mesa/src/amd/vulkan/radv_cmd_buffer.c

10237 lines
406 KiB
C

/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "radv_cs.h"
#include "radv_debug.h"
#include "radv_meta.h"
#include "radv_private.h"
#include "radv_radeon_winsys.h"
#include "radv_shader.h"
#include "sid.h"
#include "vk_format.h"
#include "vk_util.h"
#include "vk_enum_defines.h"
#include "vk_common_entrypoints.h"
#include "vk_render_pass.h"
#include "ac_debug.h"
#include "ac_shader_args.h"
#include "util/fast_idiv_by_const.h"
enum {
RADV_PREFETCH_VBO_DESCRIPTORS = (1 << 0),
RADV_PREFETCH_VS = (1 << 1),
RADV_PREFETCH_TCS = (1 << 2),
RADV_PREFETCH_TES = (1 << 3),
RADV_PREFETCH_GS = (1 << 4),
RADV_PREFETCH_PS = (1 << 5),
RADV_PREFETCH_MS = (1 << 6),
RADV_PREFETCH_SHADERS = (RADV_PREFETCH_VS | RADV_PREFETCH_TCS | RADV_PREFETCH_TES |
RADV_PREFETCH_GS | RADV_PREFETCH_PS | RADV_PREFETCH_MS)
};
static void radv_handle_image_transition(struct radv_cmd_buffer *cmd_buffer,
struct radv_image *image,
VkImageLayout src_layout, VkImageLayout dst_layout,
uint32_t src_family_index, uint32_t dst_family_index,
const VkImageSubresourceRange *range,
struct radv_sample_locations_state *sample_locs);
static void radv_set_rt_stack_size(struct radv_cmd_buffer *cmd_buffer, uint32_t size);
const struct radv_dynamic_state default_dynamic_state = {
.viewport =
{
.count = 0,
},
.scissor =
{
.count = 0,
},
.line_width = 1.0f,
.depth_bias =
{
.bias = 0.0f,
.clamp = 0.0f,
.slope = 0.0f,
},
.blend_constants = {0.0f, 0.0f, 0.0f, 0.0f},
.depth_bounds =
{
.min = 0.0f,
.max = 1.0f,
},
.stencil_compare_mask =
{
.front = ~0u,
.back = ~0u,
},
.stencil_write_mask =
{
.front = ~0u,
.back = ~0u,
},
.stencil_reference =
{
.front = 0u,
.back = 0u,
},
.line_stipple =
{
.factor = 0u,
.pattern = 0u,
},
.cull_mode = 0u,
.front_face = 0u,
.primitive_topology = 0u,
.fragment_shading_rate =
{
.size = {1u, 1u},
.combiner_ops = {VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR,
VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR},
},
.depth_bias_enable = 0u,
.primitive_restart_enable = 0u,
.rasterizer_discard_enable = 0u,
.logic_op = 0u,
.color_write_enable = 0u,
};
static void
radv_bind_dynamic_state(struct radv_cmd_buffer *cmd_buffer, const struct radv_dynamic_state *src)
{
struct radv_dynamic_state *dest = &cmd_buffer->state.dynamic;
uint64_t copy_mask = src->mask;
uint64_t dest_mask = 0;
dest->discard_rectangle.count = src->discard_rectangle.count;
dest->sample_location.count = src->sample_location.count;
if (copy_mask & RADV_DYNAMIC_VIEWPORT) {
if (dest->viewport.count != src->viewport.count) {
dest->viewport.count = src->viewport.count;
dest_mask |= RADV_DYNAMIC_VIEWPORT;
}
if (memcmp(&dest->viewport.viewports, &src->viewport.viewports,
src->viewport.count * sizeof(VkViewport))) {
typed_memcpy(dest->viewport.viewports, src->viewport.viewports, src->viewport.count);
typed_memcpy(dest->viewport.xform, src->viewport.xform, src->viewport.count);
dest_mask |= RADV_DYNAMIC_VIEWPORT;
}
}
if (copy_mask & RADV_DYNAMIC_SCISSOR) {
if (dest->scissor.count != src->scissor.count) {
dest->scissor.count = src->scissor.count;
dest_mask |= RADV_DYNAMIC_SCISSOR;
}
if (memcmp(&dest->scissor.scissors, &src->scissor.scissors,
src->scissor.count * sizeof(VkRect2D))) {
typed_memcpy(dest->scissor.scissors, src->scissor.scissors, src->scissor.count);
dest_mask |= RADV_DYNAMIC_SCISSOR;
}
}
if (copy_mask & RADV_DYNAMIC_BLEND_CONSTANTS) {
if (memcmp(&dest->blend_constants, &src->blend_constants, sizeof(src->blend_constants))) {
typed_memcpy(dest->blend_constants, src->blend_constants, 4);
dest_mask |= RADV_DYNAMIC_BLEND_CONSTANTS;
}
}
if (copy_mask & RADV_DYNAMIC_DISCARD_RECTANGLE) {
if (memcmp(&dest->discard_rectangle.rectangles, &src->discard_rectangle.rectangles,
src->discard_rectangle.count * sizeof(VkRect2D))) {
typed_memcpy(dest->discard_rectangle.rectangles, src->discard_rectangle.rectangles,
src->discard_rectangle.count);
dest_mask |= RADV_DYNAMIC_DISCARD_RECTANGLE;
}
}
if (copy_mask & RADV_DYNAMIC_SAMPLE_LOCATIONS) {
if (dest->sample_location.per_pixel != src->sample_location.per_pixel ||
dest->sample_location.grid_size.width != src->sample_location.grid_size.width ||
dest->sample_location.grid_size.height != src->sample_location.grid_size.height ||
memcmp(&dest->sample_location.locations, &src->sample_location.locations,
src->sample_location.count * sizeof(VkSampleLocationEXT))) {
dest->sample_location.per_pixel = src->sample_location.per_pixel;
dest->sample_location.grid_size = src->sample_location.grid_size;
typed_memcpy(dest->sample_location.locations, src->sample_location.locations,
src->sample_location.count);
dest_mask |= RADV_DYNAMIC_SAMPLE_LOCATIONS;
}
}
#define RADV_CMP_COPY(field, flag) \
if (copy_mask & flag) { \
if (dest->field != src->field) { \
dest->field = src->field; \
dest_mask |= flag; \
} \
}
RADV_CMP_COPY(line_width, RADV_DYNAMIC_LINE_WIDTH);
RADV_CMP_COPY(depth_bias.bias, RADV_DYNAMIC_DEPTH_BIAS);
RADV_CMP_COPY(depth_bias.clamp, RADV_DYNAMIC_DEPTH_BIAS);
RADV_CMP_COPY(depth_bias.slope, RADV_DYNAMIC_DEPTH_BIAS);
RADV_CMP_COPY(depth_bounds.min, RADV_DYNAMIC_DEPTH_BOUNDS);
RADV_CMP_COPY(depth_bounds.max, RADV_DYNAMIC_DEPTH_BOUNDS);
RADV_CMP_COPY(stencil_compare_mask.front, RADV_DYNAMIC_STENCIL_COMPARE_MASK);
RADV_CMP_COPY(stencil_compare_mask.back, RADV_DYNAMIC_STENCIL_COMPARE_MASK);
RADV_CMP_COPY(stencil_write_mask.front, RADV_DYNAMIC_STENCIL_WRITE_MASK);
RADV_CMP_COPY(stencil_write_mask.back, RADV_DYNAMIC_STENCIL_WRITE_MASK);
RADV_CMP_COPY(stencil_reference.front, RADV_DYNAMIC_STENCIL_REFERENCE);
RADV_CMP_COPY(stencil_reference.back, RADV_DYNAMIC_STENCIL_REFERENCE);
RADV_CMP_COPY(line_stipple.factor, RADV_DYNAMIC_LINE_STIPPLE);
RADV_CMP_COPY(line_stipple.pattern, RADV_DYNAMIC_LINE_STIPPLE);
RADV_CMP_COPY(cull_mode, RADV_DYNAMIC_CULL_MODE);
RADV_CMP_COPY(front_face, RADV_DYNAMIC_FRONT_FACE);
RADV_CMP_COPY(primitive_topology, RADV_DYNAMIC_PRIMITIVE_TOPOLOGY);
RADV_CMP_COPY(depth_test_enable, RADV_DYNAMIC_DEPTH_TEST_ENABLE);
RADV_CMP_COPY(depth_write_enable, RADV_DYNAMIC_DEPTH_WRITE_ENABLE);
RADV_CMP_COPY(depth_compare_op, RADV_DYNAMIC_DEPTH_COMPARE_OP);
RADV_CMP_COPY(depth_bounds_test_enable, RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE);
RADV_CMP_COPY(stencil_test_enable, RADV_DYNAMIC_STENCIL_TEST_ENABLE);
RADV_CMP_COPY(stencil_op.front.fail_op, RADV_DYNAMIC_STENCIL_OP);
RADV_CMP_COPY(stencil_op.front.pass_op, RADV_DYNAMIC_STENCIL_OP);
RADV_CMP_COPY(stencil_op.front.depth_fail_op, RADV_DYNAMIC_STENCIL_OP);
RADV_CMP_COPY(stencil_op.front.compare_op, RADV_DYNAMIC_STENCIL_OP);
RADV_CMP_COPY(stencil_op.back.fail_op, RADV_DYNAMIC_STENCIL_OP);
RADV_CMP_COPY(stencil_op.back.pass_op, RADV_DYNAMIC_STENCIL_OP);
RADV_CMP_COPY(stencil_op.back.depth_fail_op, RADV_DYNAMIC_STENCIL_OP);
RADV_CMP_COPY(stencil_op.back.compare_op, RADV_DYNAMIC_STENCIL_OP);
RADV_CMP_COPY(fragment_shading_rate.size.width, RADV_DYNAMIC_FRAGMENT_SHADING_RATE);
RADV_CMP_COPY(fragment_shading_rate.size.height, RADV_DYNAMIC_FRAGMENT_SHADING_RATE);
RADV_CMP_COPY(fragment_shading_rate.combiner_ops[0], RADV_DYNAMIC_FRAGMENT_SHADING_RATE);
RADV_CMP_COPY(fragment_shading_rate.combiner_ops[1], RADV_DYNAMIC_FRAGMENT_SHADING_RATE);
RADV_CMP_COPY(depth_bias_enable, RADV_DYNAMIC_DEPTH_BIAS_ENABLE);
RADV_CMP_COPY(primitive_restart_enable, RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE);
RADV_CMP_COPY(rasterizer_discard_enable, RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE);
RADV_CMP_COPY(logic_op, RADV_DYNAMIC_LOGIC_OP);
RADV_CMP_COPY(color_write_enable, RADV_DYNAMIC_COLOR_WRITE_ENABLE);
#undef RADV_CMP_COPY
cmd_buffer->state.dirty |= dest_mask;
}
bool
radv_cmd_buffer_uses_mec(struct radv_cmd_buffer *cmd_buffer)
{
return cmd_buffer->qf == RADV_QUEUE_COMPUTE &&
cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX7;
}
enum amd_ip_type
radv_queue_family_to_ring(struct radv_physical_device *physical_device,
enum radv_queue_family f)
{
switch (f) {
case RADV_QUEUE_GENERAL:
return AMD_IP_GFX;
case RADV_QUEUE_COMPUTE:
return AMD_IP_COMPUTE;
case RADV_QUEUE_TRANSFER:
return AMD_IP_SDMA;
default:
unreachable("Unknown queue family");
}
}
static void
radv_emit_write_data_packet(struct radv_cmd_buffer *cmd_buffer, unsigned engine_sel, uint64_t va,
unsigned count, const uint32_t *data)
{
struct radeon_cmdbuf *cs = cmd_buffer->cs;
radeon_check_space(cmd_buffer->device->ws, cs, 4 + count);
radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 2 + count, 0));
radeon_emit(cs, S_370_DST_SEL(V_370_MEM) | S_370_WR_CONFIRM(1) | S_370_ENGINE_SEL(engine_sel));
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit_array(cs, data, count);
}
static void
radv_emit_clear_data(struct radv_cmd_buffer *cmd_buffer, unsigned engine_sel, uint64_t va,
unsigned size)
{
uint32_t *zeroes = alloca(size);
memset(zeroes, 0, size);
radv_emit_write_data_packet(cmd_buffer, engine_sel, va, size / 4, zeroes);
}
static void
radv_destroy_cmd_buffer(struct vk_command_buffer *vk_cmd_buffer)
{
struct radv_cmd_buffer *cmd_buffer = container_of(vk_cmd_buffer, struct radv_cmd_buffer, vk);
list_for_each_entry_safe(struct radv_cmd_buffer_upload, up, &cmd_buffer->upload.list, list)
{
cmd_buffer->device->ws->buffer_destroy(cmd_buffer->device->ws, up->upload_bo);
list_del(&up->list);
free(up);
}
if (cmd_buffer->upload.upload_bo)
cmd_buffer->device->ws->buffer_destroy(cmd_buffer->device->ws, cmd_buffer->upload.upload_bo);
if (cmd_buffer->state.own_render_pass) {
radv_DestroyRenderPass(radv_device_to_handle(cmd_buffer->device),
radv_render_pass_to_handle(cmd_buffer->state.pass), NULL);
cmd_buffer->state.own_render_pass = false;
}
if (cmd_buffer->cs)
cmd_buffer->device->ws->cs_destroy(cmd_buffer->cs);
if (cmd_buffer->ace_internal.cs)
cmd_buffer->device->ws->cs_destroy(cmd_buffer->ace_internal.cs);
for (unsigned i = 0; i < MAX_BIND_POINTS; i++) {
struct radv_descriptor_set_header *set = &cmd_buffer->descriptors[i].push_set.set;
free(set->mapped_ptr);
if (set->layout)
vk_descriptor_set_layout_unref(&cmd_buffer->device->vk, &set->layout->vk);
vk_object_base_finish(&set->base);
}
vk_object_base_finish(&cmd_buffer->meta_push_descriptors.base);
vk_command_buffer_finish(&cmd_buffer->vk);
vk_free(&cmd_buffer->vk.pool->alloc, cmd_buffer);
}
static VkResult
radv_create_cmd_buffer(struct vk_command_pool *pool,
struct vk_command_buffer **cmd_buffer_out)
{
struct radv_device *device = container_of(pool->base.device, struct radv_device, vk);
struct radv_cmd_buffer *cmd_buffer;
unsigned ring;
cmd_buffer = vk_zalloc(&pool->alloc, sizeof(*cmd_buffer), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (cmd_buffer == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
VkResult result =
vk_command_buffer_init(pool, &cmd_buffer->vk, &radv_cmd_buffer_ops, 0);
if (result != VK_SUCCESS) {
vk_free(&cmd_buffer->vk.pool->alloc, cmd_buffer);
return result;
}
cmd_buffer->device = device;
cmd_buffer->qf = vk_queue_to_radv(device->physical_device, pool->queue_family_index);
ring = radv_queue_family_to_ring(device->physical_device, cmd_buffer->qf);
cmd_buffer->cs = device->ws->cs_create(device->ws, ring);
if (!cmd_buffer->cs) {
radv_destroy_cmd_buffer(&cmd_buffer->vk);
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
}
vk_object_base_init(&device->vk, &cmd_buffer->meta_push_descriptors.base,
VK_OBJECT_TYPE_DESCRIPTOR_SET);
for (unsigned i = 0; i < MAX_BIND_POINTS; i++)
vk_object_base_init(&device->vk, &cmd_buffer->descriptors[i].push_set.set.base,
VK_OBJECT_TYPE_DESCRIPTOR_SET);
*cmd_buffer_out = &cmd_buffer->vk;
list_inithead(&cmd_buffer->upload.list);
return VK_SUCCESS;
}
static void
radv_reset_cmd_buffer(struct vk_command_buffer *vk_cmd_buffer,
UNUSED VkCommandBufferResetFlags flags)
{
struct radv_cmd_buffer *cmd_buffer = container_of(vk_cmd_buffer, struct radv_cmd_buffer, vk);
vk_command_buffer_reset(&cmd_buffer->vk);
cmd_buffer->device->ws->cs_reset(cmd_buffer->cs);
if (cmd_buffer->ace_internal.cs)
cmd_buffer->device->ws->cs_reset(cmd_buffer->ace_internal.cs);
list_for_each_entry_safe(struct radv_cmd_buffer_upload, up, &cmd_buffer->upload.list, list)
{
cmd_buffer->device->ws->buffer_destroy(cmd_buffer->device->ws, up->upload_bo);
list_del(&up->list);
free(up);
}
if (cmd_buffer->state.own_render_pass) {
radv_DestroyRenderPass(radv_device_to_handle(cmd_buffer->device),
radv_render_pass_to_handle(cmd_buffer->state.pass), NULL);
cmd_buffer->state.own_render_pass = false;
}
cmd_buffer->push_constant_stages = 0;
cmd_buffer->scratch_size_per_wave_needed = 0;
cmd_buffer->scratch_waves_wanted = 0;
cmd_buffer->compute_scratch_size_per_wave_needed = 0;
cmd_buffer->compute_scratch_waves_wanted = 0;
cmd_buffer->esgs_ring_size_needed = 0;
cmd_buffer->gsvs_ring_size_needed = 0;
cmd_buffer->tess_rings_needed = false;
cmd_buffer->task_rings_needed = false;
cmd_buffer->mesh_scratch_ring_needed = false;
cmd_buffer->gds_needed = false;
cmd_buffer->gds_oa_needed = false;
cmd_buffer->sample_positions_needed = false;
cmd_buffer->ace_internal.sem.gfx2ace_value = 0;
cmd_buffer->ace_internal.sem.emitted_gfx2ace_value = 0;
cmd_buffer->ace_internal.sem.va = 0;
if (cmd_buffer->upload.upload_bo)
radv_cs_add_buffer(cmd_buffer->device->ws, cmd_buffer->cs, cmd_buffer->upload.upload_bo);
cmd_buffer->upload.offset = 0;
memset(cmd_buffer->vertex_binding_buffers, 0, sizeof(struct radv_buffer *) * cmd_buffer->used_vertex_bindings);
cmd_buffer->used_vertex_bindings = 0;
for (unsigned i = 0; i < MAX_BIND_POINTS; i++) {
cmd_buffer->descriptors[i].dirty = 0;
cmd_buffer->descriptors[i].valid = 0;
cmd_buffer->descriptors[i].push_dirty = false;
}
if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX7) {
uint32_t pred_value = 0;
uint32_t pred_offset;
if (!radv_cmd_buffer_upload_data(cmd_buffer, 4, &pred_value, &pred_offset))
vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
cmd_buffer->mec_inv_pred_emitted = false;
cmd_buffer->mec_inv_pred_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + pred_offset;
}
if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX9 &&
cmd_buffer->qf == RADV_QUEUE_GENERAL) {
unsigned num_db = cmd_buffer->device->physical_device->rad_info.max_render_backends;
unsigned fence_offset, eop_bug_offset;
void *fence_ptr;
radv_cmd_buffer_upload_alloc(cmd_buffer, 8, &fence_offset, &fence_ptr);
memset(fence_ptr, 0, 8);
cmd_buffer->gfx9_fence_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
cmd_buffer->gfx9_fence_va += fence_offset;
radv_emit_clear_data(cmd_buffer, V_370_PFP, cmd_buffer->gfx9_fence_va, 8);
if (cmd_buffer->device->physical_device->rad_info.gfx_level == GFX9) {
/* Allocate a buffer for the EOP bug on GFX9. */
radv_cmd_buffer_upload_alloc(cmd_buffer, 16 * num_db, &eop_bug_offset, &fence_ptr);
memset(fence_ptr, 0, 16 * num_db);
cmd_buffer->gfx9_eop_bug_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
cmd_buffer->gfx9_eop_bug_va += eop_bug_offset;
radv_emit_clear_data(cmd_buffer, V_370_PFP, cmd_buffer->gfx9_eop_bug_va, 16 * num_db);
}
}
cmd_buffer->status = RADV_CMD_BUFFER_STATUS_INITIAL;
}
const struct vk_command_buffer_ops radv_cmd_buffer_ops = {
.create = radv_create_cmd_buffer,
.reset = radv_reset_cmd_buffer,
.destroy = radv_destroy_cmd_buffer,
};
static bool
radv_cmd_buffer_resize_upload_buf(struct radv_cmd_buffer *cmd_buffer, uint64_t min_needed)
{
uint64_t new_size;
struct radeon_winsys_bo *bo = NULL;
struct radv_cmd_buffer_upload *upload;
struct radv_device *device = cmd_buffer->device;
new_size = MAX2(min_needed, 16 * 1024);
new_size = MAX2(new_size, 2 * cmd_buffer->upload.size);
VkResult result =
device->ws->buffer_create(device->ws, new_size, 4096, device->ws->cs_domain(device->ws),
RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING |
RADEON_FLAG_32BIT | RADEON_FLAG_GTT_WC,
RADV_BO_PRIORITY_UPLOAD_BUFFER, 0, &bo);
if (result != VK_SUCCESS) {
vk_command_buffer_set_error(&cmd_buffer->vk, result);
return false;
}
radv_cs_add_buffer(device->ws, cmd_buffer->cs, bo);
if (cmd_buffer->upload.upload_bo) {
upload = malloc(sizeof(*upload));
if (!upload) {
vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
device->ws->buffer_destroy(device->ws, bo);
return false;
}
memcpy(upload, &cmd_buffer->upload, sizeof(*upload));
list_add(&upload->list, &cmd_buffer->upload.list);
}
cmd_buffer->upload.upload_bo = bo;
cmd_buffer->upload.size = new_size;
cmd_buffer->upload.offset = 0;
cmd_buffer->upload.map = device->ws->buffer_map(cmd_buffer->upload.upload_bo);
if (!cmd_buffer->upload.map) {
vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_DEVICE_MEMORY);
return false;
}
return true;
}
bool
radv_cmd_buffer_upload_alloc(struct radv_cmd_buffer *cmd_buffer, unsigned size,
unsigned *out_offset, void **ptr)
{
assert(size % 4 == 0);
struct radeon_info *rad_info = &cmd_buffer->device->physical_device->rad_info;
/* Align to the scalar cache line size if it results in this allocation
* being placed in less of them.
*/
unsigned offset = cmd_buffer->upload.offset;
unsigned line_size = rad_info->gfx_level >= GFX10 ? 64 : 32;
unsigned gap = align(offset, line_size) - offset;
if ((size & (line_size - 1)) > gap)
offset = align(offset, line_size);
if (offset + size > cmd_buffer->upload.size) {
if (!radv_cmd_buffer_resize_upload_buf(cmd_buffer, size))
return false;
offset = 0;
}
*out_offset = offset;
*ptr = cmd_buffer->upload.map + offset;
cmd_buffer->upload.offset = offset + size;
return true;
}
bool
radv_cmd_buffer_upload_data(struct radv_cmd_buffer *cmd_buffer, unsigned size, const void *data,
unsigned *out_offset)
{
uint8_t *ptr;
if (!radv_cmd_buffer_upload_alloc(cmd_buffer, size, out_offset, (void **)&ptr))
return false;
assert(ptr);
memcpy(ptr, data, size);
return true;
}
void
radv_cmd_buffer_trace_emit(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_device *device = cmd_buffer->device;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
uint64_t va;
va = radv_buffer_get_va(device->trace_bo);
if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY)
va += 4;
++cmd_buffer->state.trace_id;
radv_emit_write_data_packet(cmd_buffer, V_370_ME, va, 1, &cmd_buffer->state.trace_id);
radeon_check_space(cmd_buffer->device->ws, cs, 2);
radeon_emit(cs, PKT3(PKT3_NOP, 0, 0));
radeon_emit(cs, AC_ENCODE_TRACE_POINT(cmd_buffer->state.trace_id));
}
static void
radv_ace_internal_barrier(struct radv_cmd_buffer *cmd_buffer, VkPipelineStageFlags2 src_stage_mask,
VkPipelineStageFlags2 dst_stage_mask)
{
/* Update flush bits from the main cmdbuf, except the stage flush. */
cmd_buffer->ace_internal.flush_bits |=
cmd_buffer->state.flush_bits & RADV_CMD_FLUSH_ALL_COMPUTE & ~RADV_CMD_FLAG_CS_PARTIAL_FLUSH;
/* Add stage flush only when necessary. */
if (src_stage_mask &
(VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_NV | VK_PIPELINE_STAGE_2_TRANSFER_BIT |
VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT | VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT))
cmd_buffer->ace_internal.flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH;
/* Block task shaders when we have to wait for CP DMA on the GFX cmdbuf. */
if (src_stage_mask &
(VK_PIPELINE_STAGE_2_COPY_BIT | VK_PIPELINE_STAGE_2_CLEAR_BIT |
VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT | VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT |
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT))
dst_stage_mask |= cmd_buffer->state.dma_is_busy ? VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_NV : 0;
/* Increment the GFX/ACE semaphore when task shaders are blocked. */
if (dst_stage_mask &
(VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT_KHR | VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT |
VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_NV))
cmd_buffer->ace_internal.sem.gfx2ace_value++;
}
static void
radv_ace_internal_cache_flush(struct radv_cmd_buffer *cmd_buffer)
{
struct radeon_cmdbuf *ace_cs = cmd_buffer->ace_internal.cs;
const uint32_t flush_bits = cmd_buffer->ace_internal.flush_bits;
enum rgp_flush_bits sqtt_flush_bits = 0;
si_cs_emit_cache_flush(ace_cs, cmd_buffer->device->physical_device->rad_info.gfx_level, NULL, 0,
true, flush_bits, &sqtt_flush_bits, 0);
cmd_buffer->ace_internal.flush_bits = 0;
}
static uint64_t
radv_ace_internal_sem_create(struct radv_cmd_buffer *cmd_buffer)
{
/* DWORD 0: GFX->ACE semaphore (GFX blocks ACE, ie. ACE waits for GFX)
* DWORD 1: ACE->GFX semaphore
*/
uint64_t sem_init = 0;
uint32_t va_off = 0;
if (!radv_cmd_buffer_upload_data(cmd_buffer, sizeof(uint64_t), &sem_init, &va_off)) {
vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
return 0;
}
return radv_buffer_get_va(cmd_buffer->upload.upload_bo) + va_off;
}
static bool
radv_ace_internal_sem_dirty(const struct radv_cmd_buffer *cmd_buffer)
{
return cmd_buffer->ace_internal.sem.gfx2ace_value !=
cmd_buffer->ace_internal.sem.emitted_gfx2ace_value;
}
ALWAYS_INLINE static bool
radv_flush_gfx2ace_semaphore(struct radv_cmd_buffer *cmd_buffer)
{
if (!radv_ace_internal_sem_dirty(cmd_buffer))
return false;
if (!cmd_buffer->ace_internal.sem.va) {
cmd_buffer->ace_internal.sem.va = radv_ace_internal_sem_create(cmd_buffer);
if (!cmd_buffer->ace_internal.sem.va)
return false;
}
/* GFX writes a value to the semaphore which ACE can wait for.*/
si_cs_emit_write_event_eop(
cmd_buffer->cs, cmd_buffer->device->physical_device->rad_info.gfx_level,
radv_cmd_buffer_uses_mec(cmd_buffer), V_028A90_BOTTOM_OF_PIPE_TS, 0, EOP_DST_SEL_MEM,
EOP_DATA_SEL_VALUE_32BIT, cmd_buffer->ace_internal.sem.va,
cmd_buffer->ace_internal.sem.gfx2ace_value, cmd_buffer->gfx9_eop_bug_va);
cmd_buffer->ace_internal.sem.emitted_gfx2ace_value = cmd_buffer->ace_internal.sem.gfx2ace_value;
return true;
}
ALWAYS_INLINE static void
radv_wait_gfx2ace_semaphore(struct radv_cmd_buffer *cmd_buffer)
{
assert(cmd_buffer->ace_internal.sem.va);
struct radeon_cmdbuf *ace_cs = cmd_buffer->ace_internal.cs;
radeon_check_space(cmd_buffer->device->ws, ace_cs, 7);
/* ACE waits for the semaphore which GFX wrote. */
radv_cp_wait_mem(ace_cs, WAIT_REG_MEM_GREATER_OR_EQUAL, cmd_buffer->ace_internal.sem.va,
cmd_buffer->ace_internal.sem.gfx2ace_value, 0xffffffff);
}
static struct radeon_cmdbuf *
radv_ace_internal_create(struct radv_cmd_buffer *cmd_buffer)
{
assert(!cmd_buffer->ace_internal.cs);
struct radv_device *device = cmd_buffer->device;
struct radeon_cmdbuf *ace_cs = device->ws->cs_create(device->ws, AMD_IP_COMPUTE);
if (!ace_cs)
vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
return ace_cs;
}
static VkResult
radv_ace_internal_finalize(struct radv_cmd_buffer *cmd_buffer)
{
assert(cmd_buffer->ace_internal.cs);
struct radv_device *device = cmd_buffer->device;
struct radeon_cmdbuf *ace_cs = cmd_buffer->ace_internal.cs;
/* Emit pending cache flush. */
radv_ace_internal_cache_flush(cmd_buffer);
/* Clear the ACE semaphore if it exists.
* This is necessary in case the same cmd buffer is submitted again in the future.
*/
if (cmd_buffer->ace_internal.sem.va) {
struct radeon_cmdbuf *main_cs = cmd_buffer->cs;
uint64_t gfx2ace_va = cmd_buffer->ace_internal.sem.va;
uint64_t ace2gfx_va = cmd_buffer->ace_internal.sem.va + 4;
/* ACE: write 1 to the ACE->GFX semaphore. */
si_cs_emit_write_event_eop(ace_cs, cmd_buffer->device->physical_device->rad_info.gfx_level,
true, V_028A90_BOTTOM_OF_PIPE_TS, 0, EOP_DST_SEL_MEM,
EOP_DATA_SEL_VALUE_32BIT, ace2gfx_va, 1,
cmd_buffer->gfx9_eop_bug_va);
/* Wait for ACE to finish, otherwise we may risk writing 0 to the semaphore
* when ACE is still waiting for it. This may not happen in practice, but
* better safe than sorry.
*/
radv_cp_wait_mem(main_cs, WAIT_REG_MEM_GREATER_OR_EQUAL, ace2gfx_va, 1, 0xffffffff);
/* GFX: clear GFX->ACE and ACE->GFX semaphores. */
radv_emit_clear_data(cmd_buffer, V_370_ME, gfx2ace_va, 8);
}
device->ws->cs_add_buffers(ace_cs, cmd_buffer->cs);
return device->ws->cs_finalize(ace_cs);
}
static void
radv_cmd_buffer_after_draw(struct radv_cmd_buffer *cmd_buffer, enum radv_cmd_flush_bits flags)
{
if (unlikely(cmd_buffer->device->thread_trace.bo)) {
radeon_emit(cmd_buffer->cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cmd_buffer->cs, EVENT_TYPE(V_028A90_THREAD_TRACE_MARKER) | EVENT_INDEX(0));
}
if (cmd_buffer->device->instance->debug_flags & RADV_DEBUG_SYNC_SHADERS) {
enum rgp_flush_bits sqtt_flush_bits = 0;
assert(flags & (RADV_CMD_FLAG_PS_PARTIAL_FLUSH | RADV_CMD_FLAG_CS_PARTIAL_FLUSH));
radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, 4);
/* Force wait for graphics or compute engines to be idle. */
si_cs_emit_cache_flush(cmd_buffer->cs,
cmd_buffer->device->physical_device->rad_info.gfx_level,
&cmd_buffer->gfx9_fence_idx, cmd_buffer->gfx9_fence_va,
radv_cmd_buffer_uses_mec(cmd_buffer), flags, &sqtt_flush_bits,
cmd_buffer->gfx9_eop_bug_va);
if (cmd_buffer->state.graphics_pipeline && (flags & RADV_CMD_FLAG_PS_PARTIAL_FLUSH) &&
radv_pipeline_has_stage(cmd_buffer->state.graphics_pipeline, MESA_SHADER_TASK)) {
/* Force wait for compute engines to be idle on the internal cmdbuf. */
si_cs_emit_cache_flush(cmd_buffer->ace_internal.cs,
cmd_buffer->device->physical_device->rad_info.gfx_level, NULL, 0,
true, RADV_CMD_FLAG_CS_PARTIAL_FLUSH, &sqtt_flush_bits, 0);
}
}
if (unlikely(cmd_buffer->device->trace_bo))
radv_cmd_buffer_trace_emit(cmd_buffer);
}
static void
radv_save_pipeline(struct radv_cmd_buffer *cmd_buffer, struct radv_pipeline *pipeline)
{
struct radv_device *device = cmd_buffer->device;
enum amd_ip_type ring;
uint32_t data[2];
uint64_t va;
va = radv_buffer_get_va(device->trace_bo);
ring = radv_queue_family_to_ring(device->physical_device, cmd_buffer->qf);
switch (ring) {
case AMD_IP_GFX:
va += 8;
break;
case AMD_IP_COMPUTE:
va += 16;
break;
default:
assert(!"invalid IP type");
}
uint64_t pipeline_address = (uintptr_t)pipeline;
data[0] = pipeline_address;
data[1] = pipeline_address >> 32;
radv_emit_write_data_packet(cmd_buffer, V_370_ME, va, 2, data);
}
static void
radv_save_vertex_descriptors(struct radv_cmd_buffer *cmd_buffer, uint64_t vb_ptr)
{
struct radv_device *device = cmd_buffer->device;
uint32_t data[2];
uint64_t va;
va = radv_buffer_get_va(device->trace_bo);
va += 24;
data[0] = vb_ptr;
data[1] = vb_ptr >> 32;
radv_emit_write_data_packet(cmd_buffer, V_370_ME, va, 2, data);
}
static void
radv_save_vs_prolog(struct radv_cmd_buffer *cmd_buffer, const struct radv_shader_part *prolog)
{
struct radv_device *device = cmd_buffer->device;
uint32_t data[2];
uint64_t va;
va = radv_buffer_get_va(device->trace_bo);
va += 32;
uint64_t prolog_address = (uintptr_t)prolog;
data[0] = prolog_address;
data[1] = prolog_address >> 32;
radv_emit_write_data_packet(cmd_buffer, V_370_ME, va, 2, data);
}
void
radv_set_descriptor_set(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point,
struct radv_descriptor_set *set, unsigned idx)
{
struct radv_descriptor_state *descriptors_state =
radv_get_descriptors_state(cmd_buffer, bind_point);
descriptors_state->sets[idx] = set;
descriptors_state->valid |= (1u << idx); /* active descriptors */
descriptors_state->dirty |= (1u << idx);
}
static void
radv_save_descriptors(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point)
{
struct radv_descriptor_state *descriptors_state =
radv_get_descriptors_state(cmd_buffer, bind_point);
struct radv_device *device = cmd_buffer->device;
uint32_t data[MAX_SETS * 2] = {0};
uint64_t va;
va = radv_buffer_get_va(device->trace_bo) + 40;
u_foreach_bit(i, descriptors_state->valid)
{
struct radv_descriptor_set *set = descriptors_state->sets[i];
data[i * 2] = (uint64_t)(uintptr_t)set;
data[i * 2 + 1] = (uint64_t)(uintptr_t)set >> 32;
}
radv_emit_write_data_packet(cmd_buffer, V_370_ME, va, MAX_SETS * 2, data);
}
struct radv_userdata_info *
radv_lookup_user_sgpr(struct radv_pipeline *pipeline, gl_shader_stage stage, int idx)
{
struct radv_shader *shader = radv_get_shader(pipeline, stage);
return &shader->info.user_sgprs_locs.shader_data[idx];
}
static void
radv_emit_userdata_address(struct radv_device *device, struct radeon_cmdbuf *cs,
struct radv_pipeline *pipeline, gl_shader_stage stage, int idx,
uint64_t va)
{
struct radv_userdata_info *loc = radv_lookup_user_sgpr(pipeline, stage, idx);
uint32_t base_reg = pipeline->user_data_0[stage];
if (loc->sgpr_idx == -1)
return;
assert(loc->num_sgprs == 1);
radv_emit_shader_pointer(device, cs, base_reg + loc->sgpr_idx * 4, va, false);
}
static void
radv_emit_descriptor_pointers(struct radv_device *device, struct radeon_cmdbuf *cs,
struct radv_pipeline *pipeline,
struct radv_descriptor_state *descriptors_state,
gl_shader_stage stage)
{
uint32_t sh_base = pipeline->user_data_0[stage];
struct radv_userdata_locations *locs = &pipeline->shaders[stage]->info.user_sgprs_locs;
unsigned mask = locs->descriptor_sets_enabled;
mask &= descriptors_state->dirty & descriptors_state->valid;
while (mask) {
int start, count;
u_bit_scan_consecutive_range(&mask, &start, &count);
struct radv_userdata_info *loc = &locs->descriptor_sets[start];
unsigned sh_offset = sh_base + loc->sgpr_idx * 4;
radv_emit_shader_pointer_head(cs, sh_offset, count, true);
for (int i = 0; i < count; i++) {
struct radv_descriptor_set *set = descriptors_state->sets[start + i];
radv_emit_shader_pointer_body(device, cs, set->header.va, true);
}
}
}
/**
* Convert the user sample locations to hardware sample locations (the values
* that will be emitted by PA_SC_AA_SAMPLE_LOCS_PIXEL_*).
*/
static void
radv_convert_user_sample_locs(struct radv_sample_locations_state *state, uint32_t x, uint32_t y,
VkOffset2D *sample_locs)
{
uint32_t x_offset = x % state->grid_size.width;
uint32_t y_offset = y % state->grid_size.height;
uint32_t num_samples = (uint32_t)state->per_pixel;
VkSampleLocationEXT *user_locs;
uint32_t pixel_offset;
pixel_offset = (x_offset + y_offset * state->grid_size.width) * num_samples;
assert(pixel_offset <= MAX_SAMPLE_LOCATIONS);
user_locs = &state->locations[pixel_offset];
for (uint32_t i = 0; i < num_samples; i++) {
float shifted_pos_x = user_locs[i].x - 0.5;
float shifted_pos_y = user_locs[i].y - 0.5;
int32_t scaled_pos_x = floorf(shifted_pos_x * 16);
int32_t scaled_pos_y = floorf(shifted_pos_y * 16);
sample_locs[i].x = CLAMP(scaled_pos_x, -8, 7);
sample_locs[i].y = CLAMP(scaled_pos_y, -8, 7);
}
}
/**
* Compute the PA_SC_AA_SAMPLE_LOCS_PIXEL_* mask based on hardware sample
* locations.
*/
static void
radv_compute_sample_locs_pixel(uint32_t num_samples, VkOffset2D *sample_locs,
uint32_t *sample_locs_pixel)
{
for (uint32_t i = 0; i < num_samples; i++) {
uint32_t sample_reg_idx = i / 4;
uint32_t sample_loc_idx = i % 4;
int32_t pos_x = sample_locs[i].x;
int32_t pos_y = sample_locs[i].y;
uint32_t shift_x = 8 * sample_loc_idx;
uint32_t shift_y = shift_x + 4;
sample_locs_pixel[sample_reg_idx] |= (pos_x & 0xf) << shift_x;
sample_locs_pixel[sample_reg_idx] |= (pos_y & 0xf) << shift_y;
}
}
/**
* Compute the PA_SC_CENTROID_PRIORITY_* mask based on the top left hardware
* sample locations.
*/
static uint64_t
radv_compute_centroid_priority(struct radv_cmd_buffer *cmd_buffer, VkOffset2D *sample_locs,
uint32_t num_samples)
{
uint32_t *centroid_priorities = alloca(num_samples * sizeof(*centroid_priorities));
uint32_t sample_mask = num_samples - 1;
uint32_t *distances = alloca(num_samples * sizeof(*distances));
uint64_t centroid_priority = 0;
/* Compute the distances from center for each sample. */
for (int i = 0; i < num_samples; i++) {
distances[i] = (sample_locs[i].x * sample_locs[i].x) + (sample_locs[i].y * sample_locs[i].y);
}
/* Compute the centroid priorities by looking at the distances array. */
for (int i = 0; i < num_samples; i++) {
uint32_t min_idx = 0;
for (int j = 1; j < num_samples; j++) {
if (distances[j] < distances[min_idx])
min_idx = j;
}
centroid_priorities[i] = min_idx;
distances[min_idx] = 0xffffffff;
}
/* Compute the final centroid priority. */
for (int i = 0; i < 8; i++) {
centroid_priority |= centroid_priorities[i & sample_mask] << (i * 4);
}
return centroid_priority << 32 | centroid_priority;
}
/**
* Emit the sample locations that are specified with VK_EXT_sample_locations.
