whole_chain) {
print_deref_link(parent, whole_chain, state);
} else {
print_src(&instr->parent, state, nir_type_invalid);
}
if (is_parent_cast || need_deref)
fprintf(fp, ")");
switch (instr->deref_type) {
case nir_deref_type_struct:
fprintf(fp, "%s%s", is_parent_pointer ? "->" : ".",
glsl_get_struct_elem_name(parent->type, instr->strct.index));
break;
case nir_deref_type_array:
case nir_deref_type_ptr_as_array: {
if (nir_src_is_const(instr->arr.index)) {
fprintf(fp, "[%" PRId64 "]", nir_src_as_int(instr->arr.index));
} else {
fprintf(fp, "[");
print_src(&instr->arr.index, state, nir_type_invalid);
fprintf(fp, "]");
}
break;
}
case nir_deref_type_array_wildcard:
fprintf(fp, "[*]");
break;
default:
unreachable("Invalid deref instruction type");
}
}
static void
print_deref_instr(nir_deref_instr *instr, print_state *state)
{
FILE *fp = state->fp;
print_def(&instr->def, state);
switch (instr->deref_type) {
case nir_deref_type_var:
fprintf(fp, " = deref_var ");
break;
case nir_deref_type_array:
case nir_deref_type_array_wildcard:
fprintf(fp, " = deref_array ");
break;
case nir_deref_type_struct:
fprintf(fp, " = deref_struct ");
break;
case nir_deref_type_cast:
fprintf(fp, " = deref_cast ");
break;
case nir_deref_type_ptr_as_array:
fprintf(fp, " = deref_ptr_as_array ");
break;
default:
unreachable("Invalid deref instruction type");
}
/* Only casts naturally return a pointer type */
if (instr->deref_type != nir_deref_type_cast)
fprintf(fp, "&");
print_deref_link(instr, false, state);
fprintf(fp, " (");
unsigned modes = instr->modes;
while (modes) {
int m = u_bit_scan(&modes);
fprintf(fp, "%s%s", get_variable_mode_str(1 << m, true),
modes ? "|" : "");
}
fprintf(fp, " %s)", glsl_get_type_name(instr->type));
if (instr->deref_type == nir_deref_type_cast) {
fprintf(fp, " (ptr_stride=%u, align_mul=%u, align_offset=%u)",
instr->cast.ptr_stride,
instr->cast.align_mul, instr->cast.align_offset);
}
if (instr->deref_type != nir_deref_type_var &&
instr->deref_type != nir_deref_type_cast) {
/* Print the entire chain as a comment */
fprintf(fp, " // &");
print_deref_link(instr, true, state);
}
}
static const char *
vulkan_descriptor_type_name(VkDescriptorType type)
{
switch (type) {
case VK_DESCRIPTOR_TYPE_SAMPLER:
return "sampler";
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
return "texture+sampler";
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
return "texture";
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
return "image";
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
return "texture-buffer";
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
return "image-buffer";
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
return "UBO";
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
return "SSBO";
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
return "UBO";
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
return "SSBO";
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
return "input-att";
case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK:
return "inline-UBO";
case VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR:
return "accel-struct";
default:
return "unknown";
}
}
static void
print_alu_type(nir_alu_type type, print_state *state)
{
FILE *fp = state->fp;
unsigned size = nir_alu_type_get_type_size(type);
const char *name;
switch (nir_alu_type_get_base_type(type)) {
case nir_type_int:
name = "int";
break;
case nir_type_uint:
name = "uint";
break;
case nir_type_bool:
name = "bool";
break;
case nir_type_float:
name = "float";
break;
default:
name = "invalid";
}
if (size)
fprintf(fp, "%s%u", name, size);
else
fprintf(fp, "%s", name);
}
static void
print_intrinsic_instr(nir_intrinsic_instr *instr, print_state *state)
{
const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
unsigned num_srcs = info->num_srcs;
FILE *fp = state->fp;
if (info->has_dest) {
print_def(&instr->def, state);
fprintf(fp, " = ");
} else {
print_no_dest_padding(state);
}
fprintf(fp, "@%s", info->name);
for (unsigned i = 0; i < num_srcs; i++) {
if (i == 0)
fprintf(fp, " (");
else
fprintf(fp, ", ");
print_src(&instr->src[i], state, nir_intrinsic_instr_src_type(instr, i));
}
if (num_srcs)
fprintf(fp, ")");
for (unsigned i = 0; i < info->num_indices; i++) {
unsigned idx = info->indices[i];
if (i == 0)
fprintf(fp, " (");
else
fprintf(fp, ", ");
switch (idx) {
case NIR_INTRINSIC_WRITE_MASK: {
/* special case wrmask to show it as a writemask.. */
unsigned wrmask = nir_intrinsic_write_mask(instr);
fprintf(fp, "wrmask=");
for (unsigned i = 0; i < instr->num_components; i++)
if ((wrmask >> i) & 1)
fprintf(fp, "%c", comp_mask_string(instr->num_components)[i]);
break;
}
case NIR_INTRINSIC_REDUCTION_OP: {
nir_op reduction_op = nir_intrinsic_reduction_op(instr);
fprintf(fp, "reduction_op=%s", nir_op_infos[reduction_op].name);
break;
}
case NIR_INTRINSIC_ATOMIC_OP: {
nir_atomic_op atomic_op = nir_intrinsic_atomic_op(instr);
fprintf(fp, "atomic_op=");
switch (atomic_op) {
case nir_atomic_op_iadd:
fprintf(fp, "iadd");
break;
case nir_atomic_op_imin:
fprintf(fp, "imin");
break;
case nir_atomic_op_umin:
fprintf(fp, "umin");
break;
case nir_atomic_op_imax:
fprintf(fp, "imax");
break;
case nir_atomic_op_umax:
fprintf(fp, "umax");
break;
case nir_atomic_op_iand:
fprintf(fp, "iand");
break;
case nir_atomic_op_ior:
fprintf(fp, "ior");
break;
case nir_atomic_op_ixor:
fprintf(fp, "ixor");
break;
case nir_atomic_op_xchg:
fprintf(fp, "xchg");
break;
case nir_atomic_op_fadd:
fprintf(fp, "fadd");
break;
case nir_atomic_op_fmin:
fprintf(fp, "fmin");
break;
case nir_atomic_op_fmax:
fprintf(fp, "fmax");
break;
case nir_atomic_op_cmpxchg:
fprintf(fp, "cmpxchg");
break;
case nir_atomic_op_fcmpxchg:
fprintf(fp, "fcmpxchg");
break;
case nir_atomic_op_inc_wrap:
fprintf(fp, "inc_wrap");
break;
case nir_atomic_op_dec_wrap:
fprintf(fp, "dec_wrap");
break;
}
break;
}
case NIR_INTRINSIC_IMAGE_DIM: {
static const char *dim_name[] = {
[GLSL_SAMPLER_DIM_1D] = "1D",
[GLSL_SAMPLER_DIM_2D] = "2D",
[GLSL_SAMPLER_DIM_3D] = "3D",
[GLSL_SAMPLER_DIM_CUBE] = "Cube",
[GLSL_SAMPLER_DIM_RECT] = "Rect",
[GLSL_SAMPLER_DIM_BUF] = "Buf",
[GLSL_SAMPLER_DIM_MS] = "2D-MSAA",
[GLSL_SAMPLER_DIM_SUBPASS] = "Subpass",
[GLSL_SAMPLER_DIM_SUBPASS_MS] = "Subpass-MSAA",
};
enum glsl_sampler_dim dim = nir_intrinsic_image_dim(instr);
assert(dim < ARRAY_SIZE(dim_name) && dim_name[dim]);
fprintf(fp, "image_dim=%s", dim_name[dim]);
break;
}
case NIR_INTRINSIC_IMAGE_ARRAY: {
bool array = nir_intrinsic_image_array(instr);
fprintf(fp, "image_array=%s", array ? "true" : "false");
break;
}
case NIR_INTRINSIC_FORMAT: {
enum pipe_format format = nir_intrinsic_format(instr);
fprintf(fp, "format=%s", util_format_short_name(format));
break;
}
case NIR_INTRINSIC_DESC_TYPE: {
VkDescriptorType desc_type = nir_intrinsic_desc_type(instr);
fprintf(fp, "desc_type=%s", vulkan_descriptor_type_name(desc_type));
break;
}
case NIR_INTRINSIC_SRC_TYPE: {
fprintf(fp, "src_type=");
print_alu_type(nir_intrinsic_src_type(instr), state);
break;
}
case NIR_INTRINSIC_DEST_TYPE: {
fprintf(fp, "dest_type=");
print_alu_type(nir_intrinsic_dest_type(instr), state);
break;
}
case NIR_INTRINSIC_SWIZZLE_MASK: {
fprintf(fp, "swizzle_mask=");
unsigned mask = nir_intrinsic_swizzle_mask(instr);
if (instr->intrinsic == nir_intrinsic_quad_swizzle_amd) {
for (unsigned i = 0; i < 4; i++)
fprintf(fp, "%d", (mask >> (i * 2) & 3));
} else if (instr->intrinsic == nir_intrinsic_masked_swizzle_amd) {
fprintf(fp, "((id & %d) | %d) ^ %d", mask & 0x1F,
(mask >> 5) & 0x1F,
(mask >> 10) & 0x1F);
} else {
fprintf(fp, "%d", mask);
}
break;
}
case NIR_INTRINSIC_MEMORY_SEMANTICS: {
nir_memory_semantics semantics = nir_intrinsic_memory_semantics(instr);
fprintf(fp, "mem_semantics=");
switch (semantics & (NIR_MEMORY_ACQUIRE | NIR_MEMORY_RELEASE)) {
case 0:
fprintf(fp, "NONE");
break;
case NIR_MEMORY_ACQUIRE:
fprintf(fp, "ACQ");
break;
case NIR_MEMORY_RELEASE:
fprintf(fp, "REL");
break;
default:
fprintf(fp, "ACQ|REL");
break;
}
if (semantics & (NIR_MEMORY_MAKE_AVAILABLE))
fprintf(fp, "|AVAILABLE");
if (semantics & (NIR_MEMORY_MAKE_VISIBLE))
fprintf(fp, "|VISIBLE");
break;
}
case NIR_INTRINSIC_MEMORY_MODES: {
fprintf(fp, "mem_modes=");
unsigned int modes = nir_intrinsic_memory_modes(instr);
if (modes == 0)
fputc('0', fp);
while (modes) {
nir_variable_mode m = u_bit_scan(&modes);
fprintf(fp, "%s%s", get_variable_mode_str(1 << m, true), modes ? "|" : "");
}
break;
}
case NIR_INTRINSIC_EXECUTION_SCOPE:
case NIR_INTRINSIC_MEMORY_SCOPE: {
mesa_scope scope =
idx == NIR_INTRINSIC_MEMORY_SCOPE ? nir_intrinsic_memory_scope(instr)
: nir_intrinsic_execution_scope(instr);
const char *name = mesa_scope_name(scope);
static const char prefix[] = "SCOPE_";
if (strncmp(name, prefix, sizeof(prefix) - 1) == 0)
name += sizeof(prefix) - 1;
fprintf(fp, "%s=%s", nir_intrinsic_index_names[idx], name);
break;
}
case NIR_INTRINSIC_IO_SEMANTICS: {
struct nir_io_semantics io = nir_intrinsic_io_semantics(instr);
/* Try to figure out the mode so we can interpret the location */
nir_variable_mode mode = nir_var_mem_generic;
switch (instr->intrinsic) {
case nir_intrinsic_load_input:
case nir_intrinsic_load_interpolated_input:
case nir_intrinsic_load_per_vertex_input:
case nir_intrinsic_load_input_vertex:
case nir_intrinsic_load_coefficients_agx:
mode = nir_var_shader_in;
break;
case nir_intrinsic_load_output:
case nir_intrinsic_store_output:
case nir_intrinsic_store_per_primitive_output:
case nir_intrinsic_store_per_vertex_output:
mode = nir_var_shader_out;
break;
default:
break;
}
/* Using that mode, we should be able to name the location */
char buf[4];
const char *loc = get_location_str(io.location,
state->shader->info.stage, mode,
buf);
fprintf(fp, "io location=%s slots=%u", loc, io.num_slots);
if (io.per_primitive)
fprintf(fp, " per_primitive");
if (io.interp_explicit_strict)
fprintf(fp, " explicit_strict");
if (io.dual_source_blend_index)
fprintf(fp, " dualsrc");
if (io.fb_fetch_output)
fprintf(fp, " fbfetch");
if (io.per_view)
fprintf(fp, " perview");
if (io.medium_precision)
fprintf(fp, " mediump");
if (io.high_16bits)
fprintf(fp, " high_16bits");
if (io.invariant)
fprintf(fp, " invariant");
if (io.high_dvec2)
fprintf(fp, " high_dvec2");
if (io.no_varying)
fprintf(fp, " no_varying");
if (io.no_sysval_output)
fprintf(fp, " no_sysval_output");
if (state->shader &&
state->shader->info.stage == MESA_SHADER_GEOMETRY &&
(instr->intrinsic == nir_intrinsic_store_output ||
instr->intrinsic == nir_intrinsic_store_per_primitive_output ||
instr->intrinsic == nir_intrinsic_store_per_vertex_output)) {
unsigned gs_streams = io.gs_streams;
fprintf(fp, " gs_streams(");
for (unsigned i = 0; i < 4; i++) {
fprintf(fp, "%s%c=%u", i ? " " : "", "xyzw"[i],
(gs_streams >> (i * 2)) & 0x3);
}
fprintf(fp, ")");
}
break;
}
case NIR_INTRINSIC_IO_XFB:
case NIR_INTRINSIC_IO_XFB2: {
/* This prints both IO_XFB and IO_XFB2. */
fprintf(fp, "xfb%s(", idx == NIR_INTRINSIC_IO_XFB ? "" : "2");
bool first = true;
for (unsigned i = 0; i < 2; i++) {
unsigned start_comp = (idx == NIR_INTRINSIC_IO_XFB ? 0 : 2) + i;
nir_io_xfb xfb = start_comp < 2 ? nir_intrinsic_io_xfb(instr) : nir_intrinsic_io_xfb2(instr);
if (!xfb.out[i].num_components)
continue;
if (!first)
fprintf(fp, ", ");
first = false;
if (xfb.out[i].num_components > 1) {