*/
static void
radv_emit_sample_locations(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_sample_locations_state *sample_location = &cmd_buffer->state.dynamic.sample_location;
struct radv_graphics_pipeline *pipeline = cmd_buffer->state.graphics_pipeline;
uint32_t num_samples = (uint32_t)sample_location->per_pixel;
unsigned pa_sc_aa_config = pipeline->ms.pa_sc_aa_config;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
uint32_t sample_locs_pixel[4][2] = {0};
VkOffset2D sample_locs[4][8]; /* 8 is the max. sample count supported */
uint32_t max_sample_dist = 0;
uint64_t centroid_priority;
if (!cmd_buffer->state.dynamic.sample_location.count)
return;
/* Convert the user sample locations to hardware sample locations. */
radv_convert_user_sample_locs(sample_location, 0, 0, sample_locs[0]);
radv_convert_user_sample_locs(sample_location, 1, 0, sample_locs[1]);
radv_convert_user_sample_locs(sample_location, 0, 1, sample_locs[2]);
radv_convert_user_sample_locs(sample_location, 1, 1, sample_locs[3]);
/* Compute the PA_SC_AA_SAMPLE_LOCS_PIXEL_* mask. */
for (uint32_t i = 0; i < 4; i++) {
radv_compute_sample_locs_pixel(num_samples, sample_locs[i], sample_locs_pixel[i]);
}
/* Compute the PA_SC_CENTROID_PRIORITY_* mask. */
centroid_priority = radv_compute_centroid_priority(cmd_buffer, sample_locs[0], num_samples);
/* Compute the maximum sample distance from the specified locations. */
for (unsigned i = 0; i < 4; ++i) {
for (uint32_t j = 0; j < num_samples; j++) {
VkOffset2D offset = sample_locs[i][j];
max_sample_dist = MAX2(max_sample_dist, MAX2(abs(offset.x), abs(offset.y)));
}
}
/* Emit the specified user sample locations. */
switch (num_samples) {
case 2:
case 4:
radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0,
sample_locs_pixel[0][0]);
radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0,
sample_locs_pixel[1][0]);
radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0,
sample_locs_pixel[2][0]);
radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0,
sample_locs_pixel[3][0]);
break;
case 8:
radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0,
sample_locs_pixel[0][0]);
radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0,
sample_locs_pixel[1][0]);
radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0,
sample_locs_pixel[2][0]);
radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0,
sample_locs_pixel[3][0]);
radeon_set_context_reg(cs, R_028BFC_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_1,
sample_locs_pixel[0][1]);
radeon_set_context_reg(cs, R_028C0C_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_1,
sample_locs_pixel[1][1]);
radeon_set_context_reg(cs, R_028C1C_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_1,
sample_locs_pixel[2][1]);
radeon_set_context_reg(cs, R_028C2C_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_1,
sample_locs_pixel[3][1]);
break;
default:
unreachable("invalid number of samples");
}
/* Emit the maximum sample distance and the centroid priority. */
pa_sc_aa_config &= C_028BE0_MAX_SAMPLE_DIST;
pa_sc_aa_config |= S_028BE0_MAX_SAMPLE_DIST(max_sample_dist);
radeon_set_context_reg(cs, R_028BE0_PA_SC_AA_CONFIG, pa_sc_aa_config);
radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2);
radeon_emit(cs, centroid_priority);
radeon_emit(cs, centroid_priority >> 32);
cmd_buffer->state.context_roll_without_scissor_emitted = true;
}
static void
radv_emit_inline_push_consts(struct radv_device *device, struct radeon_cmdbuf *cs,
struct radv_pipeline *pipeline, gl_shader_stage stage, int idx,
uint32_t *values)
{
struct radv_userdata_info *loc = radv_lookup_user_sgpr(pipeline, stage, idx);
uint32_t base_reg = pipeline->user_data_0[stage];
if (loc->sgpr_idx == -1)
return;
radeon_check_space(device->ws, cs, 2 + loc->num_sgprs);
radeon_set_sh_reg_seq(cs, base_reg + loc->sgpr_idx * 4, loc->num_sgprs);
radeon_emit_array(cs, values, loc->num_sgprs);
}
static void
radv_update_multisample_state(struct radv_cmd_buffer *cmd_buffer,
struct radv_graphics_pipeline *pipeline)
{
int num_samples = pipeline->ms.num_samples;
struct radv_graphics_pipeline *old_pipeline = cmd_buffer->state.emitted_graphics_pipeline;
if (pipeline->base.shaders[MESA_SHADER_FRAGMENT]->info.ps.needs_sample_positions)
cmd_buffer->sample_positions_needed = true;
if (old_pipeline && num_samples == old_pipeline->ms.num_samples)
return;
radv_emit_default_sample_locations(cmd_buffer->cs, num_samples);
cmd_buffer->state.context_roll_without_scissor_emitted = true;
}
static void
radv_update_binning_state(struct radv_cmd_buffer *cmd_buffer,
struct radv_graphics_pipeline *pipeline)
{
const struct radv_graphics_pipeline *old_pipeline = cmd_buffer->state.emitted_graphics_pipeline;
if (pipeline->base.device->physical_device->rad_info.gfx_level < GFX9)
return;
if (old_pipeline &&
old_pipeline->binning.pa_sc_binner_cntl_0 ==
pipeline->binning.pa_sc_binner_cntl_0)
return;
bool binning_flush = false;
if (cmd_buffer->device->physical_device->rad_info.family == CHIP_VEGA12 ||
cmd_buffer->device->physical_device->rad_info.family == CHIP_VEGA20 ||
cmd_buffer->device->physical_device->rad_info.family == CHIP_RAVEN2 ||
cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX10) {
binning_flush = !old_pipeline ||
G_028C44_BINNING_MODE(old_pipeline->binning.pa_sc_binner_cntl_0) !=
G_028C44_BINNING_MODE(pipeline->binning.pa_sc_binner_cntl_0);
}
radeon_set_context_reg(cmd_buffer->cs, R_028C44_PA_SC_BINNER_CNTL_0,
pipeline->binning.pa_sc_binner_cntl_0 |
S_028C44_FLUSH_ON_BINNING_TRANSITION(!!binning_flush));
cmd_buffer->state.context_roll_without_scissor_emitted = true;
}
static void
radv_emit_shader_prefetch(struct radv_cmd_buffer *cmd_buffer, struct radv_shader *shader)
{
uint64_t va;
if (!shader)
return;
va = radv_shader_get_va(shader);
si_cp_dma_prefetch(cmd_buffer, va, shader->code_size);
}
static void
radv_emit_prefetch_L2(struct radv_cmd_buffer *cmd_buffer,
struct radv_graphics_pipeline *pipeline, bool first_stage_only)
{
struct radv_cmd_state *state = &cmd_buffer->state;
uint32_t mask = state->prefetch_L2_mask;
/* Fast prefetch path for starting draws as soon as possible. */
if (first_stage_only)
mask &= RADV_PREFETCH_VS | RADV_PREFETCH_VBO_DESCRIPTORS | RADV_PREFETCH_MS;
if (mask & RADV_PREFETCH_VS)
radv_emit_shader_prefetch(cmd_buffer, pipeline->base.shaders[MESA_SHADER_VERTEX]);
if (mask & RADV_PREFETCH_MS)
radv_emit_shader_prefetch(cmd_buffer, pipeline->base.shaders[MESA_SHADER_MESH]);
if (mask & RADV_PREFETCH_VBO_DESCRIPTORS)
si_cp_dma_prefetch(cmd_buffer, state->vb_va, pipeline->vb_desc_alloc_size);
if (mask & RADV_PREFETCH_TCS)
radv_emit_shader_prefetch(cmd_buffer, pipeline->base.shaders[MESA_SHADER_TESS_CTRL]);
if (mask & RADV_PREFETCH_TES)
radv_emit_shader_prefetch(cmd_buffer, pipeline->base.shaders[MESA_SHADER_TESS_EVAL]);
if (mask & RADV_PREFETCH_GS) {
radv_emit_shader_prefetch(cmd_buffer, pipeline->base.shaders[MESA_SHADER_GEOMETRY]);
if (radv_pipeline_has_gs_copy_shader(&pipeline->base))
radv_emit_shader_prefetch(cmd_buffer, pipeline->base.gs_copy_shader);
}
if (mask & RADV_PREFETCH_PS) {
radv_emit_shader_prefetch(cmd_buffer, pipeline->base.shaders[MESA_SHADER_FRAGMENT]);
if (pipeline->ps_epilog) {
struct radv_shader_part *ps_epilog = pipeline->ps_epilog;
uint64_t va = radv_buffer_get_va(ps_epilog->bo) + ps_epilog->alloc->offset;
si_cp_dma_prefetch(cmd_buffer, va, ps_epilog->code_size);
}
}
state->prefetch_L2_mask &= ~mask;
}
static void
radv_emit_rbplus_state(struct radv_cmd_buffer *cmd_buffer)
{
if (!cmd_buffer->device->physical_device->rad_info.rbplus_allowed)
return;
struct radv_graphics_pipeline *pipeline = cmd_buffer->state.graphics_pipeline;
const struct radv_subpass *subpass = cmd_buffer->state.subpass;
unsigned sx_ps_downconvert = 0;
unsigned sx_blend_opt_epsilon = 0;
unsigned sx_blend_opt_control = 0;
for (unsigned i = 0; i < subpass->color_count; ++i) {
unsigned format, swap;
bool has_alpha, has_rgb;
if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED) {
/* We don't set the DISABLE bits, because the HW can't have holes,
* so the SPI color format is set to 32-bit 1-component. */
sx_ps_downconvert |= V_028754_SX_RT_EXPORT_32_R << (i * 4);
continue;
}
int idx = subpass->color_attachments[i].attachment;
if (cmd_buffer->state.attachments) {
struct radv_color_buffer_info *cb = &cmd_buffer->state.attachments[idx].cb;
format = cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX11
? G_028C70_FORMAT_GFX11(cb->cb_color_info)
: G_028C70_FORMAT_GFX6(cb->cb_color_info);
swap = G_028C70_COMP_SWAP(cb->cb_color_info);
has_alpha = cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX11
? !G_028C74_FORCE_DST_ALPHA_1_GFX11(cb->cb_color_attrib)
: !G_028C74_FORCE_DST_ALPHA_1_GFX6(cb->cb_color_attrib);
} else {
VkFormat fmt = cmd_buffer->state.pass->attachments[idx].format;
format = radv_translate_colorformat(fmt);
swap = radv_translate_colorswap(fmt, false);
has_alpha = vk_format_description(fmt)->swizzle[3] != PIPE_SWIZZLE_1;
}
uint32_t spi_format = (pipeline->col_format >> (i * 4)) & 0xf;
uint32_t colormask = (pipeline->cb_target_mask >> (i * 4)) & 0xf;
if (format == V_028C70_COLOR_8 || format == V_028C70_COLOR_16 || format == V_028C70_COLOR_32)
has_rgb = !has_alpha;
else
has_rgb = true;
/* Check the colormask and export format. */
if (!(colormask & 0x7))
has_rgb = false;
if (!(colormask & 0x8))
has_alpha = false;
if (spi_format == V_028714_SPI_SHADER_ZERO) {
has_rgb = false;
has_alpha = false;
}
/* The HW doesn't quite blend correctly with rgb9e5 if we disable the alpha
* optimization, even though it has no alpha. */
if (has_rgb && format == V_028C70_COLOR_5_9_9_9)
has_alpha = true;
/* Disable value checking for disabled channels. */
if (!has_rgb)
sx_blend_opt_control |= S_02875C_MRT0_COLOR_OPT_DISABLE(1) << (i * 4);
if (!has_alpha)
sx_blend_opt_control |= S_02875C_MRT0_ALPHA_OPT_DISABLE(1) << (i * 4);
/* Enable down-conversion for 32bpp and smaller formats. */
switch (format) {
case V_028C70_COLOR_8:
case V_028C70_COLOR_8_8:
case V_028C70_COLOR_8_8_8_8:
/* For 1 and 2-channel formats, use the superset thereof. */
if (spi_format == V_028714_SPI_SHADER_FP16_ABGR ||
spi_format == V_028714_SPI_SHADER_UINT16_ABGR ||
spi_format == V_028714_SPI_SHADER_SINT16_ABGR) {
sx_ps_downconvert |= V_028754_SX_RT_EXPORT_8_8_8_8 << (i * 4);
sx_blend_opt_epsilon |= V_028758_8BIT_FORMAT << (i * 4);
}
break;
case V_028C70_COLOR_5_6_5:
if (spi_format == V_028714_SPI_SHADER_FP16_ABGR) {
sx_ps_downconvert |= V_028754_SX_RT_EXPORT_5_6_5 << (i * 4);
sx_blend_opt_epsilon |= V_028758_6BIT_FORMAT << (i * 4);
}
break;
case V_028C70_COLOR_1_5_5_5:
if (spi_format == V_028714_SPI_SHADER_FP16_ABGR) {
sx_ps_downconvert |= V_028754_SX_RT_EXPORT_1_5_5_5 << (i * 4);
sx_blend_opt_epsilon |= V_028758_5BIT_FORMAT << (i * 4);
}
break;
case V_028C70_COLOR_4_4_4_4:
if (spi_format == V_028714_SPI_SHADER_FP16_ABGR) {
sx_ps_downconvert |= V_028754_SX_RT_EXPORT_4_4_4_4 << (i * 4);
sx_blend_opt_epsilon |= V_028758_4BIT_FORMAT << (i * 4);
}
break;
case V_028C70_COLOR_32:
if (swap == V_028C70_SWAP_STD && spi_format == V_028714_SPI_SHADER_32_R)
sx_ps_downconvert |= V_028754_SX_RT_EXPORT_32_R << (i * 4);
else if (swap == V_028C70_SWAP_ALT_REV && spi_format == V_028714_SPI_SHADER_32_AR)
sx_ps_downconvert |= V_028754_SX_RT_EXPORT_32_A << (i * 4);
break;
case V_028C70_COLOR_16:
case V_028C70_COLOR_16_16:
/* For 1-channel formats, use the superset thereof. */
if (spi_format == V_028714_SPI_SHADER_UNORM16_ABGR ||
spi_format == V_028714_SPI_SHADER_SNORM16_ABGR ||
spi_format == V_028714_SPI_SHADER_UINT16_ABGR ||
spi_format == V_028714_SPI_SHADER_SINT16_ABGR) {
if (swap == V_028C70_SWAP_STD || swap == V_028C70_SWAP_STD_REV)
sx_ps_downconvert |= V_028754_SX_RT_EXPORT_16_16_GR << (i * 4);
else
sx_ps_downconvert |= V_028754_SX_RT_EXPORT_16_16_AR << (i * 4);
}
break;
case V_028C70_COLOR_10_11_11:
if (spi_format == V_028714_SPI_SHADER_FP16_ABGR)
sx_ps_downconvert |= V_028754_SX_RT_EXPORT_10_11_11 << (i * 4);
break;
case V_028C70_COLOR_2_10_10_10:
if (spi_format == V_028714_SPI_SHADER_FP16_ABGR) {
sx_ps_downconvert |= V_028754_SX_RT_EXPORT_2_10_10_10 << (i * 4);
sx_blend_opt_epsilon |= V_028758_10BIT_FORMAT << (i * 4);
}
break;
case V_028C70_COLOR_5_9_9_9:
if (spi_format == V_028714_SPI_SHADER_FP16_ABGR)
sx_ps_downconvert |= V_028754_SX_RT_EXPORT_9_9_9_E5 << (i * 4);
break;
}
}
/* Do not set the DISABLE bits for the unused attachments, as that
* breaks dual source blending in SkQP and does not seem to improve
* performance. */
if (sx_ps_downconvert == cmd_buffer->state.last_sx_ps_downconvert &&
sx_blend_opt_epsilon == cmd_buffer->state.last_sx_blend_opt_epsilon &&
sx_blend_opt_control == cmd_buffer->state.last_sx_blend_opt_control)
return;
radeon_set_context_reg_seq(cmd_buffer->cs, R_028754_SX_PS_DOWNCONVERT, 3);
radeon_emit(cmd_buffer->cs, sx_ps_downconvert);
radeon_emit(cmd_buffer->cs, sx_blend_opt_epsilon);
radeon_emit(cmd_buffer->cs, sx_blend_opt_control);
cmd_buffer->state.context_roll_without_scissor_emitted = true;
cmd_buffer->state.last_sx_ps_downconvert = sx_ps_downconvert;
cmd_buffer->state.last_sx_blend_opt_epsilon = sx_blend_opt_epsilon;
cmd_buffer->state.last_sx_blend_opt_control = sx_blend_opt_control;
}
static void
radv_emit_ps_epilog(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_graphics_pipeline *pipeline = cmd_buffer->state.graphics_pipeline;
struct radv_shader *ps_shader = pipeline->base.shaders[MESA_SHADER_FRAGMENT];
struct radv_shader_part *ps_epilog = pipeline->ps_epilog;
uint64_t ps_epilog_va;
if (!ps_epilog)
return;
/* The main shader must not use less VGPRs than the epilog, otherwise shared vgprs might not
* work.
*/
assert(G_00B848_VGPRS(ps_shader->config.rsrc1) >= G_00B848_VGPRS(ps_epilog->rsrc1));
radv_cs_add_buffer(cmd_buffer->device->ws, cmd_buffer->cs, ps_epilog->bo);
ps_epilog_va = radv_buffer_get_va(ps_epilog->bo) + ps_epilog->alloc->offset;
assert((ps_epilog_va >> 32) == cmd_buffer->device->physical_device->rad_info.address32_hi);
struct radv_userdata_info *loc =
&ps_shader->info.user_sgprs_locs.shader_data[AC_UD_PS_EPILOG_PC];
uint32_t base_reg = pipeline->base.user_data_0[MESA_SHADER_FRAGMENT];
assert(loc->sgpr_idx != -1);
assert(loc->num_sgprs == 1);
radv_emit_shader_pointer(cmd_buffer->device, cmd_buffer->cs, base_reg + loc->sgpr_idx * 4,
ps_epilog_va, false);
}
static void
radv_emit_graphics_pipeline(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_graphics_pipeline *pipeline = cmd_buffer->state.graphics_pipeline;
const struct radv_device *device = cmd_buffer->device;
if (cmd_buffer->state.emitted_graphics_pipeline == pipeline)
return;
radv_update_multisample_state(cmd_buffer, pipeline);
radv_update_binning_state(cmd_buffer, pipeline);
cmd_buffer->scratch_size_per_wave_needed =
MAX2(cmd_buffer->scratch_size_per_wave_needed, pipeline->base.scratch_bytes_per_wave);
cmd_buffer->scratch_waves_wanted = MAX2(cmd_buffer->scratch_waves_wanted, pipeline->base.max_waves);
if (!cmd_buffer->state.emitted_graphics_pipeline)
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DYNAMIC_PRIMITIVE_TOPOLOGY |
RADV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS |
RADV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS |
RADV_CMD_DIRTY_DYNAMIC_PRIMITIVE_RESTART_ENABLE |
RADV_CMD_DIRTY_DYNAMIC_DEPTH_TEST_ENABLE |
RADV_CMD_DIRTY_DYNAMIC_DEPTH_WRITE_ENABLE |
RADV_CMD_DIRTY_DYNAMIC_DEPTH_COMPARE_OP |
RADV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE |
RADV_CMD_DIRTY_DYNAMIC_STENCIL_TEST_ENABLE |
RADV_CMD_DIRTY_DYNAMIC_STENCIL_OP;
if (!cmd_buffer->state.emitted_graphics_pipeline ||
cmd_buffer->state.emitted_graphics_pipeline->negative_one_to_one != pipeline->negative_one_to_one ||
cmd_buffer->state.emitted_graphics_pipeline->depth_clamp_mode != pipeline->depth_clamp_mode)
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DYNAMIC_VIEWPORT;
if (!cmd_buffer->state.emitted_graphics_pipeline ||
radv_rast_prim_is_points_or_lines(cmd_buffer->state.emitted_graphics_pipeline->rast_prim) != radv_rast_prim_is_points_or_lines(pipeline->rast_prim))
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_GUARDBAND;
if (!cmd_buffer->state.emitted_graphics_pipeline ||
cmd_buffer->state.emitted_graphics_pipeline->pa_su_sc_mode_cntl != pipeline->pa_su_sc_mode_cntl)
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DYNAMIC_CULL_MODE |
RADV_CMD_DIRTY_DYNAMIC_FRONT_FACE |
RADV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
if (!cmd_buffer->state.emitted_graphics_pipeline ||
cmd_buffer->state.emitted_graphics_pipeline->pa_cl_clip_cntl != pipeline->pa_cl_clip_cntl)
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DYNAMIC_RASTERIZER_DISCARD_ENABLE;
if (!cmd_buffer->state.emitted_graphics_pipeline ||
cmd_buffer->state.emitted_graphics_pipeline->cb_color_control != pipeline->cb_color_control)
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DYNAMIC_LOGIC_OP;
if (!cmd_buffer->state.emitted_graphics_pipeline ||
cmd_buffer->state.emitted_graphics_pipeline->cb_target_mask != pipeline->cb_target_mask)
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DYNAMIC_COLOR_WRITE_ENABLE;
radeon_emit_array(cmd_buffer->cs, pipeline->base.cs.buf, pipeline->base.cs.cdw);
if (pipeline->has_ngg_culling &&
pipeline->last_vgt_api_stage != MESA_SHADER_GEOMETRY &&
!cmd_buffer->state.last_nggc_settings) {
/* The already emitted RSRC2 contains the LDS required for NGG culling.
* Culling is currently disabled, so re-emit RSRC2 to reduce LDS usage.
* API GS always needs LDS, so this isn't useful there.
*/
struct radv_shader *v = pipeline->base.shaders[pipeline->last_vgt_api_stage];
radeon_set_sh_reg(cmd_buffer->cs, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
(v->config.rsrc2 & C_00B22C_LDS_SIZE) |
S_00B22C_LDS_SIZE(v->info.num_lds_blocks_when_not_culling));
}
if (!cmd_buffer->state.emitted_graphics_pipeline ||
cmd_buffer->state.emitted_graphics_pipeline->base.ctx_cs.cdw != pipeline->base.ctx_cs.cdw ||
cmd_buffer->state.emitted_graphics_pipeline->base.ctx_cs_hash != pipeline->base.ctx_cs_hash ||
memcmp(cmd_buffer->state.emitted_graphics_pipeline->base.ctx_cs.buf, pipeline->base.ctx_cs.buf,
pipeline->base.ctx_cs.cdw * 4)) {
radeon_emit_array(cmd_buffer->cs, pipeline->base.ctx_cs.buf, pipeline->base.ctx_cs.cdw);
cmd_buffer->state.context_roll_without_scissor_emitted = true;
}
if (device->pbb_allowed) {
struct radv_binning_settings *settings = &device->physical_device->binning_settings;
if ((!cmd_buffer->state.emitted_graphics_pipeline ||
cmd_buffer->state.emitted_graphics_pipeline->base.shaders[MESA_SHADER_FRAGMENT] !=
cmd_buffer->state.graphics_pipeline->base.shaders[MESA_SHADER_FRAGMENT]) &&
(settings->context_states_per_bin > 1 || settings->persistent_states_per_bin > 1)) {
/* Break the batch on PS changes. */
radeon_emit(cmd_buffer->cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cmd_buffer->cs, EVENT_TYPE(V_028A90_BREAK_BATCH) | EVENT_INDEX(0));
}
}
radv_emit_ps_epilog(cmd_buffer);
radv_cs_add_buffer(cmd_buffer->device->ws, cmd_buffer->cs, pipeline->base.slab_bo);
if (unlikely(cmd_buffer->device->trace_bo))
radv_save_pipeline(cmd_buffer, &pipeline->base);
cmd_buffer->state.emitted_graphics_pipeline = pipeline;
cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_PIPELINE;
}
static void
radv_emit_viewport(struct radv_cmd_buffer *cmd_buffer)
{
const struct radv_graphics_pipeline *pipeline = cmd_buffer->state.graphics_pipeline;
const struct radv_viewport_state *viewport = &cmd_buffer->state.dynamic.viewport;
int i;
const unsigned count = viewport->count;
assert(count);
radeon_set_context_reg_seq(cmd_buffer->cs, R_02843C_PA_CL_VPORT_XSCALE, count * 6);
for (i = 0; i < count; i++) {
radeon_emit(cmd_buffer->cs, fui(viewport->xform[i].scale[0]));
radeon_emit(cmd_buffer->cs, fui(viewport->xform[i].translate[0]));
radeon_emit(cmd_buffer->cs, fui(viewport->xform[i].scale[1]));
radeon_emit(cmd_buffer->cs, fui(viewport->xform[i].translate[1]));
double scale_z, translate_z;
if (pipeline->negative_one_to_one) {
scale_z = viewport->xform[i].scale[2] * 0.5f;
translate_z = (viewport->xform[i].translate[2] + viewport->viewports[i].maxDepth) * 0.5f;
} else {
scale_z = viewport->xform[i].scale[2];
translate_z = viewport->xform[i].translate[2];
}
radeon_emit(cmd_buffer->cs, fui(scale_z));
radeon_emit(cmd_buffer->cs, fui(translate_z));
}
radeon_set_context_reg_seq(cmd_buffer->cs, R_0282D0_PA_SC_VPORT_ZMIN_0, count * 2);
for (i = 0; i < count; i++) {
float zmin, zmax;
if (pipeline->depth_clamp_mode == RADV_DEPTH_CLAMP_MODE_ZERO_TO_ONE) {
zmin = 0.0f;
zmax = 1.0f;
} else {
zmin = MIN2(viewport->viewports[i].minDepth, viewport->viewports[i].maxDepth);
zmax = MAX2(viewport->viewports[i].minDepth, viewport->viewports[i].maxDepth);
}
radeon_emit(cmd_buffer->cs, fui(zmin));
radeon_emit(cmd_buffer->cs, fui(zmax));
}
}
void
radv_write_scissors(struct radv_cmd_buffer *cmd_buffer, struct radeon_cmdbuf *cs)
{
uint32_t count = cmd_buffer->state.dynamic.scissor.count;
si_write_scissors(cs, count, cmd_buffer->state.dynamic.scissor.scissors,
cmd_buffer->state.dynamic.viewport.viewports);
}
static void
radv_emit_scissor(struct radv_cmd_buffer *cmd_buffer)
{
radv_write_scissors(cmd_buffer, cmd_buffer->cs);
cmd_buffer->state.context_roll_without_scissor_emitted = false;
}
static void
radv_emit_discard_rectangle(struct radv_cmd_buffer *cmd_buffer)
{
if (!cmd_buffer->state.dynamic.discard_rectangle.count)
return;
radeon_set_context_reg_seq(cmd_buffer->cs, R_028210_PA_SC_CLIPRECT_0_TL,
cmd_buffer->state.dynamic.discard_rectangle.count * 2);
for (unsigned i = 0; i < cmd_buffer->state.dynamic.discard_rectangle.count; ++i) {
VkRect2D rect = cmd_buffer->state.dynamic.discard_rectangle.rectangles[i];
radeon_emit(cmd_buffer->cs, S_028210_TL_X(rect.offset.x) | S_028210_TL_Y(rect.offset.y));
radeon_emit(cmd_buffer->cs, S_028214_BR_X(rect.offset.x + rect.extent.width) |
S_028214_BR_Y(rect.offset.y + rect.extent.height));
}
}
static void
radv_emit_line_width(struct radv_cmd_buffer *cmd_buffer)
{
unsigned width = cmd_buffer->state.dynamic.line_width * 8;
radeon_set_context_reg(cmd_buffer->cs, R_028A08_PA_SU_LINE_CNTL,
S_028A08_WIDTH(CLAMP(width, 0, 0xFFFF)));
}
static void
radv_emit_blend_constants(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
radeon_set_context_reg_seq(cmd_buffer->cs, R_028414_CB_BLEND_RED, 4);
radeon_emit_array(cmd_buffer->cs, (uint32_t *)d->blend_constants, 4);
}
static void
radv_emit_stencil(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
radeon_set_context_reg_seq(cmd_buffer->cs, R_028430_DB_STENCILREFMASK, 2);
radeon_emit(cmd_buffer->cs, S_028430_STENCILTESTVAL(d->stencil_reference.front) |
S_028430_STENCILMASK(d->stencil_compare_mask.front) |
S_028430_STENCILWRITEMASK(d->stencil_write_mask.front) |
S_028430_STENCILOPVAL(1));
radeon_emit(cmd_buffer->cs, S_028434_STENCILTESTVAL_BF(d->stencil_reference.back) |
S_028434_STENCILMASK_BF(d->stencil_compare_mask.back) |
S_028434_STENCILWRITEMASK_BF(d->stencil_write_mask.back) |
S_028434_STENCILOPVAL_BF(1));
}
static void
radv_emit_depth_bounds(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
radeon_set_context_reg_seq(cmd_buffer->cs, R_028020_DB_DEPTH_BOUNDS_MIN, 2);
radeon_emit(cmd_buffer->cs, fui(d->depth_bounds.min));
radeon_emit(cmd_buffer->cs, fui(d->depth_bounds.max));
}
static void
radv_emit_depth_bias(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
unsigned slope = fui(d->depth_bias.slope * 16.0f);
radeon_set_context_reg_seq(cmd_buffer->cs, R_028B7C_PA_SU_POLY_OFFSET_CLAMP, 5);
radeon_emit(cmd_buffer->cs, fui(d->depth_bias.clamp)); /* CLAMP */
radeon_emit(cmd_buffer->cs, slope); /* FRONT SCALE */
radeon_emit(cmd_buffer->cs, fui(d->depth_bias.bias)); /* FRONT OFFSET */
radeon_emit(cmd_buffer->cs, slope); /* BACK SCALE */
radeon_emit(cmd_buffer->cs, fui(d->depth_bias.bias)); /* BACK OFFSET */
}
static void
radv_emit_line_stipple(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
uint32_t auto_reset_cntl = 1;
if (d->primitive_topology == V_008958_DI_PT_LINESTRIP)
auto_reset_cntl = 2;
radeon_set_context_reg(cmd_buffer->cs, R_028A0C_PA_SC_LINE_STIPPLE,
S_028A0C_LINE_PATTERN(d->line_stipple.pattern) |
S_028A0C_REPEAT_COUNT(d->line_stipple.factor - 1) |
S_028A0C_AUTO_RESET_CNTL(auto_reset_cntl));
}
uint32_t
radv_get_pa_su_sc_mode_cntl(const struct radv_cmd_buffer *cmd_buffer)
{
unsigned pa_su_sc_mode_cntl = cmd_buffer->state.graphics_pipeline->pa_su_sc_mode_cntl;
const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
pa_su_sc_mode_cntl |= S_028814_CULL_FRONT(!!(d->cull_mode & VK_CULL_MODE_FRONT_BIT)) |
S_028814_CULL_BACK(!!(d->cull_mode & VK_CULL_MODE_BACK_BIT)) |
S_028814_FACE(d->front_face) |
S_028814_POLY_OFFSET_FRONT_ENABLE(d->depth_bias_enable) |
S_028814_POLY_OFFSET_BACK_ENABLE(d->depth_bias_enable) |
S_028814_POLY_OFFSET_PARA_ENABLE(d->depth_bias_enable);
return pa_su_sc_mode_cntl;
}
static void
radv_emit_culling(struct radv_cmd_buffer *cmd_buffer)
{
unsigned pa_su_sc_mode_cntl = radv_get_pa_su_sc_mode_cntl(cmd_buffer);
radeon_set_context_reg(cmd_buffer->cs, R_028814_PA_SU_SC_MODE_CNTL, pa_su_sc_mode_cntl);
}
static void
radv_emit_primitive_topology(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
assert(!cmd_buffer->state.mesh_shading);
if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX7) {
radeon_set_uconfig_reg_idx(cmd_buffer->device->physical_device, cmd_buffer->cs,
R_030908_VGT_PRIMITIVE_TYPE, 1, d->primitive_topology);
} else {
radeon_set_config_reg(cmd_buffer->cs, R_008958_VGT_PRIMITIVE_TYPE, d->primitive_topology);
}
}
static void
radv_emit_depth_control(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
radeon_set_context_reg(cmd_buffer->cs, R_028800_DB_DEPTH_CONTROL,
S_028800_Z_ENABLE(d->depth_test_enable ? 1 : 0) |
S_028800_Z_WRITE_ENABLE(d->depth_write_enable ? 1 : 0) |
S_028800_ZFUNC(d->depth_compare_op) |
S_028800_DEPTH_BOUNDS_ENABLE(d->depth_bounds_test_enable ? 1 : 0) |
S_028800_STENCIL_ENABLE(d->stencil_test_enable ? 1 : 0) |
S_028800_BACKFACE_ENABLE(d->stencil_test_enable ? 1 : 0) |
S_028800_STENCILFUNC(d->stencil_op.front.compare_op) |
S_028800_STENCILFUNC_BF(d->stencil_op.back.compare_op));
}
static void
radv_emit_stencil_control(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
radeon_set_context_reg(
cmd_buffer->cs, R_02842C_DB_STENCIL_CONTROL,
S_02842C_STENCILFAIL(si_translate_stencil_op(d->stencil_op.front.fail_op)) |
S_02842C_STENCILZPASS(si_translate_stencil_op(d->stencil_op.front.pass_op)) |
S_02842C_STENCILZFAIL(si_translate_stencil_op(d->stencil_op.front.depth_fail_op)) |
S_02842C_STENCILFAIL_BF(si_translate_stencil_op(d->stencil_op.back.fail_op)) |
S_02842C_STENCILZPASS_BF(si_translate_stencil_op(d->stencil_op.back.pass_op)) |
S_02842C_STENCILZFAIL_BF(si_translate_stencil_op(d->stencil_op.back.depth_fail_op)));
}
static void
radv_emit_fragment_shading_rate(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_graphics_pipeline *pipeline = cmd_buffer->state.graphics_pipeline;
const struct radv_subpass *subpass = cmd_buffer->state.subpass;
struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
uint32_t rate_x = MIN2(2, d->fragment_shading_rate.size.width) - 1;
uint32_t rate_y = MIN2(2, d->fragment_shading_rate.size.height) - 1;
uint32_t pa_cl_vrs_cntl = pipeline->vrs.pa_cl_vrs_cntl;
uint32_t pipeline_comb_mode = d->fragment_shading_rate.combiner_ops[0];
uint32_t htile_comb_mode = d->fragment_shading_rate.combiner_ops[1];
assert(cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX10_3);
if (subpass && !subpass->vrs_attachment) {
/* When the current subpass has no VRS attachment, the VRS rates are expected to be 1x1, so we
* can cheat by tweaking the different combiner modes.
*/
switch (htile_comb_mode) {
case VK_FRAGMENT_SHADING_RATE_COMBINER_OP_MIN_KHR:
/* The result of min(A, 1x1) is always 1x1. */
FALLTHROUGH;
case VK_FRAGMENT_SHADING_RATE_COMBINER_OP_REPLACE_KHR:
/* Force the per-draw VRS rate to 1x1. */
rate_x = rate_y = 0;
/* As the result of min(A, 1x1) or replace(A, 1x1) are always 1x1, set the vertex rate
* combiner mode as passthrough.
*/
pipeline_comb_mode = V_028848_VRS_COMB_MODE_PASSTHRU;
break;
case VK_FRAGMENT_SHADING_RATE_COMBINER_OP_MAX_KHR:
/* The result of max(A, 1x1) is always A. */
FALLTHROUGH;
case VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR:
/* Nothing to do here because the SAMPLE_ITER combiner mode should already be passthrough. */
break;
default:
break;
}
}
/* Emit per-draw VRS rate which is the first combiner. */
radeon_set_uconfig_reg(cmd_buffer->cs, R_03098C_GE_VRS_RATE,
S_03098C_RATE_X(rate_x) | S_03098C_RATE_Y(rate_y));
/* VERTEX_RATE_COMBINER_MODE controls the combiner mode between the
* draw rate and the vertex rate.
*/
if (cmd_buffer->state.mesh_shading) {
pa_cl_vrs_cntl |= S_028848_VERTEX_RATE_COMBINER_MODE(V_028848_VRS_COMB_MODE_PASSTHRU) |
S_028848_PRIMITIVE_RATE_COMBINER_MODE(pipeline_comb_mode);
} else {
pa_cl_vrs_cntl |= S_028848_VERTEX_RATE_COMBINER_MODE(pipeline_comb_mode) |
S_028848_PRIMITIVE_RATE_COMBINER_MODE(V_028848_VRS_COMB_MODE_PASSTHRU);
}
/* HTILE_RATE_COMBINER_MODE controls the combiner mode between the primitive rate and the HTILE
* rate.
*/
pa_cl_vrs_cntl |= S_028848_HTILE_RATE_COMBINER_MODE(htile_comb_mode);
radeon_set_context_reg(cmd_buffer->cs, R_028848_PA_CL_VRS_CNTL, pa_cl_vrs_cntl);
}
static void
radv_emit_primitive_restart_enable(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX11) {
radeon_set_uconfig_reg(cmd_buffer->cs, R_03092C_GE_MULTI_PRIM_IB_RESET_EN,
d->primitive_restart_enable);
} else if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX9) {
radeon_set_uconfig_reg(cmd_buffer->cs, R_03092C_VGT_MULTI_PRIM_IB_RESET_EN,
d->primitive_restart_enable);
} else {
radeon_set_context_reg(cmd_buffer->cs, R_028A94_VGT_MULTI_PRIM_IB_RESET_EN,
d->primitive_restart_enable);
}
}
static void
radv_emit_rasterizer_discard_enable(struct radv_cmd_buffer *cmd_buffer)
{
unsigned pa_cl_clip_cntl = cmd_buffer->state.graphics_pipeline->pa_cl_clip_cntl;
struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
pa_cl_clip_cntl |= S_028810_DX_RASTERIZATION_KILL(d->rasterizer_discard_enable);
radeon_set_context_reg(cmd_buffer->cs, R_028810_PA_CL_CLIP_CNTL, pa_cl_clip_cntl);
}
static void
radv_emit_logic_op(struct radv_cmd_buffer *cmd_buffer)
{
unsigned cb_color_control = cmd_buffer->state.graphics_pipeline->cb_color_control;
struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
cb_color_control |= S_028808_ROP3(d->logic_op);
radeon_set_context_reg(cmd_buffer->cs, R_028808_CB_COLOR_CONTROL, cb_color_control);
}
static void
radv_emit_color_write_enable(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_graphics_pipeline *pipeline = cmd_buffer->state.graphics_pipeline;
struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
radeon_set_context_reg(cmd_buffer->cs, R_028238_CB_TARGET_MASK,
pipeline->cb_target_mask & d->color_write_enable);
}
static void
radv_emit_fb_color_state(struct radv_cmd_buffer *cmd_buffer, int index,
struct radv_color_buffer_info *cb, struct radv_image_view *iview,
VkImageLayout layout)
{
bool is_vi = cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX8;
uint32_t cb_fdcc_control = cb->cb_dcc_control;
uint32_t cb_color_info = cb->cb_color_info;
struct radv_image *image = iview->image;
if (!radv_layout_dcc_compressed(
cmd_buffer->device, image, iview->vk.base_mip_level, layout,
radv_image_queue_family_mask(image, cmd_buffer->qf,
cmd_buffer->qf))) {
if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX11) {
cb_fdcc_control &= C_028C78_FDCC_ENABLE;
} else {
cb_color_info &= C_028C70_DCC_ENABLE;
}
}
if (!radv_layout_fmask_compressed(
cmd_buffer->device, image, layout,
radv_image_queue_family_mask(image, cmd_buffer->qf,
cmd_buffer->qf))) {
cb_color_info &= C_028C70_COMPRESSION;
}
if (radv_image_is_tc_compat_cmask(image) && (radv_is_fmask_decompress_pipeline(cmd_buffer) ||
radv_is_dcc_decompress_pipeline(cmd_buffer))) {
/* If this bit is set, the FMASK decompression operation
* doesn't occur (DCC_COMPRESS also implies FMASK_DECOMPRESS).
*/
cb_color_info &= C_028C70_FMASK_COMPRESS_1FRAG_ONLY;
}
if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX11) {
radeon_set_context_reg_seq(cmd_buffer->cs, R_028C6C_CB_COLOR0_VIEW + index * 0x3c, 4);
radeon_emit(cmd_buffer->cs, cb->cb_color_view); /* CB_COLOR0_VIEW */
radeon_emit(cmd_buffer->cs, cb->cb_color_info); /* CB_COLOR0_INFO */
radeon_emit(cmd_buffer->cs, cb->cb_color_attrib); /* CB_COLOR0_ATTRIB */
radeon_emit(cmd_buffer->cs, cb_fdcc_control); /* CB_COLOR0_FDCC_CONTROL */
radeon_set_context_reg(cmd_buffer->cs, R_028C60_CB_COLOR0_BASE + index * 0x3c, cb->cb_color_base);
radeon_set_context_reg(cmd_buffer->cs, R_028E40_CB_COLOR0_BASE_EXT + index * 4, cb->cb_color_base >> 32);
radeon_set_context_reg(cmd_buffer->cs, R_028C94_CB_COLOR0_DCC_BASE + index * 0x3c, cb->cb_dcc_base);
radeon_set_context_reg(cmd_buffer->cs, R_028EA0_CB_COLOR0_DCC_BASE_EXT + index * 4, cb->cb_dcc_base >> 32);
radeon_set_context_reg(cmd_buffer->cs, R_028EC0_CB_COLOR0_ATTRIB2 + index * 4, cb->cb_color_attrib2);
radeon_set_context_reg(cmd_buffer->cs, R_028EE0_CB_COLOR0_ATTRIB3 + index * 4, cb->cb_color_attrib3);
} else if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX10) {
radeon_set_context_reg_seq(cmd_buffer->cs, R_028C60_CB_COLOR0_BASE + index * 0x3c, 11);
radeon_emit(cmd_buffer->cs, cb->cb_color_base);
radeon_emit(cmd_buffer->cs, 0);
radeon_emit(cmd_buffer->cs, 0);
radeon_emit(cmd_buffer->cs, cb->cb_color_view);
radeon_emit(cmd_buffer->cs, cb_color_info);
radeon_emit(cmd_buffer->cs, cb->cb_color_attrib);
radeon_emit(cmd_buffer->cs, cb->cb_dcc_control);
radeon_emit(cmd_buffer->cs, cb->cb_color_cmask);
radeon_emit(cmd_buffer->cs, 0);
radeon_emit(cmd_buffer->cs, cb->cb_color_fmask);
radeon_emit(cmd_buffer->cs, 0);
radeon_set_context_reg(cmd_buffer->cs, R_028C94_CB_COLOR0_DCC_BASE + index * 0x3c, cb->cb_dcc_base);
radeon_set_context_reg(cmd_buffer->cs, R_028E40_CB_COLOR0_BASE_EXT + index * 4,
cb->cb_color_base >> 32);
radeon_set_context_reg(cmd_buffer->cs, R_028E60_CB_COLOR0_CMASK_BASE_EXT + index * 4,
cb->cb_color_cmask >> 32);
radeon_set_context_reg(cmd_buffer->cs, R_028E80_CB_COLOR0_FMASK_BASE_EXT + index * 4,
cb->cb_color_fmask >> 32);
radeon_set_context_reg(cmd_buffer->cs, R_028EA0_CB_COLOR0_DCC_BASE_EXT + index * 4,
cb->cb_dcc_base >> 32);
radeon_set_context_reg(cmd_buffer->cs, R_028EC0_CB_COLOR0_ATTRIB2 + index * 4,
cb->cb_color_attrib2);
radeon_set_context_reg(cmd_buffer->cs, R_028EE0_CB_COLOR0_ATTRIB3 + index * 4,
cb->cb_color_attrib3);
} else if (cmd_buffer->device->physical_device->rad_info.gfx_level == GFX9) {
radeon_set_context_reg_seq(cmd_buffer->cs, R_028C60_CB_COLOR0_BASE + index * 0x3c, 11);
radeon_emit(cmd_buffer->cs, cb->cb_color_base);
radeon_emit(cmd_buffer->cs, S_028C64_BASE_256B(cb->cb_color_base >> 32));
radeon_emit(cmd_buffer->cs, cb->cb_color_attrib2);
radeon_emit(cmd_buffer->cs, cb->cb_color_view);
radeon_emit(cmd_buffer->cs, cb_color_info);
radeon_emit(cmd_buffer->cs, cb->cb_color_attrib);
radeon_emit(cmd_buffer->cs, cb->cb_dcc_control);
radeon_emit(cmd_buffer->cs, cb->cb_color_cmask);
radeon_emit(cmd_buffer->cs, S_028C80_BASE_256B(cb->cb_color_cmask >> 32));
radeon_emit(cmd_buffer->cs, cb->cb_color_fmask);
radeon_emit(cmd_buffer->cs, S_028C88_BASE_256B(cb->cb_color_fmask >> 32));
radeon_set_context_reg_seq(cmd_buffer->cs, R_028C94_CB_COLOR0_DCC_BASE + index * 0x3c, 2);
radeon_emit(cmd_buffer->cs, cb->cb_dcc_base);
radeon_emit(cmd_buffer->cs, S_028C98_BASE_256B(cb->cb_dcc_base >> 32));
radeon_set_context_reg(cmd_buffer->cs, R_0287A0_CB_MRT0_EPITCH + index * 4,
cb->cb_mrt_epitch);
} else {
radeon_set_context_reg_seq(cmd_buffer->cs, R_028C60_CB_COLOR0_BASE + index * 0x3c, 11);
radeon_emit(cmd_buffer->cs, cb->cb_color_base);
radeon_emit(cmd_buffer->cs, cb->cb_color_pitch);
radeon_emit(cmd_buffer->cs, cb->cb_color_slice);
radeon_emit(cmd_buffer->cs, cb->cb_color_view);
radeon_emit(cmd_buffer->cs, cb_color_info);
radeon_emit(cmd_buffer->cs, cb->cb_color_attrib);
radeon_emit(cmd_buffer->cs, cb->cb_dcc_control);
radeon_emit(cmd_buffer->cs, cb->cb_color_cmask);
radeon_emit(cmd_buffer->cs, cb->cb_color_cmask_slice);
radeon_emit(cmd_buffer->cs, cb->cb_color_fmask);
radeon_emit(cmd_buffer->cs, cb->cb_color_fmask_slice);
if (is_vi) { /* DCC BASE */
radeon_set_context_reg(cmd_buffer->cs, R_028C94_CB_COLOR0_DCC_BASE + index * 0x3c,
cb->cb_dcc_base);
}
}
if (G_028C70_DCC_ENABLE(cb_color_info)) {
/* Drawing with DCC enabled also compresses colorbuffers. */
VkImageSubresourceRange range = {
.aspectMask = iview->vk.aspects,
.baseMipLevel = iview->vk.base_mip_level,
.levelCount = iview->vk.level_count,
.baseArrayLayer = iview->vk.base_array_layer,
.layerCount = iview->vk.layer_count,
};
radv_update_dcc_metadata(cmd_buffer, image, &range, true);
}
}
static void
radv_update_zrange_precision(struct radv_cmd_buffer *cmd_buffer, struct radv_ds_buffer_info *ds,
const struct radv_image_view *iview, VkImageLayout layout,
bool requires_cond_exec)
{
const struct radv_image *image = iview->image;
uint32_t db_z_info = ds->db_z_info;
uint32_t db_z_info_reg;
if (!cmd_buffer->device->physical_device->rad_info.has_tc_compat_zrange_bug ||
!radv_image_is_tc_compat_htile(image))
return;
if (!radv_layout_is_htile_compressed(
cmd_buffer->device, image, layout,
radv_image_queue_family_mask(image, cmd_buffer->qf,
cmd_buffer->qf))) {
db_z_info &= C_028040_TILE_SURFACE_ENABLE;
}
db_z_info &= C_028040_ZRANGE_PRECISION;
if (cmd_buffer->device->physical_device->rad_info.gfx_level == GFX9) {
db_z_info_reg = R_028038_DB_Z_INFO;
} else {
db_z_info_reg = R_028040_DB_Z_INFO;
}
/* When we don't know the last fast clear value we need to emit a
* conditional packet that will eventually skip the following
* SET_CONTEXT_REG packet.
*/
if (requires_cond_exec) {
uint64_t va = radv_get_tc_compat_zrange_va(image, iview->vk.base_mip_level);
radeon_emit(cmd_buffer->cs, PKT3(PKT3_COND_EXEC, 3, 0));
radeon_emit(cmd_buffer->cs, va);
radeon_emit(cmd_buffer->cs, va >> 32);
radeon_emit(cmd_buffer->cs, 0);
radeon_emit(cmd_buffer->cs, 3); /* SET_CONTEXT_REG size */
}
radeon_set_context_reg(cmd_buffer->cs, db_z_info_reg, db_z_info);
}
static void
radv_emit_fb_ds_state(struct radv_cmd_buffer *cmd_buffer, struct radv_ds_buffer_info *ds,
struct radv_image_view *iview, VkImageLayout layout)
{
const struct radv_image *image = iview->image;
uint32_t db_z_info = ds->db_z_info;
uint32_t db_stencil_info = ds->db_stencil_info;
uint32_t db_htile_surface = ds->db_htile_surface;
if (!radv_layout_is_htile_compressed(
cmd_buffer->device, image, layout,
radv_image_queue_family_mask(image, cmd_buffer->qf,
cmd_buffer->qf))) {
db_z_info &= C_028040_TILE_SURFACE_ENABLE;
db_stencil_info |= S_028044_TILE_STENCIL_DISABLE(1);
}
if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX10_3 &&
!cmd_buffer->state.subpass->vrs_attachment) {
db_htile_surface &= C_028ABC_VRS_HTILE_ENCODING;
}
radeon_set_context_reg(cmd_buffer->cs, R_028008_DB_DEPTH_VIEW, ds->db_depth_view);
radeon_set_context_reg(cmd_buffer->cs, R_028ABC_DB_HTILE_SURFACE, db_htile_surface);
if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX10) {
radeon_set_context_reg(cmd_buffer->cs, R_028014_DB_HTILE_DATA_BASE, ds->db_htile_data_base);
radeon_set_context_reg(cmd_buffer->cs, R_02801C_DB_DEPTH_SIZE_XY, ds->db_depth_size);
if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX11) {
radeon_set_context_reg_seq(cmd_buffer->cs, R_028040_DB_Z_INFO, 6);
} else {
radeon_set_context_reg_seq(cmd_buffer->cs, R_02803C_DB_DEPTH_INFO, 7);
radeon_emit(cmd_buffer->cs, S_02803C_RESOURCE_LEVEL(1));
}
radeon_emit(cmd_buffer->cs, db_z_info);
radeon_emit(cmd_buffer->cs, db_stencil_info);
radeon_emit(cmd_buffer->cs, ds->db_z_read_base);
radeon_emit(cmd_buffer->cs, ds->db_stencil_read_base);
radeon_emit(cmd_buffer->cs, ds->db_z_read_base);
radeon_emit(cmd_buffer->cs, ds->db_stencil_read_base);
radeon_set_context_reg_seq(cmd_buffer->cs, R_028068_DB_Z_READ_BASE_HI, 5);
radeon_emit(cmd_buffer->cs, ds->db_z_read_base >> 32);
radeon_emit(cmd_buffer->cs, ds->db_stencil_read_base >> 32);
radeon_emit(cmd_buffer->cs, ds->db_z_read_base >> 32);
radeon_emit(cmd_buffer->cs, ds->db_stencil_read_base >> 32);
radeon_emit(cmd_buffer->cs, ds->db_htile_data_base >> 32);
} else if (cmd_buffer->device->physical_device->rad_info.gfx_level == GFX9) {
radeon_set_context_reg_seq(cmd_buffer->cs, R_028014_DB_HTILE_DATA_BASE, 3);
radeon_emit(cmd_buffer->cs, ds->db_htile_data_base);
radeon_emit(cmd_buffer->cs, S_028018_BASE_HI(ds->db_htile_data_base >> 32));
radeon_emit(cmd_buffer->cs, ds->db_depth_size);
radeon_set_context_reg_seq(cmd_buffer->cs, R_028038_DB_Z_INFO, 10);
radeon_emit(cmd_buffer->cs, db_z_info); /* DB_Z_INFO */
radeon_emit(cmd_buffer->cs, db_stencil_info); /* DB_STENCIL_INFO */
radeon_emit(cmd_buffer->cs, ds->db_z_read_base); /* DB_Z_READ_BASE */
radeon_emit(cmd_buffer->cs,
S_028044_BASE_HI(ds->db_z_read_base >> 32)); /* DB_Z_READ_BASE_HI */
radeon_emit(cmd_buffer->cs, ds->db_stencil_read_base); /* DB_STENCIL_READ_BASE */
radeon_emit(cmd_buffer->cs,
S_02804C_BASE_HI(ds->db_stencil_read_base >> 32)); /* DB_STENCIL_READ_BASE_HI */
radeon_emit(cmd_buffer->cs, ds->db_z_write_base); /* DB_Z_WRITE_BASE */
radeon_emit(cmd_buffer->cs,
S_028054_BASE_HI(ds->db_z_write_base >> 32)); /* DB_Z_WRITE_BASE_HI */
radeon_emit(cmd_buffer->cs, ds->db_stencil_write_base); /* DB_STENCIL_WRITE_BASE */
radeon_emit(cmd_buffer->cs,
S_02805C_BASE_HI(ds->db_stencil_write_base >> 32)); /* DB_STENCIL_WRITE_BASE_HI */
radeon_set_context_reg_seq(cmd_buffer->cs, R_028068_DB_Z_INFO2, 2);
radeon_emit(cmd_buffer->cs, ds->db_z_info2);
radeon_emit(cmd_buffer->cs, ds->db_stencil_info2);
} else {
radeon_set_context_reg(cmd_buffer->cs, R_028014_DB_HTILE_DATA_BASE, ds->db_htile_data_base);
radeon_set_context_reg_seq(cmd_buffer->cs, R_02803C_DB_DEPTH_INFO, 9);
radeon_emit(cmd_buffer->cs, ds->db_depth_info); /* R_02803C_DB_DEPTH_INFO */
radeon_emit(cmd_buffer->cs, db_z_info); /* R_028040_DB_Z_INFO */
radeon_emit(cmd_buffer->cs, db_stencil_info); /* R_028044_DB_STENCIL_INFO */
radeon_emit(cmd_buffer->cs, ds->db_z_read_base); /* R_028048_DB_Z_READ_BASE */
radeon_emit(cmd_buffer->cs, ds->db_stencil_read_base); /* R_02804C_DB_STENCIL_READ_BASE */
radeon_emit(cmd_buffer->cs, ds->db_z_write_base); /* R_028050_DB_Z_WRITE_BASE */
radeon_emit(cmd_buffer->cs, ds->db_stencil_write_base); /* R_028054_DB_STENCIL_WRITE_BASE */
radeon_emit(cmd_buffer->cs, ds->db_depth_size); /* R_028058_DB_DEPTH_SIZE */
radeon_emit(cmd_buffer->cs, ds->db_depth_slice); /* R_02805C_DB_DEPTH_SLICE */
}
/* Update the ZRANGE_PRECISION value for the TC-compat bug. */
radv_update_zrange_precision(cmd_buffer, ds, iview, layout, true);
radeon_set_context_reg(cmd_buffer->cs, R_028B78_PA_SU_POLY_OFFSET_DB_FMT_CNTL,
ds->pa_su_poly_offset_db_fmt_cntl);
}
/**
* Update the fast clear depth/stencil values if the image is bound as a
* depth/stencil buffer.