fprintf(fp, "components=%u..%u",
start_comp, start_comp + xfb.out[i].num_components - 1);
} else {
fprintf(fp, "component=%u", start_comp);
}
fprintf(fp, " buffer=%u offset=%u",
xfb.out[i].buffer, (uint32_t)xfb.out[i].offset * 4);
}
fprintf(fp, ")");
break;
}
case NIR_INTRINSIC_ROUNDING_MODE: {
fprintf(fp, "rounding_mode=");
switch (nir_intrinsic_rounding_mode(instr)) {
case nir_rounding_mode_undef:
fprintf(fp, "undef");
break;
case nir_rounding_mode_rtne:
fprintf(fp, "rtne");
break;
case nir_rounding_mode_ru:
fprintf(fp, "ru");
break;
case nir_rounding_mode_rd:
fprintf(fp, "rd");
break;
case nir_rounding_mode_rtz:
fprintf(fp, "rtz");
break;
default:
fprintf(fp, "unknown");
break;
}
break;
}
case NIR_INTRINSIC_RAY_QUERY_VALUE: {
fprintf(fp, "ray_query_value=");
switch (nir_intrinsic_ray_query_value(instr)) {
#define VAL(_name) \
case nir_ray_query_value_##_name: \
fprintf(fp, #_name); \
break
VAL(intersection_type);
VAL(intersection_t);
VAL(intersection_instance_custom_index);
VAL(intersection_instance_id);
VAL(intersection_instance_sbt_index);
VAL(intersection_geometry_index);
VAL(intersection_primitive_index);
VAL(intersection_barycentrics);
VAL(intersection_front_face);
VAL(intersection_object_ray_direction);
VAL(intersection_object_ray_origin);
VAL(intersection_object_to_world);
VAL(intersection_world_to_object);
VAL(intersection_candidate_aabb_opaque);
VAL(tmin);
VAL(flags);
VAL(world_ray_direction);
VAL(world_ray_origin);
#undef VAL
default:
fprintf(fp, "unknown");
break;
}
break;
}
case NIR_INTRINSIC_RESOURCE_ACCESS_INTEL: {
fprintf(fp, "resource_intel=");
unsigned int modes = nir_intrinsic_resource_access_intel(instr);
if (modes == 0)
fputc('0', fp);
while (modes) {
nir_resource_data_intel i = 1u << u_bit_scan(&modes);
switch (i) {
case nir_resource_intel_bindless:
fprintf(fp, "bindless");
break;
case nir_resource_intel_pushable:
fprintf(fp, "pushable");
break;
case nir_resource_intel_sampler:
fprintf(fp, "sampler");
break;
case nir_resource_intel_non_uniform:
fprintf(fp, "non-uniform");
break;
case nir_resource_intel_sampler_embedded:
fprintf(fp, "sampler-embedded");
break;
default:
fprintf(fp, "unknown");
break;
}
fprintf(fp, "%s", modes ? "|" : "");
}
break;
}
case NIR_INTRINSIC_ACCESS: {
fprintf(fp, "access=");
print_access(nir_intrinsic_access(instr), state, "|");
break;
}
case NIR_INTRINSIC_MATRIX_LAYOUT: {
fprintf(fp, "matrix_layout=");
switch (nir_intrinsic_matrix_layout(instr)) {
case GLSL_MATRIX_LAYOUT_ROW_MAJOR:
fprintf(fp, "row_major");
break;
case GLSL_MATRIX_LAYOUT_COLUMN_MAJOR:
fprintf(fp, "col_major");
break;
default:
fprintf(fp, "unknown");
break;
}
break;
}
case NIR_INTRINSIC_CMAT_DESC: {
struct glsl_cmat_description desc = nir_intrinsic_cmat_desc(instr);
const struct glsl_type *t = glsl_cmat_type(&desc);
fprintf(fp, "%s", glsl_get_type_name(t));
break;
}
case NIR_INTRINSIC_CMAT_SIGNED_MASK: {
fprintf(fp, "cmat_signed=");
unsigned int mask = nir_intrinsic_cmat_signed_mask(instr);
if (mask == 0)
fputc('0', fp);
while (mask) {
nir_cmat_signed i = 1u << u_bit_scan(&mask);
switch (i) {
case NIR_CMAT_A_SIGNED:
fputc('A', fp);
break;
case NIR_CMAT_B_SIGNED:
fputc('B', fp);
break;
case NIR_CMAT_C_SIGNED:
fputc('C', fp);
break;
case NIR_CMAT_RESULT_SIGNED:
fprintf(fp, "Result");
break;
default:
fprintf(fp, "unknown");
break;
}
fprintf(fp, "%s", mask ? "|" : "");
}
break;
}
case NIR_INTRINSIC_ALU_OP: {
nir_op alu_op = nir_intrinsic_alu_op(instr);
fprintf(fp, "alu_op=%s", nir_op_infos[alu_op].name);
break;
}
default: {
unsigned off = info->index_map[idx] - 1;
fprintf(fp, "%s=%d", nir_intrinsic_index_names[idx], instr->const_index[off]);
break;
}
}
}
if (info->num_indices)
fprintf(fp, ")");
if (!state->shader)
return;
nir_variable_mode var_mode;
switch (instr->intrinsic) {
case nir_intrinsic_load_uniform:
var_mode = nir_var_uniform;
break;
case nir_intrinsic_load_input:
case nir_intrinsic_load_interpolated_input:
case nir_intrinsic_load_per_vertex_input:
var_mode = nir_var_shader_in;
break;
case nir_intrinsic_load_output:
case nir_intrinsic_store_output:
case nir_intrinsic_store_per_vertex_output:
var_mode = nir_var_shader_out;
break;
default:
return;
}
if (instr->name) {
fprintf(fp, " // %s", instr->name);
return;
}
nir_foreach_variable_with_modes(var, state->shader, var_mode) {
if (!var->name)
continue;
if (((instr->intrinsic == nir_intrinsic_load_uniform &&
var->data.driver_location == nir_intrinsic_base(instr)) ||
(instr->intrinsic != nir_intrinsic_load_uniform &&
var->data.location == nir_intrinsic_io_semantics(instr).location)) &&
((nir_intrinsic_component(instr) >= var->data.location_frac &&
nir_intrinsic_component(instr) <
(var->data.location_frac + glsl_get_components(var->type))))) {
fprintf(fp, " // %s", var->name);
break;
}
}
}
static void
print_tex_instr(nir_tex_instr *instr, print_state *state)
{
FILE *fp = state->fp;
print_def(&instr->def, state);
fprintf(fp, " = (");
print_alu_type(instr->dest_type, state);
fprintf(fp, ")");
switch (instr->op) {
case nir_texop_tex:
fprintf(fp, "tex ");
break;
case nir_texop_txb:
fprintf(fp, "txb ");
break;
case nir_texop_txl:
fprintf(fp, "txl ");
break;
case nir_texop_txd:
fprintf(fp, "txd ");
break;
case nir_texop_txf:
fprintf(fp, "txf ");
break;
case nir_texop_txf_ms:
fprintf(fp, "txf_ms ");
break;
case nir_texop_txf_ms_fb:
fprintf(fp, "txf_ms_fb ");
break;
case nir_texop_txf_ms_mcs_intel:
fprintf(fp, "txf_ms_mcs_intel ");
break;
case nir_texop_txs:
fprintf(fp, "txs ");
break;
case nir_texop_lod:
fprintf(fp, "lod ");
break;
case nir_texop_tg4:
fprintf(fp, "tg4 ");
break;
case nir_texop_query_levels:
fprintf(fp, "query_levels ");
break;
case nir_texop_texture_samples:
fprintf(fp, "texture_samples ");
break;
case nir_texop_samples_identical:
fprintf(fp, "samples_identical ");
break;
case nir_texop_tex_prefetch:
fprintf(fp, "tex (pre-dispatchable) ");
break;
case nir_texop_fragment_fetch_amd:
fprintf(fp, "fragment_fetch_amd ");
break;
case nir_texop_fragment_mask_fetch_amd:
fprintf(fp, "fragment_mask_fetch_amd ");
break;
case nir_texop_descriptor_amd:
fprintf(fp, "descriptor_amd ");
break;
case nir_texop_sampler_descriptor_amd:
fprintf(fp, "sampler_descriptor_amd ");
break;
case nir_texop_lod_bias_agx:
fprintf(fp, "lod_bias_agx ");
break;
case nir_texop_hdr_dim_nv:
fprintf(fp, "hdr_dim_nv ");
break;
case nir_texop_tex_type_nv:
fprintf(fp, "tex_type_nv ");
break;
default:
unreachable("Invalid texture operation");
break;
}
bool has_texture_deref = false, has_sampler_deref = false;
for (unsigned i = 0; i < instr->num_srcs; i++) {
if (i > 0) {
fprintf(fp, ", ");
}
print_src(&instr->src[i].src, state, nir_tex_instr_src_type(instr, i));
fprintf(fp, " ");
switch (instr->src[i].src_type) {
case nir_tex_src_backend1:
fprintf(fp, "(backend1)");
break;
case nir_tex_src_backend2:
fprintf(fp, "(backend2)");
break;
case nir_tex_src_coord:
fprintf(fp, "(coord)");
break;
case nir_tex_src_projector:
fprintf(fp, "(projector)");
break;
case nir_tex_src_comparator:
fprintf(fp, "(comparator)");
break;
case nir_tex_src_offset:
fprintf(fp, "(offset)");
break;
case nir_tex_src_bias:
fprintf(fp, "(bias)");
break;
case nir_tex_src_lod:
fprintf(fp, "(lod)");
break;
case nir_tex_src_min_lod:
fprintf(fp, "(min_lod)");
break;
case nir_tex_src_ms_index:
fprintf(fp, "(ms_index)");
break;
case nir_tex_src_ms_mcs_intel:
fprintf(fp, "(ms_mcs_intel)");
break;
case nir_tex_src_ddx:
fprintf(fp, "(ddx)");
break;
case nir_tex_src_ddy:
fprintf(fp, "(ddy)");
break;
case nir_tex_src_texture_deref:
has_texture_deref = true;
fprintf(fp, "(texture_deref)");
break;
case nir_tex_src_sampler_deref:
has_sampler_deref = true;
fprintf(fp, "(sampler_deref)");
break;
case nir_tex_src_texture_offset:
fprintf(fp, "(texture_offset)");
break;
case nir_tex_src_sampler_offset:
fprintf(fp, "(sampler_offset)");
break;
case nir_tex_src_texture_handle:
fprintf(fp, "(texture_handle)");
break;
case nir_tex_src_sampler_handle:
fprintf(fp, "(sampler_handle)");
break;
case nir_tex_src_plane:
fprintf(fp, "(plane)");
break;
default:
unreachable("Invalid texture source type");
break;
}
}
if (instr->is_gather_implicit_lod)
fprintf(fp, ", implicit lod");
if (instr->op == nir_texop_tg4) {
fprintf(fp, ", %u (gather_component)", instr->component);
}
if (nir_tex_instr_has_explicit_tg4_offsets(instr)) {
fprintf(fp, ", { (%i, %i)", instr->tg4_offsets[0][0], instr->tg4_offsets[0][1]);
for (unsigned i = 1; i < 4; ++i)
fprintf(fp, ", (%i, %i)", instr->tg4_offsets[i][0],
instr->tg4_offsets[i][1]);
fprintf(fp, " } (offsets)");
}
if (instr->op != nir_texop_txf_ms_fb && !has_texture_deref) {
fprintf(fp, ", %u (texture)", instr->texture_index);
}
if (nir_tex_instr_need_sampler(instr) && !has_sampler_deref) {
fprintf(fp, ", %u (sampler)", instr->sampler_index);
}
if (instr->texture_non_uniform) {
fprintf(fp, ", texture non-uniform");
}
if (instr->sampler_non_uniform) {
fprintf(fp, ", sampler non-uniform");
}
if (instr->is_sparse) {
fprintf(fp, ", sparse");
}
}
static void
print_call_instr(nir_call_instr *instr, print_state *state)
{
FILE *fp = state->fp;
print_no_dest_padding(state);
fprintf(fp, "call %s ", instr->callee->name);
for (unsigned i = 0; i < instr->num_params; i++) {
if (i != 0)
fprintf(fp, ", ");
print_src(&instr->params[i], state, nir_type_invalid);
}
}
static void
print_jump_instr(nir_jump_instr *instr, print_state *state)
{
FILE *fp = state->fp;
print_no_dest_padding(state);
switch (instr->type) {
case nir_jump_break:
fprintf(fp, "break");
break;
case nir_jump_continue:
fprintf(fp, "continue");
break;
case nir_jump_return:
fprintf(fp, "return");
break;
case nir_jump_halt:
fprintf(fp, "halt");
break;
case nir_jump_goto:
fprintf(fp, "goto b%u",
instr->target ? instr->target->index : -1);
break;
case nir_jump_goto_if:
fprintf(fp, "goto b%u if ",
instr->target ? instr->target->index : -1);
print_src(&instr->condition, state, nir_type_invalid);
fprintf(fp, " else b%u",
instr->else_target ? instr->else_target->index : -1);
break;
}
}
static void
print_ssa_undef_instr(nir_undef_instr *instr, print_state *state)
{
FILE *fp = state->fp;
print_def(&instr->def, state);
fprintf(fp, " = undefined");
}
static void
print_phi_instr(nir_phi_instr *instr, print_state *state)
{
FILE *fp = state->fp;
print_def(&instr->def, state);
fprintf(fp, " = phi ");
nir_foreach_phi_src(src, instr) {
if (&src->node != exec_list_get_head(&instr->srcs))
fprintf(fp, ", ");
fprintf(fp, "b%u: ", src->pred->index);
print_src(&src->src, state, nir_type_invalid);
}
}
static void
print_parallel_copy_instr(nir_parallel_copy_instr *instr, print_state *state)
{
FILE *fp = state->fp;
nir_foreach_parallel_copy_entry(entry, instr) {
if (&entry->node != exec_list_get_head(&instr->entries))
fprintf(fp, "; ");
if (entry->dest_is_reg) {
fprintf(fp, "*");
print_src(&entry->dest.reg, state, nir_type_invalid);
} else {
print_def(&entry->dest.def, state);
}
fprintf(fp, " = ");
if (entry->src_is_reg)
fprintf(fp, "*");
print_src(&entry->src, state, nir_type_invalid);
}
}
static void
print_instr(const nir_instr *instr, print_state *state, unsigned tabs)
{
FILE *fp = state->fp;
print_indentation(tabs, fp);
switch (instr->type) {
case nir_instr_type_alu:
print_alu_instr(nir_instr_as_alu(instr), state);
break;
case nir_instr_type_deref:
print_deref_instr(nir_instr_as_deref(instr), state);
break;
case nir_instr_type_call:
print_call_instr(nir_instr_as_call(instr), state);
break;
case nir_instr_type_intrinsic:
print_intrinsic_instr(nir_instr_as_intrinsic(instr), state);
break;
case nir_instr_type_tex:
print_tex_instr(nir_instr_as_tex(instr), state);
break;
case nir_instr_type_load_const:
print_load_const_instr(nir_instr_as_load_const(instr), state);
break;
case nir_instr_type_jump:
print_jump_instr(nir_instr_as_jump(instr), state);
break;
case nir_instr_type_undef:
print_ssa_undef_instr(nir_instr_as_undef(instr), state);
break;
case nir_instr_type_phi:
print_phi_instr(nir_instr_as_phi(instr), state);
break;
case nir_instr_type_parallel_copy:
print_parallel_copy_instr(nir_instr_as_parallel_copy(instr), state);
break;
default:
unreachable("Invalid instruction type");
break;
}
if (NIR_DEBUG(PRINT_PASS_FLAGS) && instr->pass_flags)
fprintf(fp, " (pass_flags: 0x%x)", instr->pass_flags);
}
static bool
block_has_instruction_with_dest(nir_block *block)
{
nir_foreach_instr(instr, block) {
switch (instr->type) {
case nir_instr_type_load_const:
case nir_instr_type_deref:
case nir_instr_type_alu:
case nir_instr_type_tex:
case nir_instr_type_undef:
case nir_instr_type_phi:
case nir_instr_type_parallel_copy:
return true;
case nir_instr_type_intrinsic: {
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
const nir_intrinsic_info *info = &nir_intrinsic_infos[intrin->intrinsic];
if (info->has_dest)
return true;
/* Doesn't define a new value. */
break;
}
case nir_instr_type_jump:
case nir_instr_type_call:
/* Doesn't define a new value. */
break;
}
}
return false;
}
static void print_cf_node(nir_cf_node *node, print_state *state,
unsigned tabs);
static void
print_block_preds(nir_block *block, print_state *state)
{
FILE *fp = state->fp;
nir_block **preds = nir_block_get_predecessors_sorted(block, NULL);
for (unsigned i = 0; i < block->predecessors->entries; i++) {
if (i != 0)
fprintf(fp, " ");
fprintf(fp, "b%u", preds[i]->index);
}
ralloc_free(preds);
}
static void
print_block_succs(nir_block *block, print_state *state)
{
FILE *fp = state->fp;
for (unsigned i = 0; i < 2; i++) {
if (block->successors[i]) {
fprintf(fp, "b%u ", block->successors[i]->index);
}
}
}
static void
print_block(nir_block *block, print_state *state, unsigned tabs)
{
FILE *fp = state->fp;
if (block_has_instruction_with_dest(block))
state->padding_for_no_dest = calculate_padding_for_no_dest(state);
else
state->padding_for_no_dest = 0;
print_indentation(tabs, fp);
fprintf(fp, "%s block b%u:",
block->divergent ? "div" : "con", block->index);
const bool empty_block = exec_list_is_empty(&block->instr_list);
if (empty_block) {
fprintf(fp, " // preds: ");
print_block_preds(block, state);
fprintf(fp, ", succs: ");
print_block_succs(block, state);
fprintf(fp, "\n");
return;
}
const unsigned block_length = 7 + count_digits(block->index) + 1;
const unsigned pred_padding = block_length < state->padding_for_no_dest ? state->padding_for_no_dest - block_length : 0;
fprintf(fp, "%*s// preds: ", pred_padding, "");
print_block_preds(block, state);
fprintf(fp, "\n");
nir_foreach_instr(instr, block) {
print_instr(instr, state, tabs);
fprintf(fp, "\n");
print_annotation(state, instr);
}
print_indentation(tabs, fp);
fprintf(fp, "%*s// succs: ", state->padding_for_no_dest, "");
print_block_succs(block, state);
fprintf(fp, "\n");
}
static void
print_if(nir_if *if_stmt, print_state *state, unsigned tabs)
{
FILE *fp = state->fp;
print_indentation(tabs, fp);
fprintf(fp, "if ");
print_src(&if_stmt->condition, state, nir_type_invalid);
switch (if_stmt->control) {
case nir_selection_control_flatten:
fprintf(fp, " // flatten");
break;
case nir_selection_control_dont_flatten:
fprintf(fp, " // don't flatten");
break;
case nir_selection_control_divergent_always_taken:
fprintf(fp, " // divergent always taken");
break;
case nir_selection_control_none:
default:
break;
}
fprintf(fp, " {\n");
foreach_list_typed(nir_cf_node, node, node, &if_stmt->then_list) {
print_cf_node(node, state, tabs + 1);
}
print_indentation(tabs, fp);
fprintf(fp, "} else {\n");
foreach_list_typed(nir_cf_node, node, node, &if_stmt->else_list) {
print_cf_node(node, state, tabs + 1);
}
print_indentation(tabs, fp);
fprintf(fp, "}\n");
}
static void
print_loop(nir_loop *loop, print_state *state, unsigned tabs)
{
FILE *fp = state->fp;
print_indentation(tabs, fp);
fprintf(fp, "loop {\n");
foreach_list_typed(nir_cf_node, node, node, &loop->body) {
print_cf_node(node, state, tabs + 1);
}
print_indentation(tabs, fp);
if (nir_loop_has_continue_construct(loop)) {
fprintf(fp, "} continue {\n");
foreach_list_typed(nir_cf_node, node, node, &loop->continue_list) {
print_cf_node(node, state, tabs + 1);
}
print_indentation(tabs, fp);
}
fprintf(fp, "}\n");
}
static void
print_cf_node(nir_cf_node *node, print_state *state, unsigned int tabs)
{
switch (node->type) {
case nir_cf_node_block:
print_block(nir_cf_node_as_block(node), state, tabs);
break;
case nir_cf_node_if:
print_if(nir_cf_node_as_if(node), state, tabs);
break;
case nir_cf_node_loop:
print_loop(nir_cf_node_as_loop(node), state, tabs);
break;
default:
unreachable("Invalid CFG node type");
}
}
static void
print_function_impl(nir_function_impl *impl, print_state *state)
{
FILE *fp = state->fp;
state->max_dest_index = impl->ssa_alloc;
fprintf(fp, "\nimpl %s ", impl->function->name);
fprintf(fp, "{\n");
if (impl->preamble) {
print_indentation(1, fp);
fprintf(fp, "preamble %s\n", impl->preamble->name);
}
if (!NIR_DEBUG(PRINT_NO_INLINE_CONSTS)) {
/* Don't reindex the SSA as suggested by nir_gather_types() because
* nir_print don't modify the shader. If needed, a limit for ssa_alloc
* can be added.