*/
static void
radv_update_bound_fast_clear_ds(struct radv_cmd_buffer *cmd_buffer,
const struct radv_image_view *iview,
VkClearDepthStencilValue ds_clear_value, VkImageAspectFlags aspects)
{
const struct radv_subpass *subpass = cmd_buffer->state.subpass;
const struct radv_image *image = iview->image;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
uint32_t att_idx;
if (!cmd_buffer->state.attachments || !subpass)
return;
if (!subpass->depth_stencil_attachment)
return;
att_idx = subpass->depth_stencil_attachment->attachment;
if (cmd_buffer->state.attachments[att_idx].iview->image != image)
return;
if (aspects == (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
radeon_set_context_reg_seq(cs, R_028028_DB_STENCIL_CLEAR, 2);
radeon_emit(cs, ds_clear_value.stencil);
radeon_emit(cs, fui(ds_clear_value.depth));
} else if (aspects == VK_IMAGE_ASPECT_DEPTH_BIT) {
radeon_set_context_reg(cs, R_02802C_DB_DEPTH_CLEAR, fui(ds_clear_value.depth));
} else {
assert(aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
radeon_set_context_reg(cs, R_028028_DB_STENCIL_CLEAR, ds_clear_value.stencil);
}
/* Update the ZRANGE_PRECISION value for the TC-compat bug. This is
* only needed when clearing Z to 0.0.
*/
if ((aspects & VK_IMAGE_ASPECT_DEPTH_BIT) && ds_clear_value.depth == 0.0) {
VkImageLayout layout = subpass->depth_stencil_attachment->layout;
radv_update_zrange_precision(cmd_buffer, &cmd_buffer->state.attachments[att_idx].ds, iview,
layout, false);
}
cmd_buffer->state.context_roll_without_scissor_emitted = true;
}
/**
* Set the clear depth/stencil values to the image's metadata.
*/
static void
radv_set_ds_clear_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
const VkImageSubresourceRange *range,
VkClearDepthStencilValue ds_clear_value, VkImageAspectFlags aspects)
{
struct radeon_cmdbuf *cs = cmd_buffer->cs;
uint32_t level_count = radv_get_levelCount(image, range);
if (aspects == (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
uint64_t va = radv_get_ds_clear_value_va(image, range->baseMipLevel);
/* Use the fastest way when both aspects are used. */
radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 2 + 2 * level_count, cmd_buffer->state.predicating));
radeon_emit(cs, S_370_DST_SEL(V_370_MEM) | S_370_WR_CONFIRM(1) | S_370_ENGINE_SEL(V_370_PFP));
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
for (uint32_t l = 0; l < level_count; l++) {
radeon_emit(cs, ds_clear_value.stencil);
radeon_emit(cs, fui(ds_clear_value.depth));
}
} else {
/* Otherwise we need one WRITE_DATA packet per level. */
for (uint32_t l = 0; l < level_count; l++) {
uint64_t va = radv_get_ds_clear_value_va(image, range->baseMipLevel + l);
unsigned value;
if (aspects == VK_IMAGE_ASPECT_DEPTH_BIT) {
value = fui(ds_clear_value.depth);
va += 4;
} else {
assert(aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
value = ds_clear_value.stencil;
}
radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 3, cmd_buffer->state.predicating));
radeon_emit(cs,
S_370_DST_SEL(V_370_MEM) | S_370_WR_CONFIRM(1) | S_370_ENGINE_SEL(V_370_PFP));
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit(cs, value);
}
}
}
/**
* Update the TC-compat metadata value for this image.
*/
static void
radv_set_tc_compat_zrange_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
const VkImageSubresourceRange *range, uint32_t value)
{
struct radeon_cmdbuf *cs = cmd_buffer->cs;
if (!cmd_buffer->device->physical_device->rad_info.has_tc_compat_zrange_bug)
return;
uint64_t va = radv_get_tc_compat_zrange_va(image, range->baseMipLevel);
uint32_t level_count = radv_get_levelCount(image, range);
radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 2 + level_count, cmd_buffer->state.predicating));
radeon_emit(cs, S_370_DST_SEL(V_370_MEM) | S_370_WR_CONFIRM(1) | S_370_ENGINE_SEL(V_370_PFP));
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
for (uint32_t l = 0; l < level_count; l++)
radeon_emit(cs, value);
}
static void
radv_update_tc_compat_zrange_metadata(struct radv_cmd_buffer *cmd_buffer,
const struct radv_image_view *iview,
VkClearDepthStencilValue ds_clear_value)
{
VkImageSubresourceRange range = {
.aspectMask = iview->vk.aspects,
.baseMipLevel = iview->vk.base_mip_level,
.levelCount = iview->vk.level_count,
.baseArrayLayer = iview->vk.base_array_layer,
.layerCount = iview->vk.layer_count,
};
uint32_t cond_val;
/* Conditionally set DB_Z_INFO.ZRANGE_PRECISION to 0 when the last
* depth clear value is 0.0f.
*/
cond_val = ds_clear_value.depth == 0.0f ? UINT_MAX : 0;
radv_set_tc_compat_zrange_metadata(cmd_buffer, iview->image, &range, cond_val);
}
/**
* Update the clear depth/stencil values for this image.
*/
void
radv_update_ds_clear_metadata(struct radv_cmd_buffer *cmd_buffer,
const struct radv_image_view *iview,
VkClearDepthStencilValue ds_clear_value, VkImageAspectFlags aspects)
{
VkImageSubresourceRange range = {
.aspectMask = iview->vk.aspects,
.baseMipLevel = iview->vk.base_mip_level,
.levelCount = iview->vk.level_count,
.baseArrayLayer = iview->vk.base_array_layer,
.layerCount = iview->vk.layer_count,
};
struct radv_image *image = iview->image;
assert(radv_htile_enabled(image, range.baseMipLevel));
radv_set_ds_clear_metadata(cmd_buffer, iview->image, &range, ds_clear_value, aspects);
if (radv_image_is_tc_compat_htile(image) && (aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
radv_update_tc_compat_zrange_metadata(cmd_buffer, iview, ds_clear_value);
}
radv_update_bound_fast_clear_ds(cmd_buffer, iview, ds_clear_value, aspects);
}
/**
* Load the clear depth/stencil values from the image's metadata.
*/
static void
radv_load_ds_clear_metadata(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview)
{
struct radeon_cmdbuf *cs = cmd_buffer->cs;
const struct radv_image *image = iview->image;
VkImageAspectFlags aspects = vk_format_aspects(image->vk.format);
uint64_t va = radv_get_ds_clear_value_va(image, iview->vk.base_mip_level);
unsigned reg_offset = 0, reg_count = 0;
assert(radv_image_has_htile(image));
if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
++reg_count;
} else {
++reg_offset;
va += 4;
}
if (aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
++reg_count;
uint32_t reg = R_028028_DB_STENCIL_CLEAR + 4 * reg_offset;
if (cmd_buffer->device->physical_device->rad_info.has_load_ctx_reg_pkt) {
radeon_emit(cs, PKT3(PKT3_LOAD_CONTEXT_REG_INDEX, 3, 0));
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit(cs, (reg - SI_CONTEXT_REG_OFFSET) >> 2);
radeon_emit(cs, reg_count);
} else {
radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_REG) |
(reg_count == 2 ? COPY_DATA_COUNT_SEL : 0));
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit(cs, reg >> 2);
radeon_emit(cs, 0);
radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
radeon_emit(cs, 0);
}
}
/*
* With DCC some colors don't require CMASK elimination before being
* used as a texture. This sets a predicate value to determine if the
* cmask eliminate is required.
*/
void
radv_update_fce_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
const VkImageSubresourceRange *range, bool value)
{
if (!image->fce_pred_offset)
return;
uint64_t pred_val = value;
uint64_t va = radv_image_get_fce_pred_va(image, range->baseMipLevel);
uint32_t level_count = radv_get_levelCount(image, range);
uint32_t count = 2 * level_count;
radeon_emit(cmd_buffer->cs, PKT3(PKT3_WRITE_DATA, 2 + count, 0));
radeon_emit(cmd_buffer->cs,
S_370_DST_SEL(V_370_MEM) | S_370_WR_CONFIRM(1) | S_370_ENGINE_SEL(V_370_PFP));
radeon_emit(cmd_buffer->cs, va);
radeon_emit(cmd_buffer->cs, va >> 32);
for (uint32_t l = 0; l < level_count; l++) {
radeon_emit(cmd_buffer->cs, pred_val);
radeon_emit(cmd_buffer->cs, pred_val >> 32);
}
}
/**
* Update the DCC predicate to reflect the compression state.
*/
void
radv_update_dcc_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
const VkImageSubresourceRange *range, bool value)
{
if (image->dcc_pred_offset == 0)
return;
uint64_t pred_val = value;
uint64_t va = radv_image_get_dcc_pred_va(image, range->baseMipLevel);
uint32_t level_count = radv_get_levelCount(image, range);
uint32_t count = 2 * level_count;
assert(radv_dcc_enabled(image, range->baseMipLevel));
radeon_emit(cmd_buffer->cs, PKT3(PKT3_WRITE_DATA, 2 + count, 0));
radeon_emit(cmd_buffer->cs,
S_370_DST_SEL(V_370_MEM) | S_370_WR_CONFIRM(1) | S_370_ENGINE_SEL(V_370_PFP));
radeon_emit(cmd_buffer->cs, va);
radeon_emit(cmd_buffer->cs, va >> 32);
for (uint32_t l = 0; l < level_count; l++) {
radeon_emit(cmd_buffer->cs, pred_val);
radeon_emit(cmd_buffer->cs, pred_val >> 32);
}
}
/**
* Update the fast clear color values if the image is bound as a color buffer.
*/
static void
radv_update_bound_fast_clear_color(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
int cb_idx, uint32_t color_values[2])
{
const struct radv_subpass *subpass = cmd_buffer->state.subpass;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
uint32_t att_idx;
if (!cmd_buffer->state.attachments || !subpass)
return;
att_idx = subpass->color_attachments[cb_idx].attachment;
if (att_idx == VK_ATTACHMENT_UNUSED)
return;
if (cmd_buffer->state.attachments[att_idx].iview->image != image)
return;
radeon_set_context_reg_seq(cs, R_028C8C_CB_COLOR0_CLEAR_WORD0 + cb_idx * 0x3c, 2);
radeon_emit(cs, color_values[0]);
radeon_emit(cs, color_values[1]);
cmd_buffer->state.context_roll_without_scissor_emitted = true;
}
/**
* Set the clear color values to the image's metadata.
*/
static void
radv_set_color_clear_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
const VkImageSubresourceRange *range, uint32_t color_values[2])
{
struct radeon_cmdbuf *cs = cmd_buffer->cs;
uint32_t level_count = radv_get_levelCount(image, range);
uint32_t count = 2 * level_count;
assert(radv_image_has_cmask(image) || radv_dcc_enabled(image, range->baseMipLevel));
if (radv_image_has_clear_value(image)) {
uint64_t va = radv_image_get_fast_clear_va(image, range->baseMipLevel);
radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 2 + count, cmd_buffer->state.predicating));
radeon_emit(cs, S_370_DST_SEL(V_370_MEM) | S_370_WR_CONFIRM(1) | S_370_ENGINE_SEL(V_370_PFP));
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
for (uint32_t l = 0; l < level_count; l++) {
radeon_emit(cs, color_values[0]);
radeon_emit(cs, color_values[1]);
}
} else {
/* Some default value we can set in the update. */
assert(color_values[0] == 0 && color_values[1] == 0);
}
}
/**
* Update the clear color values for this image.
*/
void
radv_update_color_clear_metadata(struct radv_cmd_buffer *cmd_buffer,
const struct radv_image_view *iview, int cb_idx,
uint32_t color_values[2])
{
struct radv_image *image = iview->image;
VkImageSubresourceRange range = {
.aspectMask = iview->vk.aspects,
.baseMipLevel = iview->vk.base_mip_level,
.levelCount = iview->vk.level_count,
.baseArrayLayer = iview->vk.base_array_layer,
.layerCount = iview->vk.layer_count,
};
assert(radv_image_has_cmask(image) || radv_dcc_enabled(image, iview->vk.base_mip_level));
/* Do not need to update the clear value for images that are fast cleared with the comp-to-single
* mode because the hardware gets the value from the image directly.
*/
if (iview->image->support_comp_to_single)
return;
radv_set_color_clear_metadata(cmd_buffer, image, &range, color_values);
radv_update_bound_fast_clear_color(cmd_buffer, image, cb_idx, color_values);
}
/**
* Load the clear color values from the image's metadata.
*/
static void
radv_load_color_clear_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image_view *iview,
int cb_idx)
{
struct radeon_cmdbuf *cs = cmd_buffer->cs;
struct radv_image *image = iview->image;
if (!radv_image_has_cmask(image) && !radv_dcc_enabled(image, iview->vk.base_mip_level))
return;
if (iview->image->support_comp_to_single)
return;
if (!radv_image_has_clear_value(image)) {
uint32_t color_values[2] = {0, 0};
radv_update_bound_fast_clear_color(cmd_buffer, image, cb_idx, color_values);
return;
}
uint64_t va = radv_image_get_fast_clear_va(image, iview->vk.base_mip_level);
uint32_t reg = R_028C8C_CB_COLOR0_CLEAR_WORD0 + cb_idx * 0x3c;
if (cmd_buffer->device->physical_device->rad_info.has_load_ctx_reg_pkt) {
radeon_emit(cs, PKT3(PKT3_LOAD_CONTEXT_REG_INDEX, 3, cmd_buffer->state.predicating));
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit(cs, (reg - SI_CONTEXT_REG_OFFSET) >> 2);
radeon_emit(cs, 2);
} else {
radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, cmd_buffer->state.predicating));
radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_REG) |
COPY_DATA_COUNT_SEL);
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit(cs, reg >> 2);
radeon_emit(cs, 0);
radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, cmd_buffer->state.predicating));
radeon_emit(cs, 0);
}
}
/* GFX9+ metadata cache flushing workaround. metadata cache coherency is
* broken if the CB caches data of multiple mips of the same image at the
* same time.
*
* Insert some flushes to avoid this.
*/
static void
radv_emit_fb_mip_change_flush(struct radv_cmd_buffer *cmd_buffer)
{
struct vk_framebuffer *framebuffer = cmd_buffer->state.framebuffer;
const struct radv_subpass *subpass = cmd_buffer->state.subpass;
bool color_mip_changed = false;
/* Entire workaround is not applicable before GFX9 */
if (cmd_buffer->device->physical_device->rad_info.gfx_level < GFX9)
return;
if (!framebuffer)
return;
for (int i = 0; i < subpass->color_count; ++i) {
int idx = subpass->color_attachments[i].attachment;
if (idx == VK_ATTACHMENT_UNUSED)
continue;
struct radv_image_view *iview = cmd_buffer->state.attachments[idx].iview;
if ((radv_image_has_CB_metadata(iview->image) ||
radv_dcc_enabled(iview->image, iview->vk.base_mip_level) ||
radv_dcc_enabled(iview->image, cmd_buffer->state.cb_mip[i])) &&
cmd_buffer->state.cb_mip[i] != iview->vk.base_mip_level)
color_mip_changed = true;
cmd_buffer->state.cb_mip[i] = iview->vk.base_mip_level;
}
if (color_mip_changed) {
cmd_buffer->state.flush_bits |=
RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
}
}
/* This function does the flushes for mip changes if the levels are not zero for
* all render targets. This way we can assume at the start of the next cmd_buffer
* that rendering to mip 0 doesn't need any flushes. As that is the most common
* case that saves some flushes. */
static void
radv_emit_mip_change_flush_default(struct radv_cmd_buffer *cmd_buffer)
{
/* Entire workaround is not applicable before GFX9 */
if (cmd_buffer->device->physical_device->rad_info.gfx_level < GFX9)
return;
bool need_color_mip_flush = false;
for (unsigned i = 0; i < 8; ++i) {
if (cmd_buffer->state.cb_mip[i]) {
need_color_mip_flush = true;
break;
}
}
if (need_color_mip_flush) {
cmd_buffer->state.flush_bits |=
RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
}
memset(cmd_buffer->state.cb_mip, 0, sizeof(cmd_buffer->state.cb_mip));
}
static struct radv_image *
radv_cmd_buffer_get_vrs_image(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_device *device = cmd_buffer->device;
if (!device->vrs.image) {
VkResult result;
/* The global VRS state is initialized on-demand to avoid wasting VRAM. */
result = radv_device_init_vrs_state(device);
if (result != VK_SUCCESS) {
vk_command_buffer_set_error(&cmd_buffer->vk, result);
return NULL;
}
}
return device->vrs.image;
}
static void
radv_emit_framebuffer_state(struct radv_cmd_buffer *cmd_buffer)
{
int i;
const struct radv_subpass *subpass = cmd_buffer->state.subpass;
bool disable_constant_encode_ac01 = false;
unsigned color_invalid = cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX11
? G_028C70_FORMAT_GFX11(V_028C70_COLOR_INVALID)
: G_028C70_FORMAT_GFX6(V_028C70_COLOR_INVALID);
for (i = 0; i < subpass->color_count; ++i) {
if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED) {
radeon_set_context_reg(cmd_buffer->cs, R_028C70_CB_COLOR0_INFO + i * 0x3C, color_invalid);
continue;
}
int idx = subpass->color_attachments[i].attachment;
struct radv_image_view *iview = cmd_buffer->state.attachments[idx].iview;
VkImageLayout layout = subpass->color_attachments[i].layout;
radv_cs_add_buffer(cmd_buffer->device->ws, cmd_buffer->cs, iview->image->bindings[0].bo);
assert(iview->vk.aspects & (VK_IMAGE_ASPECT_COLOR_BIT | VK_IMAGE_ASPECT_PLANE_0_BIT |
VK_IMAGE_ASPECT_PLANE_1_BIT | VK_IMAGE_ASPECT_PLANE_2_BIT));
if (iview->image->disjoint && iview->vk.aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
for (uint32_t plane_id = 0; plane_id < iview->image->plane_count; plane_id++) {
radv_cs_add_buffer(cmd_buffer->device->ws, cmd_buffer->cs,
iview->image->bindings[plane_id].bo);
}
} else {
uint32_t plane_id = iview->image->disjoint ? iview->plane_id : 0;
radv_cs_add_buffer(cmd_buffer->device->ws, cmd_buffer->cs,
iview->image->bindings[plane_id].bo);
}
radv_emit_fb_color_state(cmd_buffer, i, &cmd_buffer->state.attachments[idx].cb, iview, layout);
radv_load_color_clear_metadata(cmd_buffer, iview, i);
if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX9 &&
iview->image->dcc_sign_reinterpret) {
/* Disable constant encoding with the clear value of "1" with different DCC signedness
* because the hardware will fill "1" instead of the clear value.
*/
disable_constant_encode_ac01 = true;
}
}
for (; i < cmd_buffer->state.last_subpass_color_count; i++) {
radeon_set_context_reg(cmd_buffer->cs, R_028C70_CB_COLOR0_INFO + i * 0x3C, color_invalid);
}
cmd_buffer->state.last_subpass_color_count = subpass->color_count;
if (subpass->depth_stencil_attachment) {
int idx = subpass->depth_stencil_attachment->attachment;
VkImageLayout layout = subpass->depth_stencil_attachment->layout;
struct radv_image_view *iview = cmd_buffer->state.attachments[idx].iview;
radv_cs_add_buffer(cmd_buffer->device->ws, cmd_buffer->cs,
cmd_buffer->state.attachments[idx].iview->image->bindings[0].bo);
radv_emit_fb_ds_state(cmd_buffer, &cmd_buffer->state.attachments[idx].ds, iview, layout);
if (radv_layout_is_htile_compressed(
cmd_buffer->device, iview->image, layout,
radv_image_queue_family_mask(iview->image, cmd_buffer->qf,
cmd_buffer->qf))) {
/* Only load the depth/stencil fast clear values when
* compressed rendering is enabled.
*/
radv_load_ds_clear_metadata(cmd_buffer, iview);
}
} else if (subpass->vrs_attachment && radv_cmd_buffer_get_vrs_image(cmd_buffer)) {
/* When a subpass uses a VRS attachment without binding a depth/stencil attachment, we have to
* bind our internal depth buffer that contains the VRS data as part of HTILE.
*/
VkImageLayout layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
struct radv_buffer *htile_buffer = cmd_buffer->device->vrs.buffer;
struct radv_image *image = cmd_buffer->device->vrs.image;
struct radv_ds_buffer_info ds;
struct radv_image_view iview;
radv_image_view_init(&iview, cmd_buffer->device,
&(VkImageViewCreateInfo){
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = radv_image_to_handle(image),
.viewType = radv_meta_get_view_type(image),
.format = image->vk.format,
.subresourceRange =
{
.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1,
},
},
0, NULL);
radv_initialise_vrs_surface(image, htile_buffer, &ds);
radv_cs_add_buffer(cmd_buffer->device->ws, cmd_buffer->cs, htile_buffer->bo);
radv_emit_fb_ds_state(cmd_buffer, &ds, &iview, layout);
radv_image_view_finish(&iview);
} else {
unsigned num_samples = 0;
/* On GFX11, DB_Z_INFO.NUM_SAMPLES should always match the framebuffer samples. It affects
* VRS and occlusion queries if depth and stencil are not bound.
*/
if (cmd_buffer->device->physical_device->rad_info.gfx_level == GFX11)
num_samples = util_logbase2(subpass->max_sample_count);
if (cmd_buffer->device->physical_device->rad_info.gfx_level == GFX9)
radeon_set_context_reg_seq(cmd_buffer->cs, R_028038_DB_Z_INFO, 2);
else
radeon_set_context_reg_seq(cmd_buffer->cs, R_028040_DB_Z_INFO, 2);
radeon_emit(cmd_buffer->cs, S_028040_FORMAT(V_028040_Z_INVALID) | /* DB_Z_INFO */
S_028040_NUM_SAMPLES(num_samples));
radeon_emit(cmd_buffer->cs, S_028044_FORMAT(V_028044_STENCIL_INVALID)); /* DB_STENCIL_INFO */
}
if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX8) {
bool disable_constant_encode =
cmd_buffer->device->physical_device->rad_info.has_dcc_constant_encode;
enum amd_gfx_level gfx_level = cmd_buffer->device->physical_device->rad_info.gfx_level;
uint8_t watermark = gfx_level >= GFX10 ? 6 : 4;
if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX11) {
radeon_set_context_reg(cmd_buffer->cs, R_028424_CB_FDCC_CONTROL,
S_028424_SAMPLE_MASK_TRACKER_WATERMARK(watermark));
} else {
radeon_set_context_reg(cmd_buffer->cs, R_028424_CB_DCC_CONTROL,
S_028424_OVERWRITE_COMBINER_MRT_SHARING_DISABLE(gfx_level <= GFX9) |
S_028424_OVERWRITE_COMBINER_WATERMARK(watermark) |
S_028424_DISABLE_CONSTANT_ENCODE_AC01(disable_constant_encode_ac01) |
S_028424_DISABLE_CONSTANT_ENCODE_REG(disable_constant_encode));
}
}
cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_FRAMEBUFFER;
}
static void
radv_emit_guardband_state(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_graphics_pipeline *pipeline = cmd_buffer->state.graphics_pipeline;
const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
unsigned rast_prim;
if (!(pipeline->dynamic_states & RADV_DYNAMIC_PRIMITIVE_TOPOLOGY) ||
(pipeline->active_stages & (VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT |
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT |
VK_SHADER_STAGE_GEOMETRY_BIT |
VK_SHADER_STAGE_MESH_BIT_NV))) {
/* Ignore dynamic primitive topology for TES/GS/MS stages. */
rast_prim = pipeline->rast_prim;
} else {
rast_prim = si_conv_prim_to_gs_out(d->primitive_topology);
}
si_write_guardband(cmd_buffer->cs, d->viewport.count, d->viewport.viewports, rast_prim,
d->line_width);
cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_GUARDBAND;
}
static void
radv_emit_index_buffer(struct radv_cmd_buffer *cmd_buffer, bool indirect)
{
struct radeon_cmdbuf *cs = cmd_buffer->cs;
struct radv_cmd_state *state = &cmd_buffer->state;
/* With indirect generated commands the index buffer bind may be part of the
* indirect command buffer, in which case the app may not have bound any yet. */
if (state->index_type < 0)
return;
/* For the direct indexed draws we use DRAW_INDEX_2, which includes
* the index_va and max_index_count already. */
if (!indirect)
return;
if (state->max_index_count ||
!cmd_buffer->device->physical_device->rad_info.has_zero_index_buffer_bug) {
radeon_emit(cs, PKT3(PKT3_INDEX_BASE, 1, 0));
radeon_emit(cs, state->index_va);
radeon_emit(cs, state->index_va >> 32);
radeon_emit(cs, PKT3(PKT3_INDEX_BUFFER_SIZE, 0, 0));
radeon_emit(cs, state->max_index_count);
}
cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_INDEX_BUFFER;
}
void
radv_set_db_count_control(struct radv_cmd_buffer *cmd_buffer, bool enable_occlusion_queries)
{
bool has_perfect_queries = cmd_buffer->state.perfect_occlusion_queries_enabled;
struct radv_graphics_pipeline *pipeline = cmd_buffer->state.graphics_pipeline;
uint32_t pa_sc_mode_cntl_1 = pipeline ? pipeline->ms.pa_sc_mode_cntl_1 : 0;
uint32_t db_count_control;
if (!enable_occlusion_queries) {
if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX7) {
if (G_028A4C_OUT_OF_ORDER_PRIMITIVE_ENABLE(pa_sc_mode_cntl_1) &&
pipeline->disable_out_of_order_rast_for_occlusion && has_perfect_queries) {
/* Re-enable out-of-order rasterization if the
* bound pipeline supports it and if it's has
* been disabled before starting any perfect
* occlusion queries.
*/
radeon_set_context_reg(cmd_buffer->cs, R_028A4C_PA_SC_MODE_CNTL_1, pa_sc_mode_cntl_1);
}
}
db_count_control = S_028004_ZPASS_INCREMENT_DISABLE(1);
} else {
const struct radv_subpass *subpass = cmd_buffer->state.subpass;
uint32_t sample_rate = subpass ? util_logbase2(subpass->max_sample_count) : 0;
bool gfx10_perfect =
cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX10 && has_perfect_queries;
if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX7) {
/* Always enable PERFECT_ZPASS_COUNTS due to issues with partially
* covered tiles, discards, and early depth testing. For more details,
* see https://gitlab.freedesktop.org/mesa/mesa/-/issues/3218 */
db_count_control = S_028004_PERFECT_ZPASS_COUNTS(1) |
S_028004_DISABLE_CONSERVATIVE_ZPASS_COUNTS(gfx10_perfect) |
S_028004_SAMPLE_RATE(sample_rate) | S_028004_ZPASS_ENABLE(1) |
S_028004_SLICE_EVEN_ENABLE(1) | S_028004_SLICE_ODD_ENABLE(1);
if (G_028A4C_OUT_OF_ORDER_PRIMITIVE_ENABLE(pa_sc_mode_cntl_1) &&
pipeline->disable_out_of_order_rast_for_occlusion && has_perfect_queries) {
/* If the bound pipeline has enabled
* out-of-order rasterization, we should
* disable it before starting any perfect
* occlusion queries.
*/
pa_sc_mode_cntl_1 &= C_028A4C_OUT_OF_ORDER_PRIMITIVE_ENABLE;
radeon_set_context_reg(cmd_buffer->cs, R_028A4C_PA_SC_MODE_CNTL_1, pa_sc_mode_cntl_1);
}
} else {
db_count_control = S_028004_PERFECT_ZPASS_COUNTS(1) | S_028004_SAMPLE_RATE(sample_rate);
}
}
radeon_set_context_reg(cmd_buffer->cs, R_028004_DB_COUNT_CONTROL, db_count_control);
cmd_buffer->state.context_roll_without_scissor_emitted = true;
}
unsigned
radv_instance_rate_prolog_index(unsigned num_attributes, uint32_t instance_rate_inputs)
{
/* instance_rate_vs_prologs is a flattened array of array of arrays of different sizes, or a
* single array sorted in ascending order using:
* - total number of attributes
* - number of instanced attributes
* - index of first instanced attribute
*/
/* From total number of attributes to offset. */
static const uint16_t total_to_offset[16] = {0, 1, 4, 10, 20, 35, 56, 84,
120, 165, 220, 286, 364, 455, 560, 680};
unsigned start_index = total_to_offset[num_attributes - 1];
/* From number of instanced attributes to offset. This would require a different LUT depending on
* the total number of attributes, but we can exploit a pattern to use just the LUT for 16 total
* attributes.
*/
static const uint8_t count_to_offset_total16[16] = {0, 16, 31, 45, 58, 70, 81, 91,
100, 108, 115, 121, 126, 130, 133, 135};
unsigned count = util_bitcount(instance_rate_inputs);
unsigned offset_from_start_index =
count_to_offset_total16[count - 1] - ((16 - num_attributes) * (count - 1));
unsigned first = ffs(instance_rate_inputs) - 1;
return start_index + offset_from_start_index + first;
}
union vs_prolog_key_header {
struct {
uint32_t key_size : 8;
uint32_t num_attributes : 6;
uint32_t as_ls : 1;
uint32_t is_ngg : 1;
uint32_t wave32 : 1;
uint32_t next_stage : 3;
uint32_t instance_rate_inputs : 1;
uint32_t alpha_adjust_lo : 1;
uint32_t alpha_adjust_hi : 1;
uint32_t misaligned_mask : 1;
uint32_t post_shuffle : 1;
uint32_t nontrivial_divisors : 1;
uint32_t zero_divisors : 1;
/* We need this to ensure the padding is zero. It's useful even if it's unused. */
uint32_t padding0 : 5;
};
uint32_t v;
};
uint32_t
radv_hash_vs_prolog(const void *key_)
{
const uint32_t *key = key_;
union vs_prolog_key_header header;
header.v = key[0];
return _mesa_hash_data(key, header.key_size);
}
bool
radv_cmp_vs_prolog(const void *a_, const void *b_)
{
const uint32_t *a = a_;
const uint32_t *b = b_;
if (a[0] != b[0])
return false;
union vs_prolog_key_header header;
header.v = a[0];
return memcmp(a, b, header.key_size) == 0;
}
static struct radv_shader_part *
lookup_vs_prolog(struct radv_cmd_buffer *cmd_buffer, struct radv_shader *vs_shader,
uint32_t *nontrivial_divisors)
{
STATIC_ASSERT(sizeof(union vs_prolog_key_header) == 4);
assert(vs_shader->info.vs.dynamic_inputs);
const struct radv_vs_input_state *state = &cmd_buffer->state.dynamic_vs_input;
struct radv_graphics_pipeline *pipeline = cmd_buffer->state.graphics_pipeline;
struct radv_device *device = cmd_buffer->device;
unsigned num_attributes = pipeline->last_vertex_attrib_bit;
uint32_t attribute_mask = BITFIELD_MASK(num_attributes);
uint32_t instance_rate_inputs = state->instance_rate_inputs & attribute_mask;
uint32_t zero_divisors = state->zero_divisors & attribute_mask;
*nontrivial_divisors = state->nontrivial_divisors & attribute_mask;
uint32_t misaligned_mask = cmd_buffer->state.vbo_misaligned_mask;
if (cmd_buffer->state.vbo_misaligned_mask_invalid) {
assert(device->physical_device->rad_info.gfx_level == GFX6 ||
device->physical_device->rad_info.gfx_level >= GFX10);
u_foreach_bit (index, cmd_buffer->state.vbo_misaligned_mask_invalid & attribute_mask) {
uint8_t binding = state->bindings[index];
if (!(cmd_buffer->state.vbo_bound_mask & BITFIELD_BIT(binding)))
continue;
uint8_t req = state->format_align_req_minus_1[index];
struct radv_vertex_binding *vb = &cmd_buffer->vertex_bindings[binding];
VkDeviceSize offset = vb->offset + state->offsets[index];
if ((offset & req) || (vb->stride & req))
misaligned_mask |= BITFIELD_BIT(index);
}
cmd_buffer->state.vbo_misaligned_mask = misaligned_mask;
cmd_buffer->state.vbo_misaligned_mask_invalid &= ~attribute_mask;
}
misaligned_mask |= state->nontrivial_formats;
/* try to use a pre-compiled prolog first */
struct radv_shader_part *prolog = NULL;
if (pipeline->can_use_simple_input &&
(!vs_shader->info.vs.as_ls || !instance_rate_inputs) &&
!misaligned_mask && !state->alpha_adjust_lo && !state->alpha_adjust_hi) {
if (!instance_rate_inputs) {
prolog = device->simple_vs_prologs[num_attributes - 1];
} else if (num_attributes <= 16 && !*nontrivial_divisors && !zero_divisors &&
util_bitcount(instance_rate_inputs) ==
(util_last_bit(instance_rate_inputs) - ffs(instance_rate_inputs) + 1)) {
unsigned index = radv_instance_rate_prolog_index(num_attributes, instance_rate_inputs);
prolog = device->instance_rate_vs_prologs[index];
}
}
if (prolog)
return prolog;
/* if we couldn't use a pre-compiled prolog, find one in the cache or create one */
uint32_t key_words[17];
unsigned key_size = 1;
struct radv_vs_prolog_key key;
key.state = state;
key.num_attributes = num_attributes;
key.misaligned_mask = misaligned_mask;
/* The instance ID input VGPR is placed differently when as_ls=true. */
key.as_ls = vs_shader->info.vs.as_ls && instance_rate_inputs;
key.is_ngg = vs_shader->info.is_ngg;
key.wave32 = vs_shader->info.wave_size == 32;
key.next_stage = pipeline->next_vertex_stage;
union vs_prolog_key_header header;
header.v = 0;
header.num_attributes = num_attributes;
header.as_ls = key.as_ls;
header.is_ngg = key.is_ngg;
header.wave32 = key.wave32;
header.next_stage = key.next_stage;
if (instance_rate_inputs & ~*nontrivial_divisors) {
header.instance_rate_inputs = true;
key_words[key_size++] = instance_rate_inputs;
}
if (*nontrivial_divisors) {
header.nontrivial_divisors = true;
key_words[key_size++] = *nontrivial_divisors;
}
if (zero_divisors) {
header.zero_divisors = true;
key_words[key_size++] = zero_divisors;
}
if (misaligned_mask) {
header.misaligned_mask = true;
key_words[key_size++] = misaligned_mask;
uint8_t *formats = (uint8_t *)&key_words[key_size];
unsigned num_formats = 0;
u_foreach_bit(index, misaligned_mask) formats[num_formats++] = state->formats[index];
while (num_formats & 0x3)
formats[num_formats++] = 0;
key_size += num_formats / 4u;
if (state->post_shuffle & attribute_mask) {
header.post_shuffle = true;
key_words[key_size++] = state->post_shuffle & attribute_mask;
}
}
if (state->alpha_adjust_lo & attribute_mask) {
header.alpha_adjust_lo = true;
key_words[key_size++] = state->alpha_adjust_lo & attribute_mask;
}
if (state->alpha_adjust_hi & attribute_mask) {
header.alpha_adjust_hi = true;
key_words[key_size++] = state->alpha_adjust_hi & attribute_mask;
}
header.key_size = key_size * sizeof(key_words[0]);
key_words[0] = header.v;
uint32_t hash = radv_hash_vs_prolog(key_words);
if (cmd_buffer->state.emitted_vs_prolog &&
cmd_buffer->state.emitted_vs_prolog_key_hash == hash &&
radv_cmp_vs_prolog(key_words, cmd_buffer->state.emitted_vs_prolog_key))
return cmd_buffer->state.emitted_vs_prolog;
u_rwlock_rdlock(&device->vs_prologs_lock);
struct hash_entry *prolog_entry =
_mesa_hash_table_search_pre_hashed(device->vs_prologs, hash, key_words);
u_rwlock_rdunlock(&device->vs_prologs_lock);
if (!prolog_entry) {
u_rwlock_wrlock(&device->vs_prologs_lock);
prolog_entry = _mesa_hash_table_search_pre_hashed(device->vs_prologs, hash, key_words);
if (prolog_entry) {
u_rwlock_wrunlock(&device->vs_prologs_lock);
return prolog_entry->data;
}
prolog = radv_create_vs_prolog(device, &key);
uint32_t *key2 = malloc(key_size * 4);
if (!prolog || !key2) {
radv_shader_part_unref(device, prolog);
free(key2);
u_rwlock_wrunlock(&device->vs_prologs_lock);
return NULL;
}
memcpy(key2, key_words, key_size * 4);
_mesa_hash_table_insert_pre_hashed(device->vs_prologs, hash, key2, prolog);
u_rwlock_wrunlock(&device->vs_prologs_lock);
return prolog;
}
return prolog_entry->data;
}
static void
emit_prolog_regs(struct radv_cmd_buffer *cmd_buffer, struct radv_shader *vs_shader,
struct radv_shader_part *prolog, bool pipeline_is_dirty)
{
/* no need to re-emit anything in this case */
if (cmd_buffer->state.emitted_vs_prolog == prolog && !pipeline_is_dirty)
return;
enum amd_gfx_level chip = cmd_buffer->device->physical_device->rad_info.gfx_level;
struct radv_graphics_pipeline *pipeline = cmd_buffer->state.graphics_pipeline;
uint64_t prolog_va = radv_buffer_get_va(prolog->bo) + prolog->alloc->offset;
assert(cmd_buffer->state.emitted_graphics_pipeline == cmd_buffer->state.graphics_pipeline);
uint32_t rsrc1 = vs_shader->config.rsrc1;
if (chip < GFX10 && G_00B228_SGPRS(prolog->rsrc1) > G_00B228_SGPRS(vs_shader->config.rsrc1))
rsrc1 = (rsrc1 & C_00B228_SGPRS) | (prolog->rsrc1 & ~C_00B228_SGPRS);
/* The main shader must not use less VGPRs than the prolog, otherwise shared vgprs might not
* work.
*/
assert(G_00B848_VGPRS(vs_shader->config.rsrc1) >= G_00B848_VGPRS(prolog->rsrc1));
unsigned pgm_lo_reg = R_00B120_SPI_SHADER_PGM_LO_VS;
unsigned rsrc1_reg = R_00B128_SPI_SHADER_PGM_RSRC1_VS;
if (vs_shader->info.is_ngg || pipeline->base.shaders[MESA_SHADER_GEOMETRY] == vs_shader) {
pgm_lo_reg = chip >= GFX10 ? R_00B320_SPI_SHADER_PGM_LO_ES : R_00B210_SPI_SHADER_PGM_LO_ES;
rsrc1_reg = R_00B228_SPI_SHADER_PGM_RSRC1_GS;
} else if (pipeline->base.shaders[MESA_SHADER_TESS_CTRL] == vs_shader) {
pgm_lo_reg = chip >= GFX10 ? R_00B520_SPI_SHADER_PGM_LO_LS : R_00B410_SPI_SHADER_PGM_LO_LS;
rsrc1_reg = R_00B428_SPI_SHADER_PGM_RSRC1_HS;
} else if (vs_shader->info.vs.as_ls) {
pgm_lo_reg = R_00B520_SPI_SHADER_PGM_LO_LS;
rsrc1_reg = R_00B528_SPI_SHADER_PGM_RSRC1_LS;
} else if (vs_shader->info.vs.as_es) {
pgm_lo_reg = R_00B320_SPI_SHADER_PGM_LO_ES;
rsrc1_reg = R_00B328_SPI_SHADER_PGM_RSRC1_ES;
}
radeon_set_sh_reg(cmd_buffer->cs, pgm_lo_reg, prolog_va >> 8);
if (chip < GFX10)
radeon_set_sh_reg(cmd_buffer->cs, rsrc1_reg, rsrc1);
else
assert(rsrc1 == vs_shader->config.rsrc1);
radv_cs_add_buffer(cmd_buffer->device->ws, cmd_buffer->cs, prolog->bo);
}
static void
emit_prolog_inputs(struct radv_cmd_buffer *cmd_buffer, struct radv_shader *vs_shader,
uint32_t nontrivial_divisors, bool pipeline_is_dirty)
{
/* no need to re-emit anything in this case */
if (!nontrivial_divisors && !pipeline_is_dirty && cmd_buffer->state.emitted_vs_prolog &&
!cmd_buffer->state.emitted_vs_prolog->nontrivial_divisors)
return;
const struct radv_vs_input_state *state = &cmd_buffer->state.dynamic_vs_input;
uint64_t input_va = radv_shader_get_va(vs_shader);
if (nontrivial_divisors) {
unsigned inputs_offset;
uint32_t *inputs;
unsigned size = 8 + util_bitcount(nontrivial_divisors) * 8;
if (!radv_cmd_buffer_upload_alloc(cmd_buffer, size, &inputs_offset, (void **)&inputs))
return;
*(inputs++) = input_va;
*(inputs++) = input_va >> 32;
u_foreach_bit(index, nontrivial_divisors)
{
uint32_t div = state->divisors[index];
if (div == 0) {
*(inputs++) = 0;
*(inputs++) = 1;
} else if (util_is_power_of_two_or_zero(div)) {
*(inputs++) = util_logbase2(div) | (1 << 8);
*(inputs++) = 0xffffffffu;
} else {
struct util_fast_udiv_info info = util_compute_fast_udiv_info(div, 32, 32);
*(inputs++) = info.pre_shift | (info.increment << 8) | (info.post_shift << 16);
*(inputs++) = info.multiplier;
}
}
input_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + inputs_offset;
}
struct radv_userdata_info *loc =
&vs_shader->info.user_sgprs_locs.shader_data[AC_UD_VS_PROLOG_INPUTS];
uint32_t base_reg = cmd_buffer->state.graphics_pipeline->base.user_data_0[MESA_SHADER_VERTEX];
assert(loc->sgpr_idx != -1);
assert(loc->num_sgprs == 2);
radv_emit_shader_pointer(cmd_buffer->device, cmd_buffer->cs, base_reg + loc->sgpr_idx * 4,
input_va, true);
}
static void
radv_emit_vertex_input(struct radv_cmd_buffer *cmd_buffer, bool pipeline_is_dirty)
{
struct radv_graphics_pipeline *pipeline = cmd_buffer->state.graphics_pipeline;
struct radv_shader *vs_shader = radv_get_shader(&pipeline->base, MESA_SHADER_VERTEX);
assert(!cmd_buffer->state.mesh_shading);
if (!vs_shader->info.vs.has_prolog)
return;
uint32_t nontrivial_divisors;
struct radv_shader_part *prolog =
lookup_vs_prolog(cmd_buffer, vs_shader, &nontrivial_divisors);
if (!prolog) {
vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
return;
}
emit_prolog_regs(cmd_buffer, vs_shader, prolog, pipeline_is_dirty);
emit_prolog_inputs(cmd_buffer, vs_shader, nontrivial_divisors, pipeline_is_dirty);
cmd_buffer->state.emitted_vs_prolog = prolog;
if (unlikely(cmd_buffer->device->trace_bo))
radv_save_vs_prolog(cmd_buffer, prolog);
}
static void
radv_cmd_buffer_flush_dynamic_state(struct radv_cmd_buffer *cmd_buffer, bool pipeline_is_dirty)
{
uint64_t states =
cmd_buffer->state.dirty & cmd_buffer->state.emitted_graphics_pipeline->needed_dynamic_state;
if (states & (RADV_CMD_DIRTY_DYNAMIC_VIEWPORT))
radv_emit_viewport(cmd_buffer);
if (states & (RADV_CMD_DIRTY_DYNAMIC_SCISSOR | RADV_CMD_DIRTY_DYNAMIC_VIEWPORT) &&
!cmd_buffer->device->physical_device->rad_info.has_gfx9_scissor_bug)
radv_emit_scissor(cmd_buffer);
if (states & RADV_CMD_DIRTY_DYNAMIC_LINE_WIDTH)
radv_emit_line_width(cmd_buffer);
if (states & RADV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS)
radv_emit_blend_constants(cmd_buffer);
if (states &
(RADV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | RADV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK |
RADV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK))
radv_emit_stencil(cmd_buffer);
if (states & RADV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS)
radv_emit_depth_bounds(cmd_buffer);
if (states & RADV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS)
radv_emit_depth_bias(cmd_buffer);
if (states & RADV_CMD_DIRTY_DYNAMIC_DISCARD_RECTANGLE)
radv_emit_discard_rectangle(cmd_buffer);
if (states & RADV_CMD_DIRTY_DYNAMIC_SAMPLE_LOCATIONS)
radv_emit_sample_locations(cmd_buffer);
if (states & (RADV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE))
radv_emit_line_stipple(cmd_buffer);
if (states & (RADV_CMD_DIRTY_DYNAMIC_CULL_MODE | RADV_CMD_DIRTY_DYNAMIC_FRONT_FACE |
RADV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS_ENABLE))
radv_emit_culling(cmd_buffer);
if (states & RADV_CMD_DIRTY_DYNAMIC_PRIMITIVE_TOPOLOGY)
radv_emit_primitive_topology(cmd_buffer);
if (states &
(RADV_CMD_DIRTY_DYNAMIC_DEPTH_TEST_ENABLE | RADV_CMD_DIRTY_DYNAMIC_DEPTH_WRITE_ENABLE |
RADV_CMD_DIRTY_DYNAMIC_DEPTH_COMPARE_OP | RADV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE |
RADV_CMD_DIRTY_DYNAMIC_STENCIL_TEST_ENABLE | RADV_CMD_DIRTY_DYNAMIC_STENCIL_OP))
radv_emit_depth_control(cmd_buffer);
if (states & RADV_CMD_DIRTY_DYNAMIC_STENCIL_OP)
radv_emit_stencil_control(cmd_buffer);
if (states & RADV_CMD_DIRTY_DYNAMIC_FRAGMENT_SHADING_RATE)
radv_emit_fragment_shading_rate(cmd_buffer);
if (states & RADV_CMD_DIRTY_DYNAMIC_PRIMITIVE_RESTART_ENABLE)
radv_emit_primitive_restart_enable(cmd_buffer);
if (states & RADV_CMD_DIRTY_DYNAMIC_RASTERIZER_DISCARD_ENABLE)
radv_emit_rasterizer_discard_enable(cmd_buffer);
if (states & RADV_CMD_DIRTY_DYNAMIC_LOGIC_OP)
radv_emit_logic_op(cmd_buffer);
if (states & RADV_CMD_DIRTY_DYNAMIC_COLOR_WRITE_ENABLE)
radv_emit_color_write_enable(cmd_buffer);
if (states & RADV_CMD_DIRTY_DYNAMIC_VERTEX_INPUT)
radv_emit_vertex_input(cmd_buffer, pipeline_is_dirty);
cmd_buffer->state.dirty &= ~states;
}
static void
radv_flush_push_descriptors(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point)
{
struct radv_descriptor_state *descriptors_state =
radv_get_descriptors_state(cmd_buffer, bind_point);
struct radv_descriptor_set *set = (struct radv_descriptor_set *)&descriptors_state->push_set.set;
unsigned bo_offset;
if (!radv_cmd_buffer_upload_data(cmd_buffer, set->header.size, set->header.mapped_ptr,
&bo_offset))
return;
set->header.va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
set->header.va += bo_offset;
}
static void
radv_flush_indirect_descriptor_sets(struct radv_cmd_buffer *cmd_buffer,
struct radv_pipeline *pipeline, VkPipelineBindPoint bind_point)
{
struct radv_descriptor_state *descriptors_state =
radv_get_descriptors_state(cmd_buffer, bind_point);
uint32_t size = MAX_SETS * 4;
uint32_t offset;
void *ptr;
if (!radv_cmd_buffer_upload_alloc(cmd_buffer, size, &offset, &ptr))
return;
for (unsigned i = 0; i < MAX_SETS; i++) {
uint32_t *uptr = ((uint32_t *)ptr) + i;
uint64_t set_va = 0;
struct radv_descriptor_set *set = descriptors_state->sets[i];
if (descriptors_state->valid & (1u << i))
set_va = set->header.va;
uptr[0] = set_va & 0xffffffff;
}
struct radeon_cmdbuf *cs = cmd_buffer->cs;
struct radv_device *device = cmd_buffer->device;
uint64_t va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
va += offset;
if (bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
struct radv_graphics_pipeline *graphics_pipeline = radv_pipeline_to_graphics(pipeline);
if (pipeline->shaders[MESA_SHADER_VERTEX])
radv_emit_userdata_address(device, cs, pipeline, MESA_SHADER_VERTEX,
AC_UD_INDIRECT_DESCRIPTOR_SETS, va);
if (pipeline->shaders[MESA_SHADER_FRAGMENT])
radv_emit_userdata_address(device, cs, pipeline, MESA_SHADER_FRAGMENT,
AC_UD_INDIRECT_DESCRIPTOR_SETS, va);
if (radv_pipeline_has_stage(graphics_pipeline, MESA_SHADER_MESH))
radv_emit_userdata_address(device, cs, pipeline, MESA_SHADER_MESH,
AC_UD_INDIRECT_DESCRIPTOR_SETS, va);
if (radv_pipeline_has_stage(graphics_pipeline, MESA_SHADER_TASK))
radv_emit_userdata_address(device, cmd_buffer->ace_internal.cs, pipeline, MESA_SHADER_TASK,
AC_UD_INDIRECT_DESCRIPTOR_SETS, va);
if (radv_pipeline_has_stage(graphics_pipeline, MESA_SHADER_GEOMETRY))
radv_emit_userdata_address(device, cs, pipeline, MESA_SHADER_GEOMETRY,
AC_UD_INDIRECT_DESCRIPTOR_SETS, va);
if (radv_pipeline_has_stage(graphics_pipeline, MESA_SHADER_TESS_CTRL))
radv_emit_userdata_address(device, cs, pipeline, MESA_SHADER_TESS_CTRL,
AC_UD_INDIRECT_DESCRIPTOR_SETS, va);
if (radv_pipeline_has_stage(graphics_pipeline, MESA_SHADER_TESS_CTRL))
radv_emit_userdata_address(device, cs, pipeline, MESA_SHADER_TESS_EVAL,
AC_UD_INDIRECT_DESCRIPTOR_SETS, va);
} else {
radv_emit_userdata_address(device, cs, pipeline, MESA_SHADER_COMPUTE,
AC_UD_INDIRECT_DESCRIPTOR_SETS, va);
}
}
static void
radv_flush_descriptors(struct radv_cmd_buffer *cmd_buffer, VkShaderStageFlags stages,
struct radv_pipeline *pipeline, VkPipelineBindPoint bind_point)
{
struct radv_descriptor_state *descriptors_state =
radv_get_descriptors_state(cmd_buffer, bind_point);
struct radv_device *device = cmd_buffer->device;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
bool flush_indirect_descriptors;
if (!descriptors_state->dirty)
return;
if (descriptors_state->push_dirty)
radv_flush_push_descriptors(cmd_buffer, bind_point);
flush_indirect_descriptors = pipeline->need_indirect_descriptor_sets;
if (flush_indirect_descriptors)
radv_flush_indirect_descriptor_sets(cmd_buffer, pipeline, bind_point);
ASSERTED unsigned cdw_max =
radeon_check_space(device->ws, cs, MAX_SETS * MESA_VULKAN_SHADER_STAGES * 4);
if (stages & VK_SHADER_STAGE_COMPUTE_BIT) {
radv_emit_descriptor_pointers(device, cs, pipeline, descriptors_state, MESA_SHADER_COMPUTE);
} else {
radv_foreach_stage(stage, stages & ~VK_SHADER_STAGE_TASK_BIT_NV)
{
if (!cmd_buffer->state.graphics_pipeline->base.shaders[stage])
continue;
radv_emit_descriptor_pointers(device, cs, pipeline, descriptors_state, stage);
}
if (stages & VK_SHADER_STAGE_TASK_BIT_NV) {
radv_emit_descriptor_pointers(device, cmd_buffer->ace_internal.cs, pipeline,
descriptors_state, MESA_SHADER_TASK);
}
}
descriptors_state->dirty = 0;
descriptors_state->push_dirty = false;
assert(cmd_buffer->cs->cdw <= cdw_max);
if (unlikely(cmd_buffer->device->trace_bo))
radv_save_descriptors(cmd_buffer, bind_point);
}
static bool
radv_shader_loads_push_constants(struct radv_pipeline *pipeline, gl_shader_stage stage)
{
struct radv_userdata_info *loc =
radv_lookup_user_sgpr(pipeline, stage, AC_UD_PUSH_CONSTANTS);
return loc->sgpr_idx != -1;
}
static void
radv_emit_all_inline_push_consts(struct radv_device *device, struct radeon_cmdbuf *cs,
struct radv_pipeline *pipeline, gl_shader_stage stage,
uint32_t *values, bool *need_push_constants)
{
const struct radv_shader *shader = radv_get_shader(pipeline, stage);
if (!shader)
return;
*need_push_constants |= radv_shader_loads_push_constants(pipeline, stage);
const uint64_t mask = shader->info.inline_push_constant_mask;
if (!mask)
return;
const uint8_t base = ffs(mask) - 1;
if (mask == u_bit_consecutive64(base, util_last_bit64(mask) - base)) {
/* consecutive inline push constants */
radv_emit_inline_push_consts(device, cs, pipeline, stage, AC_UD_INLINE_PUSH_CONSTANTS,
values + base);
} else {
/* sparse inline push constants */
uint32_t consts[AC_MAX_INLINE_PUSH_CONSTS];
unsigned num_consts = 0;
u_foreach_bit64 (idx, mask)
consts[num_consts++] = values[idx];
radv_emit_inline_push_consts(device, cs, pipeline, stage, AC_UD_INLINE_PUSH_CONSTANTS,
consts);
}
}
static void
radv_flush_constants(struct radv_cmd_buffer *cmd_buffer, VkShaderStageFlags stages,
struct radv_pipeline *pipeline, VkPipelineBindPoint bind_point)
{
struct radv_device *device = cmd_buffer->device;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
struct radv_descriptor_state *descriptors_state =
radv_get_descriptors_state(cmd_buffer, bind_point);
struct radv_shader *shader, *prev_shader;
bool need_push_constants = false;
unsigned offset;
void *ptr;
uint64_t va;
uint32_t internal_stages;
uint32_t dirty_stages = 0;
stages &= cmd_buffer->push_constant_stages;
if (!stages || (!pipeline->push_constant_size && !pipeline->dynamic_offset_count))
return;
internal_stages = stages;
switch (bind_point) {
case VK_PIPELINE_BIND_POINT_GRAPHICS:
break;
case VK_PIPELINE_BIND_POINT_COMPUTE:
dirty_stages = RADV_RT_STAGE_BITS;
break;
case VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR:
internal_stages = VK_SHADER_STAGE_COMPUTE_BIT;
dirty_stages = VK_SHADER_STAGE_COMPUTE_BIT;
break;
default:
unreachable("Unhandled bind point");
}
radv_foreach_stage(stage, internal_stages & ~VK_SHADER_STAGE_TASK_BIT_NV)
{
radv_emit_all_inline_push_consts(
device, cs, pipeline, stage, (uint32_t *)cmd_buffer->push_constants, &need_push_constants);
}
if (internal_stages & VK_SHADER_STAGE_TASK_BIT_NV) {
radv_emit_all_inline_push_consts(device, cmd_buffer->ace_internal.cs, pipeline,
MESA_SHADER_TASK, (uint32_t *)cmd_buffer->push_constants,
&need_push_constants);
}
if (need_push_constants) {
if (!radv_cmd_buffer_upload_alloc(
cmd_buffer, pipeline->push_constant_size + 16 * pipeline->dynamic_offset_count, &offset,
&ptr))
return;
memcpy(ptr, cmd_buffer->push_constants, pipeline->push_constant_size);
memcpy((char *)ptr + pipeline->push_constant_size, descriptors_state->dynamic_buffers,
16 * pipeline->dynamic_offset_count);
va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
va += offset;
ASSERTED unsigned cdw_max =
radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, MESA_VULKAN_SHADER_STAGES * 4);
prev_shader = NULL;
radv_foreach_stage(stage, internal_stages & ~VK_SHADER_STAGE_TASK_BIT_NV)
{
shader = radv_get_shader(pipeline, stage);
/* Avoid redundantly emitting the address for merged stages. */
if (shader && shader != prev_shader) {
radv_emit_userdata_address(device, cs, pipeline, stage, AC_UD_PUSH_CONSTANTS, va);
prev_shader = shader;
}
}
if (internal_stages & VK_SHADER_STAGE_TASK_BIT_NV) {
radv_emit_userdata_address(device, cmd_buffer->ace_internal.cs, pipeline, MESA_SHADER_TASK,
AC_UD_PUSH_CONSTANTS, va);
}
assert(cmd_buffer->cs->cdw <= cdw_max);
}
cmd_buffer->push_constant_stages &= ~stages;
cmd_buffer->push_constant_stages |= dirty_stages;
}
void
radv_write_vertex_descriptors(const struct radv_cmd_buffer *cmd_buffer,
const struct radv_graphics_pipeline *pipeline,
bool full_null_descriptors, void *vb_ptr)
{
struct radv_shader *vs_shader = radv_get_shader(&pipeline->base, MESA_SHADER_VERTEX);
enum amd_gfx_level chip = cmd_buffer->device->physical_device->rad_info.gfx_level;
enum radeon_family family = cmd_buffer->device->physical_device->rad_info.family;
unsigned desc_index = 0;
uint32_t mask = pipeline->vb_desc_usage_mask;
uint64_t va;
const struct radv_vs_input_state *vs_state =
vs_shader->info.vs.dynamic_inputs ? &cmd_buffer->state.dynamic_vs_input : NULL;
assert(!vs_state || pipeline->use_per_attribute_vb_descs);
const struct ac_vtx_format_info *vtx_info_table =
vs_state ? ac_get_vtx_format_info_table(chip, family) : NULL;
while (mask) {
unsigned i = u_bit_scan(&mask);
uint32_t *desc = &((uint32_t *)vb_ptr)[desc_index++ * 4];
uint32_t offset, rsrc_word3;
unsigned binding =
vs_state ? cmd_buffer->state.dynamic_vs_input.bindings[i]
: (pipeline->use_per_attribute_vb_descs ? pipeline->attrib_bindings[i] : i);
struct radv_buffer *buffer = cmd_buffer->vertex_binding_buffers[binding];
unsigned num_records;
unsigned stride;
if (vs_state && !(vs_state->nontrivial_formats & BITFIELD_BIT(i))) {
const struct ac_vtx_format_info *vtx_info = &vtx_info_table[vs_state->formats[i]];
unsigned hw_format = vtx_info->hw_format[vtx_info->num_channels - 1];
if (chip >= GFX10) {
rsrc_word3 = vtx_info->dst_sel | S_008F0C_FORMAT(hw_format);
} else {
rsrc_word3 = vtx_info->dst_sel | S_008F0C_NUM_FORMAT((hw_format >> 4) & 0x7) |
S_008F0C_DATA_FORMAT(hw_format & 0xf);
}
} else {
rsrc_word3 = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
if (chip >= GFX10)
rsrc_word3 |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_UINT);
else
rsrc_word3 |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_UINT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
}
if (pipeline->dynamic_states & (RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE |
RADV_DYNAMIC_VERTEX_INPUT)) {
stride = cmd_buffer->vertex_bindings[binding].stride;
} else {
stride = pipeline->binding_stride[binding];
}
if (!buffer) {
if (full_null_descriptors) {
/* Put all the info in for the DGC generation shader in case the VBO gets overridden. */
desc[0] = 0;
desc[1] = S_008F04_STRIDE(stride);
desc[2] = 0;
desc[3] = rsrc_word3;
} else if (vs_state) {
/* Stride needs to be non-zero on GFX9, or else bounds checking is disabled. We need
* to include the format/word3 so that the alpha channel is 1 for formats without an
* alpha channel.
*/
desc[0] = 0;
desc[1] = S_008F04_STRIDE(16);
desc[2] = 0;
desc[3] = rsrc_word3;
} else {
memset(desc, 0, 4 * 4);
}
continue;
}
va = radv_buffer_get_va(buffer->bo);
offset = cmd_buffer->vertex_bindings[binding].offset;
va += offset + buffer->offset;
if (vs_state)
va += vs_state->offsets[i];
if (cmd_buffer->vertex_bindings[binding].size) {
num_records = cmd_buffer->vertex_bindings[binding].size;
} else {
num_records = vk_buffer_range(&buffer->vk, offset, VK_WHOLE_SIZE);
}
if (pipeline->use_per_attribute_vb_descs) {
uint32_t attrib_end =
vs_state ? vs_state->offsets[i] + vs_state->format_sizes[i] : pipeline->attrib_ends[i];
if (num_records < attrib_end) {
num_records = 0; /* not enough space for one vertex */
} else if (stride == 0) {
num_records = 1; /* only one vertex */
} else {
num_records = (num_records - attrib_end) / stride + 1;
/* If attrib_offset>stride, then the compiler will increase the vertex index by
* attrib_offset/stride and decrease the offset by attrib_offset%stride. This is
* only allowed with static strides.
*/
num_records += pipeline->attrib_index_offset[i];
}
/* GFX10 uses OOB_SELECT_RAW if stride==0, so convert num_records from elements into
* into bytes in that case. GFX8 always uses bytes.
*/
if (num_records && (chip == GFX8 || (chip != GFX9 && !stride))) {
num_records = (num_records - 1) * stride + attrib_end;
} else if (!num_records) {
/* On GFX9, it seems bounds checking is disabled if both
* num_records and stride are zero. This doesn't seem necessary on GFX8, GFX10 and
* GFX10.3 but it doesn't hurt.
*/
if (full_null_descriptors) {
/* Put all the info in for the DGC generation shader in case the VBO gets overridden.
*/
desc[0] = 0;
desc[1] = S_008F04_STRIDE(stride);
desc[2] = 0;
desc[3] = rsrc_word3;
} else if (vs_state) {
desc[0] = 0;
desc[1] = S_008F04_STRIDE(16);
desc[2] = 0;
desc[3] = rsrc_word3;
} else {
memset(desc, 0, 16);
}
continue;
}
} else {
if (chip != GFX8 && stride)
num_records = DIV_ROUND_UP(num_records, stride);
}
if (chip >= GFX10) {
/* OOB_SELECT chooses the out-of-bounds check:
* - 1: index >= NUM_RECORDS (Structured)
* - 3: offset >= NUM_RECORDS (Raw)
*/
int oob_select = stride ? V_008F0C_OOB_SELECT_STRUCTURED : V_008F0C_OOB_SELECT_RAW;
rsrc_word3 |= S_008F0C_OOB_SELECT(oob_select) | S_008F0C_RESOURCE_LEVEL(chip < GFX11);
}
desc[0] = va;
desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) | S_008F04_STRIDE(stride);
desc[2] = num_records;
desc[3] = rsrc_word3;
}
}
static void
radv_flush_vertex_descriptors(struct radv_cmd_buffer *cmd_buffer, bool pipeline_is_dirty)
{
if ((pipeline_is_dirty || (cmd_buffer->state.dirty & RADV_CMD_DIRTY_VERTEX_BUFFER)) &&
cmd_buffer->state.graphics_pipeline->vb_desc_usage_mask) {
/* Mesh shaders don't have vertex descriptors. */
assert(!cmd_buffer->state.mesh_shading);
struct radv_graphics_pipeline *pipeline = cmd_buffer->state.graphics_pipeline;
unsigned vb_offset;
void *vb_ptr;
uint64_t va;
/* allocate some descriptor state for vertex buffers */
if (!radv_cmd_buffer_upload_alloc(cmd_buffer, pipeline->vb_desc_alloc_size, &vb_offset,
&vb_ptr))
return;
radv_write_vertex_descriptors(cmd_buffer, pipeline, false, vb_ptr);
va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
va += vb_offset;
radv_emit_userdata_address(cmd_buffer->device, cmd_buffer->cs, &pipeline->base,
MESA_SHADER_VERTEX, AC_UD_VS_VERTEX_BUFFERS, va);
cmd_buffer->state.vb_va = va;
cmd_buffer->state.prefetch_L2_mask |= RADV_PREFETCH_VBO_DESCRIPTORS;
if (unlikely(cmd_buffer->device->trace_bo))
radv_save_vertex_descriptors(cmd_buffer, (uintptr_t)vb_ptr);
}
cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_VERTEX_BUFFER;
}
static void
radv_emit_streamout_buffers(struct radv_cmd_buffer *cmd_buffer, uint64_t va)
{
struct radv_graphics_pipeline *pipeline = cmd_buffer->state.graphics_pipeline;
struct radv_userdata_info *loc;
uint32_t base_reg;
for (unsigned stage = 0; stage < MESA_VULKAN_SHADER_STAGES; ++stage) {
if (!radv_get_shader(&pipeline->base, stage))
continue;
loc = radv_lookup_user_sgpr(&pipeline->base, stage, AC_UD_STREAMOUT_BUFFERS);
if (loc->sgpr_idx == -1)
continue;
base_reg = pipeline->base.user_data_0[stage];
radv_emit_shader_pointer(cmd_buffer->device, cmd_buffer->cs, base_reg + loc->sgpr_idx * 4, va,
false);
}
if (radv_pipeline_has_gs_copy_shader(&pipeline->base)) {
loc = &pipeline->base.gs_copy_shader->info.user_sgprs_locs.shader_data[AC_UD_STREAMOUT_BUFFERS];
if (loc->sgpr_idx != -1) {
base_reg = R_00B130_SPI_SHADER_USER_DATA_VS_0;
radv_emit_shader_pointer(cmd_buffer->device, cmd_buffer->cs, base_reg + loc->sgpr_idx * 4,
va, false);
}
}
}
static void
radv_flush_streamout_descriptors(struct radv_cmd_buffer *cmd_buffer)
{
if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_STREAMOUT_BUFFER) {
struct radv_streamout_binding *sb = cmd_buffer->streamout_bindings;
struct radv_streamout_state *so = &cmd_buffer->state.streamout;
unsigned so_offset;
void *so_ptr;
uint64_t va;
/* Allocate some descriptor state for streamout buffers. */
if (!radv_cmd_buffer_upload_alloc(cmd_buffer, MAX_SO_BUFFERS * 16, &so_offset, &so_ptr))
return;
for (uint32_t i = 0; i < MAX_SO_BUFFERS; i++) {
struct radv_buffer *buffer = sb[i].buffer;
uint32_t *desc = &((uint32_t *)so_ptr)[i * 4];
if (!(so->enabled_mask & (1 << i)))
continue;
va = radv_buffer_get_va(buffer->bo) + buffer->offset;
va += sb[i].offset;
/* Set the descriptor.
*
* On GFX8, the format must be non-INVALID, otherwise
* the buffer will be considered not bound and store
* instructions will be no-ops.
*/
uint32_t size = 0xffffffff;
/* Compute the correct buffer size for NGG streamout
* because it's used to determine the max emit per
* buffer.
*/
if (cmd_buffer->device->physical_device->use_ngg_streamout)
size = buffer->vk.size - sb[i].offset;
uint32_t rsrc_word3 =
S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX11) {
rsrc_word3 |= S_008F0C_FORMAT(V_008F0C_GFX11_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW);
} else if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX10) {
rsrc_word3 |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) | S_008F0C_RESOURCE_LEVEL(1);
} else {
rsrc_word3 |= S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
}
desc[0] = va;
desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32);
desc[2] = size;
desc[3] = rsrc_word3;
}
va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
va += so_offset;
radv_emit_streamout_buffers(cmd_buffer, va);
}
cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_STREAMOUT_BUFFER;
}
static void
radv_flush_ngg_query_state(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_graphics_pipeline *pipeline = cmd_buffer->state.graphics_pipeline;
const unsigned stage = pipeline->last_vgt_api_stage;
struct radv_userdata_info *loc;
uint32_t ngg_query_state = 0;
uint32_t base_reg;
loc = radv_lookup_user_sgpr(&pipeline->base, stage, AC_UD_NGG_QUERY_STATE);
if (loc->sgpr_idx == -1)
return;
assert(pipeline->is_ngg);
/* By default NGG queries are disabled but they are enabled if the command buffer has active GDS
* queries or if it's a secondary command buffer that inherits the number of generated
* primitives.
*/
if (cmd_buffer->state.active_pipeline_gds_queries ||
(cmd_buffer->state.inherited_pipeline_statistics &
VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT))
ngg_query_state = 1;
base_reg = pipeline->base.user_data_0[stage];
assert(loc->sgpr_idx != -1);
radeon_set_sh_reg(cmd_buffer->cs, base_reg + loc->sgpr_idx * 4, ngg_query_state);
}
static void
radv_flush_force_vrs_state(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_graphics_pipeline *pipeline = cmd_buffer->state.graphics_pipeline;
enum amd_gfx_level gfx_level = pipeline->base.device->physical_device->rad_info.gfx_level;
const unsigned stage = pipeline->last_vgt_api_stage;
struct radv_userdata_info *loc;
uint32_t vrs_rates = 0;
uint32_t base_reg;
if (!pipeline->force_vrs_per_vertex) {
/* Un-set the SGPR index so we know to re-emit it later. */
cmd_buffer->state.last_vrs_rates_sgpr_idx = -1;
return;
}
loc = radv_lookup_user_sgpr(&pipeline->base, stage, AC_UD_FORCE_VRS_RATES);
assert(loc->sgpr_idx != -1);
base_reg = pipeline->base.user_data_0[stage];
switch (cmd_buffer->device->force_vrs) {
case RADV_FORCE_VRS_2x2:
vrs_rates = gfx_level >= GFX11 ? V_0283D0_VRS_SHADING_RATE_2X2 : (1u << 2) | (1u << 4);
break;
case RADV_FORCE_VRS_2x1:
vrs_rates = gfx_level >= GFX11 ? V_0283D0_VRS_SHADING_RATE_2X1 : (1u << 2) | (0u << 4);
break;
case RADV_FORCE_VRS_1x2:
vrs_rates = gfx_level >= GFX11 ? V_0283D0_VRS_SHADING_RATE_1X2 : (0u << 2) | (1u << 4);
break;
default:
break;
}
if (cmd_buffer->state.last_vrs_rates != vrs_rates ||
cmd_buffer->state.last_vrs_rates_sgpr_idx != loc->sgpr_idx) {
radeon_set_sh_reg(cmd_buffer->cs, base_reg + loc->sgpr_idx * 4, vrs_rates);
}
cmd_buffer->state.last_vrs_rates = vrs_rates;
cmd_buffer->state.last_vrs_rates_sgpr_idx = loc->sgpr_idx;
}
static void
radv_upload_graphics_shader_descriptors(struct radv_cmd_buffer *cmd_buffer, bool pipeline_is_dirty)
{
struct radv_graphics_pipeline *pipeline = cmd_buffer->state.graphics_pipeline;
radv_flush_vertex_descriptors(cmd_buffer, pipeline_is_dirty);
radv_flush_streamout_descriptors(cmd_buffer);
VkShaderStageFlags stages = VK_SHADER_STAGE_ALL_GRAPHICS | VK_SHADER_STAGE_MESH_BIT_NV;
radv_flush_descriptors(cmd_buffer, stages, &pipeline->base, VK_PIPELINE_BIND_POINT_GRAPHICS);
radv_flush_constants(cmd_buffer, stages, &pipeline->base, VK_PIPELINE_BIND_POINT_GRAPHICS);
radv_flush_ngg_query_state(cmd_buffer);
radv_flush_force_vrs_state(cmd_buffer);
}
struct radv_draw_info {
/**
* Number of vertices.
*/
uint32_t count;
/**
* First instance id.
*/
uint32_t first_instance;
/**
* Number of instances.
*/
uint32_t instance_count;
/**
* Whether it's an indexed draw.
*/
bool indexed;
/**
* Indirect draw parameters resource.
*/
struct radv_buffer *indirect;
uint64_t indirect_offset;
uint32_t stride;
/**
* Draw count parameters resource.
*/
struct radv_buffer *count_buffer;
uint64_t count_buffer_offset;
/**
* Stream output parameters resource.
*/
struct radv_buffer *strmout_buffer;
uint64_t strmout_buffer_offset;
};
static uint32_t
radv_get_primitive_reset_index(struct radv_cmd_buffer *cmd_buffer)
{
uint32_t index_type = G_028A7C_INDEX_TYPE(cmd_buffer->state.index_type);
switch (index_type) {
case V_028A7C_VGT_INDEX_8:
return 0xffu;
case V_028A7C_VGT_INDEX_16:
return 0xffffu;
case V_028A7C_VGT_INDEX_32:
return 0xffffffffu;
default:
unreachable("invalid index type");
}
}
static void
si_emit_ia_multi_vgt_param(struct radv_cmd_buffer *cmd_buffer, bool instanced_draw,
bool indirect_draw, bool count_from_stream_output,
uint32_t draw_vertex_count)
{
struct radeon_info *info = &cmd_buffer->device->physical_device->rad_info;
struct radv_cmd_state *state = &cmd_buffer->state;
unsigned topology = state->dynamic.primitive_topology;
bool prim_restart_enable = state->dynamic.primitive_restart_enable;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
unsigned ia_multi_vgt_param;
ia_multi_vgt_param =
si_get_ia_multi_vgt_param(cmd_buffer, instanced_draw, indirect_draw, count_from_stream_output,
draw_vertex_count, topology, prim_restart_enable);
if (state->last_ia_multi_vgt_param != ia_multi_vgt_param) {
if (info->gfx_level == GFX9) {
radeon_set_uconfig_reg_idx(cmd_buffer->device->physical_device, cs,
R_030960_IA_MULTI_VGT_PARAM, 4, ia_multi_vgt_param);
} else if (info->gfx_level >= GFX7) {
radeon_set_context_reg_idx(cs, R_028AA8_IA_MULTI_VGT_PARAM, 1, ia_multi_vgt_param);
} else {
radeon_set_context_reg(cs, R_028AA8_IA_MULTI_VGT_PARAM, ia_multi_vgt_param);
}
state->last_ia_multi_vgt_param = ia_multi_vgt_param;
}
}
static void
radv_emit_draw_registers(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *draw_info)
{
struct radeon_info *info = &cmd_buffer->device->physical_device->rad_info;
struct radv_cmd_state *state = &cmd_buffer->state;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
uint32_t topology = state->dynamic.primitive_topology;
bool disable_instance_packing = false;
/* Draw state. */
if (info->gfx_level < GFX10) {
si_emit_ia_multi_vgt_param(cmd_buffer, draw_info->instance_count > 1, draw_info->indirect,
!!draw_info->strmout_buffer,
draw_info->indirect ? 0 : draw_info->count);
}
if (state->dynamic.primitive_restart_enable) {
uint32_t primitive_reset_index = radv_get_primitive_reset_index(cmd_buffer);
if (primitive_reset_index != state->last_primitive_reset_index) {
radeon_set_context_reg(cs, R_02840C_VGT_MULTI_PRIM_IB_RESET_INDX, primitive_reset_index);
state->last_primitive_reset_index = primitive_reset_index;
}
}
if (draw_info->strmout_buffer) {
uint64_t va = radv_buffer_get_va(draw_info->strmout_buffer->bo);
va += draw_info->strmout_buffer->offset + draw_info->strmout_buffer_offset;
radeon_set_context_reg(cs, R_028B30_VGT_STRMOUT_DRAW_OPAQUE_VERTEX_STRIDE, draw_info->stride);
if (info->gfx_level >= GFX10) {
/* Emitting a COPY_DATA packet should be enough because RADV doesn't support preemption
* (shadow memory) but for unknown reasons, it can lead to GPU hangs on GFX10+.
*/
radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
radeon_emit(cs, 0);
radeon_emit(cs, PKT3(PKT3_LOAD_CONTEXT_REG_INDEX, 3, 0));
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit(cs, (R_028B2C_VGT_STRMOUT_DRAW_OPAQUE_BUFFER_FILLED_SIZE - SI_CONTEXT_REG_OFFSET) >> 2);
radeon_emit(cs, 1); /* 1 DWORD */
} else {
radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_REG) |
COPY_DATA_WR_CONFIRM);
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit(cs, R_028B2C_VGT_STRMOUT_DRAW_OPAQUE_BUFFER_FILLED_SIZE >> 2);
radeon_emit(cs, 0); /* unused */
}
radv_cs_add_buffer(cmd_buffer->device->ws, cs, draw_info->strmout_buffer->bo);
}
/* RDNA2 is affected by a hardware bug when instance packing is enabled for adjacent primitive
* topologies and instance_count > 1, pipeline stats generated by GE are incorrect. It needs to
* be applied for indexed and non-indexed draws.
*/
if (info->gfx_level == GFX10_3 && state->active_pipeline_queries > 0 &&
(draw_info->instance_count > 1 || draw_info->indirect) &&
(topology == V_008958_DI_PT_LINELIST_ADJ || topology == V_008958_DI_PT_LINESTRIP_ADJ ||
topology == V_008958_DI_PT_TRILIST_ADJ || topology == V_008958_DI_PT_TRISTRIP_ADJ)) {
disable_instance_packing = true;
}
if ((draw_info->indexed && state->index_type != state->last_index_type) ||
(info->gfx_level == GFX10_3 &&
(state->last_index_type == -1 ||
disable_instance_packing != G_028A7C_DISABLE_INSTANCE_PACKING(state->last_index_type)))) {
uint32_t index_type = state->index_type | S_028A7C_DISABLE_INSTANCE_PACKING(disable_instance_packing);
if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX9) {
radeon_set_uconfig_reg_idx(cmd_buffer->device->physical_device, cs,
R_03090C_VGT_INDEX_TYPE, 2, index_type);
} else {
radeon_emit(cs, PKT3(PKT3_INDEX_TYPE, 0, 0));
radeon_emit(cs, index_type);
}
state->last_index_type = index_type;
}
}
static void
radv_stage_flush(struct radv_cmd_buffer *cmd_buffer, VkPipelineStageFlags2 src_stage_mask)
{
/* For simplicity, if the barrier wants to wait for the task shader,
* just make it wait for the mesh shader too.
*/
if (src_stage_mask & VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_NV)
src_stage_mask |= VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_NV;
if (src_stage_mask & (VK_PIPELINE_STAGE_2_COPY_BIT |
VK_PIPELINE_STAGE_2_RESOLVE_BIT |
VK_PIPELINE_STAGE_2_BLIT_BIT |
VK_PIPELINE_STAGE_2_CLEAR_BIT)) {
/* Be conservative for now. */
src_stage_mask |= VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT;
}
if (src_stage_mask &
(VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT | VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT |
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR |
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR |
VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR | VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT |
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT)) {
cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH;
}
if (src_stage_mask &
(VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT |
VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT |
VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT | VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT |
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT | VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT)) {
cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_PS_PARTIAL_FLUSH;
} else if (src_stage_mask &
(VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT | VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT |
VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT |
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT |
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT |
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT |
VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_NV |
VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT |
VK_PIPELINE_STAGE_2_PRE_RASTERIZATION_SHADERS_BIT)) {
cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VS_PARTIAL_FLUSH;
}
}
static bool
can_skip_buffer_l2_flushes(struct radv_device *device)
{
return device->physical_device->rad_info.gfx_level == GFX9 ||
(device->physical_device->rad_info.gfx_level >= GFX10 &&
!device->physical_device->rad_info.tcc_rb_non_coherent);
}
/*
* In vulkan barriers have two kinds of operations:
*
* - visibility (implemented with radv_src_access_flush)
* - availability (implemented with radv_dst_access_flush)
*
* for a memory operation to observe the result of a previous memory operation
* one needs to do a visibility operation from the source memory and then an
* availability operation to the target memory.
*
* The complication is the availability and visibility operations do not need to
* be in the same barrier.
*
* The cleanest way to implement this is to define the visibility operation to
* bring the caches to a "state of rest", which none of the caches below that
* level dirty.
*
* For GFX8 and earlier this would be VRAM/GTT with none of the caches dirty.
*
* For GFX9+ we can define the state at rest to be L2 instead of VRAM for all
* buffers and for images marked as coherent, and VRAM/GTT for non-coherent
* images. However, given the existence of memory barriers which do not specify
* the image/buffer it often devolves to just VRAM/GTT anyway.
*
* To help reducing the invalidations for GPUs that have L2 coherency between the
* RB and the shader caches, we always invalidate L2 on the src side, as we can
* use our knowledge of past usage to optimize flushes away.
*/
enum radv_cmd_flush_bits
radv_src_access_flush(struct radv_cmd_buffer *cmd_buffer, VkAccessFlags2 src_flags,
const struct radv_image *image)
{
bool has_CB_meta = true, has_DB_meta = true;
bool image_is_coherent = image ? image->l2_coherent : false;
enum radv_cmd_flush_bits flush_bits = 0;
if (image) {
if (!radv_image_has_CB_metadata(image))
has_CB_meta = false;
if (!radv_image_has_htile(image))
has_DB_meta = false;
}
u_foreach_bit64(b, src_flags)
{
switch ((VkAccessFlags2)(1 << b)) {
case VK_ACCESS_2_SHADER_WRITE_BIT:
case VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT:
/* since the STORAGE bit isn't set we know that this is a meta operation.
* on the dst flush side we skip CB/DB flushes without the STORAGE bit, so
* set it here. */
if (image && !(image->vk.usage & VK_IMAGE_USAGE_STORAGE_BIT)) {
if (vk_format_is_depth_or_stencil(image->vk.format)) {
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB;
} else {
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB;
}
}
/* This is valid even for the rb_noncoherent_dirty case, because with how we account for
* dirtyness, if it isn't dirty it doesn't contain the data at all and hence doesn't need
* invalidating. */
if (!image_is_coherent)
flush_bits |= RADV_CMD_FLAG_WB_L2;
break;
case VK_ACCESS_2_ACCELERATION_STRUCTURE_WRITE_BIT_KHR:
case VK_ACCESS_2_TRANSFORM_FEEDBACK_WRITE_BIT_EXT:
case VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT:
if (!image_is_coherent)
flush_bits |= RADV_CMD_FLAG_WB_L2;
break;
case VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT:
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB;
if (has_CB_meta)
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
break;
case VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB;
if (has_DB_meta)
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
break;
case VK_ACCESS_2_TRANSFER_WRITE_BIT:
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB;
if (!image_is_coherent)
flush_bits |= RADV_CMD_FLAG_INV_L2;
if (has_CB_meta)
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
if (has_DB_meta)
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
break;
case VK_ACCESS_2_MEMORY_WRITE_BIT:
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB;
if (!image_is_coherent)
flush_bits |= RADV_CMD_FLAG_INV_L2;
if (has_CB_meta)
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
if (has_DB_meta)
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
break;
default:
break;
}
}
return flush_bits;
}
enum radv_cmd_flush_bits
radv_dst_access_flush(struct radv_cmd_buffer *cmd_buffer, VkAccessFlags2 dst_flags,
const struct radv_image *image)
{
bool has_CB_meta = true, has_DB_meta = true;
enum radv_cmd_flush_bits flush_bits = 0;
bool flush_CB = true, flush_DB = true;
bool image_is_coherent = image ? image->l2_coherent : false;
if (image) {
if (!(image->vk.usage & VK_IMAGE_USAGE_STORAGE_BIT)) {
flush_CB = false;
flush_DB = false;
}
if (!radv_image_has_CB_metadata(image))
has_CB_meta = false;
if (!radv_image_has_htile(image))
has_DB_meta = false;
}
/* All the L2 invalidations below are not the CB/DB. So if there are no incoherent images
* in the L2 cache in CB/DB mode then they are already usable from all the other L2 clients. */
image_is_coherent |=
can_skip_buffer_l2_flushes(cmd_buffer->device) && !cmd_buffer->state.rb_noncoherent_dirty;
u_foreach_bit64(b, dst_flags)
{
switch ((VkAccessFlags2)(1 << b)) {
case VK_ACCESS_2_INDIRECT_COMMAND_READ_BIT:
/* SMEM loads are used to read compute dispatch size in shaders */
if (!cmd_buffer->device->load_grid_size_from_user_sgpr)
flush_bits |= RADV_CMD_FLAG_INV_SCACHE;
/* Ensure the DGC meta shader can read the commands. */
if (cmd_buffer->device->uses_device_generated_commands) {
flush_bits |= RADV_CMD_FLAG_INV_SCACHE | RADV_CMD_FLAG_INV_VCACHE;
if (cmd_buffer->device->physical_device->rad_info.gfx_level < GFX9)
flush_bits |= RADV_CMD_FLAG_INV_L2;
}
break;
case VK_ACCESS_2_INDEX_READ_BIT:
case VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT:
break;
case VK_ACCESS_2_UNIFORM_READ_BIT:
flush_bits |= RADV_CMD_FLAG_INV_VCACHE | RADV_CMD_FLAG_INV_SCACHE;
break;
case VK_ACCESS_2_VERTEX_ATTRIBUTE_READ_BIT:
case VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT:
case VK_ACCESS_2_TRANSFER_READ_BIT:
case VK_ACCESS_2_TRANSFER_WRITE_BIT:
flush_bits |= RADV_CMD_FLAG_INV_VCACHE;
if (has_CB_meta || has_DB_meta)
flush_bits |= RADV_CMD_FLAG_INV_L2_METADATA;
if (!image_is_coherent)
flush_bits |= RADV_CMD_FLAG_INV_L2;
break;
case VK_ACCESS_2_SHADER_BINDING_TABLE_READ_BIT_KHR:
case VK_ACCESS_2_SHADER_READ_BIT:
case VK_ACCESS_2_SHADER_STORAGE_READ_BIT:
flush_bits |= RADV_CMD_FLAG_INV_VCACHE;
/* Unlike LLVM, ACO uses SMEM for SSBOs and we have to
* invalidate the scalar cache. */
if (!cmd_buffer->device->physical_device->use_llvm && !image)
flush_bits |= RADV_CMD_FLAG_INV_SCACHE;
if (has_CB_meta || has_DB_meta)
flush_bits |= RADV_CMD_FLAG_INV_L2_METADATA;
if (!image_is_coherent)
flush_bits |= RADV_CMD_FLAG_INV_L2;
break;
case VK_ACCESS_2_ACCELERATION_STRUCTURE_READ_BIT_KHR:
flush_bits |= RADV_CMD_FLAG_INV_VCACHE;
if (cmd_buffer->device->physical_device->rad_info.gfx_level < GFX9)
flush_bits |= RADV_CMD_FLAG_INV_L2;
break;
case VK_ACCESS_2_SHADER_WRITE_BIT:
case VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT:
case VK_ACCESS_2_ACCELERATION_STRUCTURE_WRITE_BIT_KHR:
break;
case VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT:
case VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT:
if (flush_CB)
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB;
if (has_CB_meta)
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
break;
case VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT:
case VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
if (flush_DB)
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB;
if (has_DB_meta)
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
break;
case VK_ACCESS_2_MEMORY_READ_BIT:
case VK_ACCESS_2_MEMORY_WRITE_BIT:
flush_bits |= RADV_CMD_FLAG_INV_VCACHE | RADV_CMD_FLAG_INV_SCACHE;
if (!image_is_coherent)
flush_bits |= RADV_CMD_FLAG_INV_L2;
if (flush_CB)
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB;
if (has_CB_meta)
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB_META;
if (flush_DB)
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB;
if (has_DB_meta)
flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
break;
default:
break;
}
}
return flush_bits;
}
void
radv_emit_subpass_barrier(struct radv_cmd_buffer *cmd_buffer,
const struct radv_subpass_barrier *barrier)
{
struct radv_render_pass *pass = cmd_buffer->state.pass;
for (uint32_t i = 0; i < pass->attachment_count; i++) {
struct radv_image_view *iview = cmd_buffer->state.attachments[i].iview;
cmd_buffer->state.flush_bits |=
radv_src_access_flush(cmd_buffer, barrier->src_access_mask, iview->image);
}
radv_stage_flush(cmd_buffer, barrier->src_stage_mask);
for (uint32_t i = 0; i < pass->attachment_count; i++) {
struct radv_image_view *iview = cmd_buffer->state.attachments[i].iview;
cmd_buffer->state.flush_bits |=
radv_dst_access_flush(cmd_buffer, barrier->dst_access_mask, iview->image);
}
radv_ace_internal_barrier(cmd_buffer, barrier->src_stage_mask, barrier->dst_stage_mask);
}
uint32_t
radv_get_subpass_id(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_cmd_state *state = &cmd_buffer->state;
uint32_t subpass_id = state->subpass - state->pass->subpasses;
/* The id of this subpass shouldn't exceed the number of subpasses in
* this render pass minus 1.
*/
assert(subpass_id < state->pass->subpass_count);
return subpass_id;
}
static struct radv_sample_locations_state *
radv_get_attachment_sample_locations(struct radv_cmd_buffer *cmd_buffer, uint32_t att_idx,
bool begin_subpass)
{
struct radv_cmd_state *state = &cmd_buffer->state;
uint32_t subpass_id = radv_get_subpass_id(cmd_buffer);
struct radv_image_view *view = state->attachments[att_idx].iview;
if (view->image->info.samples == 1)
return NULL;
if (state->pass->attachments[att_idx].first_subpass_idx == subpass_id) {
/* Return the initial sample locations if this is the initial
* layout transition of the given subpass attachemnt.
*/
if (state->attachments[att_idx].sample_location.count > 0)
return &state->attachments[att_idx].sample_location;
} else {
/* Otherwise return the subpass sample locations if defined. */
if (state->subpass_sample_locs) {
/* Because the driver sets the current subpass before
* initial layout transitions, we should use the sample
* locations from the previous subpass to avoid an
* off-by-one problem. Otherwise, use the sample
* locations for the current subpass for final layout
* transitions.
*/
if (begin_subpass)
subpass_id--;
for (uint32_t i = 0; i < state->num_subpass_sample_locs; i++) {
if (state->subpass_sample_locs[i].subpass_idx == subpass_id)
return &state->subpass_sample_locs[i].sample_location;
}
}
}
return NULL;
}
static void
radv_handle_image_transition_separate(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
VkImageLayout src_layout, VkImageLayout dst_layout,
VkImageLayout src_stencil_layout,
VkImageLayout dst_stencil_layout,
uint32_t src_family_index, uint32_t dst_family_index,
const VkImageSubresourceRange *range,
struct radv_sample_locations_state *sample_locs)
{
/* If we have a stencil layout that's different from depth, we need to
* perform the stencil transition separately.
*/
if ((range->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) &&
(src_layout != src_stencil_layout || dst_layout != dst_stencil_layout)) {
VkImageSubresourceRange aspect_range = *range;
/* Depth-only transitions. */
if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
aspect_range.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
radv_handle_image_transition(cmd_buffer, image, src_layout, dst_layout,
src_family_index, dst_family_index, &aspect_range, sample_locs);
}
/* Stencil-only transitions. */
aspect_range.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT;
radv_handle_image_transition(cmd_buffer, image, src_stencil_layout, dst_stencil_layout,
src_family_index, dst_family_index, &aspect_range, sample_locs);
} else {
radv_handle_image_transition(cmd_buffer, image, src_layout, dst_layout,
src_family_index, dst_family_index, range, sample_locs);
}
}
static void
radv_handle_subpass_image_transition(struct radv_cmd_buffer *cmd_buffer,
struct radv_subpass_attachment att, bool begin_subpass)
{
unsigned idx = att.attachment;
struct radv_image_view *view = cmd_buffer->state.attachments[idx].iview;
struct radv_sample_locations_state *sample_locs;
VkImageSubresourceRange range;
range.aspectMask = view->vk.aspects;
range.baseMipLevel = view->vk.base_mip_level;
range.levelCount = 1;
range.baseArrayLayer = view->vk.base_array_layer;
range.layerCount = cmd_buffer->state.framebuffer->layers;
if (cmd_buffer->state.subpass->view_mask) {
/* If the current subpass uses multiview, the driver might have
* performed a fast color/depth clear to the whole image
* (including all layers). To make sure the driver will
* decompress the image correctly (if needed), we have to
* account for the "real" number of layers. If the view mask is
* sparse, this will decompress more layers than needed.
*/
range.layerCount = util_last_bit(cmd_buffer->state.subpass->view_mask);
}
/* Get the subpass sample locations for the given attachment, if NULL
* is returned the driver will use the default HW locations.
*/
sample_locs = radv_get_attachment_sample_locations(cmd_buffer, idx, begin_subpass);
radv_handle_image_transition_separate(cmd_buffer, view->image,
cmd_buffer->state.attachments[idx].current_layout,
att.layout,
cmd_buffer->state.attachments[idx].current_stencil_layout,
att.stencil_layout,
0, 0, &range, sample_locs);
cmd_buffer->state.attachments[idx].current_layout = att.layout;
cmd_buffer->state.attachments[idx].current_stencil_layout = att.stencil_layout;
}
static VkResult
radv_cmd_state_setup_sample_locations(struct radv_cmd_buffer *cmd_buffer,
struct radv_render_pass *pass,
const VkRenderPassBeginInfo *info)
{
const struct VkRenderPassSampleLocationsBeginInfoEXT *sample_locs =
vk_find_struct_const(info->pNext, RENDER_PASS_SAMPLE_LOCATIONS_BEGIN_INFO_EXT);
struct radv_cmd_state *state = &cmd_buffer->state;
if (!sample_locs) {
state->subpass_sample_locs = NULL;
return VK_SUCCESS;
}
for (uint32_t i = 0; i < sample_locs->attachmentInitialSampleLocationsCount; i++) {
const VkAttachmentSampleLocationsEXT *att_sample_locs =
&sample_locs->pAttachmentInitialSampleLocations[i];
uint32_t att_idx = att_sample_locs->attachmentIndex;
struct radv_image *image = cmd_buffer->state.attachments[att_idx].iview->image;
assert(vk_format_is_depth_or_stencil(image->vk.format));
/* From the Vulkan spec 1.1.108:
*
* "If the image referenced by the framebuffer attachment at
* index attachmentIndex was not created with
* VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT
* then the values specified in sampleLocationsInfo are
* ignored."