*/
state->float_types = calloc(BITSET_WORDS(impl->ssa_alloc), sizeof(BITSET_WORD));
state->int_types = calloc(BITSET_WORDS(impl->ssa_alloc), sizeof(BITSET_WORD));
nir_gather_types(impl, state->float_types, state->int_types);
}
nir_foreach_function_temp_variable(var, impl) {
print_indentation(1, fp);
print_var_decl(var, state);
}
nir_index_blocks(impl);
foreach_list_typed(nir_cf_node, node, node, &impl->body) {
print_cf_node(node, state, 1);
}
print_indentation(1, fp);
fprintf(fp, "block b%u:\n}\n\n", impl->end_block->index);
free(state->float_types);
free(state->int_types);
state->max_dest_index = 0;
}
static void
print_function(nir_function *function, print_state *state)
{
FILE *fp = state->fp;
/* clang-format off */
fprintf(fp, "decl_function %s (%d params)%s%s", function->name,
function->num_params,
function->dont_inline ? " (noinline)" :
function->should_inline ? " (inline)" : "",
function->is_exported ? " (exported)" : "");
/* clang-format on */
fprintf(fp, "\n");
if (function->impl != NULL) {
print_function_impl(function->impl, state);
return;
}
}
static void
init_print_state(print_state *state, nir_shader *shader, FILE *fp)
{
state->fp = fp;
state->shader = shader;
state->ht = _mesa_pointer_hash_table_create(NULL);
state->syms = _mesa_set_create(NULL, _mesa_hash_string,
_mesa_key_string_equal);
state->index = 0;
state->int_types = NULL;
state->float_types = NULL;
state->max_dest_index = 0;
state->padding_for_no_dest = 0;
}
static void
destroy_print_state(print_state *state)
{
_mesa_hash_table_destroy(state->ht, NULL);
_mesa_set_destroy(state->syms, NULL);
}
static const char *
primitive_name(unsigned primitive)
{
#define PRIM(X) \
case MESA_PRIM_##X: \
return #X
switch (primitive) {
PRIM(POINTS);
PRIM(LINES);
PRIM(LINE_LOOP);
PRIM(LINE_STRIP);
PRIM(TRIANGLES);
PRIM(TRIANGLE_STRIP);
PRIM(TRIANGLE_FAN);
PRIM(QUADS);
PRIM(QUAD_STRIP);
PRIM(POLYGON);
PRIM(LINES_ADJACENCY);
PRIM(TRIANGLES_ADJACENCY);
default:
return "UNKNOWN";
}
}
static void
print_bitset(FILE *fp, const char *label, const unsigned *words, int size)
{
fprintf(fp, "%s: ", label);
/* Iterate back-to-front to get proper digit order (most significant first). */
for (int i = size - 1; i >= 0; --i) {
fprintf(fp, (i == size - 1) ? "0x%08x" : "'%08x", words[i]);
}
fprintf(fp, "\n");
}
/* Print bitset, only if some bits are set */
static void
print_nz_bitset(FILE *fp, const char *label, const unsigned *words, int size)
{
bool is_all_zero = true;
for (int i = 0; i < size; ++i) {
if (words[i]) {
is_all_zero = false;
break;
}
}
if (!is_all_zero)
print_bitset(fp, label, words, size);
}
/* Print uint64_t value, only if non-zero.
* The value is printed by enumerating the ranges of bits that are set.
* E.g. inputs_read: 0,15-17
*/
static void
print_nz_x64(FILE *fp, const char *label, uint64_t value)
{
if (value) {
char acc[256] = { 0 };
char buf[32];
int start = 0;
int count = 0;
while (value) {
u_bit_scan_consecutive_range64(&value, &start, &count);
assert(count > 0);
bool is_first = !acc[0];
if (count > 1) {
snprintf(buf, sizeof(buf), is_first ? "%d-%d" : ",%d-%d", start, start + count - 1);
} else {
snprintf(buf, sizeof(buf), is_first ? "%d" : ",%d", start);
}
assert(strlen(acc) + strlen(buf) + 1 < sizeof(acc));
strcat(acc, buf);
}
fprintf(fp, "%s: %s\n", label, acc);
}
}
/* Print uint32_t value in hex, only if non-zero */
static void
print_nz_x32(FILE *fp, const char *label, uint32_t value)
{
if (value)
fprintf(fp, "%s: 0x%08" PRIx32 "\n", label, value);
}
/* Print uint16_t value in hex, only if non-zero */
static void
print_nz_x16(FILE *fp, const char *label, uint16_t value)
{
if (value)
fprintf(fp, "%s: 0x%04x\n", label, value);
}
/* Print uint8_t value in hex, only if non-zero */
static void
print_nz_x8(FILE *fp, const char *label, uint8_t value)
{
if (value)
fprintf(fp, "%s: 0x%02x\n", label, value);
}
/* Print unsigned value in decimal, only if non-zero */
static void
print_nz_unsigned(FILE *fp, const char *label, unsigned value)
{
if (value)
fprintf(fp, "%s: %u\n", label, value);
}
/* Print bool only if set */
static void
print_nz_bool(FILE *fp, const char *label, bool value)
{
if (value)
fprintf(fp, "%s: true\n", label);
}
static void
print_shader_info(const struct shader_info *info, FILE *fp)
{
fprintf(fp, "shader: %s\n", gl_shader_stage_name(info->stage));
fprintf(fp, "source_sha1: {");
_mesa_sha1_print(fp, info->source_sha1);
fprintf(fp, "}\n");
if (info->name)
fprintf(fp, "name: %s\n", info->name);
if (info->label)
fprintf(fp, "label: %s\n", info->label);
fprintf(fp, "internal: %s\n", info->internal ? "true" : "false");
if (gl_shader_stage_uses_workgroup(info->stage)) {
fprintf(fp, "workgroup_size: %u, %u, %u%s\n",
info->workgroup_size[0],
info->workgroup_size[1],
info->workgroup_size[2],
info->workgroup_size_variable ? " (variable)" : "");
}
fprintf(fp, "stage: %d\n"
"next_stage: %d\n",
info->stage, info->next_stage);
print_nz_unsigned(fp, "num_textures", info->num_textures);
print_nz_unsigned(fp, "num_ubos", info->num_ubos);
print_nz_unsigned(fp, "num_abos", info->num_abos);
print_nz_unsigned(fp, "num_ssbos", info->num_ssbos);
print_nz_unsigned(fp, "num_images", info->num_images);
print_nz_x64(fp, "inputs_read", info->inputs_read);
print_nz_x64(fp, "dual_slot_inputs", info->dual_slot_inputs);
print_nz_x64(fp, "outputs_written", info->outputs_written);
print_nz_x64(fp, "outputs_read", info->outputs_read);
print_nz_bitset(fp, "system_values_read", info->system_values_read, ARRAY_SIZE(info->system_values_read));
print_nz_x64(fp, "per_primitive_inputs", info->per_primitive_inputs);
print_nz_x64(fp, "per_primitive_outputs", info->per_primitive_outputs);
print_nz_x64(fp, "per_view_outputs", info->per_view_outputs);
print_nz_x16(fp, "inputs_read_16bit", info->inputs_read_16bit);
print_nz_x16(fp, "outputs_written_16bit", info->outputs_written_16bit);
print_nz_x16(fp, "outputs_read_16bit", info->outputs_read_16bit);
print_nz_x16(fp, "inputs_read_indirectly_16bit", info->inputs_read_indirectly_16bit);
print_nz_x16(fp, "outputs_accessed_indirectly_16bit", info->outputs_accessed_indirectly_16bit);
print_nz_x32(fp, "patch_inputs_read", info->patch_inputs_read);
print_nz_x32(fp, "patch_outputs_written", info->patch_outputs_written);
print_nz_x32(fp, "patch_outputs_read", info->patch_outputs_read);
print_nz_x64(fp, "inputs_read_indirectly", info->inputs_read_indirectly);
print_nz_x64(fp, "outputs_accessed_indirectly", info->outputs_accessed_indirectly);
print_nz_x64(fp, "patch_inputs_read_indirectly", info->patch_inputs_read_indirectly);
print_nz_x64(fp, "patch_outputs_accessed_indirectly", info->patch_outputs_accessed_indirectly);
print_nz_bitset(fp, "textures_used", info->textures_used, ARRAY_SIZE(info->textures_used));
print_nz_bitset(fp, "textures_used_by_txf", info->textures_used_by_txf, ARRAY_SIZE(info->textures_used_by_txf));
print_nz_bitset(fp, "samplers_used", info->samplers_used, ARRAY_SIZE(info->samplers_used));
print_nz_bitset(fp, "images_used", info->images_used, ARRAY_SIZE(info->images_used));
print_nz_bitset(fp, "image_buffers", info->image_buffers, ARRAY_SIZE(info->image_buffers));
print_nz_bitset(fp, "msaa_images", info->msaa_images, ARRAY_SIZE(info->msaa_images));
print_nz_x32(fp, "float_controls_execution_mode", info->float_controls_execution_mode);
print_nz_unsigned(fp, "shared_size", info->shared_size);
if (info->stage == MESA_SHADER_MESH || info->stage == MESA_SHADER_TASK) {
fprintf(fp, "task_payload_size: %u\n", info->task_payload_size);
}
print_nz_unsigned(fp, "ray queries", info->ray_queries);
fprintf(fp, "subgroup_size: %u\n", info->subgroup_size);
print_nz_bool(fp, "uses_wide_subgroup_intrinsics", info->uses_wide_subgroup_intrinsics);
bool has_xfb_stride = info->xfb_stride[0] || info->xfb_stride[1] || info->xfb_stride[2] || info->xfb_stride[3];
if (has_xfb_stride)
fprintf(fp, "xfb_stride: {%u, %u, %u, %u}\n",
info->xfb_stride[0],
info->xfb_stride[1],
info->xfb_stride[2],
info->xfb_stride[3]);
bool has_inlinable_uniform_dw_offsets = info->inlinable_uniform_dw_offsets[0] || info->inlinable_uniform_dw_offsets[1] || info->inlinable_uniform_dw_offsets[2] || info->inlinable_uniform_dw_offsets[3];
if (has_inlinable_uniform_dw_offsets)
fprintf(fp, "inlinable_uniform_dw_offsets: {%u, %u, %u, %u}\n",
info->inlinable_uniform_dw_offsets[0],
info->inlinable_uniform_dw_offsets[1],
info->inlinable_uniform_dw_offsets[2],
info->inlinable_uniform_dw_offsets[3]);
print_nz_unsigned(fp, "num_inlinable_uniforms", info->num_inlinable_uniforms);
print_nz_unsigned(fp, "clip_distance_array_size", info->clip_distance_array_size);
print_nz_unsigned(fp, "cull_distance_array_size", info->cull_distance_array_size);
print_nz_bool(fp, "uses_texture_gather", info->uses_texture_gather);
print_nz_bool(fp, "uses_resource_info_query", info->uses_resource_info_query);
print_nz_bool(fp, "uses_fddx_fddy", info->uses_fddx_fddy);
print_nz_bool(fp, "divergence_analysis_run", info->divergence_analysis_run);
print_nz_x8(fp, "bit_sizes_float", info->bit_sizes_float);
print_nz_x8(fp, "bit_sizes_int", info->bit_sizes_int);
print_nz_bool(fp, "first_ubo_is_default_ubo", info->first_ubo_is_default_ubo);
print_nz_bool(fp, "separate_shader", info->separate_shader);
print_nz_bool(fp, "has_transform_feedback_varyings", info->has_transform_feedback_varyings);
print_nz_bool(fp, "flrp_lowered", info->flrp_lowered);
print_nz_bool(fp, "io_lowered", info->io_lowered);
print_nz_bool(fp, "writes_memory", info->writes_memory);
switch (info->stage) {
case MESA_SHADER_VERTEX:
print_nz_x64(fp, "double_inputs", info->vs.double_inputs);
print_nz_unsigned(fp, "blit_sgprs_amd", info->vs.blit_sgprs_amd);
print_nz_bool(fp, "window_space_position", info->vs.window_space_position);
print_nz_bool(fp, "needs_edge_flag", info->vs.needs_edge_flag);
break;
case MESA_SHADER_TESS_CTRL:
case MESA_SHADER_TESS_EVAL:
fprintf(fp, "primitive_mode: %u\n", info->tess._primitive_mode);
fprintf(fp, "tcs_vertices_out: %u\n", info->tess.tcs_vertices_out);
fprintf(fp, "spacing: %u\n", info->tess.spacing);
print_nz_bool(fp, "ccw", info->tess.ccw);
print_nz_bool(fp, "point_mode", info->tess.point_mode);
print_nz_x64(fp, "tcs_cross_invocation_inputs_read", info->tess.tcs_cross_invocation_inputs_read);
print_nz_x64(fp, "tcs_cross_invocation_outputs_read", info->tess.tcs_cross_invocation_outputs_read);
break;
case MESA_SHADER_GEOMETRY:
fprintf(fp, "output_primitive: %s\n", primitive_name(info->gs.output_primitive));
fprintf(fp, "input_primitive: %s\n", primitive_name(info->gs.input_primitive));
fprintf(fp, "vertices_out: %u\n", info->gs.vertices_out);
fprintf(fp, "invocations: %u\n", info->gs.invocations);
fprintf(fp, "vertices_in: %u\n", info->gs.vertices_in);
print_nz_bool(fp, "uses_end_primitive", info->gs.uses_end_primitive);
fprintf(fp, "active_stream_mask: 0x%02x\n", info->gs.active_stream_mask);
break;
case MESA_SHADER_FRAGMENT:
print_nz_bool(fp, "uses_discard", info->fs.uses_discard);
print_nz_bool(fp, "uses_demote", info->fs.uses_demote);
print_nz_bool(fp, "uses_fbfetch_output", info->fs.uses_fbfetch_output);
print_nz_bool(fp, "color_is_dual_source", info->fs.color_is_dual_source);
print_nz_bool(fp, "require_full_quads", info->fs.require_full_quads);
print_nz_bool(fp, "needs_quad_helper_invocations", info->fs.needs_quad_helper_invocations);