*/
if (!(image->vk.create_flags & VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT))
continue;
const VkSampleLocationsInfoEXT *sample_locs_info = &att_sample_locs->sampleLocationsInfo;
state->attachments[att_idx].sample_location.per_pixel =
sample_locs_info->sampleLocationsPerPixel;
state->attachments[att_idx].sample_location.grid_size =
sample_locs_info->sampleLocationGridSize;
state->attachments[att_idx].sample_location.count = sample_locs_info->sampleLocationsCount;
typed_memcpy(&state->attachments[att_idx].sample_location.locations[0],
sample_locs_info->pSampleLocations, sample_locs_info->sampleLocationsCount);
}
state->subpass_sample_locs =
vk_alloc(&cmd_buffer->vk.pool->alloc,
sample_locs->postSubpassSampleLocationsCount * sizeof(state->subpass_sample_locs[0]),
8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (state->subpass_sample_locs == NULL) {
return vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
}
state->num_subpass_sample_locs = sample_locs->postSubpassSampleLocationsCount;
for (uint32_t i = 0; i < sample_locs->postSubpassSampleLocationsCount; i++) {
const VkSubpassSampleLocationsEXT *subpass_sample_locs_info =
&sample_locs->pPostSubpassSampleLocations[i];
const VkSampleLocationsInfoEXT *sample_locs_info =
&subpass_sample_locs_info->sampleLocationsInfo;
state->subpass_sample_locs[i].subpass_idx = subpass_sample_locs_info->subpassIndex;
state->subpass_sample_locs[i].sample_location.per_pixel =
sample_locs_info->sampleLocationsPerPixel;
state->subpass_sample_locs[i].sample_location.grid_size =
sample_locs_info->sampleLocationGridSize;
state->subpass_sample_locs[i].sample_location.count = sample_locs_info->sampleLocationsCount;
typed_memcpy(&state->subpass_sample_locs[i].sample_location.locations[0],
sample_locs_info->pSampleLocations, sample_locs_info->sampleLocationsCount);
}
return VK_SUCCESS;
}
static VkResult
radv_cmd_state_setup_attachments(struct radv_cmd_buffer *cmd_buffer, struct radv_render_pass *pass,
const VkRenderPassBeginInfo *info)
{
struct radv_cmd_state *state = &cmd_buffer->state;
const struct VkRenderPassAttachmentBeginInfo *attachment_info = NULL;
if (info) {
attachment_info = vk_find_struct_const(info->pNext, RENDER_PASS_ATTACHMENT_BEGIN_INFO);
}
if (pass->attachment_count == 0) {
state->attachments = NULL;
return VK_SUCCESS;
}
state->attachments =
vk_alloc(&cmd_buffer->vk.pool->alloc, pass->attachment_count * sizeof(state->attachments[0]),
8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (state->attachments == NULL) {
return vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
}
for (uint32_t i = 0; i < pass->attachment_count; ++i) {
struct radv_render_pass_attachment *att = &pass->attachments[i];
VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
VkImageAspectFlags clear_aspects = 0;
if (att_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
/* color attachment */
if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
}
} else {
/* depthstencil attachment */
if ((att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
if ((att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_DONT_CARE)
clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
}
if ((att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
}
}
state->attachments[i].pending_clear_aspects = clear_aspects;
state->attachments[i].cleared_views = 0;
if (clear_aspects && info) {
assert(info->clearValueCount > i);
state->attachments[i].clear_value = info->pClearValues[i];
}
state->attachments[i].current_layout = att->initial_layout;
state->attachments[i].current_stencil_layout = att->stencil_initial_layout;
state->attachments[i].sample_location.count = 0;
struct radv_image_view *iview;
if (attachment_info && attachment_info->attachmentCount > i) {
iview = radv_image_view_from_handle(attachment_info->pAttachments[i]);
} else {
iview = radv_image_view_from_handle(state->framebuffer->attachments[i]);
}
state->attachments[i].iview = iview;
if (iview->vk.aspects & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
radv_initialise_ds_surface(cmd_buffer->device, &state->attachments[i].ds, iview);
} else {
radv_initialise_color_surface(cmd_buffer->device, &state->attachments[i].cb, iview);
}
}
return VK_SUCCESS;
}
static void
radv_inherit_dynamic_rendering(struct radv_cmd_buffer *cmd_buffer,
const VkCommandBufferInheritanceInfo *inherit_info,
const VkCommandBufferInheritanceRenderingInfo *dyn_info)
{
const VkAttachmentSampleCountInfoAMD *sample_info =
vk_find_struct_const(inherit_info->pNext, ATTACHMENT_SAMPLE_COUNT_INFO_AMD);
VkResult result;
/* (normal + resolve) for color attachments and ds and a VRS attachment */
VkAttachmentDescription2 att_desc[MAX_RTS * 2 + 3];
VkAttachmentReference2 color_refs[MAX_RTS], ds_ref;
unsigned att_count = 0;
VkSubpassDescription2 subpass = {
.sType = VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_2,
.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
.viewMask = dyn_info->viewMask,
.colorAttachmentCount = dyn_info->colorAttachmentCount,
.pColorAttachments = color_refs,
};
for (unsigned i = 0; i < dyn_info->colorAttachmentCount; ++i) {
if (dyn_info->pColorAttachmentFormats[i] == VK_FORMAT_UNDEFINED) {
color_refs[i] = (VkAttachmentReference2){
.sType = VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2,
.attachment = VK_ATTACHMENT_UNUSED,
};
continue;
}
color_refs[i] = (VkAttachmentReference2){
.sType = VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2,
.attachment = att_count,
.layout = VK_IMAGE_LAYOUT_GENERAL, /* Shouldn't be used */
.aspectMask = 0, /* Shouldn't be used */
};
VkAttachmentDescription2 *att = att_desc + att_count++;
memset(att, 0, sizeof(*att));
att->sType = VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2;
att->format = dyn_info->pColorAttachmentFormats[i];
att->samples =
sample_info ? sample_info->pColorAttachmentSamples[i] : dyn_info->rasterizationSamples;
att->loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
att->storeOp = VK_ATTACHMENT_STORE_OP_STORE;
att->initialLayout = VK_IMAGE_LAYOUT_GENERAL;
att->finalLayout = VK_IMAGE_LAYOUT_GENERAL;
}
if (dyn_info->depthAttachmentFormat != VK_FORMAT_UNDEFINED ||
dyn_info->stencilAttachmentFormat != VK_FORMAT_UNDEFINED) {
VkFormat fmt = dyn_info->depthAttachmentFormat != VK_FORMAT_UNDEFINED
? dyn_info->depthAttachmentFormat
: dyn_info->stencilAttachmentFormat;
ds_ref = (VkAttachmentReference2){
.sType = VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2,
.attachment = att_count,
.layout = VK_IMAGE_LAYOUT_GENERAL, /* Shouldn't be used */
.aspectMask = 0, /* Shouldn't be used */
};
subpass.pDepthStencilAttachment = &ds_ref;
VkAttachmentDescription2 *att = att_desc + att_count++;
memset(att, 0, sizeof(*att));
att->sType = VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2;
att->format = fmt;
att->samples =
sample_info ? sample_info->depthStencilAttachmentSamples : dyn_info->rasterizationSamples;
att->loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
att->storeOp = VK_ATTACHMENT_STORE_OP_STORE;
att->stencilLoadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
att->stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE;
}
VkRenderPassCreateInfo2 rp_create_info = {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO_2,
.attachmentCount = att_count,
.pAttachments = att_desc,
.subpassCount = 1,
.pSubpasses = &subpass,
};
VkRenderPass rp;
result =
radv_CreateRenderPass2(radv_device_to_handle(cmd_buffer->device), &rp_create_info, NULL, &rp);
if (result != VK_SUCCESS) {
vk_command_buffer_set_error(&cmd_buffer->vk, result);
return;
}
cmd_buffer->state.pass = radv_render_pass_from_handle(rp);
cmd_buffer->state.own_render_pass = true;
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_BeginCommandBuffer(VkCommandBuffer commandBuffer, const VkCommandBufferBeginInfo *pBeginInfo)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
VkResult result = VK_SUCCESS;
if (cmd_buffer->status != RADV_CMD_BUFFER_STATUS_INITIAL) {
/* If the command buffer has already been resetted with
* vkResetCommandBuffer, no need to do it again.
*/
radv_reset_cmd_buffer(&cmd_buffer->vk, 0);
}
memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state));
cmd_buffer->state.last_primitive_reset_en = -1;
cmd_buffer->state.last_index_type = -1;
cmd_buffer->state.last_num_instances = -1;
cmd_buffer->state.last_vertex_offset = -1;
cmd_buffer->state.last_first_instance = -1;
cmd_buffer->state.last_drawid = -1;
cmd_buffer->state.last_subpass_color_count = MAX_RTS;
cmd_buffer->state.predication_type = -1;
cmd_buffer->state.last_sx_ps_downconvert = -1;
cmd_buffer->state.last_sx_blend_opt_epsilon = -1;
cmd_buffer->state.last_sx_blend_opt_control = -1;
cmd_buffer->state.last_nggc_settings = -1;
cmd_buffer->state.last_nggc_settings_sgpr_idx = -1;
cmd_buffer->state.mesh_shading = false;
cmd_buffer->state.last_vrs_rates = -1;
cmd_buffer->state.last_vrs_rates_sgpr_idx = -1;
cmd_buffer->usage_flags = pBeginInfo->flags;
if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY &&
(pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT)) {
struct radv_subpass *subpass = NULL;
assert(pBeginInfo->pInheritanceInfo);
cmd_buffer->state.framebuffer =
vk_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer);
if (pBeginInfo->pInheritanceInfo->renderPass) {
cmd_buffer->state.pass =
radv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
assert(pBeginInfo->pInheritanceInfo->subpass < cmd_buffer->state.pass->subpass_count);
subpass = &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
} else {
const VkCommandBufferInheritanceRenderingInfo *dyn_info =
vk_find_struct_const(pBeginInfo->pInheritanceInfo->pNext,
COMMAND_BUFFER_INHERITANCE_RENDERING_INFO);
if (dyn_info) {
radv_inherit_dynamic_rendering(cmd_buffer, pBeginInfo->pInheritanceInfo, dyn_info);
subpass = &cmd_buffer->state.pass->subpasses[0];
}
}
if (cmd_buffer->state.framebuffer) {
result = radv_cmd_state_setup_attachments(cmd_buffer, cmd_buffer->state.pass, NULL);
if (result != VK_SUCCESS)
return result;
}
cmd_buffer->state.inherited_pipeline_statistics =
pBeginInfo->pInheritanceInfo->pipelineStatistics;
if (cmd_buffer->state.pass) {
cmd_buffer->state.subpass = subpass;
if (cmd_buffer->state.framebuffer)
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FRAMEBUFFER;
}
}
if (unlikely(cmd_buffer->device->trace_bo))
radv_cmd_buffer_trace_emit(cmd_buffer);
radv_describe_begin_cmd_buffer(cmd_buffer);
cmd_buffer->status = RADV_CMD_BUFFER_STATUS_RECORDING;
return result;
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdBindVertexBuffers2(VkCommandBuffer commandBuffer, uint32_t firstBinding,
uint32_t bindingCount, const VkBuffer *pBuffers,
const VkDeviceSize *pOffsets, const VkDeviceSize *pSizes,
const VkDeviceSize *pStrides)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_vertex_binding *vb = cmd_buffer->vertex_bindings;
const struct radv_vs_input_state *state = &cmd_buffer->state.dynamic_vs_input;
/* We have to defer setting up vertex buffer since we need the buffer
* stride from the pipeline. */
assert(firstBinding + bindingCount <= MAX_VBS);
enum amd_gfx_level chip = cmd_buffer->device->physical_device->rad_info.gfx_level;
if (firstBinding + bindingCount > cmd_buffer->used_vertex_bindings)
cmd_buffer->used_vertex_bindings = firstBinding + bindingCount;
uint32_t misaligned_mask_invalid = 0;
for (uint32_t i = 0; i < bindingCount; i++) {
RADV_FROM_HANDLE(radv_buffer, buffer, pBuffers[i]);
uint32_t idx = firstBinding + i;
VkDeviceSize size = pSizes ? pSizes[i] : 0;
/* if pStrides=NULL, it shouldn't overwrite the strides specified by CmdSetVertexInputEXT */
VkDeviceSize stride = pStrides ? pStrides[i] : vb[idx].stride;
if (!!cmd_buffer->vertex_binding_buffers[idx] != !!buffer ||
(buffer && ((vb[idx].offset & 0x3) != (pOffsets[i] & 0x3) ||
(vb[idx].stride & 0x3) != (stride & 0x3)))) {
misaligned_mask_invalid |= state->bindings_match_attrib ? BITFIELD_BIT(idx) : 0xffffffff;
}
cmd_buffer->vertex_binding_buffers[idx] = buffer;
vb[idx].offset = pOffsets[i];
vb[idx].size = size;
vb[idx].stride = stride;
uint32_t bit = BITFIELD_BIT(idx);
if (buffer) {
radv_cs_add_buffer(cmd_buffer->device->ws, cmd_buffer->cs, cmd_buffer->vertex_binding_buffers[idx]->bo);
cmd_buffer->state.vbo_bound_mask |= bit;
} else {
cmd_buffer->state.vbo_bound_mask &= ~bit;
}
}
if ((chip == GFX6 || chip >= GFX10) && misaligned_mask_invalid) {
cmd_buffer->state.vbo_misaligned_mask_invalid = misaligned_mask_invalid;
cmd_buffer->state.vbo_misaligned_mask &= ~misaligned_mask_invalid;
}
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_VERTEX_BUFFER |
RADV_CMD_DIRTY_DYNAMIC_VERTEX_INPUT;
}
static uint32_t
vk_to_index_type(VkIndexType type)
{
switch (type) {
case VK_INDEX_TYPE_UINT8_EXT:
return V_028A7C_VGT_INDEX_8;
case VK_INDEX_TYPE_UINT16:
return V_028A7C_VGT_INDEX_16;
case VK_INDEX_TYPE_UINT32:
return V_028A7C_VGT_INDEX_32;
default:
unreachable("invalid index type");
}
}
uint32_t
radv_get_vgt_index_size(uint32_t type)
{
uint32_t index_type = G_028A7C_INDEX_TYPE(type);
switch (index_type) {
case V_028A7C_VGT_INDEX_8:
return 1;
case V_028A7C_VGT_INDEX_16:
return 2;
case V_028A7C_VGT_INDEX_32:
return 4;
default:
unreachable("invalid index type");
}
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdBindIndexBuffer(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkIndexType indexType)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_buffer, index_buffer, buffer);
cmd_buffer->state.index_buffer = index_buffer;
cmd_buffer->state.index_offset = offset;
cmd_buffer->state.index_type = vk_to_index_type(indexType);
cmd_buffer->state.index_va = radv_buffer_get_va(index_buffer->bo);
cmd_buffer->state.index_va += index_buffer->offset + offset;
int index_size = radv_get_vgt_index_size(vk_to_index_type(indexType));
cmd_buffer->state.max_index_count =
(vk_buffer_range(&index_buffer->vk, offset, VK_WHOLE_SIZE)) / index_size;
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_INDEX_BUFFER;
radv_cs_add_buffer(cmd_buffer->device->ws, cmd_buffer->cs, index_buffer->bo);
}
static void
radv_bind_descriptor_set(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point,
struct radv_descriptor_set *set, unsigned idx)
{
struct radeon_winsys *ws = cmd_buffer->device->ws;
radv_set_descriptor_set(cmd_buffer, bind_point, set, idx);
assert(set);
assert(!(set->header.layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR));
if (!cmd_buffer->device->use_global_bo_list) {
for (unsigned j = 0; j < set->header.buffer_count; ++j)
if (set->descriptors[j])
radv_cs_add_buffer(ws, cmd_buffer->cs, set->descriptors[j]);
}
if (set->header.bo)
radv_cs_add_buffer(ws, cmd_buffer->cs, set->header.bo);
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdBindDescriptorSets(VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint,
VkPipelineLayout _layout, uint32_t firstSet, uint32_t descriptorSetCount,
const VkDescriptorSet *pDescriptorSets, uint32_t dynamicOffsetCount,
const uint32_t *pDynamicOffsets)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_pipeline_layout, layout, _layout);
unsigned dyn_idx = 0;
const bool no_dynamic_bounds =
cmd_buffer->device->instance->debug_flags & RADV_DEBUG_NO_DYNAMIC_BOUNDS;
struct radv_descriptor_state *descriptors_state =
radv_get_descriptors_state(cmd_buffer, pipelineBindPoint);
for (unsigned i = 0; i < descriptorSetCount; ++i) {
unsigned set_idx = i + firstSet;
RADV_FROM_HANDLE(radv_descriptor_set, set, pDescriptorSets[i]);
if (!set)
continue;
/* If the set is already bound we only need to update the
* (potentially changed) dynamic offsets. */
if (descriptors_state->sets[set_idx] != set ||
!(descriptors_state->valid & (1u << set_idx))) {
radv_bind_descriptor_set(cmd_buffer, pipelineBindPoint, set, set_idx);
}
for (unsigned j = 0; j < set->header.layout->dynamic_offset_count; ++j, ++dyn_idx) {
unsigned idx = j + layout->set[i + firstSet].dynamic_offset_start;
uint32_t *dst = descriptors_state->dynamic_buffers + idx * 4;
assert(dyn_idx < dynamicOffsetCount);
struct radv_descriptor_range *range = set->header.dynamic_descriptors + j;
if (!range->va) {
memset(dst, 0, 4 * 4);
} else {
uint64_t va = range->va + pDynamicOffsets[dyn_idx];
dst[0] = va;
dst[1] = S_008F04_BASE_ADDRESS_HI(va >> 32);
dst[2] = no_dynamic_bounds ? 0xffffffffu : range->size;
dst[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX11) {
dst[3] |= S_008F0C_FORMAT(V_008F0C_GFX11_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW);
} else if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX10) {
dst[3] |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) |
S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) | S_008F0C_RESOURCE_LEVEL(1);
} else {
dst[3] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
}
}
cmd_buffer->push_constant_stages |= set->header.layout->dynamic_shader_stages;
}
}
}
static bool
radv_init_push_descriptor_set(struct radv_cmd_buffer *cmd_buffer, struct radv_descriptor_set *set,
struct radv_descriptor_set_layout *layout,
VkPipelineBindPoint bind_point)
{
struct radv_descriptor_state *descriptors_state =
radv_get_descriptors_state(cmd_buffer, bind_point);
set->header.size = layout->size;
if (set->header.layout != layout) {
if (set->header.layout)
vk_descriptor_set_layout_unref(&cmd_buffer->device->vk, &set->header.layout->vk);
vk_descriptor_set_layout_ref(&layout->vk);
set->header.layout = layout;
}
if (descriptors_state->push_set.capacity < set->header.size) {
size_t new_size = MAX2(set->header.size, 1024);
new_size = MAX2(new_size, 2 * descriptors_state->push_set.capacity);
new_size = MIN2(new_size, 96 * MAX_PUSH_DESCRIPTORS);
free(set->header.mapped_ptr);
set->header.mapped_ptr = malloc(new_size);
if (!set->header.mapped_ptr) {
descriptors_state->push_set.capacity = 0;
vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
return false;
}
descriptors_state->push_set.capacity = new_size;
}
return true;
}
void
radv_meta_push_descriptor_set(struct radv_cmd_buffer *cmd_buffer,
VkPipelineBindPoint pipelineBindPoint, VkPipelineLayout _layout,
uint32_t set, uint32_t descriptorWriteCount,
const VkWriteDescriptorSet *pDescriptorWrites)
{
RADV_FROM_HANDLE(radv_pipeline_layout, layout, _layout);
struct radv_descriptor_set *push_set =
(struct radv_descriptor_set *)&cmd_buffer->meta_push_descriptors;
unsigned bo_offset;
assert(set == 0);
assert(layout->set[set].layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR);
push_set->header.size = layout->set[set].layout->size;
push_set->header.layout = layout->set[set].layout;
if (!radv_cmd_buffer_upload_alloc(cmd_buffer, push_set->header.size, &bo_offset,
(void **)&push_set->header.mapped_ptr))
return;
push_set->header.va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
push_set->header.va += bo_offset;
radv_cmd_update_descriptor_sets(cmd_buffer->device, cmd_buffer,
radv_descriptor_set_to_handle(push_set), descriptorWriteCount,
pDescriptorWrites, 0, NULL);
radv_set_descriptor_set(cmd_buffer, pipelineBindPoint, push_set, set);
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdPushDescriptorSetKHR(VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint,
VkPipelineLayout _layout, uint32_t set, uint32_t descriptorWriteCount,
const VkWriteDescriptorSet *pDescriptorWrites)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_pipeline_layout, layout, _layout);
struct radv_descriptor_state *descriptors_state =
radv_get_descriptors_state(cmd_buffer, pipelineBindPoint);
struct radv_descriptor_set *push_set =
(struct radv_descriptor_set *)&descriptors_state->push_set.set;
assert(layout->set[set].layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR);
if (!radv_init_push_descriptor_set(cmd_buffer, push_set, layout->set[set].layout,
pipelineBindPoint))
return;
/* Check that there are no inline uniform block updates when calling vkCmdPushDescriptorSetKHR()
* because it is invalid, according to Vulkan spec.
*/
for (int i = 0; i < descriptorWriteCount; i++) {
ASSERTED const VkWriteDescriptorSet *writeset = &pDescriptorWrites[i];
assert(writeset->descriptorType != VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK);
}
radv_cmd_update_descriptor_sets(cmd_buffer->device, cmd_buffer,
radv_descriptor_set_to_handle(push_set), descriptorWriteCount,
pDescriptorWrites, 0, NULL);
radv_set_descriptor_set(cmd_buffer, pipelineBindPoint, push_set, set);
descriptors_state->push_dirty = true;
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdPushDescriptorSetWithTemplateKHR(VkCommandBuffer commandBuffer,
VkDescriptorUpdateTemplate descriptorUpdateTemplate,
VkPipelineLayout _layout, uint32_t set, const void *pData)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_pipeline_layout, layout, _layout);
RADV_FROM_HANDLE(radv_descriptor_update_template, templ, descriptorUpdateTemplate);
struct radv_descriptor_state *descriptors_state =
radv_get_descriptors_state(cmd_buffer, templ->bind_point);
struct radv_descriptor_set *push_set =
(struct radv_descriptor_set *)&descriptors_state->push_set.set;
assert(layout->set[set].layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR);
if (!radv_init_push_descriptor_set(cmd_buffer, push_set, layout->set[set].layout,
templ->bind_point))
return;
radv_cmd_update_descriptor_set_with_template(cmd_buffer->device, cmd_buffer, push_set,
descriptorUpdateTemplate, pData);
radv_set_descriptor_set(cmd_buffer, templ->bind_point, push_set, set);
descriptors_state->push_dirty = true;
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdPushConstants(VkCommandBuffer commandBuffer, VkPipelineLayout layout,
VkShaderStageFlags stageFlags, uint32_t offset, uint32_t size,
const void *pValues)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
memcpy(cmd_buffer->push_constants + offset, pValues, size);
cmd_buffer->push_constant_stages |= stageFlags;
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_EndCommandBuffer(VkCommandBuffer commandBuffer)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
radv_emit_mip_change_flush_default(cmd_buffer);
if (cmd_buffer->qf != RADV_QUEUE_TRANSFER) {
if (cmd_buffer->device->physical_device->rad_info.gfx_level == GFX6)
cmd_buffer->state.flush_bits |=
RADV_CMD_FLAG_CS_PARTIAL_FLUSH | RADV_CMD_FLAG_PS_PARTIAL_FLUSH | RADV_CMD_FLAG_WB_L2;
/* Make sure to sync all pending active queries at the end of
* command buffer.
*/
cmd_buffer->state.flush_bits |= cmd_buffer->active_query_flush_bits;
/* Flush noncoherent images on GFX9+ so we can assume they're clean on the start of a
* command buffer.
*/
if (cmd_buffer->state.rb_noncoherent_dirty && can_skip_buffer_l2_flushes(cmd_buffer->device))
cmd_buffer->state.flush_bits |= radv_src_access_flush(
cmd_buffer,
VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT |
VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,
NULL);
/* Since NGG streamout uses GDS, we need to make GDS idle when
* we leave the IB, otherwise another process might overwrite
* it while our shaders are busy.
*/
if (cmd_buffer->gds_needed)
cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_PS_PARTIAL_FLUSH;
/* Finalize the internal compute command stream, if it exists. */
if (cmd_buffer->ace_internal.cs) {
VkResult result = radv_ace_internal_finalize(cmd_buffer);
if (result != VK_SUCCESS)
return vk_error(cmd_buffer, result);
}
si_emit_cache_flush(cmd_buffer);
}
/* Make sure CP DMA is idle at the end of IBs because the kernel
* doesn't wait for it.
*/
si_cp_dma_wait_for_idle(cmd_buffer);
radv_describe_end_cmd_buffer(cmd_buffer);
vk_free(&cmd_buffer->vk.pool->alloc, cmd_buffer->state.attachments);
vk_free(&cmd_buffer->vk.pool->alloc, cmd_buffer->state.subpass_sample_locs);
VkResult result = cmd_buffer->device->ws->cs_finalize(cmd_buffer->cs);
if (result != VK_SUCCESS)
return vk_error(cmd_buffer, result);
cmd_buffer->status = RADV_CMD_BUFFER_STATUS_EXECUTABLE;
return vk_command_buffer_get_record_result(&cmd_buffer->vk);
}
static void
radv_emit_compute_pipeline(struct radv_cmd_buffer *cmd_buffer,
struct radv_compute_pipeline *pipeline)
{
if (pipeline == cmd_buffer->state.emitted_compute_pipeline)
return;
assert(!pipeline->base.ctx_cs.cdw);
cmd_buffer->state.emitted_compute_pipeline = pipeline;
radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, pipeline->base.cs.cdw);
radeon_emit_array(cmd_buffer->cs, pipeline->base.cs.buf, pipeline->base.cs.cdw);
cmd_buffer->compute_scratch_size_per_wave_needed =
MAX2(cmd_buffer->compute_scratch_size_per_wave_needed, pipeline->base.scratch_bytes_per_wave);
cmd_buffer->compute_scratch_waves_wanted =
MAX2(cmd_buffer->compute_scratch_waves_wanted, pipeline->base.max_waves);
radv_cs_add_buffer(cmd_buffer->device->ws, cmd_buffer->cs, pipeline->base.slab_bo);
if (unlikely(cmd_buffer->device->trace_bo))
radv_save_pipeline(cmd_buffer, &pipeline->base);
}
static void
radv_mark_descriptor_sets_dirty(struct radv_cmd_buffer *cmd_buffer, VkPipelineBindPoint bind_point)
{
struct radv_descriptor_state *descriptors_state =
radv_get_descriptors_state(cmd_buffer, bind_point);
descriptors_state->dirty |= descriptors_state->valid;
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdBindPipeline(VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint,
VkPipeline _pipeline)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
switch (pipelineBindPoint) {
case VK_PIPELINE_BIND_POINT_COMPUTE: {
struct radv_compute_pipeline *compute_pipeline = radv_pipeline_to_compute(pipeline);
if (cmd_buffer->state.compute_pipeline == compute_pipeline)
return;
radv_mark_descriptor_sets_dirty(cmd_buffer, pipelineBindPoint);
cmd_buffer->state.compute_pipeline = compute_pipeline;
cmd_buffer->push_constant_stages |= VK_SHADER_STAGE_COMPUTE_BIT;
break;
}
case VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR: {
struct radv_compute_pipeline *compute_pipeline = radv_pipeline_to_compute(pipeline);
if (cmd_buffer->state.rt_pipeline == compute_pipeline)
return;
radv_mark_descriptor_sets_dirty(cmd_buffer, pipelineBindPoint);
cmd_buffer->state.rt_pipeline = compute_pipeline;
cmd_buffer->push_constant_stages |= RADV_RT_STAGE_BITS;
if (compute_pipeline->dynamic_stack_size)
radv_set_rt_stack_size(cmd_buffer, cmd_buffer->state.rt_stack_size);
break;
}
case VK_PIPELINE_BIND_POINT_GRAPHICS: {
struct radv_graphics_pipeline *graphics_pipeline =
pipeline ? radv_pipeline_to_graphics(pipeline) : NULL;
if (cmd_buffer->state.graphics_pipeline == graphics_pipeline)
return;
radv_mark_descriptor_sets_dirty(cmd_buffer, pipelineBindPoint);
bool vtx_emit_count_changed =
!pipeline || !cmd_buffer->state.graphics_pipeline ||
cmd_buffer->state.graphics_pipeline->vtx_emit_num != graphics_pipeline->vtx_emit_num ||
cmd_buffer->state.graphics_pipeline->vtx_base_sgpr != graphics_pipeline->vtx_base_sgpr;
cmd_buffer->state.graphics_pipeline = graphics_pipeline;
if (!pipeline)
break;
bool mesh_shading = radv_pipeline_has_stage(graphics_pipeline, MESA_SHADER_MESH);
if (mesh_shading != cmd_buffer->state.mesh_shading) {
/* Re-emit VRS state because the combiner is different (vertex vs primitive).
* Re-emit primitive topology because the mesh shading pipeline clobbered it.
*/
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DYNAMIC_FRAGMENT_SHADING_RATE |
RADV_CMD_DIRTY_DYNAMIC_PRIMITIVE_TOPOLOGY;
}
cmd_buffer->state.mesh_shading = mesh_shading;
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_PIPELINE | RADV_CMD_DIRTY_DYNAMIC_VERTEX_INPUT;
cmd_buffer->push_constant_stages |= graphics_pipeline->active_stages;
/* the new vertex shader might not have the same user regs */
if (vtx_emit_count_changed) {
cmd_buffer->state.last_first_instance = -1;
cmd_buffer->state.last_vertex_offset = -1;
cmd_buffer->state.last_drawid = -1;
}
/* Prefetch all pipeline shaders at first draw time. */
cmd_buffer->state.prefetch_L2_mask |= RADV_PREFETCH_SHADERS;
if (cmd_buffer->device->physical_device->rad_info.has_vgt_flush_ngg_legacy_bug &&
cmd_buffer->state.emitted_graphics_pipeline &&
cmd_buffer->state.emitted_graphics_pipeline->is_ngg &&
!cmd_buffer->state.graphics_pipeline->is_ngg) {
/* Transitioning from NGG to legacy GS requires
* VGT_FLUSH on GFX10 and Navi21. VGT_FLUSH
* is also emitted at the beginning of IBs when legacy
* GS ring pointers are set.
*/
cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VGT_FLUSH;
}
radv_bind_dynamic_state(cmd_buffer, &graphics_pipeline->dynamic_state);
if (graphics_pipeline->esgs_ring_size > cmd_buffer->esgs_ring_size_needed)
cmd_buffer->esgs_ring_size_needed = graphics_pipeline->esgs_ring_size;
if (graphics_pipeline->gsvs_ring_size > cmd_buffer->gsvs_ring_size_needed)
cmd_buffer->gsvs_ring_size_needed = graphics_pipeline->gsvs_ring_size;
if (radv_pipeline_has_stage(graphics_pipeline, MESA_SHADER_TESS_CTRL))
cmd_buffer->tess_rings_needed = true;
if (mesh_shading)
cmd_buffer->mesh_scratch_ring_needed |=
pipeline->shaders[MESA_SHADER_MESH]->info.ms.needs_ms_scratch_ring;
if (radv_pipeline_has_stage(graphics_pipeline, MESA_SHADER_TASK)) {
if (!cmd_buffer->ace_internal.cs) {
cmd_buffer->ace_internal.cs = radv_ace_internal_create(cmd_buffer);
if (!cmd_buffer->ace_internal.cs)
return;
}
cmd_buffer->task_rings_needed = true;
}
break;
}
default:
assert(!"invalid bind point");
break;
}
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdSetViewport(VkCommandBuffer commandBuffer, uint32_t firstViewport, uint32_t viewportCount,
const VkViewport *pViewports)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
ASSERTED const uint32_t total_count = firstViewport + viewportCount;
assert(firstViewport < MAX_VIEWPORTS);
assert(total_count >= 1 && total_count <= MAX_VIEWPORTS);
if (state->dynamic.viewport.count < total_count)
state->dynamic.viewport.count = total_count;
memcpy(state->dynamic.viewport.viewports + firstViewport, pViewports,
viewportCount * sizeof(*pViewports));
for (unsigned i = 0; i < viewportCount; i++) {
radv_get_viewport_xform(&pViewports[i],
state->dynamic.viewport.xform[i + firstViewport].scale,
state->dynamic.viewport.xform[i + firstViewport].translate);
}
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_VIEWPORT | RADV_CMD_DIRTY_GUARDBAND;
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdSetScissor(VkCommandBuffer commandBuffer, uint32_t firstScissor, uint32_t scissorCount,
const VkRect2D *pScissors)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
ASSERTED const uint32_t total_count = firstScissor + scissorCount;
assert(firstScissor < MAX_SCISSORS);
assert(total_count >= 1 && total_count <= MAX_SCISSORS);
if (state->dynamic.scissor.count < total_count)
state->dynamic.scissor.count = total_count;
memcpy(state->dynamic.scissor.scissors + firstScissor, pScissors,
scissorCount * sizeof(*pScissors));
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_SCISSOR;
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdSetLineWidth(VkCommandBuffer commandBuffer, float lineWidth)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
cmd_buffer->state.dynamic.line_width = lineWidth;
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | RADV_CMD_DIRTY_GUARDBAND;
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthBias(VkCommandBuffer commandBuffer, float depthBiasConstantFactor,
float depthBiasClamp, float depthBiasSlopeFactor)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
state->dynamic.depth_bias.bias = depthBiasConstantFactor;
state->dynamic.depth_bias.clamp = depthBiasClamp;
state->dynamic.depth_bias.slope = depthBiasSlopeFactor;
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdSetBlendConstants(VkCommandBuffer commandBuffer, const float blendConstants[4])
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
memcpy(state->dynamic.blend_constants, blendConstants, sizeof(float) * 4);
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthBounds(VkCommandBuffer commandBuffer, float minDepthBounds, float maxDepthBounds)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
state->dynamic.depth_bounds.min = minDepthBounds;
state->dynamic.depth_bounds.max = maxDepthBounds;
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdSetStencilCompareMask(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask,
uint32_t compareMask)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
state->dynamic.stencil_compare_mask.front = compareMask;
if (faceMask & VK_STENCIL_FACE_BACK_BIT)
state->dynamic.stencil_compare_mask.back = compareMask;
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdSetStencilWriteMask(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask,
uint32_t writeMask)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
state->dynamic.stencil_write_mask.front = writeMask;
if (faceMask & VK_STENCIL_FACE_BACK_BIT)
state->dynamic.stencil_write_mask.back = writeMask;
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdSetStencilReference(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask,
uint32_t reference)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
cmd_buffer->state.dynamic.stencil_reference.front = reference;
if (faceMask & VK_STENCIL_FACE_BACK_BIT)
cmd_buffer->state.dynamic.stencil_reference.back = reference;
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDiscardRectangleEXT(VkCommandBuffer commandBuffer, uint32_t firstDiscardRectangle,
uint32_t discardRectangleCount, const VkRect2D *pDiscardRectangles)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
ASSERTED const uint32_t total_count = firstDiscardRectangle + discardRectangleCount;
assert(firstDiscardRectangle < MAX_DISCARD_RECTANGLES);
assert(total_count >= 1 && total_count <= MAX_DISCARD_RECTANGLES);
typed_memcpy(&state->dynamic.discard_rectangle.rectangles[firstDiscardRectangle],
pDiscardRectangles, discardRectangleCount);
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_DISCARD_RECTANGLE;
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdSetSampleLocationsEXT(VkCommandBuffer commandBuffer,
const VkSampleLocationsInfoEXT *pSampleLocationsInfo)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
assert(pSampleLocationsInfo->sampleLocationsCount <= MAX_SAMPLE_LOCATIONS);
state->dynamic.sample_location.per_pixel = pSampleLocationsInfo->sampleLocationsPerPixel;
state->dynamic.sample_location.grid_size = pSampleLocationsInfo->sampleLocationGridSize;
state->dynamic.sample_location.count = pSampleLocationsInfo->sampleLocationsCount;
typed_memcpy(&state->dynamic.sample_location.locations[0],
pSampleLocationsInfo->pSampleLocations, pSampleLocationsInfo->sampleLocationsCount);
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_SAMPLE_LOCATIONS;
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdSetLineStippleEXT(VkCommandBuffer commandBuffer, uint32_t lineStippleFactor,
uint16_t lineStipplePattern)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
state->dynamic.line_stipple.factor = lineStippleFactor;
state->dynamic.line_stipple.pattern = lineStipplePattern;
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdSetCullMode(VkCommandBuffer commandBuffer, VkCullModeFlags cullMode)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
state->dynamic.cull_mode = cullMode;
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_CULL_MODE;
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdSetFrontFace(VkCommandBuffer commandBuffer, VkFrontFace frontFace)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
state->dynamic.front_face = frontFace;
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_FRONT_FACE;
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdSetPrimitiveTopology(VkCommandBuffer commandBuffer, VkPrimitiveTopology primitiveTopology)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
unsigned primitive_topology = si_translate_prim(primitiveTopology);
if ((state->dynamic.primitive_topology == V_008958_DI_PT_LINESTRIP) !=
(primitive_topology == V_008958_DI_PT_LINESTRIP))
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
if (radv_prim_is_points_or_lines(state->dynamic.primitive_topology) !=
radv_prim_is_points_or_lines(primitive_topology))
state->dirty |= RADV_CMD_DIRTY_GUARDBAND;
state->dynamic.primitive_topology = primitive_topology;
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_PRIMITIVE_TOPOLOGY;
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdSetViewportWithCount(VkCommandBuffer commandBuffer, uint32_t viewportCount,
const VkViewport *pViewports)
{
radv_CmdSetViewport(commandBuffer, 0, viewportCount, pViewports);
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdSetScissorWithCount(VkCommandBuffer commandBuffer, uint32_t scissorCount,
const VkRect2D *pScissors)
{
radv_CmdSetScissor(commandBuffer, 0, scissorCount, pScissors);
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthTestEnable(VkCommandBuffer commandBuffer, VkBool32 depthTestEnable)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
state->dynamic.depth_test_enable = depthTestEnable;
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_DEPTH_TEST_ENABLE;
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthWriteEnable(VkCommandBuffer commandBuffer, VkBool32 depthWriteEnable)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
state->dynamic.depth_write_enable = depthWriteEnable;
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_DEPTH_WRITE_ENABLE;
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthCompareOp(VkCommandBuffer commandBuffer, VkCompareOp depthCompareOp)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
state->dynamic.depth_compare_op = depthCompareOp;
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_DEPTH_COMPARE_OP;
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthBoundsTestEnable(VkCommandBuffer commandBuffer, VkBool32 depthBoundsTestEnable)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
state->dynamic.depth_bounds_test_enable = depthBoundsTestEnable;
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE;
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdSetStencilTestEnable(VkCommandBuffer commandBuffer, VkBool32 stencilTestEnable)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
state->dynamic.stencil_test_enable = stencilTestEnable;
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_STENCIL_TEST_ENABLE;
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdSetStencilOp(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask,
VkStencilOp failOp, VkStencilOp passOp, VkStencilOp depthFailOp,
VkCompareOp compareOp)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
if (faceMask & VK_STENCIL_FACE_FRONT_BIT) {
state->dynamic.stencil_op.front.fail_op = failOp;
state->dynamic.stencil_op.front.pass_op = passOp;
state->dynamic.stencil_op.front.depth_fail_op = depthFailOp;
state->dynamic.stencil_op.front.compare_op = compareOp;
}
if (faceMask & VK_STENCIL_FACE_BACK_BIT) {
state->dynamic.stencil_op.back.fail_op = failOp;
state->dynamic.stencil_op.back.pass_op = passOp;
state->dynamic.stencil_op.back.depth_fail_op = depthFailOp;
state->dynamic.stencil_op.back.compare_op = compareOp;
}
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_STENCIL_OP;
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdSetFragmentShadingRateKHR(VkCommandBuffer commandBuffer, const VkExtent2D *pFragmentSize,
const VkFragmentShadingRateCombinerOpKHR combinerOps[2])
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
state->dynamic.fragment_shading_rate.size = *pFragmentSize;
for (unsigned i = 0; i < 2; i++)
state->dynamic.fragment_shading_rate.combiner_ops[i] = combinerOps[i];
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_FRAGMENT_SHADING_RATE;
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDepthBiasEnable(VkCommandBuffer commandBuffer, VkBool32 depthBiasEnable)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
state->dynamic.depth_bias_enable = depthBiasEnable;
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS_ENABLE;
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdSetPrimitiveRestartEnable(VkCommandBuffer commandBuffer, VkBool32 primitiveRestartEnable)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
state->dynamic.primitive_restart_enable = primitiveRestartEnable;
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_PRIMITIVE_RESTART_ENABLE;
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdSetRasterizerDiscardEnable(VkCommandBuffer commandBuffer, VkBool32 rasterizerDiscardEnable)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
state->dynamic.rasterizer_discard_enable = rasterizerDiscardEnable;
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_RASTERIZER_DISCARD_ENABLE;
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdSetPatchControlPointsEXT(VkCommandBuffer commandBuffer, uint32_t patchControlPoints)
{
/* not implemented */
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdSetLogicOpEXT(VkCommandBuffer commandBuffer, VkLogicOp logicOp)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
unsigned logic_op = si_translate_blend_logic_op(logicOp);
state->dynamic.logic_op = logic_op;
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_LOGIC_OP;
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdSetColorWriteEnableEXT(VkCommandBuffer commandBuffer, uint32_t attachmentCount,
const VkBool32 *pColorWriteEnables)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_cmd_state *state = &cmd_buffer->state;
uint32_t color_write_enable = 0;
assert(attachmentCount <= MAX_RTS);
for (uint32_t i = 0; i < attachmentCount; i++) {
color_write_enable |= pColorWriteEnables[i] ? (0xfu << (i * 4)) : 0;
}
state->dynamic.color_write_enable = color_write_enable;
state->dirty |= RADV_CMD_DIRTY_DYNAMIC_COLOR_WRITE_ENABLE;
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdSetVertexInputEXT(VkCommandBuffer commandBuffer, uint32_t vertexBindingDescriptionCount,
const VkVertexInputBindingDescription2EXT *pVertexBindingDescriptions,
uint32_t vertexAttributeDescriptionCount,
const VkVertexInputAttributeDescription2EXT *pVertexAttributeDescriptions)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_vs_input_state *state = &cmd_buffer->state.dynamic_vs_input;
const VkVertexInputBindingDescription2EXT *bindings[MAX_VBS];
for (unsigned i = 0; i < vertexBindingDescriptionCount; i++)
bindings[pVertexBindingDescriptions[i].binding] = &pVertexBindingDescriptions[i];
cmd_buffer->state.vbo_misaligned_mask = 0;
cmd_buffer->state.vbo_misaligned_mask_invalid = 0;
memset(state, 0, sizeof(*state));
state->bindings_match_attrib = true;
enum amd_gfx_level chip = cmd_buffer->device->physical_device->rad_info.gfx_level;
enum radeon_family family = cmd_buffer->device->physical_device->rad_info.family;
const struct ac_vtx_format_info *vtx_info_table = ac_get_vtx_format_info_table(chip, family);
for (unsigned i = 0; i < vertexAttributeDescriptionCount; i++) {
const VkVertexInputAttributeDescription2EXT *attrib = &pVertexAttributeDescriptions[i];
const VkVertexInputBindingDescription2EXT *binding = bindings[attrib->binding];
unsigned loc = attrib->location;
state->attribute_mask |= 1u << loc;
state->bindings[loc] = attrib->binding;
if (attrib->binding != loc)
state->bindings_match_attrib = false;
if (binding->inputRate == VK_VERTEX_INPUT_RATE_INSTANCE) {
state->instance_rate_inputs |= 1u << loc;
state->divisors[loc] = binding->divisor;
if (binding->divisor == 0) {
state->zero_divisors |= 1u << loc;
} else if (binding->divisor > 1) {
state->nontrivial_divisors |= 1u << loc;
}
}
cmd_buffer->vertex_bindings[attrib->binding].stride = binding->stride;
state->offsets[loc] = attrib->offset;
enum pipe_format format = vk_format_to_pipe_format(attrib->format);
const struct ac_vtx_format_info *vtx_info = &vtx_info_table[format];
state->formats[loc] = format;
uint8_t align_req_minus_1 = vtx_info->chan_byte_size >= 4 ? 3 : (vtx_info->element_size - 1);
state->format_align_req_minus_1[loc] = align_req_minus_1;
state->format_sizes[loc] = vtx_info->element_size;
state->alpha_adjust_lo |= (vtx_info->alpha_adjust & 0x1) << loc;
state->alpha_adjust_hi |= (vtx_info->alpha_adjust >> 1) << loc;
if (G_008F0C_DST_SEL_X(vtx_info->dst_sel) == V_008F0C_SQ_SEL_Z)
state->post_shuffle |= BITFIELD_BIT(loc);
if (!(vtx_info->has_hw_format & BITFIELD_BIT(vtx_info->num_channels - 1)))
state->nontrivial_formats |= BITFIELD_BIT(loc);
if ((chip == GFX6 || chip >= GFX10) &&
cmd_buffer->state.vbo_bound_mask & BITFIELD_BIT(attrib->binding)) {
if (binding->stride & align_req_minus_1) {
cmd_buffer->state.vbo_misaligned_mask |= BITFIELD_BIT(loc);
} else if ((cmd_buffer->vertex_bindings[attrib->binding].offset + state->offsets[loc]) &
align_req_minus_1) {
cmd_buffer->state.vbo_misaligned_mask |= BITFIELD_BIT(loc);
}
}
}
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_VERTEX_BUFFER |
RADV_CMD_DIRTY_DYNAMIC_VERTEX_INPUT;
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdExecuteCommands(VkCommandBuffer commandBuffer, uint32_t commandBufferCount,
const VkCommandBuffer *pCmdBuffers)
{
RADV_FROM_HANDLE(radv_cmd_buffer, primary, commandBuffer);
assert(commandBufferCount > 0);
radv_emit_mip_change_flush_default(primary);
/* Emit pending flushes on primary prior to executing secondary */
si_emit_cache_flush(primary);
/* Make sure CP DMA is idle on primary prior to executing secondary. */
si_cp_dma_wait_for_idle(primary);
for (uint32_t i = 0; i < commandBufferCount; i++) {
RADV_FROM_HANDLE(radv_cmd_buffer, secondary, pCmdBuffers[i]);
bool allow_ib2 = true;
if (secondary->device->physical_device->rad_info.gfx_level == GFX7 &&
secondary->state.uses_draw_indirect_multi) {
/* Do not launch an IB2 for secondary command buffers that contain
* DRAW_{INDEX}_INDIRECT_MULTI on GFX7 because it's illegal and hang the GPU.
*/
allow_ib2 = false;
}
if (secondary->qf == RADV_QUEUE_COMPUTE) {
/* IB2 packets are not supported on compute queues according to PAL. */
allow_ib2 = false;
}
primary->scratch_size_per_wave_needed =
MAX2(primary->scratch_size_per_wave_needed, secondary->scratch_size_per_wave_needed);
primary->scratch_waves_wanted =
MAX2(primary->scratch_waves_wanted, secondary->scratch_waves_wanted);
primary->compute_scratch_size_per_wave_needed =
MAX2(primary->compute_scratch_size_per_wave_needed,
secondary->compute_scratch_size_per_wave_needed);
primary->compute_scratch_waves_wanted =
MAX2(primary->compute_scratch_waves_wanted, secondary->compute_scratch_waves_wanted);
if (secondary->esgs_ring_size_needed > primary->esgs_ring_size_needed)
primary->esgs_ring_size_needed = secondary->esgs_ring_size_needed;
if (secondary->gsvs_ring_size_needed > primary->gsvs_ring_size_needed)
primary->gsvs_ring_size_needed = secondary->gsvs_ring_size_needed;
if (secondary->tess_rings_needed)
primary->tess_rings_needed = true;
if (secondary->task_rings_needed)
primary->task_rings_needed = true;
if (secondary->mesh_scratch_ring_needed)
primary->mesh_scratch_ring_needed = true;
if (secondary->sample_positions_needed)
primary->sample_positions_needed = true;
if (secondary->gds_needed)
primary->gds_needed = true;
if (!secondary->state.framebuffer && primary->state.pass && (primary->state.dirty & RADV_CMD_DIRTY_FRAMEBUFFER)) {
/* Emit the framebuffer state from primary if secondary
* has been recorded without a framebuffer, otherwise
* fast color/depth clears can't work.
*/
radv_emit_fb_mip_change_flush(primary);
radv_emit_framebuffer_state(primary);
}
if (secondary->ace_internal.cs) {
if (!primary->ace_internal.cs) {
primary->ace_internal.cs = radv_ace_internal_create(primary);
if (!primary->ace_internal.cs)
return;
}
struct radeon_cmdbuf *ace_primary = primary->ace_internal.cs;
struct radeon_cmdbuf *ace_secondary = secondary->ace_internal.cs;
/* Emit pending flushes on primary prior to executing secondary. */
radv_ace_internal_cache_flush(primary);
/* Wait for primary GFX->ACE semaphore, if necessary. */
if (radv_flush_gfx2ace_semaphore(primary))
radv_wait_gfx2ace_semaphore(primary);
/* Execute the secondary compute cmdbuf.
* Don't use IB2 packets because they are not supported on compute queues.
*/
primary->device->ws->cs_execute_secondary(ace_primary, ace_secondary, false);
}
/* Update pending ACE internal flush bits from the secondary cmdbuf */
primary->ace_internal.flush_bits |= secondary->ace_internal.flush_bits;
/* Increment primary semaphore if secondary was dirty.
* This happens when the secondary cmdbuf has a barrier which
* isn't consumed by a draw call.
*/
if (radv_ace_internal_sem_dirty(secondary))
primary->ace_internal.sem.gfx2ace_value++;
primary->device->ws->cs_execute_secondary(primary->cs, secondary->cs, allow_ib2);
/* When the secondary command buffer is compute only we don't
* need to re-emit the current graphics pipeline.
*/
if (secondary->state.emitted_graphics_pipeline) {
primary->state.emitted_graphics_pipeline = secondary->state.emitted_graphics_pipeline;
}
/* When the secondary command buffer is graphics only we don't
* need to re-emit the current compute pipeline.
*/
if (secondary->state.emitted_compute_pipeline) {
primary->state.emitted_compute_pipeline = secondary->state.emitted_compute_pipeline;
}
/* Only re-emit the draw packets when needed. */
if (secondary->state.last_primitive_reset_en != -1) {
primary->state.last_primitive_reset_en = secondary->state.last_primitive_reset_en;
}
if (secondary->state.last_primitive_reset_index) {
primary->state.last_primitive_reset_index = secondary->state.last_primitive_reset_index;
}
if (secondary->state.last_ia_multi_vgt_param) {
primary->state.last_ia_multi_vgt_param = secondary->state.last_ia_multi_vgt_param;
}
primary->state.last_first_instance = secondary->state.last_first_instance;
primary->state.last_num_instances = secondary->state.last_num_instances;
primary->state.last_drawid = secondary->state.last_drawid;
primary->state.last_subpass_color_count = secondary->state.last_subpass_color_count;
primary->state.last_vertex_offset = secondary->state.last_vertex_offset;
primary->state.last_sx_ps_downconvert = secondary->state.last_sx_ps_downconvert;
primary->state.last_sx_blend_opt_epsilon = secondary->state.last_sx_blend_opt_epsilon;
primary->state.last_sx_blend_opt_control = secondary->state.last_sx_blend_opt_control;
if (secondary->state.last_index_type != -1) {
primary->state.last_index_type = secondary->state.last_index_type;
}
primary->state.last_nggc_settings = secondary->state.last_nggc_settings;
primary->state.last_nggc_settings_sgpr_idx = secondary->state.last_nggc_settings_sgpr_idx;
primary->state.last_nggc_skip = secondary->state.last_nggc_skip;
primary->state.last_vrs_rates = secondary->state.last_vrs_rates;
primary->state.last_vrs_rates_sgpr_idx = secondary->state.last_vrs_rates_sgpr_idx;
}
/* After executing commands from secondary buffers we have to dirty
* some states.
*/
primary->state.dirty |=
RADV_CMD_DIRTY_PIPELINE | RADV_CMD_DIRTY_INDEX_BUFFER | RADV_CMD_DIRTY_GUARDBAND |
RADV_CMD_DIRTY_DYNAMIC_ALL;
radv_mark_descriptor_sets_dirty(primary, VK_PIPELINE_BIND_POINT_GRAPHICS);
radv_mark_descriptor_sets_dirty(primary, VK_PIPELINE_BIND_POINT_COMPUTE);
}
static void
radv_cmd_buffer_begin_subpass(struct radv_cmd_buffer *cmd_buffer, uint32_t subpass_id)
{
struct radv_cmd_state *state = &cmd_buffer->state;
struct radv_subpass *subpass = &state->pass->subpasses[subpass_id];
ASSERTED unsigned cdw_max = radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, 4096);
radv_emit_subpass_barrier(cmd_buffer, &subpass->start_barrier);
cmd_buffer->state.subpass = subpass;
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_FRAMEBUFFER;
radv_describe_barrier_start(cmd_buffer, RGP_BARRIER_EXTERNAL_RENDER_PASS_SYNC);
for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
const uint32_t a = subpass->attachments[i].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
radv_handle_subpass_image_transition(cmd_buffer, subpass->attachments[i], true);
}
radv_ace_internal_barrier(cmd_buffer, 0, 0);
radv_describe_barrier_end(cmd_buffer);
radv_cmd_buffer_clear_subpass(cmd_buffer);
if (subpass->vrs_attachment) {
int idx = subpass->vrs_attachment->attachment;
struct radv_image_view *vrs_iview = cmd_buffer->state.attachments[idx].iview;
if (subpass->depth_stencil_attachment) {
/* When a subpass uses a VRS attachment and a depth/stencil attachment, we just need to
* copy the VRS rates to the HTILE buffer of the attachment.
*/
int ds_idx = subpass->depth_stencil_attachment->attachment;
struct radv_image_view *ds_iview = cmd_buffer->state.attachments[ds_idx].iview;
struct radv_image *ds_image = ds_iview->image;
uint32_t level = ds_iview->vk.base_mip_level;
VkExtent2D extent = {
.width = radv_minify(ds_image->info.width, level),
.height = radv_minify(ds_image->info.height, level),
};
/* HTILE buffer */
uint64_t htile_offset = ds_image->bindings[0].offset + ds_image->planes[0].surface.meta_offset +
ds_image->planes[0].surface.u.gfx9.meta_levels[level].offset;
uint64_t htile_size = ds_image->planes[0].surface.u.gfx9.meta_levels[level].size;
struct radv_buffer htile_buffer;
radv_buffer_init(&htile_buffer, cmd_buffer->device, ds_image->bindings[0].bo, htile_size, htile_offset);
/* Copy the VRS rates to the HTILE buffer. */
radv_copy_vrs_htile(cmd_buffer, vrs_iview->image, &extent, ds_image, &htile_buffer, true);
radv_buffer_finish(&htile_buffer);
} else {
/* When a subpass uses a VRS attachment without binding a depth/stencil attachment, we have
* to copy the VRS rates to our internal HTILE buffer.
*/
struct vk_framebuffer *fb = cmd_buffer->state.framebuffer;
struct radv_image *ds_image = radv_cmd_buffer_get_vrs_image(cmd_buffer);
if (ds_image) {
/* HTILE buffer */
struct radv_buffer *htile_buffer = cmd_buffer->device->vrs.buffer;
VkExtent2D extent = {
.width = MIN2(fb->width, ds_image->info.width),
.height = MIN2(fb->height, ds_image->info.height),
};
/* Copy the VRS rates to the HTILE buffer. */
radv_copy_vrs_htile(cmd_buffer, vrs_iview->image, &extent, ds_image, htile_buffer, false);
}
}
}
assert(cmd_buffer->cs->cdw <= cdw_max);
}
static void
radv_mark_noncoherent_rb(struct radv_cmd_buffer *cmd_buffer)
{
const struct radv_subpass *subpass = cmd_buffer->state.subpass;
/* Have to be conservative in cmdbuffers with inherited attachments. */
if (!cmd_buffer->state.attachments) {
cmd_buffer->state.rb_noncoherent_dirty = true;
return;
}
for (uint32_t i = 0; i < subpass->color_count; ++i) {
const uint32_t a = subpass->color_attachments[i].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
if (!cmd_buffer->state.attachments[a].iview->image->l2_coherent) {
cmd_buffer->state.rb_noncoherent_dirty = true;
return;
}
}
if (subpass->depth_stencil_attachment &&
!cmd_buffer->state.attachments[subpass->depth_stencil_attachment->attachment]
.iview->image->l2_coherent)
cmd_buffer->state.rb_noncoherent_dirty = true;
}
static void
radv_cmd_buffer_end_subpass(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_cmd_state *state = &cmd_buffer->state;
const struct radv_subpass *subpass = state->subpass;
uint32_t subpass_id = radv_get_subpass_id(cmd_buffer);
radv_cmd_buffer_resolve_subpass(cmd_buffer);
radv_describe_barrier_start(cmd_buffer, RGP_BARRIER_EXTERNAL_RENDER_PASS_SYNC);
for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
const uint32_t a = subpass->attachments[i].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
if (state->pass->attachments[a].last_subpass_idx != subpass_id)
continue;
VkImageLayout layout = state->pass->attachments[a].final_layout;
VkImageLayout stencil_layout = state->pass->attachments[a].stencil_final_layout;
struct radv_subpass_attachment att = {a, layout, stencil_layout};
radv_handle_subpass_image_transition(cmd_buffer, att, false);
}
radv_ace_internal_barrier(cmd_buffer, 0, 0);
radv_describe_barrier_end(cmd_buffer);
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdBeginRenderPass2(VkCommandBuffer commandBuffer,
const VkRenderPassBeginInfo *pRenderPassBeginInfo,
const VkSubpassBeginInfo *pSubpassBeginInfo)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_render_pass, pass, pRenderPassBeginInfo->renderPass);
RADV_FROM_HANDLE(vk_framebuffer, framebuffer, pRenderPassBeginInfo->framebuffer);
VkResult result;
cmd_buffer->state.framebuffer = framebuffer;
cmd_buffer->state.pass = pass;
cmd_buffer->state.render_area = pRenderPassBeginInfo->renderArea;
result = radv_cmd_state_setup_attachments(cmd_buffer, pass, pRenderPassBeginInfo);
if (result != VK_SUCCESS)
return;
result = radv_cmd_state_setup_sample_locations(cmd_buffer, pass, pRenderPassBeginInfo);
if (result != VK_SUCCESS)
return;
radeon_set_context_reg(cmd_buffer->cs, R_028204_PA_SC_WINDOW_SCISSOR_TL,
S_028204_TL_X(cmd_buffer->state.render_area.offset.x) |
S_028204_TL_Y(cmd_buffer->state.render_area.offset.y));
radeon_set_context_reg(cmd_buffer->cs, R_028208_PA_SC_WINDOW_SCISSOR_BR,
S_028208_BR_X(cmd_buffer->state.render_area.offset.x +
cmd_buffer->state.render_area.extent.width) |
S_028208_BR_Y(cmd_buffer->state.render_area.offset.y +
cmd_buffer->state.render_area.extent.height));
radv_cmd_buffer_begin_subpass(cmd_buffer, 0);
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdNextSubpass2(VkCommandBuffer commandBuffer, const VkSubpassBeginInfo *pSubpassBeginInfo,
const VkSubpassEndInfo *pSubpassEndInfo)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
radv_mark_noncoherent_rb(cmd_buffer);
uint32_t prev_subpass = radv_get_subpass_id(cmd_buffer);
radv_cmd_buffer_end_subpass(cmd_buffer);
radv_cmd_buffer_begin_subpass(cmd_buffer, prev_subpass + 1);
}
static void
radv_emit_view_index_per_stage(struct radeon_cmdbuf *cs, struct radv_graphics_pipeline *pipeline,
unsigned stage, unsigned index)
{
struct radv_userdata_info *loc = radv_lookup_user_sgpr(&pipeline->base, stage, AC_UD_VIEW_INDEX);
if (loc->sgpr_idx == -1)
return;
uint32_t base_reg = pipeline->base.user_data_0[stage];
radeon_set_sh_reg(cs, base_reg + loc->sgpr_idx * 4, index);
}
static void
radv_emit_view_index(struct radv_cmd_buffer *cmd_buffer, unsigned index)
{
struct radv_graphics_pipeline *pipeline = cmd_buffer->state.graphics_pipeline;
radv_foreach_stage(stage, pipeline->active_stages & ~VK_SHADER_STAGE_TASK_BIT_NV) {
radv_emit_view_index_per_stage(cmd_buffer->cs, pipeline, stage, index);
}
if (radv_pipeline_has_gs_copy_shader(&pipeline->base)) {
struct radv_userdata_info *loc =
&pipeline->base.gs_copy_shader->info.user_sgprs_locs.shader_data[AC_UD_VIEW_INDEX];
if (loc->sgpr_idx != -1) {
uint32_t base_reg = R_00B130_SPI_SHADER_USER_DATA_VS_0;
radeon_set_sh_reg(cmd_buffer->cs, base_reg + loc->sgpr_idx * 4, index);
}
}
if (pipeline->active_stages & VK_SHADER_STAGE_TASK_BIT_NV) {
radv_emit_view_index_per_stage(cmd_buffer->ace_internal.cs, pipeline, MESA_SHADER_TASK,
index);
}
}
/**
* Emulates predication for MEC using COND_EXEC.
* When the current command buffer is predicating, emit a COND_EXEC packet
* so that the MEC skips the next few dwords worth of packets.
*
* To make it work with inverted conditional rendering, we allocate
* space in the upload BO and emit some packets to invert the condition.
*/
static void
radv_cs_emit_compute_predication(struct radv_cmd_state *state, struct radeon_cmdbuf *cs,
uint64_t inv_va, bool *inv_emitted, unsigned dwords)
{
if (!state->predicating)
return;
uint64_t va = state->predication_va;
if (!state->predication_type) {
/* Invert the condition the first time it is needed. */
if (!*inv_emitted) {
*inv_emitted = true;
/* Write 1 to the inverted predication VA. */
radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) |
COPY_DATA_WR_CONFIRM);
radeon_emit(cs, 1);
radeon_emit(cs, 0);
radeon_emit(cs, inv_va);
radeon_emit(cs, inv_va >> 32);
/* If the API predication VA == 0, skip next command. */
radeon_emit(cs, PKT3(PKT3_COND_EXEC, 3, 0));
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit(cs, 0);
radeon_emit(cs, 6); /* 1x COPY_DATA size */
/* Write 0 to the new predication VA (when the API condition != 0) */
radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) |
COPY_DATA_WR_CONFIRM);
radeon_emit(cs, 0);
radeon_emit(cs, 0);
radeon_emit(cs, inv_va);
radeon_emit(cs, inv_va >> 32);
}
va = inv_va;
}
radeon_emit(cs, PKT3(PKT3_COND_EXEC, 3, 0));
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit(cs, 0); /* Cache policy */
radeon_emit(cs, dwords); /* Size of the predicated packet(s) in DWORDs. */
}
static void
radv_cs_emit_draw_packet(struct radv_cmd_buffer *cmd_buffer, uint32_t vertex_count,
uint32_t use_opaque)
{
radeon_emit(cmd_buffer->cs, PKT3(PKT3_DRAW_INDEX_AUTO, 1, cmd_buffer->state.predicating));
radeon_emit(cmd_buffer->cs, vertex_count);
radeon_emit(cmd_buffer->cs, V_0287F0_DI_SRC_SEL_AUTO_INDEX | use_opaque);
}
/**
* Emit a PKT3_DRAW_INDEX_2 packet to render "index_count` vertices.
*
* The starting address "index_va" may point anywhere within the index buffer. The number of
* indexes allocated in the index buffer *past that point* is specified by "max_index_count".
* Hardware uses this information to return 0 for out-of-bounds reads.
*/
static void
radv_cs_emit_draw_indexed_packet(struct radv_cmd_buffer *cmd_buffer, uint64_t index_va,
uint32_t max_index_count, uint32_t index_count, bool not_eop)
{
radeon_emit(cmd_buffer->cs, PKT3(PKT3_DRAW_INDEX_2, 4, cmd_buffer->state.predicating));
radeon_emit(cmd_buffer->cs, max_index_count);
radeon_emit(cmd_buffer->cs, index_va);
radeon_emit(cmd_buffer->cs, index_va >> 32);
radeon_emit(cmd_buffer->cs, index_count);
/* NOT_EOP allows merging multiple draws into 1 wave, but only user VGPRs
* can be changed between draws and GS fast launch must be disabled.
* NOT_EOP doesn't work on gfx9 and older.
*/
radeon_emit(cmd_buffer->cs, V_0287F0_DI_SRC_SEL_DMA | S_0287F0_NOT_EOP(not_eop));
}
/* MUST inline this function to avoid massive perf loss in drawoverhead */
ALWAYS_INLINE static void
radv_cs_emit_indirect_draw_packet(struct radv_cmd_buffer *cmd_buffer, bool indexed,
uint32_t draw_count, uint64_t count_va, uint32_t stride)
{
struct radeon_cmdbuf *cs = cmd_buffer->cs;
const unsigned di_src_sel = indexed ? V_0287F0_DI_SRC_SEL_DMA : V_0287F0_DI_SRC_SEL_AUTO_INDEX;
bool draw_id_enable = cmd_buffer->state.graphics_pipeline->uses_drawid;
uint32_t base_reg = cmd_buffer->state.graphics_pipeline->vtx_base_sgpr;
uint32_t vertex_offset_reg, start_instance_reg = 0, draw_id_reg = 0;
bool predicating = cmd_buffer->state.predicating;
bool mesh = cmd_buffer->state.mesh_shading;
assert(base_reg);
/* just reset draw state for vertex data */
cmd_buffer->state.last_first_instance = -1;
cmd_buffer->state.last_num_instances = -1;
cmd_buffer->state.last_drawid = -1;
cmd_buffer->state.last_vertex_offset = -1;
vertex_offset_reg = (base_reg - SI_SH_REG_OFFSET) >> 2;
if (cmd_buffer->state.graphics_pipeline->uses_baseinstance)
start_instance_reg = ((base_reg + (draw_id_enable ? 8 : 4)) - SI_SH_REG_OFFSET) >> 2;
if (draw_id_enable)
draw_id_reg = ((base_reg + mesh * 12 + 4) - SI_SH_REG_OFFSET) >> 2;
if (draw_count == 1 && !count_va && !draw_id_enable) {
radeon_emit(cs,
PKT3(indexed ? PKT3_DRAW_INDEX_INDIRECT : PKT3_DRAW_INDIRECT, 3, predicating));
radeon_emit(cs, 0);
radeon_emit(cs, vertex_offset_reg);
radeon_emit(cs, start_instance_reg);
radeon_emit(cs, di_src_sel);
} else {
radeon_emit(cs, PKT3(indexed ? PKT3_DRAW_INDEX_INDIRECT_MULTI : PKT3_DRAW_INDIRECT_MULTI, 8,
predicating));
radeon_emit(cs, 0);
radeon_emit(cs, vertex_offset_reg);
radeon_emit(cs, start_instance_reg);
radeon_emit(cs, draw_id_reg | S_2C3_DRAW_INDEX_ENABLE(draw_id_enable) |
S_2C3_COUNT_INDIRECT_ENABLE(!!count_va));
radeon_emit(cs, draw_count); /* count */
radeon_emit(cs, count_va); /* count_addr */
radeon_emit(cs, count_va >> 32);
radeon_emit(cs, stride); /* stride */
radeon_emit(cs, di_src_sel);
cmd_buffer->state.uses_draw_indirect_multi = true;
}
}
ALWAYS_INLINE static void
radv_cs_emit_indirect_mesh_draw_packet(struct radv_cmd_buffer *cmd_buffer, uint32_t draw_count,
uint64_t count_va, uint32_t stride)
{
struct radeon_cmdbuf *cs = cmd_buffer->cs;
bool draw_id_enable = cmd_buffer->state.graphics_pipeline->uses_drawid;
uint32_t base_reg = cmd_buffer->state.graphics_pipeline->vtx_base_sgpr;
bool predicating = cmd_buffer->state.predicating;
assert(base_reg);
/* Reset draw state. */
cmd_buffer->state.last_first_instance = -1;
cmd_buffer->state.last_num_instances = -1;
cmd_buffer->state.last_drawid = -1;
cmd_buffer->state.last_vertex_offset = -1;
/* Note: firstTask/firstVertex is not supported by this draw packet. */
uint32_t xyz_dim_reg = (base_reg + 4 - SI_SH_REG_OFFSET) >> 2;
uint32_t draw_id_reg = (base_reg + 16 - SI_SH_REG_OFFSET) >> 2;
radeon_emit(cs, PKT3(PKT3_DISPATCH_MESH_INDIRECT_MULTI, 7, predicating));
radeon_emit(cs, 0); /* data_offset */
radeon_emit(cs, (xyz_dim_reg & 0xFFFF) | (draw_id_reg << 16));
radeon_emit(cs,
S_2C3_DRAW_INDEX_ENABLE(draw_id_enable) | S_2C3_COUNT_INDIRECT_ENABLE(!!count_va));
radeon_emit(cs, draw_count);
radeon_emit(cs, count_va & 0xFFFFFFFF);
radeon_emit(cs, count_va >> 32);
radeon_emit(cs, stride);
radeon_emit(cs, V_0287F0_DI_SRC_SEL_AUTO_INDEX);
cmd_buffer->state.uses_draw_indirect_multi = true;
}
ALWAYS_INLINE static void
radv_cs_emit_dispatch_taskmesh_direct_ace_packet(struct radv_cmd_buffer *cmd_buffer,
const uint32_t x, const uint32_t y,
const uint32_t z)
{
struct radv_pipeline *pipeline = &cmd_buffer->state.graphics_pipeline->base;
struct radv_shader *compute_shader = radv_get_shader(pipeline, MESA_SHADER_TASK);
struct radeon_cmdbuf *cs = cmd_buffer->ace_internal.cs;
const bool predicating = cmd_buffer->state.predicating;
const uint32_t dispatch_initiator = cmd_buffer->device->dispatch_initiator_task |
S_00B800_CS_W32_EN(compute_shader->info.wave_size == 32);
struct radv_userdata_info *ring_entry_loc =
radv_lookup_user_sgpr(pipeline, MESA_SHADER_TASK, AC_UD_TASK_RING_ENTRY);
assert(ring_entry_loc && ring_entry_loc->sgpr_idx != -1 && ring_entry_loc->num_sgprs == 1);
uint32_t ring_entry_reg =
(R_00B900_COMPUTE_USER_DATA_0 + ring_entry_loc->sgpr_idx * 4 - SI_SH_REG_OFFSET) >> 2;
radeon_emit(cs, PKT3(PKT3_DISPATCH_TASKMESH_DIRECT_ACE, 4, predicating) | PKT3_SHADER_TYPE_S(1));
radeon_emit(cs, x);
radeon_emit(cs, y);
radeon_emit(cs, z);
radeon_emit(cs, dispatch_initiator);
radeon_emit(cs, ring_entry_reg & 0xFFFF);
}
ALWAYS_INLINE static void
radv_cs_emit_dispatch_taskmesh_indirect_multi_ace_packet(struct radv_cmd_buffer *cmd_buffer,
uint64_t data_va, uint32_t draw_count,
uint64_t count_va, uint32_t stride)
{
assert((data_va & 0x03) == 0);
assert((count_va & 0x03) == 0);
struct radv_pipeline *pipeline = &cmd_buffer->state.graphics_pipeline->base;
struct radv_shader *compute_shader = radv_get_shader(pipeline, MESA_SHADER_TASK);
struct radeon_cmdbuf *cs = cmd_buffer->ace_internal.cs;
const uint32_t count_indirect_enable = !!count_va;
const uint32_t xyz_dim_enable = compute_shader->info.cs.uses_grid_size;
const uint32_t draw_id_enable = compute_shader->info.vs.needs_draw_id;
const uint32_t dispatch_initiator = cmd_buffer->device->dispatch_initiator_task |
S_00B800_CS_W32_EN(compute_shader->info.wave_size == 32);
const struct radv_userdata_info *ring_entry_loc =
radv_lookup_user_sgpr(pipeline, MESA_SHADER_TASK, AC_UD_TASK_RING_ENTRY);
const struct radv_userdata_info *xyz_dim_loc =
radv_lookup_user_sgpr(pipeline, MESA_SHADER_TASK, AC_UD_CS_GRID_SIZE);
const struct radv_userdata_info *draw_id_loc =
radv_lookup_user_sgpr(pipeline, MESA_SHADER_TASK, AC_UD_CS_TASK_DRAW_ID);
assert(ring_entry_loc->sgpr_idx != -1 && ring_entry_loc->num_sgprs == 1);
assert(!xyz_dim_enable || (xyz_dim_loc->sgpr_idx != -1 && xyz_dim_loc->num_sgprs == 3));
assert(!draw_id_enable || (draw_id_loc->sgpr_idx != -1 && draw_id_loc->num_sgprs == 1));
const uint32_t ring_entry_reg =
(R_00B900_COMPUTE_USER_DATA_0 + ring_entry_loc->sgpr_idx * 4 - SI_SH_REG_OFFSET) >> 2;
const uint32_t xyz_dim_reg =
!xyz_dim_enable
? 0
: (R_00B900_COMPUTE_USER_DATA_0 + xyz_dim_loc->sgpr_idx * 4 - SI_SH_REG_OFFSET) >> 2;
const uint32_t draw_id_reg =
!draw_id_enable
? 0
: (R_00B900_COMPUTE_USER_DATA_0 + draw_id_loc->sgpr_idx * 4 - SI_SH_REG_OFFSET) >> 2;
radeon_emit(cs, PKT3(PKT3_DISPATCH_TASKMESH_INDIRECT_MULTI_ACE, 9, 0) | PKT3_SHADER_TYPE_S(1));
radeon_emit(cs, data_va);
radeon_emit(cs, data_va >> 32);
radeon_emit(cs, ring_entry_reg & 0xFFFF);
radeon_emit(cs, (count_indirect_enable << 1) | (draw_id_enable << 2) | (xyz_dim_enable << 3) |
(draw_id_reg << 16));
radeon_emit(cs, xyz_dim_reg & 0xFFFF);
radeon_emit(cs, draw_count);
radeon_emit(cs, count_va);
radeon_emit(cs, count_va >> 32);
radeon_emit(cs, stride);
radeon_emit(cs, dispatch_initiator);
}
ALWAYS_INLINE static void
radv_cs_emit_dispatch_taskmesh_gfx_packet(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_pipeline *pipeline = &cmd_buffer->state.graphics_pipeline->base;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
bool predicating = cmd_buffer->state.predicating;
struct radv_userdata_info *ring_entry_loc =
radv_lookup_user_sgpr(pipeline, MESA_SHADER_MESH, AC_UD_TASK_RING_ENTRY);
assert(ring_entry_loc && ring_entry_loc->sgpr_idx != -1);
uint32_t base_reg = cmd_buffer->state.graphics_pipeline->vtx_base_sgpr;
uint32_t xyz_dim_reg = ((base_reg + 4) - SI_SH_REG_OFFSET) >> 2;
uint32_t ring_entry_reg = ((base_reg + ring_entry_loc->sgpr_idx * 4) - SI_SH_REG_OFFSET) >> 2;
radeon_emit(cs, PKT3(PKT3_DISPATCH_TASKMESH_GFX, 2, predicating));
radeon_emit(cs, (ring_entry_reg << 16) | (xyz_dim_reg & 0xFFFF));
radeon_emit(cs, 0);
radeon_emit(cs, V_0287F0_DI_SRC_SEL_AUTO_INDEX);
}
ALWAYS_INLINE static void
radv_emit_userdata_vertex_internal(struct radv_cmd_buffer *cmd_buffer,
const struct radv_draw_info *info, const uint32_t vertex_offset)
{
struct radv_cmd_state *state = &cmd_buffer->state;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
const bool uses_baseinstance = state->graphics_pipeline->uses_baseinstance;
const bool uses_drawid = state->graphics_pipeline->uses_drawid;
radeon_set_sh_reg_seq(cs, state->graphics_pipeline->vtx_base_sgpr, state->graphics_pipeline->vtx_emit_num);
radeon_emit(cs, vertex_offset);
state->last_vertex_offset = vertex_offset;
if (uses_drawid) {
radeon_emit(cs, 0);
state->last_drawid = 0;
}
if (uses_baseinstance) {
radeon_emit(cs, info->first_instance);
state->last_first_instance = info->first_instance;
}
}
ALWAYS_INLINE static void
radv_emit_userdata_vertex(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info,
const uint32_t vertex_offset)
{
const struct radv_cmd_state *state = &cmd_buffer->state;
const bool uses_baseinstance = state->graphics_pipeline->uses_baseinstance;
const bool uses_drawid = state->graphics_pipeline->uses_drawid;
if (vertex_offset != state->last_vertex_offset ||
(uses_drawid && 0 != state->last_drawid) ||
(uses_baseinstance && info->first_instance != state->last_first_instance))
radv_emit_userdata_vertex_internal(cmd_buffer, info, vertex_offset);
}
ALWAYS_INLINE static void
radv_emit_userdata_vertex_drawid(struct radv_cmd_buffer *cmd_buffer, uint32_t vertex_offset, uint32_t drawid)
{
struct radv_cmd_state *state = &cmd_buffer->state;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
radeon_set_sh_reg_seq(cs, state->graphics_pipeline->vtx_base_sgpr, 1 + !!drawid);
radeon_emit(cs, vertex_offset);
state->last_vertex_offset = vertex_offset;
if (drawid)
radeon_emit(cs, drawid);
}
ALWAYS_INLINE static void
radv_emit_userdata_mesh(struct radv_cmd_buffer *cmd_buffer,
const uint32_t x, const uint32_t y, const uint32_t z,
const uint32_t first_task)
{
struct radv_cmd_state *state = &cmd_buffer->state;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
const bool uses_drawid = state->graphics_pipeline->uses_drawid;
radeon_set_sh_reg_seq(cs, state->graphics_pipeline->vtx_base_sgpr, state->graphics_pipeline->vtx_emit_num);
radeon_emit(cs, first_task);
radeon_emit(cs, x);
radeon_emit(cs, y);
radeon_emit(cs, z);
if (uses_drawid) {
radeon_emit(cs, 0);
state->last_drawid = 0;
}
}
ALWAYS_INLINE static void
radv_emit_userdata_mesh_first_task_0_draw_id_0(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_cmd_state *state = &cmd_buffer->state;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
struct radv_graphics_pipeline *pipeline = state->graphics_pipeline;
const bool uses_drawid = pipeline->uses_drawid;
radeon_set_sh_reg_seq(cs, pipeline->vtx_base_sgpr, 1);
radeon_emit(cs, 0);
if (uses_drawid) {
radeon_set_sh_reg_seq(cs, pipeline->vtx_base_sgpr + (pipeline->vtx_emit_num - 1) * 4, 1);
radeon_emit(cs, 0);
}
}
ALWAYS_INLINE static void
radv_emit_userdata_task_ib_only(struct radv_cmd_buffer *cmd_buffer, uint64_t ib_va,
uint32_t ib_stride)
{
struct radv_pipeline *pipeline = &cmd_buffer->state.graphics_pipeline->base;
struct radeon_cmdbuf *cs = cmd_buffer->ace_internal.cs;
struct radv_userdata_info *task_ib_loc =
radv_lookup_user_sgpr(pipeline, MESA_SHADER_TASK, AC_UD_CS_TASK_IB);
if (task_ib_loc->sgpr_idx != -1) {
assert(task_ib_loc->num_sgprs == 3);
unsigned task_ib_reg = R_00B900_COMPUTE_USER_DATA_0 + task_ib_loc->sgpr_idx * 4;
radeon_set_sh_reg_seq(cs, task_ib_reg, 3);
radeon_emit(cs, ib_va);
radeon_emit(cs, ib_va >> 32);
radeon_emit(cs, ib_stride);
}
}
ALWAYS_INLINE static void
radv_emit_userdata_task(struct radv_cmd_buffer *cmd_buffer, uint32_t x, uint32_t y, uint32_t z,
uint32_t draw_id, uint32_t first_task, uint64_t ib_va)
{
struct radv_pipeline *pipeline = &cmd_buffer->state.graphics_pipeline->base;
struct radeon_cmdbuf *cs = cmd_buffer->ace_internal.cs;
struct radv_userdata_info *xyz_loc =
radv_lookup_user_sgpr(pipeline, MESA_SHADER_TASK, AC_UD_CS_GRID_SIZE);
struct radv_userdata_info *draw_id_loc =
radv_lookup_user_sgpr(pipeline, MESA_SHADER_TASK, AC_UD_CS_TASK_DRAW_ID);
if (xyz_loc->sgpr_idx != -1) {
assert(xyz_loc->num_sgprs == 3);
unsigned xyz_reg = R_00B900_COMPUTE_USER_DATA_0 + xyz_loc->sgpr_idx * 4;
radeon_set_sh_reg_seq(cs, xyz_reg, 3);
radeon_emit(cs, x);
radeon_emit(cs, y);
radeon_emit(cs, z);
}
if (draw_id_loc->sgpr_idx != -1) {
assert(draw_id_loc->num_sgprs == 1);
unsigned draw_id_reg = R_00B900_COMPUTE_USER_DATA_0 + draw_id_loc->sgpr_idx * 4;
radeon_set_sh_reg_seq(cs, draw_id_reg, 1);
radeon_emit(cs, draw_id);
}
radv_emit_userdata_task_ib_only(cmd_buffer, ib_va, first_task ? 8 : 0);
}
ALWAYS_INLINE static void
radv_emit_draw_packets_indexed(struct radv_cmd_buffer *cmd_buffer,
const struct radv_draw_info *info,
uint32_t drawCount, const VkMultiDrawIndexedInfoEXT *minfo,
uint32_t stride,
const int32_t *vertexOffset)
{
struct radv_cmd_state *state = &cmd_buffer->state;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
const int index_size = radv_get_vgt_index_size(state->index_type);
unsigned i = 0;
const bool uses_drawid = state->graphics_pipeline->uses_drawid;
const bool can_eop =
!uses_drawid && cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX10;
if (uses_drawid) {
if (vertexOffset) {
radv_emit_userdata_vertex(cmd_buffer, info, *vertexOffset);
vk_foreach_multi_draw_indexed(draw, i, minfo, drawCount, stride) {
const uint32_t remaining_indexes = MAX2(state->max_index_count, draw->firstIndex) - draw->firstIndex;
/* Skip draw calls with 0-sized index buffers if the GPU can't handle them */
if (!remaining_indexes &&
cmd_buffer->device->physical_device->rad_info.has_zero_index_buffer_bug)
continue;
if (i > 0)
radeon_set_sh_reg(cs, state->graphics_pipeline->vtx_base_sgpr + sizeof(uint32_t), i);
const uint64_t index_va = state->index_va + draw->firstIndex * index_size;
if (!state->subpass->view_mask) {
radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount, false);
} else {
u_foreach_bit(view, state->subpass->view_mask) {
radv_emit_view_index(cmd_buffer, view);
radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount, false);
}
}
}
} else {
vk_foreach_multi_draw_indexed(draw, i, minfo, drawCount, stride) {
const uint32_t remaining_indexes = MAX2(state->max_index_count, draw->firstIndex) - draw->firstIndex;
/* Skip draw calls with 0-sized index buffers if the GPU can't handle them */
if (!remaining_indexes &&
cmd_buffer->device->physical_device->rad_info.has_zero_index_buffer_bug)
continue;
if (i > 0) {
if (state->last_vertex_offset != draw->vertexOffset)
radv_emit_userdata_vertex_drawid(cmd_buffer, draw->vertexOffset, i);
else
radeon_set_sh_reg(cs, state->graphics_pipeline->vtx_base_sgpr + sizeof(uint32_t), i);
} else
radv_emit_userdata_vertex(cmd_buffer, info, draw->vertexOffset);
const uint64_t index_va = state->index_va + draw->firstIndex * index_size;
if (!state->subpass->view_mask) {
radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount, false);
} else {
u_foreach_bit(view, state->subpass->view_mask) {
radv_emit_view_index(cmd_buffer, view);
radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount, false);
}
}
}
}
if (drawCount > 1) {
state->last_drawid = drawCount - 1;
}
} else {
if (vertexOffset) {
if (cmd_buffer->device->physical_device->rad_info.gfx_level == GFX10) {
/* GFX10 has a bug that consecutive draw packets with NOT_EOP must not have
* count == 0 for the last draw that doesn't have NOT_EOP.
*/
while (drawCount > 1) {
const VkMultiDrawIndexedInfoEXT *last = (const VkMultiDrawIndexedInfoEXT*)(((const uint8_t*)minfo) + (drawCount - 1) * stride);
if (last->indexCount)
break;
drawCount--;
}
}
radv_emit_userdata_vertex(cmd_buffer, info, *vertexOffset);
vk_foreach_multi_draw_indexed(draw, i, minfo, drawCount, stride) {
const uint32_t remaining_indexes = MAX2(state->max_index_count, draw->firstIndex) - draw->firstIndex;
/* Skip draw calls with 0-sized index buffers if the GPU can't handle them */
if (!remaining_indexes &&
cmd_buffer->device->physical_device->rad_info.has_zero_index_buffer_bug)
continue;
const uint64_t index_va = state->index_va + draw->firstIndex * index_size;
if (!state->subpass->view_mask) {
radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount, can_eop && i < drawCount - 1);
} else {
u_foreach_bit(view, state->subpass->view_mask) {
radv_emit_view_index(cmd_buffer, view);
radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount, false);
}
}
}
} else {
vk_foreach_multi_draw_indexed(draw, i, minfo, drawCount, stride) {
const uint32_t remaining_indexes = MAX2(state->max_index_count, draw->firstIndex) - draw->firstIndex;
/* Skip draw calls with 0-sized index buffers if the GPU can't handle them */
if (!remaining_indexes &&
cmd_buffer->device->physical_device->rad_info.has_zero_index_buffer_bug)
continue;
const VkMultiDrawIndexedInfoEXT *next = (const VkMultiDrawIndexedInfoEXT*)(i < drawCount - 1 ? ((uint8_t*)draw + stride) : NULL);
const bool offset_changes = next && next->vertexOffset != draw->vertexOffset;
radv_emit_userdata_vertex(cmd_buffer, info, draw->vertexOffset);
const uint64_t index_va = state->index_va + draw->firstIndex * index_size;
if (!state->subpass->view_mask) {
radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount, can_eop && !offset_changes && i < drawCount - 1);
} else {
u_foreach_bit(view, state->subpass->view_mask) {
radv_emit_view_index(cmd_buffer, view);
radv_cs_emit_draw_indexed_packet(cmd_buffer, index_va, remaining_indexes, draw->indexCount, false);
}
}
}
}
if (drawCount > 1) {
state->last_drawid = drawCount - 1;
}
}
}
ALWAYS_INLINE static void
radv_emit_direct_draw_packets(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info,
uint32_t drawCount, const VkMultiDrawInfoEXT *minfo,
uint32_t use_opaque, uint32_t stride)
{
unsigned i = 0;
const uint32_t view_mask = cmd_buffer->state.subpass->view_mask;
const bool uses_drawid = cmd_buffer->state.graphics_pipeline->uses_drawid;
uint32_t last_start = 0;
vk_foreach_multi_draw(draw, i, minfo, drawCount, stride) {
if (!i)
radv_emit_userdata_vertex(cmd_buffer, info, draw->firstVertex);
else
radv_emit_userdata_vertex_drawid(cmd_buffer, draw->firstVertex, uses_drawid ? i : 0);
if (!view_mask) {
radv_cs_emit_draw_packet(cmd_buffer, draw->vertexCount, use_opaque);
} else {
u_foreach_bit(view, view_mask) {
radv_emit_view_index(cmd_buffer, view);
radv_cs_emit_draw_packet(cmd_buffer, draw->vertexCount, use_opaque);
}
}
last_start = draw->firstVertex;
}
if (drawCount > 1) {
struct radv_cmd_state *state = &cmd_buffer->state;
state->last_vertex_offset = last_start;
if (uses_drawid)
state->last_drawid = drawCount - 1;
}
}
ALWAYS_INLINE static void
radv_emit_direct_mesh_draw_packet(struct radv_cmd_buffer *cmd_buffer,
uint32_t x, uint32_t y, uint32_t z,
uint32_t first_task)
{
const uint32_t view_mask = cmd_buffer->state.subpass->view_mask;
const uint32_t count = x * y * z;
radv_emit_userdata_mesh(cmd_buffer, x, y, z, first_task);
if (!view_mask) {
radv_cs_emit_draw_packet(cmd_buffer, count, 0);
} else {
u_foreach_bit(view, view_mask) {
radv_emit_view_index(cmd_buffer, view);
radv_cs_emit_draw_packet(cmd_buffer, count, 0);
}
}
}
ALWAYS_INLINE static void
radv_emit_indirect_mesh_draw_packets(struct radv_cmd_buffer *cmd_buffer,
const struct radv_draw_info *info)
{
const struct radv_cmd_state *state = &cmd_buffer->state;
struct radeon_winsys *ws = cmd_buffer->device->ws;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
const uint64_t va =
radv_buffer_get_va(info->indirect->bo) + info->indirect->offset + info->indirect_offset;
const uint64_t count_va = !info->count_buffer
? 0
: radv_buffer_get_va(info->count_buffer->bo) +
info->count_buffer->offset + info->count_buffer_offset;
radv_cs_add_buffer(ws, cs, info->indirect->bo);
if (info->count_buffer) {
radv_cs_add_buffer(ws, cs, info->count_buffer->bo);
}
radeon_emit(cs, PKT3(PKT3_SET_BASE, 2, 0));
radeon_emit(cs, 1);
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radv_emit_userdata_mesh_first_task_0_draw_id_0(cmd_buffer);
if (!state->subpass->view_mask) {
radv_cs_emit_indirect_mesh_draw_packet(cmd_buffer, info->count, count_va, info->stride);
} else {
u_foreach_bit (i, state->subpass->view_mask) {
radv_emit_view_index(cmd_buffer, i);
radv_cs_emit_indirect_mesh_draw_packet(cmd_buffer, info->count, count_va, info->stride);
}
}
}
ALWAYS_INLINE static void
radv_emit_direct_taskmesh_draw_packets(struct radv_cmd_buffer *cmd_buffer, uint32_t x, uint32_t y,
uint32_t z, uint32_t first_task)
{
uint64_t fake_ib_va = 0;
const uint32_t view_mask = cmd_buffer->state.subpass->view_mask;
const unsigned num_views = MAX2(1, util_bitcount(view_mask));
unsigned ace_predication_size = num_views * 6; /* DISPATCH_TASKMESH_DIRECT_ACE size */
if (first_task) {
/* Pass this as the IB to the shader for emulating firstTask in task shaders. */
uint32_t fake_ib_dwords[2] = {x, first_task};
unsigned fake_ib_offset;
radv_cmd_buffer_upload_data(cmd_buffer, 8, fake_ib_dwords, &fake_ib_offset);
fake_ib_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + fake_ib_offset;
}
radv_emit_userdata_task(cmd_buffer, x, y, z, 0, first_task, fake_ib_va);
radv_emit_userdata_mesh_first_task_0_draw_id_0(cmd_buffer);
radv_cs_emit_compute_predication(&cmd_buffer->state, cmd_buffer->ace_internal.cs,
cmd_buffer->mec_inv_pred_va, &cmd_buffer->mec_inv_pred_emitted,
ace_predication_size);
if (!view_mask) {
radv_cs_emit_dispatch_taskmesh_direct_ace_packet(cmd_buffer, x, y, z);
radv_cs_emit_dispatch_taskmesh_gfx_packet(cmd_buffer);
} else {
u_foreach_bit (view, view_mask) {
radv_emit_view_index(cmd_buffer, view);
radv_cs_emit_dispatch_taskmesh_direct_ace_packet(cmd_buffer, x, y, z);
radv_cs_emit_dispatch_taskmesh_gfx_packet(cmd_buffer);
}
}
}
static void
radv_emit_indirect_taskmesh_draw_packets(struct radv_cmd_buffer *cmd_buffer,
const struct radv_draw_info *info, uint64_t nv_ib_va,
uint32_t nv_ib_stride)
{
const uint32_t view_mask = cmd_buffer->state.subpass->view_mask;
struct radeon_winsys *ws = cmd_buffer->device->ws;
const unsigned num_views = MAX2(1, util_bitcount(view_mask));
unsigned ace_predication_size = num_views * 11; /* DISPATCH_TASKMESH_INDIRECT_MULTI_ACE size */
struct radeon_cmdbuf *ace_cs = cmd_buffer->ace_internal.cs;
const uint64_t va =
radv_buffer_get_va(info->indirect->bo) + info->indirect->offset + info->indirect_offset;
const uint64_t count_va = !info->count_buffer
? 0
: radv_buffer_get_va(info->count_buffer->bo) +
info->count_buffer->offset + info->count_buffer_offset;
uint64_t workaround_cond_va = 0;
if (count_va) {
radv_cs_add_buffer(ws, cmd_buffer->ace_internal.cs, info->count_buffer->bo);
/* MEC firmware bug workaround.
* When the count buffer contains zero, DISPATCH_TASKMESH_INDIRECT_MULTI_ACE hangs.
* - We must ensure that DISPATCH_TASKMESH_INDIRECT_MULTI_ACE
* is only executed when the count buffer contains non-zero.
* - Furthermore, we must also ensure that each DISPATCH_TASKMESH_GFX packet
* has a matching ACE packet.