print_nz_bool(fp, "uses_sample_qualifier", info->fs.uses_sample_qualifier);
print_nz_bool(fp, "uses_sample_shading", info->fs.uses_sample_shading);
print_nz_bool(fp, "early_fragment_tests", info->fs.early_fragment_tests);
print_nz_bool(fp, "inner_coverage", info->fs.inner_coverage);
print_nz_bool(fp, "post_depth_coverage", info->fs.post_depth_coverage);
print_nz_bool(fp, "pixel_center_integer", info->fs.pixel_center_integer);
print_nz_bool(fp, "origin_upper_left", info->fs.origin_upper_left);
print_nz_bool(fp, "pixel_interlock_ordered", info->fs.pixel_interlock_ordered);
print_nz_bool(fp, "pixel_interlock_unordered", info->fs.pixel_interlock_unordered);
print_nz_bool(fp, "sample_interlock_ordered", info->fs.sample_interlock_ordered);
print_nz_bool(fp, "sample_interlock_unordered", info->fs.sample_interlock_unordered);
print_nz_bool(fp, "untyped_color_outputs", info->fs.untyped_color_outputs);
print_nz_unsigned(fp, "depth_layout", info->fs.depth_layout);
if (info->fs.color0_interp != INTERP_MODE_NONE) {
fprintf(fp, "color0_interp: %s\n",
glsl_interp_mode_name(info->fs.color0_interp));
}
print_nz_bool(fp, "color0_sample", info->fs.color0_sample);
print_nz_bool(fp, "color0_centroid", info->fs.color0_centroid);
if (info->fs.color1_interp != INTERP_MODE_NONE) {
fprintf(fp, "color1_interp: %s\n",
glsl_interp_mode_name(info->fs.color1_interp));
}
print_nz_bool(fp, "color1_sample", info->fs.color1_sample);
print_nz_bool(fp, "color1_centroid", info->fs.color1_centroid);
print_nz_x32(fp, "advanced_blend_modes", info->fs.advanced_blend_modes);
break;
case MESA_SHADER_COMPUTE:
case MESA_SHADER_KERNEL:
if (info->cs.workgroup_size_hint[0] || info->cs.workgroup_size_hint[1] || info->cs.workgroup_size_hint[2])
fprintf(fp, "workgroup_size_hint: {%u, %u, %u}\n",
info->cs.workgroup_size_hint[0],
info->cs.workgroup_size_hint[1],
info->cs.workgroup_size_hint[2]);
print_nz_unsigned(fp, "user_data_components_amd", info->cs.user_data_components_amd);
print_nz_unsigned(fp, "derivative_group", info->cs.derivative_group);
fprintf(fp, "ptr_size: %u\n", info->cs.ptr_size);
break;
case MESA_SHADER_MESH:
print_nz_x64(fp, "ms_cross_invocation_output_access", info->mesh.ms_cross_invocation_output_access);
fprintf(fp, "max_vertices_out: %u\n", info->mesh.max_vertices_out);
fprintf(fp, "max_primitives_out: %u\n", info->mesh.max_primitives_out);
fprintf(fp, "primitive_type: %s\n", primitive_name(info->mesh.primitive_type));
print_nz_bool(fp, "nv", info->mesh.nv);
break;
default:
fprintf(fp, "Unhandled stage %d\n", info->stage);
}
}
void
nir_print_shader_annotated(nir_shader *shader, FILE *fp,
struct hash_table *annotations)
{
print_state state;
init_print_state(&state, shader, fp);
state.annotations = annotations;
print_shader_info(&shader->info, fp);
fprintf(fp, "inputs: %u\n", shader->num_inputs);
fprintf(fp, "outputs: %u\n", shader->num_outputs);
fprintf(fp, "uniforms: %u\n", shader->num_uniforms);
if (shader->scratch_size)
fprintf(fp, "scratch: %u\n", shader->scratch_size);
if (shader->constant_data_size)
fprintf(fp, "constants: %u\n", shader->constant_data_size);
for (unsigned i = 0; i < nir_num_variable_modes; i++) {
nir_variable_mode mode = BITFIELD_BIT(i);
if (mode == nir_var_function_temp)
continue;
if (mode == nir_var_shader_in || mode == nir_var_shader_out) {
for (unsigned j = 0; j < 128; j++) {
nir_variable *vars[NIR_MAX_VEC_COMPONENTS] = {0};
nir_foreach_variable_with_modes(var, shader, mode) {
if (var->data.location == j)
vars[var->data.location_frac] = var;
}
for (unsigned j = 0; j < ARRAY_SIZE(vars); j++)
if (vars[j]) {
print_var_decl(vars[j], &state);
}
}
} else {
nir_foreach_variable_with_modes(var, shader, mode)
print_var_decl(var, &state);
}
}
foreach_list_typed(nir_function, func, node, &shader->functions) {
print_function(func, &state);
}
destroy_print_state(&state);
}
void
nir_print_shader(nir_shader *shader, FILE *fp)
{
nir_print_shader_annotated(shader, fp, NULL);
fflush(fp);
}
char *
nir_shader_as_str_annotated(nir_shader *nir, struct hash_table *annotations, void *mem_ctx)
{
char *stream_data = NULL;
size_t stream_size = 0;
struct u_memstream mem;
if (u_memstream_open(&mem, &stream_data, &stream_size)) {
FILE *const stream = u_memstream_get(&mem);
nir_print_shader_annotated(nir, stream, annotations);
u_memstream_close(&mem);
}
char *str = ralloc_size(mem_ctx, stream_size + 1);
memcpy(str, stream_data, stream_size);
str[stream_size] = '\0';
free(stream_data);
return str;
}
char *
nir_shader_as_str(nir_shader *nir, void *mem_ctx)
{
return nir_shader_as_str_annotated(nir, NULL, mem_ctx);
}
void
nir_print_instr(const nir_instr *instr, FILE *fp)
{
print_state state = {
.fp = fp,
};
if (instr->block) {
nir_function_impl *impl = nir_cf_node_get_function(&instr->block->cf_node);
state.shader = impl->function->shader;
}
print_instr(instr, &state, 0);
}
char *
nir_instr_as_str(const nir_instr *instr, void *mem_ctx)
{
char *stream_data = NULL;
size_t stream_size = 0;
struct u_memstream mem;
if (u_memstream_open(&mem, &stream_data, &stream_size)) {
FILE *const stream = u_memstream_get(&mem);
nir_print_instr(instr, stream);
u_memstream_close(&mem);
}
char *str = ralloc_size(mem_ctx, stream_size + 1);
memcpy(str, stream_data, stream_size);
str[stream_size] = '\0';
free(stream_data);
return str;
}
void
nir_print_deref(const nir_deref_instr *deref, FILE *fp)
{
print_state state = {
.fp = fp,
};
print_deref_link(deref, true, &state);
}
void
nir_log_shader_annotated_tagged(enum mesa_log_level level, const char *tag,
nir_shader *shader, struct hash_table *annotations)
{
char *str = nir_shader_as_str_annotated(shader, annotations, NULL);
_mesa_log_multiline(level, tag, str);
ralloc_free(str);
}