*
* As a workaround:
* - Reserve a dword in the upload buffer and initialize it to 1 for the workaround
* - When count != 0, write 0 to the workaround BO and execute the indirect dispatch
* - When workaround BO != 0 (count was 0), execute an empty direct dispatch
*/
uint32_t workaround_cond_init = 0;
uint32_t workaround_cond_off;
if (!radv_cmd_buffer_upload_data(cmd_buffer, 4, &workaround_cond_init, &workaround_cond_off))
vk_command_buffer_set_error(&cmd_buffer->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
workaround_cond_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + workaround_cond_off;
radeon_emit(ace_cs, PKT3(PKT3_COPY_DATA, 4, 0));
radeon_emit(ace_cs, COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) |
COPY_DATA_WR_CONFIRM);
radeon_emit(ace_cs, 1);
radeon_emit(ace_cs, 0);
radeon_emit(ace_cs, workaround_cond_va);
radeon_emit(ace_cs, workaround_cond_va >> 32);
/* 2x COND_EXEC + 1x COPY_DATA + Nx DISPATCH_TASKMESH_DIRECT_ACE */
ace_predication_size += 2 * 5 + 6 + 6 * num_views;
}
radv_cs_add_buffer(ws, cmd_buffer->ace_internal.cs, info->indirect->bo);
radv_emit_userdata_task_ib_only(cmd_buffer, nv_ib_va, nv_ib_stride);
radv_emit_userdata_mesh_first_task_0_draw_id_0(cmd_buffer);
radv_cs_emit_compute_predication(&cmd_buffer->state, cmd_buffer->ace_internal.cs,
cmd_buffer->mec_inv_pred_va, &cmd_buffer->mec_inv_pred_emitted,
ace_predication_size);
if (workaround_cond_va) {
radeon_emit(ace_cs, PKT3(PKT3_COND_EXEC, 3, 0));
radeon_emit(ace_cs, count_va);
radeon_emit(ace_cs, count_va >> 32);
radeon_emit(ace_cs, 0);
radeon_emit(ace_cs,
6 + 11 * num_views); /* 1x COPY_DATA + Nx DISPATCH_TASKMESH_INDIRECT_MULTI_ACE */
radeon_emit(ace_cs, PKT3(PKT3_COPY_DATA, 4, 0));
radeon_emit(ace_cs, COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) |
COPY_DATA_WR_CONFIRM);
radeon_emit(ace_cs, 0);
radeon_emit(ace_cs, 0);
radeon_emit(ace_cs, workaround_cond_va);
radeon_emit(ace_cs, workaround_cond_va >> 32);
}
if (!view_mask) {
radv_cs_emit_dispatch_taskmesh_indirect_multi_ace_packet(cmd_buffer, va, info->count,
count_va, info->stride);
radv_cs_emit_dispatch_taskmesh_gfx_packet(cmd_buffer);
} else {
u_foreach_bit (view, view_mask) {
radv_emit_view_index(cmd_buffer, view);
radv_cs_emit_dispatch_taskmesh_indirect_multi_ace_packet(cmd_buffer, va, info->count,
count_va, info->stride);
radv_cs_emit_dispatch_taskmesh_gfx_packet(cmd_buffer);
}
}
if (workaround_cond_va) {
radeon_emit(ace_cs, PKT3(PKT3_COND_EXEC, 3, 0));
radeon_emit(ace_cs, workaround_cond_va);
radeon_emit(ace_cs, workaround_cond_va >> 32);
radeon_emit(ace_cs, 0);
radeon_emit(ace_cs, 6 * num_views); /* Nx DISPATCH_TASKMESH_DIRECT_ACE */
for (unsigned v = 0; v < num_views; ++v) {
radv_cs_emit_dispatch_taskmesh_direct_ace_packet(cmd_buffer, 0, 0, 0);
}
}
}
static void
radv_emit_indirect_draw_packets(struct radv_cmd_buffer *cmd_buffer,
const struct radv_draw_info *info)
{
const struct radv_cmd_state *state = &cmd_buffer->state;
struct radeon_winsys *ws = cmd_buffer->device->ws;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
const uint64_t va =
radv_buffer_get_va(info->indirect->bo) + info->indirect->offset + info->indirect_offset;
const uint64_t count_va = info->count_buffer
? radv_buffer_get_va(info->count_buffer->bo) +
info->count_buffer->offset + info->count_buffer_offset
: 0;
radv_cs_add_buffer(ws, cs, info->indirect->bo);
radeon_emit(cs, PKT3(PKT3_SET_BASE, 2, 0));
radeon_emit(cs, 1);
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
if (info->count_buffer) {
radv_cs_add_buffer(ws, cs, info->count_buffer->bo);
}
if (!state->subpass->view_mask) {
radv_cs_emit_indirect_draw_packet(cmd_buffer, info->indexed, info->count, count_va,
info->stride);
} else {
u_foreach_bit(i, state->subpass->view_mask)
{
radv_emit_view_index(cmd_buffer, i);
radv_cs_emit_indirect_draw_packet(cmd_buffer, info->indexed, info->count, count_va,
info->stride);
}
}
}
/*
* Vega and raven have a bug which triggers if there are multiple context
* register contexts active at the same time with different scissor values.
*
* There are two possible workarounds:
* 1) Wait for PS_PARTIAL_FLUSH every time the scissor is changed. That way
* there is only ever 1 active set of scissor values at the same time.
*
* 2) Whenever the hardware switches contexts we have to set the scissor
* registers again even if it is a noop. That way the new context gets
* the correct scissor values.
*
* This implements option 2. radv_need_late_scissor_emission needs to
* return true on affected HW if radv_emit_all_graphics_states sets
* any context registers.
*/
static bool
radv_need_late_scissor_emission(struct radv_cmd_buffer *cmd_buffer,
const struct radv_draw_info *info)
{
struct radv_cmd_state *state = &cmd_buffer->state;
if (!cmd_buffer->device->physical_device->rad_info.has_gfx9_scissor_bug)
return false;
if (cmd_buffer->state.context_roll_without_scissor_emitted || info->strmout_buffer)
return true;
uint64_t used_states =
cmd_buffer->state.graphics_pipeline->needed_dynamic_state | ~RADV_CMD_DIRTY_DYNAMIC_ALL;
/* Index, vertex and streamout buffers don't change context regs, and
* pipeline is already handled.
*/
used_states &= ~(RADV_CMD_DIRTY_INDEX_BUFFER | RADV_CMD_DIRTY_VERTEX_BUFFER |
RADV_CMD_DIRTY_DYNAMIC_VERTEX_INPUT | RADV_CMD_DIRTY_STREAMOUT_BUFFER |
RADV_CMD_DIRTY_PIPELINE);
if (cmd_buffer->state.dirty & used_states)
return true;
uint32_t primitive_reset_index = radv_get_primitive_reset_index(cmd_buffer);
if (info->indexed && state->dynamic.primitive_restart_enable &&
primitive_reset_index != state->last_primitive_reset_index)
return true;
return false;
}
ALWAYS_INLINE static bool
radv_skip_ngg_culling(bool has_tess, const unsigned vtx_cnt,
bool indirect)
{
/* If we have to draw only a few vertices, we get better latency if
* we disable NGG culling.
*
* When tessellation is used, what matters is the number of tessellated
* vertices, so let's always assume it's not a small draw.
*/
return !has_tess && !indirect && vtx_cnt < 128;
}
ALWAYS_INLINE static uint32_t
radv_get_ngg_culling_settings(struct radv_cmd_buffer *cmd_buffer, bool vp_y_inverted)
{
const struct radv_graphics_pipeline *pipeline = cmd_buffer->state.graphics_pipeline;
const struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
/* Cull every triangle when rasterizer discard is enabled. */
if (d->rasterizer_discard_enable)
return radv_nggc_front_face | radv_nggc_back_face;
uint32_t nggc_settings = radv_nggc_none;
/* The culling code needs to know whether face is CW or CCW. */
bool ccw = d->front_face == VK_FRONT_FACE_COUNTER_CLOCKWISE;
/* Take inverted viewport into account. */
ccw ^= vp_y_inverted;
if (ccw)
nggc_settings |= radv_nggc_face_is_ccw;
/* Face culling settings. */
if (d->cull_mode & VK_CULL_MODE_FRONT_BIT)
nggc_settings |= radv_nggc_front_face;
if (d->cull_mode & VK_CULL_MODE_BACK_BIT)
nggc_settings |= radv_nggc_back_face;
/* Small primitive culling is only valid when conservative overestimation is not used. It's also
* disabled for user sample locations because small primitive culling assumes a sample
* position at (0.5, 0.5). */
if (!pipeline->uses_conservative_overestimate && !pipeline->uses_user_sample_locations) {
nggc_settings |= radv_nggc_small_primitives;
/* small_prim_precision = num_samples / 2^subpixel_bits
* num_samples is also always a power of two, so the small prim precision can only be
* a power of two between 2^-2 and 2^-6, therefore it's enough to remember the exponent.
*/
unsigned subpixel_bits = 256;
int32_t small_prim_precision_log2 = util_logbase2(pipeline->ms.num_samples) - util_logbase2(subpixel_bits);
nggc_settings |= ((uint32_t) small_prim_precision_log2 << 24u);
}
return nggc_settings;
}
static void
radv_emit_ngg_culling_state(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *draw_info)
{
struct radv_graphics_pipeline *pipeline = cmd_buffer->state.graphics_pipeline;
const unsigned stage = pipeline->last_vgt_api_stage;
const bool nggc_supported = pipeline->has_ngg_culling;
if (!nggc_supported && !cmd_buffer->state.last_nggc_settings) {
/* Current shader doesn't support culling and culling was already disabled:
* No further steps needed, just remember the SGPR's location is not set.
*/
cmd_buffer->state.last_nggc_settings_sgpr_idx = -1;
return;
}
/* Check dirty flags:
* - Dirty pipeline: SGPR index may have changed (we have to re-emit if changed).
* - Dirty dynamic flags: culling settings may have changed.
*/
const bool dirty =
cmd_buffer->state.dirty &
(RADV_CMD_DIRTY_PIPELINE |
RADV_CMD_DIRTY_DYNAMIC_CULL_MODE | RADV_CMD_DIRTY_DYNAMIC_FRONT_FACE |
RADV_CMD_DIRTY_DYNAMIC_RASTERIZER_DISCARD_ENABLE | RADV_CMD_DIRTY_DYNAMIC_VIEWPORT);
/* Check small draw status:
* For small draw calls, we disable culling by setting the SGPR to 0.
*/
const bool skip =
radv_skip_ngg_culling(stage == MESA_SHADER_TESS_EVAL, draw_info->count, draw_info->indirect);
/* See if anything changed. */
if (!dirty && skip == cmd_buffer->state.last_nggc_skip)
return;
/* Remember small draw state. */
cmd_buffer->state.last_nggc_skip = skip;
const struct radv_shader *v = pipeline->base.shaders[stage];
assert(v->info.has_ngg_culling == nggc_supported);
/* Find the user SGPR. */
const uint32_t base_reg = pipeline->base.user_data_0[stage];
const int8_t nggc_sgpr_idx = v->info.user_sgprs_locs.shader_data[AC_UD_NGG_CULLING_SETTINGS].sgpr_idx;
assert(!nggc_supported || nggc_sgpr_idx != -1);
/* Get viewport transform. */
float vp_scale[2], vp_translate[2];
memcpy(vp_scale, cmd_buffer->state.dynamic.viewport.xform[0].scale, 2 * sizeof(float));
memcpy(vp_translate, cmd_buffer->state.dynamic.viewport.xform[0].translate, 2 * sizeof(float));
bool vp_y_inverted = (-vp_scale[1] + vp_translate[1]) > (vp_scale[1] + vp_translate[1]);
/* Get current culling settings. */
uint32_t nggc_settings = nggc_supported && !skip
? radv_get_ngg_culling_settings(cmd_buffer, vp_y_inverted)
: radv_nggc_none;
bool emit_viewport = nggc_settings &&
(cmd_buffer->state.dirty & RADV_CMD_DIRTY_DYNAMIC_VIEWPORT ||
cmd_buffer->state.last_nggc_settings_sgpr_idx != nggc_sgpr_idx ||
!cmd_buffer->state.last_nggc_settings);
if (emit_viewport) {
/* Correction for inverted Y */
if (vp_y_inverted) {
vp_scale[1] = -vp_scale[1];
vp_translate[1] = -vp_translate[1];
}
/* Correction for number of samples per pixel. */
for (unsigned i = 0; i < 2; ++i) {
vp_scale[i] *= (float) pipeline->ms.num_samples;
vp_translate[i] *= (float) pipeline->ms.num_samples;
}
uint32_t vp_reg_values[4] = {fui(vp_scale[0]), fui(vp_scale[1]), fui(vp_translate[0]), fui(vp_translate[1])};
const int8_t vp_sgpr_idx = v->info.user_sgprs_locs.shader_data[AC_UD_NGG_VIEWPORT].sgpr_idx;
assert(vp_sgpr_idx != -1);
radeon_set_sh_reg_seq(cmd_buffer->cs, base_reg + vp_sgpr_idx * 4, 4);
radeon_emit_array(cmd_buffer->cs, vp_reg_values, 4);
}
bool emit_settings = nggc_supported &&
(cmd_buffer->state.last_nggc_settings != nggc_settings ||
cmd_buffer->state.last_nggc_settings_sgpr_idx != nggc_sgpr_idx);
/* This needs to be emitted when culling is turned on
* and when it's already on but some settings change.
*/
if (emit_settings) {
assert(nggc_sgpr_idx >= 0);
radeon_set_sh_reg(cmd_buffer->cs, base_reg + nggc_sgpr_idx * 4, nggc_settings);
}
/* These only need to be emitted when culling is turned on or off,
* but not when it stays on and just some settings change.
*/
if (!!cmd_buffer->state.last_nggc_settings != !!nggc_settings) {
uint32_t rsrc2 = v->config.rsrc2;
if (!nggc_settings) {
/* Allocate less LDS when culling is disabled. (But GS always needs it.) */
if (stage != MESA_SHADER_GEOMETRY)
rsrc2 = (rsrc2 & C_00B22C_LDS_SIZE) | S_00B22C_LDS_SIZE(v->info.num_lds_blocks_when_not_culling);
}
/* When the pipeline is dirty and not yet emitted, don't write it here
* because radv_emit_graphics_pipeline will overwrite this register.
*/
if (!(cmd_buffer->state.dirty & RADV_CMD_DIRTY_PIPELINE) ||
cmd_buffer->state.emitted_graphics_pipeline == pipeline) {
radeon_set_sh_reg(cmd_buffer->cs, R_00B22C_SPI_SHADER_PGM_RSRC2_GS, rsrc2);
}
}
cmd_buffer->state.last_nggc_settings = nggc_settings;
cmd_buffer->state.last_nggc_settings_sgpr_idx = nggc_sgpr_idx;
}
static void
radv_emit_all_graphics_states(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info,
bool pipeline_is_dirty)
{
const struct radv_device *device = cmd_buffer->device;
bool late_scissor_emission;
if ((cmd_buffer->state.dirty & RADV_CMD_DIRTY_FRAMEBUFFER) ||
cmd_buffer->state.emitted_graphics_pipeline != cmd_buffer->state.graphics_pipeline)
radv_emit_rbplus_state(cmd_buffer);
if (cmd_buffer->device->physical_device->use_ngg_culling &&
cmd_buffer->state.graphics_pipeline->is_ngg)
radv_emit_ngg_culling_state(cmd_buffer, info);
if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_PIPELINE)
radv_emit_graphics_pipeline(cmd_buffer);
/* This should be before the cmd_buffer->state.dirty is cleared
* (excluding RADV_CMD_DIRTY_PIPELINE) and after
* cmd_buffer->state.context_roll_without_scissor_emitted is set. */
late_scissor_emission = radv_need_late_scissor_emission(cmd_buffer, info);
if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_FRAMEBUFFER)
radv_emit_framebuffer_state(cmd_buffer);
if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_GUARDBAND)
radv_emit_guardband_state(cmd_buffer);
if (info->indexed) {
if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_INDEX_BUFFER)
radv_emit_index_buffer(cmd_buffer, info->indirect);
} else {
/* On GFX7 and later, non-indexed draws overwrite VGT_INDEX_TYPE,
* so the state must be re-emitted before the next indexed
* draw.
*/
if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX7) {
cmd_buffer->state.last_index_type = -1;
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_INDEX_BUFFER;
}
}
if (cmd_buffer->device->force_vrs != RADV_FORCE_VRS_1x1) {
struct radv_dynamic_state *d = &cmd_buffer->state.dynamic;
uint64_t dynamic_states =
cmd_buffer->state.dirty & cmd_buffer->state.emitted_graphics_pipeline->needed_dynamic_state;
if ((dynamic_states & RADV_CMD_DIRTY_DYNAMIC_FRAGMENT_SHADING_RATE) &&
d->fragment_shading_rate.size.width == 1 &&
d->fragment_shading_rate.size.height == 1 &&
d->fragment_shading_rate.combiner_ops[0] == VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR &&
d->fragment_shading_rate.combiner_ops[1] == VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR) {
/* When per-vertex VRS is forced and the dynamic fragment shading rate is a no-op, ignore
* it. This is needed for vkd3d-proton because it always declares per-draw VRS as dynamic.
*/
cmd_buffer->state.dirty &= ~RADV_CMD_DIRTY_DYNAMIC_FRAGMENT_SHADING_RATE;
}
}
if (device->pbb_allowed) {
struct radv_binning_settings *settings = &device->physical_device->binning_settings;
if ((cmd_buffer->state.dirty & RADV_CMD_DIRTY_DYNAMIC_COLOR_WRITE_ENABLE) &&
settings->context_states_per_bin > 1) {
/* Break the batch on CB_TARGET_MASK changes. */
radeon_emit(cmd_buffer->cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cmd_buffer->cs, EVENT_TYPE(V_028A90_BREAK_BATCH) | EVENT_INDEX(0));
}
}
radv_cmd_buffer_flush_dynamic_state(cmd_buffer, pipeline_is_dirty);
radv_emit_draw_registers(cmd_buffer, info);
if (late_scissor_emission)
radv_emit_scissor(cmd_buffer);
}
/* MUST inline this function to avoid massive perf loss in drawoverhead */
ALWAYS_INLINE static bool
radv_before_draw(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info, uint32_t drawCount)
{
const bool has_prefetch = cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX7;
const bool pipeline_is_dirty = (cmd_buffer->state.dirty & RADV_CMD_DIRTY_PIPELINE) &&
cmd_buffer->state.graphics_pipeline != cmd_buffer->state.emitted_graphics_pipeline;
ASSERTED const unsigned cdw_max =
radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, 4096 + 128 * (drawCount - 1));
if (likely(!info->indirect)) {
/* GFX6-GFX7 treat instance_count==0 as instance_count==1. There is
* no workaround for indirect draws, but we can at least skip
* direct draws.
*/
if (unlikely(!info->instance_count))
return false;
/* Handle count == 0. */
if (unlikely(!info->count && !info->strmout_buffer))
return false;
}
/* Need to apply this workaround early as it can set flush flags. */
if (cmd_buffer->state.dirty & RADV_CMD_DIRTY_FRAMEBUFFER)
radv_emit_fb_mip_change_flush(cmd_buffer);
/* Use optimal packet order based on whether we need to sync the
* pipeline.
*/
if (cmd_buffer->state.flush_bits &
(RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB |
RADV_CMD_FLAG_PS_PARTIAL_FLUSH | RADV_CMD_FLAG_CS_PARTIAL_FLUSH)) {
/* If we have to wait for idle, set all states first, so that
* all SET packets are processed in parallel with previous draw
* calls. Then upload descriptors, set shader pointers, and
* draw, and prefetch at the end. This ensures that the time
* the CUs are idle is very short. (there are only SET_SH
* packets between the wait and the draw)
*/
radv_emit_all_graphics_states(cmd_buffer, info, pipeline_is_dirty);
si_emit_cache_flush(cmd_buffer);
/* <-- CUs are idle here --> */
radv_upload_graphics_shader_descriptors(cmd_buffer, pipeline_is_dirty);
} else {
/* If we don't wait for idle, start prefetches first, then set
* states, and draw at the end.
*/
si_emit_cache_flush(cmd_buffer);
if (has_prefetch && cmd_buffer->state.prefetch_L2_mask) {
/* Only prefetch the vertex shader and VBO descriptors
* in order to start the draw as soon as possible.
*/
radv_emit_prefetch_L2(cmd_buffer, cmd_buffer->state.graphics_pipeline, true);
}
radv_upload_graphics_shader_descriptors(cmd_buffer, pipeline_is_dirty);
radv_emit_all_graphics_states(cmd_buffer, info, pipeline_is_dirty);
}
radv_describe_draw(cmd_buffer);
if (likely(!info->indirect)) {
struct radv_cmd_state *state = &cmd_buffer->state;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
assert(state->graphics_pipeline->vtx_base_sgpr);
if (state->last_num_instances != info->instance_count) {
radeon_emit(cs, PKT3(PKT3_NUM_INSTANCES, 0, false));
radeon_emit(cs, info->instance_count);
state->last_num_instances = info->instance_count;
}
}
assert(cmd_buffer->cs->cdw <= cdw_max);
return true;
}
ALWAYS_INLINE static bool
radv_before_taskmesh_draw(struct radv_cmd_buffer *cmd_buffer, const struct radv_draw_info *info,
uint32_t drawCount)
{
struct radv_descriptor_state *descriptors_state =
radv_get_descriptors_state(cmd_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
const bool pipeline_is_dirty =
cmd_buffer->state.dirty & RADV_CMD_DIRTY_PIPELINE &&
cmd_buffer->state.graphics_pipeline != cmd_buffer->state.emitted_graphics_pipeline;
const bool push_dirty = descriptors_state->push_dirty;
const uint32_t desc_dirty = descriptors_state->dirty;
const bool gfx_result = radv_before_draw(cmd_buffer, info, drawCount);
struct radv_graphics_pipeline *pipeline = cmd_buffer->state.graphics_pipeline;
struct radv_shader *task_shader = radv_get_shader(&pipeline->base, MESA_SHADER_TASK);
/* If there is no task shader, no need to do anything special. */
if (!task_shader)
return gfx_result;
/* Need to check the count even for indirect draws to work around
* an issue with DISPATCH_TASKMESH_INDIRECT_MULTI_ACE.
*/
if (!info->count || !gfx_result)
return false;
const bool need_task_semaphore = radv_flush_gfx2ace_semaphore(cmd_buffer);
struct radv_physical_device *pdevice = cmd_buffer->device->physical_device;
struct radeon_cmdbuf *ace_cs = cmd_buffer->ace_internal.cs;
struct radeon_winsys *ws = cmd_buffer->device->ws;
assert(ace_cs);
ASSERTED const unsigned ace_cdw_max =
radeon_check_space(ws, ace_cs, 4096 + 128 * (drawCount - 1));
if (need_task_semaphore)
radv_wait_gfx2ace_semaphore(cmd_buffer);
if (pipeline_is_dirty) {
radv_pipeline_emit_hw_cs(pdevice, ace_cs, task_shader);
radv_pipeline_emit_compute_state(pdevice, ace_cs, task_shader);
}
radv_ace_internal_cache_flush(cmd_buffer);
/* Restore dirty state of descriptors
* They were marked non-dirty in radv_before_draw,
* but they need to be re-emitted now to the ACE cmdbuf.
*/
descriptors_state->push_dirty = push_dirty;
descriptors_state->dirty = desc_dirty;
/* Flush descriptors and push constants for task shaders. */
radv_flush_descriptors(cmd_buffer, VK_SHADER_STAGE_TASK_BIT_NV, &pipeline->base,
VK_PIPELINE_BIND_POINT_GRAPHICS);
radv_flush_constants(cmd_buffer, VK_SHADER_STAGE_TASK_BIT_NV, &pipeline->base,
VK_PIPELINE_BIND_POINT_GRAPHICS);
assert(ace_cs->cdw <= ace_cdw_max);
return true;
}
static void
radv_after_draw(struct radv_cmd_buffer *cmd_buffer)
{
const struct radeon_info *rad_info = &cmd_buffer->device->physical_device->rad_info;
bool has_prefetch = cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX7;
/* Start prefetches after the draw has been started. Both will
* run in parallel, but starting the draw first is more
* important.
*/
if (has_prefetch && cmd_buffer->state.prefetch_L2_mask) {
radv_emit_prefetch_L2(cmd_buffer, cmd_buffer->state.graphics_pipeline, false);
}
/* Workaround for a VGT hang when streamout is enabled.
* It must be done after drawing.
*/
if (radv_is_streamout_enabled(cmd_buffer) &&
(rad_info->family == CHIP_HAWAII || rad_info->family == CHIP_TONGA ||
rad_info->family == CHIP_FIJI)) {
cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VGT_STREAMOUT_SYNC;
}
radv_cmd_buffer_after_draw(cmd_buffer, RADV_CMD_FLAG_PS_PARTIAL_FLUSH);
}
static struct radv_buffer
radv_nv_mesh_indirect_bo(struct radv_cmd_buffer *cmd_buffer,
struct radv_buffer *buffer, VkDeviceSize offset,
uint32_t draw_count, uint32_t stride)
{
/* Translates the indirect BO format used by NV_mesh_shader API
* to the BO format used by DRAW_INDIRECT / DRAW_INDIRECT_MULTI.
*/
struct radeon_cmdbuf *cs = cmd_buffer->cs;
struct radeon_winsys *ws = cmd_buffer->device->ws;
const size_t src_stride = MAX2(stride, sizeof(VkDrawMeshTasksIndirectCommandNV));
const size_t dst_stride = sizeof(VkDrawIndirectCommand);
const size_t src_off_task_count = offsetof(VkDrawMeshTasksIndirectCommandNV, taskCount);
const size_t src_off_first_task = offsetof(VkDrawMeshTasksIndirectCommandNV, firstTask);
const size_t dst_off_vertex_count = offsetof(VkDrawIndirectCommand, vertexCount);
const size_t dst_off_first_vertex = offsetof(VkDrawIndirectCommand, firstVertex);
/* Fill the buffer with all zeroes except instanceCount = 1.
* This helps emit fewer copy packets below.
*/
VkDrawIndirectCommand *fill_data = (VkDrawIndirectCommand *) alloca(dst_stride * draw_count);
const VkDrawIndirectCommand filler = { .instanceCount = 1 };
for (unsigned i = 0; i < draw_count; ++i)
fill_data[i] = filler;
/* We'll have to copy data from the API BO. */
uint64_t va = radv_buffer_get_va(buffer->bo) + buffer->offset + offset;
radv_cs_add_buffer(ws, cs, buffer->bo);
/* Allocate some space in the upload BO. */
unsigned out_offset;
radv_cmd_buffer_upload_data(cmd_buffer, dst_stride * draw_count, fill_data, &out_offset);
const uint64_t new_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + out_offset;
ASSERTED unsigned cdw_max = radeon_check_space(ws, cs, 12 * draw_count + 2);
/* Copy data from the API BO so that the format is suitable for the
* indirect draw packet:
* - vertexCount = taskCount (copied here)
* - instanceCount = 1 (filled by CPU above)
* - firstVertex = firstTask (copied here)
* - firstInstance = 0 (filled by CPU above)
*/
for (unsigned i = 0; i < draw_count; ++i) {
const uint64_t src_task_count = va + i * src_stride + src_off_task_count;
const uint64_t src_first_task = va + i * src_stride + src_off_first_task;
const uint64_t dst_vertex_count = new_va + i * dst_stride + dst_off_vertex_count;
const uint64_t dst_first_vertex = new_va + i * dst_stride + dst_off_first_vertex;
radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, cmd_buffer->state.predicating));
radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) |
COPY_DATA_WR_CONFIRM);
radeon_emit(cs, src_task_count);
radeon_emit(cs, src_task_count >> 32);
radeon_emit(cs, dst_vertex_count);
radeon_emit(cs, dst_vertex_count >> 32);
radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, cmd_buffer->state.predicating));
radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) |
COPY_DATA_WR_CONFIRM);
radeon_emit(cs, src_first_task);
radeon_emit(cs, src_first_task >> 32);
radeon_emit(cs, dst_first_vertex);
radeon_emit(cs, dst_first_vertex >> 32);
}
/* Wait for the copies to finish */
radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
radeon_emit(cs, 0);
/* The draw packet can now use this buffer: */
struct radv_buffer buf = *buffer;
buf.bo = cmd_buffer->upload.upload_bo;
buf.offset = out_offset;
assert(cmd_buffer->cs->cdw <= cdw_max);
return buf;
}
static struct radv_buffer
radv_nv_task_indirect_bo(struct radv_cmd_buffer *cmd_buffer, struct radv_buffer *buffer,
VkDeviceSize offset, uint32_t draw_count, uint32_t stride)
{
/* Translates the indirect BO format used by NV_mesh_shader API
* to the BO format used by DISPATCH_TASKMESH_INDIRECT_MULTI_ACE.
*/
assert(draw_count);
static_assert(sizeof(VkDispatchIndirectCommand) == 12, "Incorrect size of taskmesh command.");
struct radeon_cmdbuf *cs = cmd_buffer->ace_internal.cs;
struct radeon_winsys *ws = cmd_buffer->device->ws;
const size_t src_stride = MAX2(stride, sizeof(VkDrawMeshTasksIndirectCommandNV));
const size_t dst_stride = sizeof(VkDispatchIndirectCommand);
const size_t src_off_task_count = offsetof(VkDrawMeshTasksIndirectCommandNV, taskCount);
const size_t dst_off_x = offsetof(VkDispatchIndirectCommand, x);
const unsigned new_disp_size = dst_stride * draw_count;
const uint64_t va = radv_buffer_get_va(buffer->bo) + buffer->offset + offset;
radv_cs_add_buffer(ws, cs, buffer->bo);
/* Fill the buffer with X=0, Y=1, Z=1. */
VkDispatchIndirectCommand *fill_data = (VkDispatchIndirectCommand *)alloca(new_disp_size);
for (unsigned i = 0; i < draw_count; ++i) {
fill_data[i].x = 0;
fill_data[i].y = 1;
fill_data[i].z = 1;
}
/* Allocate space in the upload BO. */
unsigned out_offset;
ASSERTED bool uploaded =
radv_cmd_buffer_upload_data(cmd_buffer, new_disp_size, fill_data, &out_offset);
const uint64_t new_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + out_offset;
assert(uploaded);
/* Clamp draw count to fit the actual size of the buffer.
* This is to avoid potential out of bounds copies (eg. for draws with an indirect count buffer).
* The remaining indirect draws will stay filled with X=0, Y=1, Z=1 which is harmless.
*/
draw_count = MIN2(draw_count, (buffer->vk.size - buffer->offset - offset) / src_stride);
ASSERTED unsigned cdw_max = radeon_check_space(ws, cs, 6 * draw_count + 2);
/* Copy taskCount from the NV API BO to the X dispatch size of the compatible BO. */
for (unsigned i = 0; i < draw_count; ++i) {
const uint64_t src_task_count = va + i * src_stride + src_off_task_count;
const uint64_t dst_x = new_va + i * dst_stride + dst_off_x;
radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, cmd_buffer->state.predicating));
radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) |
COPY_DATA_WR_CONFIRM);
radeon_emit(cs, src_task_count);
radeon_emit(cs, src_task_count >> 32);
radeon_emit(cs, dst_x);
radeon_emit(cs, dst_x >> 32);
}
assert(cs->cdw <= cdw_max);
/* The draw packet can now use this buffer: */
struct radv_buffer buf = *buffer;
buf.bo = cmd_buffer->upload.upload_bo;
buf.offset = out_offset;
return buf;
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdDraw(VkCommandBuffer commandBuffer, uint32_t vertexCount, uint32_t instanceCount,
uint32_t firstVertex, uint32_t firstInstance)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_draw_info info;
info.count = vertexCount;
info.instance_count = instanceCount;
info.first_instance = firstInstance;
info.strmout_buffer = NULL;
info.indirect = NULL;
info.indexed = false;
if (!radv_before_draw(cmd_buffer, &info, 1))
return;
const VkMultiDrawInfoEXT minfo = { firstVertex, vertexCount };
radv_emit_direct_draw_packets(cmd_buffer, &info, 1, &minfo, 0, 0);
radv_after_draw(cmd_buffer);
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawMultiEXT(VkCommandBuffer commandBuffer, uint32_t drawCount, const VkMultiDrawInfoEXT *pVertexInfo,
uint32_t instanceCount, uint32_t firstInstance, uint32_t stride)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_draw_info info;
if (!drawCount)
return;
info.count = pVertexInfo->vertexCount;
info.instance_count = instanceCount;
info.first_instance = firstInstance;
info.strmout_buffer = NULL;
info.indirect = NULL;
info.indexed = false;
if (!radv_before_draw(cmd_buffer, &info, drawCount))
return;
radv_emit_direct_draw_packets(cmd_buffer, &info, drawCount, pVertexInfo, 0, stride);
radv_after_draw(cmd_buffer);
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawIndexed(VkCommandBuffer commandBuffer, uint32_t indexCount, uint32_t instanceCount,
uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_draw_info info;
info.indexed = true;
info.count = indexCount;
info.instance_count = instanceCount;
info.first_instance = firstInstance;
info.strmout_buffer = NULL;
info.indirect = NULL;
if (!radv_before_draw(cmd_buffer, &info, 1))
return;
const VkMultiDrawIndexedInfoEXT minfo = { firstIndex, indexCount, vertexOffset };
radv_emit_draw_packets_indexed(cmd_buffer, &info, 1, &minfo, 0, NULL);
radv_after_draw(cmd_buffer);
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawMultiIndexedEXT(VkCommandBuffer commandBuffer, uint32_t drawCount, const VkMultiDrawIndexedInfoEXT *pIndexInfo,
uint32_t instanceCount, uint32_t firstInstance, uint32_t stride, const int32_t *pVertexOffset)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_draw_info info;
if (!drawCount)
return;
const VkMultiDrawIndexedInfoEXT *minfo = pIndexInfo;
info.indexed = true;
info.count = minfo->indexCount;
info.instance_count = instanceCount;
info.first_instance = firstInstance;
info.strmout_buffer = NULL;
info.indirect = NULL;
if (!radv_before_draw(cmd_buffer, &info, drawCount))
return;
radv_emit_draw_packets_indexed(cmd_buffer, &info, drawCount, pIndexInfo, stride, pVertexOffset);
radv_after_draw(cmd_buffer);
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawIndirect(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset,
uint32_t drawCount, uint32_t stride)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
struct radv_draw_info info;
info.count = drawCount;
info.indirect = buffer;
info.indirect_offset = offset;
info.stride = stride;
info.strmout_buffer = NULL;
info.count_buffer = NULL;
info.indexed = false;
info.instance_count = 0;
if (!radv_before_draw(cmd_buffer, &info, 1))
return;
radv_emit_indirect_draw_packets(cmd_buffer, &info);
radv_after_draw(cmd_buffer);
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset,
uint32_t drawCount, uint32_t stride)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
struct radv_draw_info info;
info.indexed = true;
info.count = drawCount;
info.indirect = buffer;
info.indirect_offset = offset;
info.stride = stride;
info.count_buffer = NULL;
info.strmout_buffer = NULL;
info.instance_count = 0;
if (!radv_before_draw(cmd_buffer, &info, 1))
return;
radv_emit_indirect_draw_packets(cmd_buffer, &info);
radv_after_draw(cmd_buffer);
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawIndirectCount(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset,
VkBuffer _countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
RADV_FROM_HANDLE(radv_buffer, count_buffer, _countBuffer);
struct radv_draw_info info;
info.count = maxDrawCount;
info.indirect = buffer;
info.indirect_offset = offset;
info.count_buffer = count_buffer;
info.count_buffer_offset = countBufferOffset;
info.stride = stride;
info.strmout_buffer = NULL;
info.indexed = false;
info.instance_count = 0;
if (!radv_before_draw(cmd_buffer, &info, 1))
return;
radv_emit_indirect_draw_packets(cmd_buffer, &info);
radv_after_draw(cmd_buffer);
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer, VkBuffer _buffer,
VkDeviceSize offset, VkBuffer _countBuffer,
VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
RADV_FROM_HANDLE(radv_buffer, count_buffer, _countBuffer);
struct radv_draw_info info;
info.indexed = true;
info.count = maxDrawCount;
info.indirect = buffer;
info.indirect_offset = offset;
info.count_buffer = count_buffer;
info.count_buffer_offset = countBufferOffset;
info.stride = stride;
info.strmout_buffer = NULL;
info.instance_count = 0;
if (!radv_before_draw(cmd_buffer, &info, 1))
return;
radv_emit_indirect_draw_packets(cmd_buffer, &info);
radv_after_draw(cmd_buffer);
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawMeshTasksNV(VkCommandBuffer commandBuffer, uint32_t taskCount, uint32_t firstTask)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_graphics_pipeline *pipeline = cmd_buffer->state.graphics_pipeline;
struct radv_draw_info info;
info.count = taskCount;
info.instance_count = 1;
info.first_instance = 0;
info.stride = 0;
info.indexed = false;
info.strmout_buffer = NULL;
info.count_buffer = NULL;
info.indirect = NULL;
if (!radv_before_taskmesh_draw(cmd_buffer, &info, 1))
return;
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TASK)) {
radv_emit_direct_taskmesh_draw_packets(cmd_buffer, taskCount, 1, 1, firstTask);
} else {
radv_emit_direct_mesh_draw_packet(cmd_buffer, taskCount, 1, 1, firstTask);
}
radv_after_draw(cmd_buffer);
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawMeshTasksEXT(VkCommandBuffer commandBuffer, uint32_t x, uint32_t y, uint32_t z)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_graphics_pipeline *pipeline = cmd_buffer->state.graphics_pipeline;
struct radv_draw_info info;
info.count = x * y * z;
info.instance_count = 1;
info.first_instance = 0;
info.stride = 0;
info.indexed = false;
info.strmout_buffer = NULL;
info.count_buffer = NULL;
info.indirect = NULL;
if (!radv_before_taskmesh_draw(cmd_buffer, &info, 1))
return;
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TASK)) {
radv_emit_direct_taskmesh_draw_packets(cmd_buffer, x, y, z, 0);
} else {
radv_emit_direct_mesh_draw_packet(cmd_buffer, x, y, z, 0);
}
radv_after_draw(cmd_buffer);
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawMeshTasksIndirectNV(VkCommandBuffer commandBuffer, VkBuffer _buffer,
VkDeviceSize offset, uint32_t drawCount, uint32_t stride)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
struct radv_graphics_pipeline *pipeline = cmd_buffer->state.graphics_pipeline;
struct radv_draw_info info;
info.indirect = buffer;
info.indirect_offset = offset;
info.stride = stride;
info.count = drawCount;
info.strmout_buffer = NULL;
info.count_buffer = NULL;
info.indexed = false;
info.instance_count = 0;
if (!radv_before_taskmesh_draw(cmd_buffer, &info, drawCount))
return;
/* Indirect draw with mesh shader only:
* Use DRAW_INDIRECT / DRAW_INDIRECT_MULTI like normal indirect draws.
* Needed because DISPATCH_MESH_INDIRECT_MULTI doesn't support firstTask.
*
* Indirect draw with task + mesh shaders:
* Use DISPATCH_TASKMESH_INDIRECT_MULTI_ACE + DISPATCH_TASKMESH_GFX.
* These packets don't support firstTask so we implement that by
* reading the NV command's indirect buffer in the shader.
*
* The indirect BO layout from the NV_mesh_shader API is incompatible
* with AMD HW. To make it work, we allocate some space
* in the upload buffer and copy the data to it.
*/
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TASK)) {
uint64_t nv_ib_va = radv_buffer_get_va(buffer->bo) + buffer->offset + offset;
uint32_t nv_ib_stride = MAX2(stride, sizeof(VkDrawMeshTasksIndirectCommandNV));
struct radv_buffer buf =
radv_nv_task_indirect_bo(cmd_buffer, buffer, offset, drawCount, stride);
info.indirect = &buf;
info.indirect_offset = 0;
info.stride = sizeof(VkDispatchIndirectCommand);
radv_emit_indirect_taskmesh_draw_packets(cmd_buffer, &info, nv_ib_va, nv_ib_stride);
} else {
struct radv_buffer buf =
radv_nv_mesh_indirect_bo(cmd_buffer, buffer, offset, drawCount, stride);
info.indirect = &buf;
info.indirect_offset = 0;
info.stride = sizeof(VkDrawIndirectCommand);
radv_emit_indirect_draw_packets(cmd_buffer, &info);
}
radv_after_draw(cmd_buffer);
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawMeshTasksIndirectEXT(VkCommandBuffer commandBuffer, VkBuffer _buffer,
VkDeviceSize offset, uint32_t drawCount, uint32_t stride)
{
if (!drawCount)
return;
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
struct radv_graphics_pipeline *pipeline = cmd_buffer->state.graphics_pipeline;
struct radv_draw_info info;
info.indirect = buffer;
info.indirect_offset = offset;
info.stride = stride;
info.count = drawCount;
info.strmout_buffer = NULL;
info.count_buffer = NULL;
info.indexed = false;
info.instance_count = 0;
if (!radv_before_taskmesh_draw(cmd_buffer, &info, drawCount))
return;
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TASK)) {
radv_emit_indirect_taskmesh_draw_packets(cmd_buffer, &info, 0, 0);
} else {
radv_emit_indirect_mesh_draw_packets(cmd_buffer, &info);
}
radv_after_draw(cmd_buffer);
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawMeshTasksIndirectCountNV(VkCommandBuffer commandBuffer, VkBuffer _buffer,
VkDeviceSize offset, VkBuffer _countBuffer,
VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
RADV_FROM_HANDLE(radv_buffer, count_buffer, _countBuffer);
struct radv_graphics_pipeline *pipeline = cmd_buffer->state.graphics_pipeline;
struct radv_draw_info info;
info.indirect = buffer;
info.indirect_offset = offset;
info.stride = stride;
info.count = maxDrawCount;
info.strmout_buffer = NULL;
info.count_buffer = count_buffer;
info.count_buffer_offset = countBufferOffset;
info.indexed = false;
info.instance_count = 0;
if (!radv_before_taskmesh_draw(cmd_buffer, &info, maxDrawCount))
return;
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TASK)) {
uint64_t nv_ib_va = radv_buffer_get_va(buffer->bo) + buffer->offset + offset;
uint32_t nv_ib_stride = MAX2(stride, sizeof(VkDrawMeshTasksIndirectCommandNV));
struct radv_buffer buf =
radv_nv_task_indirect_bo(cmd_buffer, buffer, offset, maxDrawCount, stride);
info.indirect = &buf;
info.indirect_offset = 0;
info.stride = sizeof(VkDispatchIndirectCommand);
radv_emit_indirect_taskmesh_draw_packets(cmd_buffer, &info, nv_ib_va, nv_ib_stride);
} else {
struct radv_buffer buf =
radv_nv_mesh_indirect_bo(cmd_buffer, buffer, offset, maxDrawCount, stride);
info.indirect = &buf;
info.indirect_offset = 0;
info.stride = sizeof(VkDrawIndirectCommand);
radv_emit_indirect_draw_packets(cmd_buffer, &info);
}
radv_after_draw(cmd_buffer);
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawMeshTasksIndirectCountEXT(VkCommandBuffer commandBuffer, VkBuffer _buffer,
VkDeviceSize offset, VkBuffer _countBuffer,
VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
RADV_FROM_HANDLE(radv_buffer, count_buffer, _countBuffer);
struct radv_graphics_pipeline *pipeline = cmd_buffer->state.graphics_pipeline;
struct radv_draw_info info;
info.indirect = buffer;
info.indirect_offset = offset;
info.stride = stride;
info.count = maxDrawCount;
info.strmout_buffer = NULL;
info.count_buffer = count_buffer;
info.count_buffer_offset = countBufferOffset;
info.indexed = false;
info.instance_count = 0;
if (!radv_before_taskmesh_draw(cmd_buffer, &info, maxDrawCount))
return;
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TASK)) {
radv_emit_indirect_taskmesh_draw_packets(cmd_buffer, &info, 0, 0);
} else {
radv_emit_indirect_mesh_draw_packets(cmd_buffer, &info);
}
radv_after_draw(cmd_buffer);
}
void
radv_CmdExecuteGeneratedCommandsNV(VkCommandBuffer commandBuffer, VkBool32 isPreprocessed,
const VkGeneratedCommandsInfoNV *pGeneratedCommandsInfo)
{
VK_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
VK_FROM_HANDLE(radv_indirect_command_layout, layout,
pGeneratedCommandsInfo->indirectCommandsLayout);
VK_FROM_HANDLE(radv_buffer, prep_buffer, pGeneratedCommandsInfo->preprocessBuffer);
/* The only actions that can be done are draws, so skip on other queues. */
if (cmd_buffer->qf != RADV_QUEUE_GENERAL)
return;
/* Secondary command buffers are needed for the full extension but can't use
* PKT3_INDIRECT_BUFFER_CIK.
*/
assert(cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
radv_prepare_dgc(cmd_buffer, pGeneratedCommandsInfo);
struct radv_draw_info info;
info.count = pGeneratedCommandsInfo->sequencesCount;
info.indirect = prep_buffer; /* We're not really going use it this way, but a good signal
that this is not direct. */
info.indirect_offset = 0;
info.stride = 0;
info.strmout_buffer = NULL;
info.count_buffer = NULL;
info.indexed = layout->indexed;
info.instance_count = 0;
if (!radv_before_draw(cmd_buffer, &info, 1))
return;
uint32_t cmdbuf_size = radv_get_indirect_cmdbuf_size(pGeneratedCommandsInfo);
uint64_t va = radv_buffer_get_va(prep_buffer->bo) + prep_buffer->offset +
pGeneratedCommandsInfo->preprocessOffset;
const uint32_t view_mask = cmd_buffer->state.subpass->view_mask;
radeon_emit(cmd_buffer->cs, PKT3(PKT3_PFP_SYNC_ME, 0, cmd_buffer->state.predicating));
radeon_emit(cmd_buffer->cs, 0);
if (!view_mask) {
radeon_emit(cmd_buffer->cs, PKT3(PKT3_INDIRECT_BUFFER_CIK, 2, 0));
radeon_emit(cmd_buffer->cs, va);
radeon_emit(cmd_buffer->cs, va >> 32);
radeon_emit(cmd_buffer->cs, cmdbuf_size >> 2);
} else {
u_foreach_bit (view, view_mask) {
radv_emit_view_index(cmd_buffer, view);
radeon_emit(cmd_buffer->cs, PKT3(PKT3_INDIRECT_BUFFER_CIK, 2, 0));
radeon_emit(cmd_buffer->cs, va);
radeon_emit(cmd_buffer->cs, va >> 32);
radeon_emit(cmd_buffer->cs, cmdbuf_size >> 2);
}
}
if (layout->binds_index_buffer) {
cmd_buffer->state.last_index_type = -1;
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_INDEX_BUFFER;
}
if (layout->bind_vbo_mask)
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_VERTEX_BUFFER;
if (layout->binds_state)
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_DYNAMIC_FRONT_FACE;
cmd_buffer->push_constant_stages |= ~0;
cmd_buffer->state.last_index_type = -1;
cmd_buffer->state.last_num_instances = -1;
cmd_buffer->state.last_vertex_offset = -1;
cmd_buffer->state.last_first_instance = -1;
cmd_buffer->state.last_drawid = -1;
radv_after_draw(cmd_buffer);
}
struct radv_dispatch_info {
/**
* Determine the layout of the grid (in block units) to be used.
*/
uint32_t blocks[3];
/**
* A starting offset for the grid. If unaligned is set, the offset
* must still be aligned.
*/
uint32_t offsets[3];
/**
* Whether it's an unaligned compute dispatch.
*/
bool unaligned;
/**
* Indirect compute parameters resource.
*/
struct radeon_winsys_bo *indirect;
uint64_t va;
};
static void
radv_emit_dispatch_packets(struct radv_cmd_buffer *cmd_buffer,
struct radv_compute_pipeline *pipeline,
const struct radv_dispatch_info *info)
{
struct radv_shader *compute_shader = pipeline->base.shaders[MESA_SHADER_COMPUTE];
unsigned dispatch_initiator = cmd_buffer->device->dispatch_initiator;
struct radeon_winsys *ws = cmd_buffer->device->ws;
bool predicating = cmd_buffer->state.predicating;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
struct radv_userdata_info *loc;
radv_describe_dispatch(cmd_buffer, info->blocks[0], info->blocks[1], info->blocks[2]);
loc = radv_lookup_user_sgpr(&pipeline->base, MESA_SHADER_COMPUTE, AC_UD_CS_GRID_SIZE);
ASSERTED unsigned cdw_max = radeon_check_space(ws, cs, 30);
if (compute_shader->info.wave_size == 32) {
assert(cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX10);
dispatch_initiator |= S_00B800_CS_W32_EN(1);
}
if (info->va) {
if (info->indirect)
radv_cs_add_buffer(ws, cs, info->indirect);
if (info->unaligned) {
radeon_set_sh_reg_seq(cs, R_00B81C_COMPUTE_NUM_THREAD_X, 3);
radeon_emit(cs, S_00B81C_NUM_THREAD_FULL(compute_shader->info.cs.block_size[0]));
radeon_emit(cs, S_00B81C_NUM_THREAD_FULL(compute_shader->info.cs.block_size[1]));
radeon_emit(cs, S_00B81C_NUM_THREAD_FULL(compute_shader->info.cs.block_size[2]));
dispatch_initiator |= S_00B800_USE_THREAD_DIMENSIONS(1);
}
if (loc->sgpr_idx != -1) {
unsigned reg = R_00B900_COMPUTE_USER_DATA_0 + loc->sgpr_idx * 4;
if (cmd_buffer->device->load_grid_size_from_user_sgpr) {
assert(cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX10_3);
radeon_emit(cs, PKT3(PKT3_LOAD_SH_REG_INDEX, 3, 0));
radeon_emit(cs, info->va);
radeon_emit(cs, info->va >> 32);
radeon_emit(cs, (reg - SI_SH_REG_OFFSET) >> 2);
radeon_emit(cs, 3);
} else {
radv_emit_shader_pointer(cmd_buffer->device, cmd_buffer->cs, reg, info->va, true);
}
}
if (radv_cmd_buffer_uses_mec(cmd_buffer)) {
radv_cs_emit_compute_predication(&cmd_buffer->state, cs, cmd_buffer->mec_inv_pred_va,
&cmd_buffer->mec_inv_pred_emitted,
4 /* DISPATCH_INDIRECT size */);
radeon_emit(cs, PKT3(PKT3_DISPATCH_INDIRECT, 2, 0) | PKT3_SHADER_TYPE_S(1));
radeon_emit(cs, info->va);
radeon_emit(cs, info->va >> 32);
radeon_emit(cs, dispatch_initiator);
} else {
radeon_emit(cs, PKT3(PKT3_SET_BASE, 2, 0) | PKT3_SHADER_TYPE_S(1));
radeon_emit(cs, 1);
radeon_emit(cs, info->va);
radeon_emit(cs, info->va >> 32);
radeon_emit(cs, PKT3(PKT3_DISPATCH_INDIRECT, 1, predicating) | PKT3_SHADER_TYPE_S(1));
radeon_emit(cs, 0);
radeon_emit(cs, dispatch_initiator);
}
} else {
unsigned blocks[3] = {info->blocks[0], info->blocks[1], info->blocks[2]};
unsigned offsets[3] = {info->offsets[0], info->offsets[1], info->offsets[2]};
if (info->unaligned) {
unsigned *cs_block_size = compute_shader->info.cs.block_size;
unsigned remainder[3];
/* If aligned, these should be an entire block size,
* not 0.
*/
remainder[0] = blocks[0] + cs_block_size[0] - align_u32_npot(blocks[0], cs_block_size[0]);
remainder[1] = blocks[1] + cs_block_size[1] - align_u32_npot(blocks[1], cs_block_size[1]);
remainder[2] = blocks[2] + cs_block_size[2] - align_u32_npot(blocks[2], cs_block_size[2]);
blocks[0] = round_up_u32(blocks[0], cs_block_size[0]);
blocks[1] = round_up_u32(blocks[1], cs_block_size[1]);
blocks[2] = round_up_u32(blocks[2], cs_block_size[2]);
for (unsigned i = 0; i < 3; ++i) {
assert(offsets[i] % cs_block_size[i] == 0);
offsets[i] /= cs_block_size[i];
}
radeon_set_sh_reg_seq(cs, R_00B81C_COMPUTE_NUM_THREAD_X, 3);
radeon_emit(cs, S_00B81C_NUM_THREAD_FULL(cs_block_size[0]) |
S_00B81C_NUM_THREAD_PARTIAL(remainder[0]));
radeon_emit(cs, S_00B81C_NUM_THREAD_FULL(cs_block_size[1]) |
S_00B81C_NUM_THREAD_PARTIAL(remainder[1]));
radeon_emit(cs, S_00B81C_NUM_THREAD_FULL(cs_block_size[2]) |
S_00B81C_NUM_THREAD_PARTIAL(remainder[2]));
dispatch_initiator |= S_00B800_PARTIAL_TG_EN(1);
}
if (loc->sgpr_idx != -1) {
if (cmd_buffer->device->load_grid_size_from_user_sgpr) {
assert(loc->num_sgprs == 3);
radeon_set_sh_reg_seq(cs, R_00B900_COMPUTE_USER_DATA_0 + loc->sgpr_idx * 4, 3);
radeon_emit(cs, blocks[0]);
radeon_emit(cs, blocks[1]);
radeon_emit(cs, blocks[2]);
} else {
uint32_t offset;
if (!radv_cmd_buffer_upload_data(cmd_buffer, 12, blocks, &offset))
return;
uint64_t va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + offset;
radv_emit_shader_pointer(cmd_buffer->device, cmd_buffer->cs,
R_00B900_COMPUTE_USER_DATA_0 + loc->sgpr_idx * 4, va, true);
}
}
if (offsets[0] || offsets[1] || offsets[2]) {
radeon_set_sh_reg_seq(cs, R_00B810_COMPUTE_START_X, 3);
radeon_emit(cs, offsets[0]);
radeon_emit(cs, offsets[1]);
radeon_emit(cs, offsets[2]);
/* The blocks in the packet are not counts but end values. */
for (unsigned i = 0; i < 3; ++i)
blocks[i] += offsets[i];
} else {
dispatch_initiator |= S_00B800_FORCE_START_AT_000(1);
}
if (radv_cmd_buffer_uses_mec(cmd_buffer)) {
radv_cs_emit_compute_predication(&cmd_buffer->state, cs, cmd_buffer->mec_inv_pred_va,
&cmd_buffer->mec_inv_pred_emitted,
5 /* DISPATCH_DIRECT size */);
predicating = false;
}
radeon_emit(cs, PKT3(PKT3_DISPATCH_DIRECT, 3, predicating) | PKT3_SHADER_TYPE_S(1));
radeon_emit(cs, blocks[0]);
radeon_emit(cs, blocks[1]);
radeon_emit(cs, blocks[2]);
radeon_emit(cs, dispatch_initiator);
}
assert(cmd_buffer->cs->cdw <= cdw_max);
}
static void
radv_upload_compute_shader_descriptors(struct radv_cmd_buffer *cmd_buffer,
struct radv_compute_pipeline *pipeline,
VkPipelineBindPoint bind_point)
{
radv_flush_descriptors(cmd_buffer, VK_SHADER_STAGE_COMPUTE_BIT, &pipeline->base, bind_point);
radv_flush_constants(cmd_buffer,
bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR
? RADV_RT_STAGE_BITS
: VK_SHADER_STAGE_COMPUTE_BIT,
&pipeline->base, bind_point);
}
static void
radv_dispatch(struct radv_cmd_buffer *cmd_buffer, const struct radv_dispatch_info *info,
struct radv_compute_pipeline *pipeline, VkPipelineBindPoint bind_point)
{
bool has_prefetch = cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX7;
bool pipeline_is_dirty = pipeline != cmd_buffer->state.emitted_compute_pipeline;
if (pipeline->cs_regalloc_hang_bug)
cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_PS_PARTIAL_FLUSH |
RADV_CMD_FLAG_CS_PARTIAL_FLUSH;
if (cmd_buffer->state.flush_bits &
(RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB |
RADV_CMD_FLAG_PS_PARTIAL_FLUSH | RADV_CMD_FLAG_CS_PARTIAL_FLUSH)) {
/* If we have to wait for idle, set all states first, so that
* all SET packets are processed in parallel with previous draw
* calls. Then upload descriptors, set shader pointers, and
* dispatch, and prefetch at the end. This ensures that the
* time the CUs are idle is very short. (there are only SET_SH
* packets between the wait and the draw)
*/
radv_emit_compute_pipeline(cmd_buffer, pipeline);
si_emit_cache_flush(cmd_buffer);
/* <-- CUs are idle here --> */
radv_upload_compute_shader_descriptors(cmd_buffer, pipeline, bind_point);
radv_emit_dispatch_packets(cmd_buffer, pipeline, info);
/* <-- CUs are busy here --> */
/* Start prefetches after the dispatch has been started. Both
* will run in parallel, but starting the dispatch first is
* more important.
*/
if (has_prefetch && pipeline_is_dirty) {
radv_emit_shader_prefetch(cmd_buffer, pipeline->base.shaders[MESA_SHADER_COMPUTE]);
}
} else {
/* If we don't wait for idle, start prefetches first, then set
* states, and dispatch at the end.
*/
si_emit_cache_flush(cmd_buffer);
if (has_prefetch && pipeline_is_dirty) {
radv_emit_shader_prefetch(cmd_buffer, pipeline->base.shaders[MESA_SHADER_COMPUTE]);
}
radv_upload_compute_shader_descriptors(cmd_buffer, pipeline, bind_point);
radv_emit_compute_pipeline(cmd_buffer, pipeline);
radv_emit_dispatch_packets(cmd_buffer, pipeline, info);
}
if (pipeline_is_dirty) {
/* Raytracing uses compute shaders but has separate bind points and pipelines.
* So if we set compute userdata & shader registers we should dirty the raytracing
* ones and the other way around.
*
* We only need to do this when the pipeline is dirty because when we switch between
* the two we always need to switch pipelines.
*/
radv_mark_descriptor_sets_dirty(cmd_buffer, bind_point == VK_PIPELINE_BIND_POINT_COMPUTE
? VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR
: VK_PIPELINE_BIND_POINT_COMPUTE);
}
if (pipeline->cs_regalloc_hang_bug)
cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH;
radv_cmd_buffer_after_draw(cmd_buffer, RADV_CMD_FLAG_CS_PARTIAL_FLUSH);
}
static void
radv_compute_dispatch(struct radv_cmd_buffer *cmd_buffer, const struct radv_dispatch_info *info)
{
radv_dispatch(cmd_buffer, info, cmd_buffer->state.compute_pipeline,
VK_PIPELINE_BIND_POINT_COMPUTE);
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdDispatchBase(VkCommandBuffer commandBuffer, uint32_t base_x, uint32_t base_y,
uint32_t base_z, uint32_t x, uint32_t y, uint32_t z)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_dispatch_info info = {0};
info.blocks[0] = x;
info.blocks[1] = y;
info.blocks[2] = z;
info.offsets[0] = base_x;
info.offsets[1] = base_y;
info.offsets[2] = base_z;
radv_compute_dispatch(cmd_buffer, &info);
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdDispatch(VkCommandBuffer commandBuffer, uint32_t x, uint32_t y, uint32_t z)
{
radv_CmdDispatchBase(commandBuffer, 0, 0, 0, x, y, z);
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdDispatchIndirect(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
struct radv_dispatch_info info = {0};
info.indirect = buffer->bo;
info.va = radv_buffer_get_va(buffer->bo) + buffer->offset + offset;
radv_compute_dispatch(cmd_buffer, &info);
}
void
radv_unaligned_dispatch(struct radv_cmd_buffer *cmd_buffer, uint32_t x, uint32_t y, uint32_t z)
{
struct radv_dispatch_info info = {0};
info.blocks[0] = x;
info.blocks[1] = y;
info.blocks[2] = z;
info.unaligned = 1;
radv_compute_dispatch(cmd_buffer, &info);
}
void
radv_indirect_dispatch(struct radv_cmd_buffer *cmd_buffer, struct radeon_winsys_bo *bo, uint64_t va)
{
struct radv_dispatch_info info = {0};
info.indirect = bo;
info.va = va;
radv_compute_dispatch(cmd_buffer, &info);
}
enum radv_rt_mode {
radv_rt_mode_direct,
radv_rt_mode_indirect,
radv_rt_mode_indirect2,
};
static void
radv_trace_rays(struct radv_cmd_buffer *cmd_buffer, const VkTraceRaysIndirectCommand2KHR *tables,
uint64_t indirect_va, enum radv_rt_mode mode)
{
struct radv_compute_pipeline *pipeline = cmd_buffer->state.rt_pipeline;
uint32_t base_reg = pipeline->base.user_data_0[MESA_SHADER_COMPUTE];
struct radv_dispatch_info info = {0};
info.unaligned = true;
uint64_t launch_size_va;
uint64_t sbt_va;
if (mode != radv_rt_mode_indirect2) {
uint32_t upload_size = mode == radv_rt_mode_direct
? sizeof(VkTraceRaysIndirectCommand2KHR)
: offsetof(VkTraceRaysIndirectCommand2KHR, width);
uint32_t offset;
if (!radv_cmd_buffer_upload_data(cmd_buffer, upload_size, tables, &offset))
return;
uint64_t upload_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + offset;
launch_size_va = (mode == radv_rt_mode_direct)
? upload_va + offsetof(VkTraceRaysIndirectCommand2KHR, width)
: indirect_va;
sbt_va = upload_va;
} else {
launch_size_va = indirect_va + offsetof(VkTraceRaysIndirectCommand2KHR, width);
sbt_va = indirect_va;
}
if (mode == radv_rt_mode_direct) {
info.blocks[0] = tables->width;
info.blocks[1] = tables->height;
info.blocks[2] = tables->depth;
} else
info.va = launch_size_va;
struct radv_userdata_info *desc_loc =
radv_lookup_user_sgpr(&pipeline->base, MESA_SHADER_COMPUTE, AC_UD_CS_SBT_DESCRIPTORS);
if (desc_loc->sgpr_idx != -1) {
radv_emit_shader_pointer(cmd_buffer->device, cmd_buffer->cs,
base_reg + desc_loc->sgpr_idx * 4, sbt_va, true);
}
struct radv_userdata_info *size_loc =
radv_lookup_user_sgpr(&pipeline->base, MESA_SHADER_COMPUTE, AC_UD_CS_RAY_LAUNCH_SIZE_ADDR);
if (size_loc->sgpr_idx != -1) {
radv_emit_shader_pointer(cmd_buffer->device, cmd_buffer->cs,
base_reg + size_loc->sgpr_idx * 4, launch_size_va, true);
}
radv_dispatch(cmd_buffer, &info, pipeline, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR);
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdTraceRaysKHR(VkCommandBuffer commandBuffer,
const VkStridedDeviceAddressRegionKHR *pRaygenShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pMissShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pHitShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pCallableShaderBindingTable,
uint32_t width, uint32_t height, uint32_t depth)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
VkTraceRaysIndirectCommand2KHR tables = {
.raygenShaderRecordAddress = pRaygenShaderBindingTable->deviceAddress,
.raygenShaderRecordSize = pRaygenShaderBindingTable->size,
.missShaderBindingTableAddress = pMissShaderBindingTable->deviceAddress,
.missShaderBindingTableSize = pMissShaderBindingTable->size,
.missShaderBindingTableStride = pMissShaderBindingTable->stride,
.hitShaderBindingTableAddress = pHitShaderBindingTable->deviceAddress,
.hitShaderBindingTableSize = pHitShaderBindingTable->size,
.hitShaderBindingTableStride = pHitShaderBindingTable->stride,
.callableShaderBindingTableAddress = pCallableShaderBindingTable->deviceAddress,
.callableShaderBindingTableSize = pCallableShaderBindingTable->size,
.callableShaderBindingTableStride = pCallableShaderBindingTable->stride,
.width = width,
.height = height,
.depth = depth,
};
radv_trace_rays(cmd_buffer, &tables, 0, radv_rt_mode_direct);
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdTraceRaysIndirectKHR(VkCommandBuffer commandBuffer,
const VkStridedDeviceAddressRegionKHR *pRaygenShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pMissShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pHitShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pCallableShaderBindingTable,
VkDeviceAddress indirectDeviceAddress)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
assert(cmd_buffer->device->use_global_bo_list);
VkTraceRaysIndirectCommand2KHR tables = {
.raygenShaderRecordAddress = pRaygenShaderBindingTable->deviceAddress,
.raygenShaderRecordSize = pRaygenShaderBindingTable->size,
.missShaderBindingTableAddress = pMissShaderBindingTable->deviceAddress,
.missShaderBindingTableSize = pMissShaderBindingTable->size,
.missShaderBindingTableStride = pMissShaderBindingTable->stride,
.hitShaderBindingTableAddress = pHitShaderBindingTable->deviceAddress,
.hitShaderBindingTableSize = pHitShaderBindingTable->size,
.hitShaderBindingTableStride = pHitShaderBindingTable->stride,
.callableShaderBindingTableAddress = pCallableShaderBindingTable->deviceAddress,
.callableShaderBindingTableSize = pCallableShaderBindingTable->size,
.callableShaderBindingTableStride = pCallableShaderBindingTable->stride,
};
radv_trace_rays(cmd_buffer, &tables, indirectDeviceAddress, radv_rt_mode_indirect);
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdTraceRaysIndirect2KHR(VkCommandBuffer commandBuffer, VkDeviceAddress indirectDeviceAddress)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
assert(cmd_buffer->device->use_global_bo_list);
radv_trace_rays(cmd_buffer, NULL, indirectDeviceAddress, radv_rt_mode_indirect2);
}
static void
radv_set_rt_stack_size(struct radv_cmd_buffer *cmd_buffer, uint32_t size)
{
unsigned wave_size = 0;
unsigned scratch_bytes_per_wave = 0;
if (cmd_buffer->state.rt_pipeline) {
scratch_bytes_per_wave = cmd_buffer->state.rt_pipeline->base.scratch_bytes_per_wave;
wave_size = cmd_buffer->state.rt_pipeline->base.shaders[MESA_SHADER_COMPUTE]->info.wave_size;
}
/* The hardware register is specified as a multiple of 256 DWORDS. */
scratch_bytes_per_wave += align(size * wave_size, 1024);
cmd_buffer->compute_scratch_size_per_wave_needed =
MAX2(cmd_buffer->compute_scratch_size_per_wave_needed, scratch_bytes_per_wave);
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdSetRayTracingPipelineStackSizeKHR(VkCommandBuffer commandBuffer, uint32_t size)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
radv_set_rt_stack_size(cmd_buffer, size);
cmd_buffer->state.rt_stack_size = size;
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdEndRenderPass2(VkCommandBuffer commandBuffer, const VkSubpassEndInfo *pSubpassEndInfo)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
radv_mark_noncoherent_rb(cmd_buffer);
radv_emit_subpass_barrier(cmd_buffer, &cmd_buffer->state.pass->end_barrier);
radv_cmd_buffer_end_subpass(cmd_buffer);
vk_free(&cmd_buffer->vk.pool->alloc, cmd_buffer->state.attachments);
vk_free(&cmd_buffer->vk.pool->alloc, cmd_buffer->state.subpass_sample_locs);
cmd_buffer->state.pass = NULL;
cmd_buffer->state.subpass = NULL;
cmd_buffer->state.attachments = NULL;
cmd_buffer->state.framebuffer = NULL;
cmd_buffer->state.subpass_sample_locs = NULL;
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdBeginRendering(VkCommandBuffer commandBuffer, const VkRenderingInfo *pRenderingInfo)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
const VkRenderingFragmentShadingRateAttachmentInfoKHR *vrs_info = vk_find_struct_const(
pRenderingInfo->pNext, RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_INFO_KHR);
VkResult result;
/* (normal + resolve) for color attachments and ds and a VRS attachment */
VkAttachmentDescription2 att_desc[MAX_RTS * 2 + 3];
VkAttachmentDescriptionStencilLayout ds_stencil_att, ds_stencil_resolve_att;
VkImageView iviews[MAX_RTS * 2 + 3];
VkAttachmentReference2 color_refs[MAX_RTS], color_resolve_refs[MAX_RTS];
VkAttachmentReference2 ds_ref, ds_resolve_ref, vrs_ref;
VkAttachmentReferenceStencilLayout ds_stencil_ref, ds_stencil_resolve_ref;
VkSubpassDescriptionDepthStencilResolve ds_resolve_info;
VkFragmentShadingRateAttachmentInfoKHR vrs_subpass_info;
VkClearValue clear_values[MAX_RTS * 2 + 3];
unsigned att_count = 0;
VkSubpassDescription2 subpass = {
.sType = VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_2,
.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
.viewMask = pRenderingInfo->viewMask,
.colorAttachmentCount = pRenderingInfo->colorAttachmentCount,
.pColorAttachments = color_refs,
.pResolveAttachments = color_resolve_refs,
};
for (unsigned i = 0; i < pRenderingInfo->colorAttachmentCount; ++i) {
color_refs[i] = (VkAttachmentReference2){
.sType = VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2,
.attachment = VK_ATTACHMENT_UNUSED,
};
color_resolve_refs[i] = (VkAttachmentReference2){
.sType = VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2,
.attachment = VK_ATTACHMENT_UNUSED,
};
if (pRenderingInfo->pColorAttachments[i].imageView == VK_NULL_HANDLE)
continue;
const VkRenderingAttachmentInfo *info = &pRenderingInfo->pColorAttachments[i];
RADV_FROM_HANDLE(radv_image_view, iview, info->imageView);
color_refs[i] = (VkAttachmentReference2){.sType = VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2,
.attachment = att_count,
.layout = info->imageLayout,
.aspectMask = iview->vk.aspects};
iviews[att_count] = info->imageView;
clear_values[att_count] = info->clearValue;
VkAttachmentDescription2 *att = att_desc + att_count++;
memset(att, 0, sizeof(*att));
att->sType = VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2;
att->format = iview->vk.format;
att->samples = iview->image->info.samples;
att->loadOp = info->loadOp;
att->storeOp = info->storeOp;
att->initialLayout = info->imageLayout;
att->finalLayout = info->imageLayout;
if (pRenderingInfo->flags & VK_RENDERING_RESUMING_BIT)
att->loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
if (pRenderingInfo->flags & VK_RENDERING_SUSPENDING_BIT)
att->storeOp = VK_ATTACHMENT_STORE_OP_STORE;
if (info->resolveMode != VK_RESOLVE_MODE_NONE &&
!(pRenderingInfo->flags & VK_RENDERING_SUSPENDING_BIT)) {
RADV_FROM_HANDLE(radv_image_view, resolve_iview, info->resolveImageView);
color_resolve_refs[i] =
(VkAttachmentReference2){.sType = VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2,
.attachment = att_count,
.layout = info->resolveImageLayout,
.aspectMask = resolve_iview->vk.aspects};
iviews[att_count] = info->resolveImageView;
att = att_desc + att_count++;
memset(att, 0, sizeof(*att));
att->sType = VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2;
att->format = resolve_iview->vk.format;
att->samples = resolve_iview->image->info.samples;
att->loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
att->storeOp = VK_ATTACHMENT_STORE_OP_STORE;
att->initialLayout = info->resolveImageLayout;
att->finalLayout = info->resolveImageLayout;
}
}
if (pRenderingInfo->pDepthAttachment || pRenderingInfo->pStencilAttachment) {
const VkRenderingAttachmentInfo *common_info = pRenderingInfo->pDepthAttachment
? pRenderingInfo->pDepthAttachment
: pRenderingInfo->pStencilAttachment;
RADV_FROM_HANDLE(radv_image_view, iview, common_info->imageView);
if (common_info->imageView != VK_NULL_HANDLE) {
ds_ref = (VkAttachmentReference2){
.sType = VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2,
.attachment = att_count,
.layout = common_info->imageLayout,
.aspectMask = (pRenderingInfo->pDepthAttachment ? VK_IMAGE_ASPECT_DEPTH_BIT : 0) |
(pRenderingInfo->pStencilAttachment ? VK_IMAGE_ASPECT_STENCIL_BIT : 0)};
subpass.pDepthStencilAttachment = &ds_ref;
iviews[att_count] = common_info->imageView;
if (pRenderingInfo->pDepthAttachment)
clear_values[att_count].depthStencil.depth =
pRenderingInfo->pDepthAttachment->clearValue.depthStencil.depth;
if (pRenderingInfo->pStencilAttachment)
clear_values[att_count].depthStencil.stencil =
pRenderingInfo->pStencilAttachment->clearValue.depthStencil.stencil;
VkAttachmentDescription2 *att = att_desc + att_count++;
memset(att, 0, sizeof(*att));
att->sType = VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2;
att->format = iview->vk.format;
att->samples = iview->image->info.samples;
if (pRenderingInfo->pDepthAttachment) {
att->loadOp = pRenderingInfo->pDepthAttachment->loadOp;
att->storeOp = pRenderingInfo->pDepthAttachment->storeOp;
} else {
att->loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
att->storeOp = VK_ATTACHMENT_STORE_OP_STORE;
}
if (pRenderingInfo->pStencilAttachment) {
att->stencilLoadOp = pRenderingInfo->pStencilAttachment->loadOp;
att->stencilStoreOp = pRenderingInfo->pStencilAttachment->storeOp;
} else {
att->stencilLoadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
att->stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE;
}
if (pRenderingInfo->flags & VK_RENDERING_RESUMING_BIT) {
att->loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
att->stencilLoadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
}
if (pRenderingInfo->flags & VK_RENDERING_SUSPENDING_BIT) {
att->storeOp = VK_ATTACHMENT_STORE_OP_STORE;
att->stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE;
}
att->initialLayout = common_info->imageLayout;
att->finalLayout = common_info->imageLayout;
if (pRenderingInfo->pDepthAttachment && pRenderingInfo->pStencilAttachment) {
ds_ref.pNext = &ds_stencil_ref;
ds_stencil_ref = (VkAttachmentReferenceStencilLayout){
.sType = VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_STENCIL_LAYOUT,
.stencilLayout = pRenderingInfo->pStencilAttachment->imageLayout};
att->pNext = &ds_stencil_att;
ds_stencil_att = (VkAttachmentDescriptionStencilLayout){
.sType = VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_STENCIL_LAYOUT,
.stencilInitialLayout = pRenderingInfo->pStencilAttachment->imageLayout,
.stencilFinalLayout = pRenderingInfo->pStencilAttachment->imageLayout,
};
}
if (((pRenderingInfo->pDepthAttachment &&
pRenderingInfo->pDepthAttachment->resolveMode != VK_RESOLVE_MODE_NONE) ||
(pRenderingInfo->pStencilAttachment &&
pRenderingInfo->pStencilAttachment->resolveMode != VK_RESOLVE_MODE_NONE)) &&
!(pRenderingInfo->flags & VK_RENDERING_SUSPENDING_BIT)) {
RADV_FROM_HANDLE(radv_image_view, resolve_iview, common_info->resolveImageView);
ds_resolve_ref =
(VkAttachmentReference2){.sType = VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2,
.attachment = att_count,
.layout = common_info->resolveImageLayout,
.aspectMask = resolve_iview->vk.aspects};
iviews[att_count] = common_info->resolveImageView;
att = att_desc + att_count++;
memset(att, 0, sizeof(*att));
att->sType = VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2;
att->format = resolve_iview->vk.format;
att->samples = resolve_iview->image->info.samples;
att->loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
att->storeOp = VK_ATTACHMENT_STORE_OP_STORE;
att->initialLayout = common_info->resolveImageLayout;
att->finalLayout = common_info->resolveImageLayout;
ds_resolve_info = (VkSubpassDescriptionDepthStencilResolve){
.sType = VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_DEPTH_STENCIL_RESOLVE,
.pNext = subpass.pNext,
.depthResolveMode =
(pRenderingInfo->pDepthAttachment &&
pRenderingInfo->pDepthAttachment->resolveMode != VK_RESOLVE_MODE_NONE)
? pRenderingInfo->pDepthAttachment->resolveMode
: VK_RESOLVE_MODE_NONE,
.stencilResolveMode =
(pRenderingInfo->pStencilAttachment &&
pRenderingInfo->pStencilAttachment->resolveMode != VK_RESOLVE_MODE_NONE)
? pRenderingInfo->pStencilAttachment->resolveMode
: VK_RESOLVE_MODE_NONE,
.pDepthStencilResolveAttachment = &ds_resolve_ref};
subpass.pNext = &ds_resolve_info;
if (pRenderingInfo->pDepthAttachment && pRenderingInfo->pStencilAttachment &&
pRenderingInfo->pDepthAttachment->resolveMode != VK_RESOLVE_MODE_NONE &&
pRenderingInfo->pStencilAttachment->resolveMode != VK_RESOLVE_MODE_NONE) {
ds_resolve_ref.pNext = &ds_stencil_resolve_ref;
ds_stencil_resolve_ref = (VkAttachmentReferenceStencilLayout){
.sType = VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_STENCIL_LAYOUT,
.stencilLayout = pRenderingInfo->pStencilAttachment->resolveImageLayout};
att->pNext = &ds_stencil_resolve_att;
ds_stencil_resolve_att = (VkAttachmentDescriptionStencilLayout){
.sType = VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_STENCIL_LAYOUT,
.stencilInitialLayout = pRenderingInfo->pStencilAttachment->resolveImageLayout,
.stencilFinalLayout = pRenderingInfo->pStencilAttachment->resolveImageLayout,
};
}
}
}
}
if (vrs_info && vrs_info->imageView) {
RADV_FROM_HANDLE(radv_image_view, iview, vrs_info->imageView);
vrs_ref = (VkAttachmentReference2){.sType = VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2,
.attachment = att_count,
.layout = vrs_info->imageLayout,
.aspectMask = iview->vk.aspects};
iviews[att_count] = vrs_info->imageView;
VkAttachmentDescription2 *att = att_desc + att_count++;
memset(att, 0, sizeof(*att));
att->sType = VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2;
att->format = iview->vk.format;
att->samples = iview->image->info.samples;
att->loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
att->storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
att->initialLayout = vrs_info->imageLayout;
att->finalLayout = vrs_info->imageLayout;
vrs_subpass_info = (VkFragmentShadingRateAttachmentInfoKHR){
.sType = VK_STRUCTURE_TYPE_FRAGMENT_SHADING_RATE_ATTACHMENT_INFO_KHR,
.pNext = subpass.pNext,
.pFragmentShadingRateAttachment = &vrs_ref,
.shadingRateAttachmentTexelSize = vrs_info->shadingRateAttachmentTexelSize,
};
subpass.pNext = &vrs_subpass_info;
}
VkRenderPassCreateInfo2 rp_create_info = {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO_2,
.attachmentCount = att_count,
.pAttachments = att_desc,
.subpassCount = 1,
.pSubpasses = &subpass,
};
VkRenderPass rp;
result =
radv_CreateRenderPass2(radv_device_to_handle(cmd_buffer->device), &rp_create_info, NULL, &rp);
if (result != VK_SUCCESS) {
vk_command_buffer_set_error(&cmd_buffer->vk, result);
return;
}
unsigned w = pRenderingInfo->renderArea.offset.x + pRenderingInfo->renderArea.extent.width;
unsigned h = pRenderingInfo->renderArea.offset.y + pRenderingInfo->renderArea.extent.height;
for (unsigned i = 0; i < att_count; ++i) {
RADV_FROM_HANDLE(radv_image_view, iview, iviews[i]);
if (vrs_info && vrs_info->imageView == iviews[i])
continue;
w = MIN2(w, iview->extent.width);
h = MIN2(h, iview->extent.height);
}
VkFramebufferCreateInfo fb_create_info = {
.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
.renderPass = rp,
.attachmentCount = att_count,
.pAttachments = iviews,
.width = w,
.height = h,
.layers = pRenderingInfo->layerCount,
};
VkFramebuffer fb;
result =
vk_common_CreateFramebuffer(radv_device_to_handle(cmd_buffer->device), &fb_create_info, NULL, &fb);
if (result != VK_SUCCESS) {
radv_DestroyRenderPass(radv_device_to_handle(cmd_buffer->device), rp, NULL);
vk_command_buffer_set_error(&cmd_buffer->vk, result);
return;
}
VkRenderPassBeginInfo begin_info = {.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
.renderPass = rp,
.framebuffer = fb,
.renderArea = pRenderingInfo->renderArea,
.clearValueCount = att_count,
.pClearValues = clear_values};
const VkSubpassBeginInfo pass_begin_info = {
.sType = VK_STRUCTURE_TYPE_SUBPASS_BEGIN_INFO,
.contents = (pRenderingInfo->flags & VK_RENDERING_CONTENTS_SECONDARY_COMMAND_BUFFERS_BIT)
? VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS
: VK_SUBPASS_CONTENTS_INLINE,
};
radv_CmdBeginRenderPass2(commandBuffer, &begin_info, &pass_begin_info);
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdEndRendering(VkCommandBuffer commandBuffer)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_render_pass *pass = cmd_buffer->state.pass;
struct vk_framebuffer *framebuffer = cmd_buffer->state.framebuffer;
radv_CmdEndRenderPass2(commandBuffer, NULL);
vk_common_DestroyFramebuffer(radv_device_to_handle(cmd_buffer->device),
vk_framebuffer_to_handle(framebuffer), NULL);
radv_DestroyRenderPass(radv_device_to_handle(cmd_buffer->device),
radv_render_pass_to_handle(pass), NULL);
}
/*
* For HTILE we have the following interesting clear words:
* 0xfffff30f: Uncompressed, full depth range, for depth+stencil HTILE
* 0xfffc000f: Uncompressed, full depth range, for depth only HTILE.
* 0xfffffff0: Clear depth to 1.0
* 0x00000000: Clear depth to 0.0
*/
static void
radv_initialize_htile(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
const VkImageSubresourceRange *range)
{
struct radv_cmd_state *state = &cmd_buffer->state;
uint32_t htile_value = radv_get_htile_initial_value(cmd_buffer->device, image);
VkClearDepthStencilValue value = {0};
struct radv_barrier_data barrier = {0};
barrier.layout_transitions.init_mask_ram = 1;
radv_describe_layout_transition(cmd_buffer, &barrier);
/* Transitioning from LAYOUT_UNDEFINED layout not everyone is consistent
* in considering previous rendering work for WAW hazards. */
state->flush_bits |=
radv_src_access_flush(cmd_buffer, VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, image);
if (image->planes[0].surface.has_stencil &&
!(range->aspectMask == (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT))) {
/* Flush caches before performing a separate aspect initialization because it's a
* read-modify-write operation.
*/
state->flush_bits |= radv_dst_access_flush(cmd_buffer, VK_ACCESS_2_SHADER_READ_BIT, image);
}
state->flush_bits |= radv_clear_htile(cmd_buffer, image, range, htile_value);
radv_set_ds_clear_metadata(cmd_buffer, image, range, value, range->aspectMask);
if (radv_image_is_tc_compat_htile(image) && (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT)) {
/* Initialize the TC-compat metada value to 0 because by
* default DB_Z_INFO.RANGE_PRECISION is set to 1, and we only
* need have to conditionally update its value when performing
* a fast depth clear.
*/
radv_set_tc_compat_zrange_metadata(cmd_buffer, image, range, 0);
}
}
static void
radv_handle_depth_image_transition(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
VkImageLayout src_layout, VkImageLayout dst_layout,
unsigned src_queue_mask, unsigned dst_queue_mask,
const VkImageSubresourceRange *range,
struct radv_sample_locations_state *sample_locs)
{
struct radv_device *device = cmd_buffer->device;
if (!radv_htile_enabled(image, range->baseMipLevel))
return;
if (src_layout == VK_IMAGE_LAYOUT_UNDEFINED) {
radv_initialize_htile(cmd_buffer, image, range);
} else if (!radv_layout_is_htile_compressed(device, image, src_layout, src_queue_mask) &&
radv_layout_is_htile_compressed(device, image, dst_layout, dst_queue_mask)) {
radv_initialize_htile(cmd_buffer, image, range);
} else if (radv_layout_is_htile_compressed(device, image, src_layout, src_queue_mask) &&
!radv_layout_is_htile_compressed(device, image, dst_layout, dst_queue_mask)) {
cmd_buffer->state.flush_bits |=
RADV_CMD_FLAG_FLUSH_AND_INV_DB | RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
radv_expand_depth_stencil(cmd_buffer, image, range, sample_locs);
cmd_buffer->state.flush_bits |=
RADV_CMD_FLAG_FLUSH_AND_INV_DB | RADV_CMD_FLAG_FLUSH_AND_INV_DB_META;
}
}
static uint32_t
radv_init_cmask(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
const VkImageSubresourceRange *range, uint32_t value)
{
struct radv_barrier_data barrier = {0};
barrier.layout_transitions.init_mask_ram = 1;
radv_describe_layout_transition(cmd_buffer, &barrier);
return radv_clear_cmask(cmd_buffer, image, range, value);
}
uint32_t
radv_init_fmask(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
const VkImageSubresourceRange *range)
{
static const uint32_t fmask_clear_values[4] = {0x00000000, 0x02020202, 0xE4E4E4E4, 0x76543210};
uint32_t log2_samples = util_logbase2(image->info.samples);
uint32_t value = fmask_clear_values[log2_samples];
struct radv_barrier_data barrier = {0};
barrier.layout_transitions.init_mask_ram = 1;
radv_describe_layout_transition(cmd_buffer, &barrier);
return radv_clear_fmask(cmd_buffer, image, range, value);
}
uint32_t
radv_init_dcc(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
const VkImageSubresourceRange *range, uint32_t value)
{
struct radv_barrier_data barrier = {0};
uint32_t flush_bits = 0;
unsigned size = 0;
barrier.layout_transitions.init_mask_ram = 1;
radv_describe_layout_transition(cmd_buffer, &barrier);
flush_bits |= radv_clear_dcc(cmd_buffer, image, range, value);
if (cmd_buffer->device->physical_device->rad_info.gfx_level == GFX8) {
/* When DCC is enabled with mipmaps, some levels might not
* support fast clears and we have to initialize them as "fully
* expanded".
*/
/* Compute the size of all fast clearable DCC levels. */
for (unsigned i = 0; i < image->planes[0].surface.num_meta_levels; i++) {
struct legacy_surf_dcc_level *dcc_level = &image->planes[0].surface.u.legacy.color.dcc_level[i];
unsigned dcc_fast_clear_size =
dcc_level->dcc_slice_fast_clear_size * image->info.array_size;
if (!dcc_fast_clear_size)
break;
size = dcc_level->dcc_offset + dcc_fast_clear_size;
}
/* Initialize the mipmap levels without DCC. */
if (size != image->planes[0].surface.meta_size) {
flush_bits |= radv_fill_buffer(cmd_buffer, image, image->bindings[0].bo,
radv_buffer_get_va(image->bindings[0].bo) +
image->bindings[0].offset +
image->planes[0].surface.meta_offset + size,
image->planes[0].surface.meta_size - size, 0xffffffff);
}
}
return flush_bits;
}
/**
* Initialize DCC/FMASK/CMASK metadata for a color image.
*/
static void
radv_init_color_image_metadata(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
VkImageLayout src_layout, VkImageLayout dst_layout,
unsigned src_queue_mask, unsigned dst_queue_mask,
const VkImageSubresourceRange *range)
{
uint32_t flush_bits = 0;
/* Transitioning from LAYOUT_UNDEFINED layout not everyone is
* consistent in considering previous rendering work for WAW hazards.
*/
cmd_buffer->state.flush_bits |=
radv_src_access_flush(cmd_buffer, VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT, image);
if (radv_image_has_cmask(image)) {
uint32_t value;
if (cmd_buffer->device->physical_device->rad_info.gfx_level == GFX9) {
/* TODO: Fix clearing CMASK layers on GFX9. */
if (radv_image_is_tc_compat_cmask(image) ||
(radv_image_has_fmask(image) &&
radv_layout_can_fast_clear(cmd_buffer->device, image, range->baseMipLevel, dst_layout,
dst_queue_mask))) {
value = 0xccccccccu;
} else {
value = 0xffffffffu;
}
} else {
static const uint32_t cmask_clear_values[4] = {0xffffffff, 0xdddddddd, 0xeeeeeeee, 0xffffffff};
uint32_t log2_samples = util_logbase2(image->info.samples);
value = cmask_clear_values[log2_samples];
}
flush_bits |= radv_init_cmask(cmd_buffer, image, range, value);
}
if (radv_image_has_fmask(image)) {
flush_bits |= radv_init_fmask(cmd_buffer, image, range);
}
if (radv_dcc_enabled(image, range->baseMipLevel)) {
uint32_t value = 0xffffffffu; /* Fully expanded mode. */
if (radv_layout_dcc_compressed(cmd_buffer->device, image, range->baseMipLevel,
dst_layout, dst_queue_mask)) {
value = 0u;
}
flush_bits |= radv_init_dcc(cmd_buffer, image, range, value);
}
if (radv_image_has_cmask(image) || radv_dcc_enabled(image, range->baseMipLevel)) {
radv_update_fce_metadata(cmd_buffer, image, range, false);
uint32_t color_values[2] = {0};
radv_set_color_clear_metadata(cmd_buffer, image, range, color_values);
}
cmd_buffer->state.flush_bits |= flush_bits;
}
static void
radv_retile_transition(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
VkImageLayout src_layout, VkImageLayout dst_layout, unsigned dst_queue_mask)
{
/* If the image is read-only, we don't have to retile DCC because it can't change. */
if (!(image->vk.usage & RADV_IMAGE_USAGE_WRITE_BITS))
return;
if (src_layout != VK_IMAGE_LAYOUT_PRESENT_SRC_KHR &&
(dst_layout == VK_IMAGE_LAYOUT_PRESENT_SRC_KHR ||
(dst_queue_mask & (1u << RADV_QUEUE_FOREIGN))))
radv_retile_dcc(cmd_buffer, image);
}
static bool
radv_image_need_retile(const struct radv_image *image)
{
return image->planes[0].surface.display_dcc_offset &&
image->planes[0].surface.display_dcc_offset != image->planes[0].surface.meta_offset;
}
/**
* Handle color image transitions for DCC/FMASK/CMASK.
*/
static void
radv_handle_color_image_transition(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
VkImageLayout src_layout, VkImageLayout dst_layout,
unsigned src_queue_mask, unsigned dst_queue_mask,
const VkImageSubresourceRange *range)
{
bool dcc_decompressed = false, fast_clear_flushed = false;
if (!radv_image_has_cmask(image) && !radv_image_has_fmask(image) &&
!radv_dcc_enabled(image, range->baseMipLevel))
return;
if (src_layout == VK_IMAGE_LAYOUT_UNDEFINED) {
radv_init_color_image_metadata(cmd_buffer, image, src_layout, dst_layout,
src_queue_mask, dst_queue_mask, range);
if (radv_image_need_retile(image))
radv_retile_transition(cmd_buffer, image, src_layout, dst_layout, dst_queue_mask);
return;
}
if (radv_dcc_enabled(image, range->baseMipLevel)) {
if (src_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) {
cmd_buffer->state.flush_bits |= radv_init_dcc(cmd_buffer, image, range, 0xffffffffu);
} else if (radv_layout_dcc_compressed(cmd_buffer->device, image, range->baseMipLevel,
src_layout, src_queue_mask) &&
!radv_layout_dcc_compressed(cmd_buffer->device, image, range->baseMipLevel,
dst_layout, dst_queue_mask)) {
radv_decompress_dcc(cmd_buffer, image, range);
dcc_decompressed = true;
} else if (radv_layout_can_fast_clear(cmd_buffer->device, image, range->baseMipLevel,
src_layout, src_queue_mask) &&
!radv_layout_can_fast_clear(cmd_buffer->device, image, range->baseMipLevel,
dst_layout, dst_queue_mask)) {
radv_fast_clear_flush_image_inplace(cmd_buffer, image, range);
fast_clear_flushed = true;
}
if (radv_image_need_retile(image))
radv_retile_transition(cmd_buffer, image, src_layout, dst_layout, dst_queue_mask);
} else if (radv_image_has_cmask(image) || radv_image_has_fmask(image)) {
if (radv_layout_can_fast_clear(cmd_buffer->device, image, range->baseMipLevel,
src_layout, src_queue_mask) &&
!radv_layout_can_fast_clear(cmd_buffer->device, image, range->baseMipLevel,
dst_layout, dst_queue_mask)) {
radv_fast_clear_flush_image_inplace(cmd_buffer, image, range);
fast_clear_flushed = true;
}
}
/* MSAA color decompress. */
if (radv_image_has_fmask(image) &&
(image->vk.usage & (VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT)) &&
radv_layout_fmask_compressed(cmd_buffer->device, image, src_layout, src_queue_mask) &&
!radv_layout_fmask_compressed(cmd_buffer->device, image, dst_layout, dst_queue_mask)) {
if (radv_dcc_enabled(image, range->baseMipLevel) &&
!radv_image_use_dcc_image_stores(cmd_buffer->device, image) && !dcc_decompressed) {
/* A DCC decompress is required before expanding FMASK
* when DCC stores aren't supported to avoid being in
* a state where DCC is compressed and the main
* surface is uncompressed.
*/
radv_decompress_dcc(cmd_buffer, image, range);
} else if (!fast_clear_flushed) {
/* A FMASK decompress is required before expanding
* FMASK.
*/
radv_fast_clear_flush_image_inplace(cmd_buffer, image, range);
}
struct radv_barrier_data barrier = {0};
barrier.layout_transitions.fmask_color_expand = 1;
radv_describe_layout_transition(cmd_buffer, &barrier);
radv_expand_fmask_image_inplace(cmd_buffer, image, range);
}
}
static void
radv_handle_image_transition(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
VkImageLayout src_layout, VkImageLayout dst_layout,
uint32_t src_family_index, uint32_t dst_family_index,
const VkImageSubresourceRange *range,
struct radv_sample_locations_state *sample_locs)
{
enum radv_queue_family src_qf = vk_queue_to_radv(cmd_buffer->device->physical_device, src_family_index);
enum radv_queue_family dst_qf = vk_queue_to_radv(cmd_buffer->device->physical_device, dst_family_index);
if (image->exclusive && src_family_index != dst_family_index) {
/* This is an acquire or a release operation and there will be
* a corresponding release/acquire. Do the transition in the
* most flexible queue. */
assert(src_qf == cmd_buffer->qf ||
dst_qf == cmd_buffer->qf);
if (src_family_index == VK_QUEUE_FAMILY_EXTERNAL || src_family_index == VK_QUEUE_FAMILY_FOREIGN_EXT)
return;
if (cmd_buffer->qf == RADV_QUEUE_TRANSFER)
return;
if (cmd_buffer->qf == RADV_QUEUE_COMPUTE &&
(src_qf == RADV_QUEUE_GENERAL || dst_qf == RADV_QUEUE_GENERAL))
return;
}
unsigned src_queue_mask =
radv_image_queue_family_mask(image, src_qf, cmd_buffer->qf);
unsigned dst_queue_mask =
radv_image_queue_family_mask(image, dst_qf, cmd_buffer->qf);
if (src_layout == dst_layout && src_queue_mask == dst_queue_mask)
return;
if (vk_format_has_depth(image->vk.format)) {
radv_handle_depth_image_transition(cmd_buffer, image, src_layout, dst_layout,
src_queue_mask, dst_queue_mask, range, sample_locs);
} else {
radv_handle_color_image_transition(cmd_buffer, image, src_layout, dst_layout,
src_queue_mask, dst_queue_mask, range);
}
}
static void
radv_cp_dma_wait_for_stages(struct radv_cmd_buffer *cmd_buffer, VkPipelineStageFlags2 stage_mask)
{
/* Make sure CP DMA is idle because the driver might have performed a DMA operation for copying a
* buffer (or a MSAA image using FMASK). Note that updating a buffer is considered a clear
* operation but it might also use a CP DMA copy in some rare situations. Other operations using
* a CP DMA clear are implicitly synchronized (see CP_DMA_SYNC).
*/
if (stage_mask & (VK_PIPELINE_STAGE_2_COPY_BIT | VK_PIPELINE_STAGE_2_CLEAR_BIT |
VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT | VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT |
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT))
si_cp_dma_wait_for_idle(cmd_buffer);
}
static void
radv_barrier(struct radv_cmd_buffer *cmd_buffer, const VkDependencyInfo *dep_info,
enum rgp_barrier_reason reason)
{
enum radv_cmd_flush_bits src_flush_bits = 0;
enum radv_cmd_flush_bits dst_flush_bits = 0;
VkPipelineStageFlags2 src_stage_mask = 0;
VkPipelineStageFlags2 dst_stage_mask = 0;
if (cmd_buffer->state.subpass)
radv_mark_noncoherent_rb(cmd_buffer);
radv_describe_barrier_start(cmd_buffer, reason);
for (uint32_t i = 0; i < dep_info->memoryBarrierCount; i++) {
src_stage_mask |= dep_info->pMemoryBarriers[i].srcStageMask;
src_flush_bits |=
radv_src_access_flush(cmd_buffer, dep_info->pMemoryBarriers[i].srcAccessMask, NULL);
dst_stage_mask |= dep_info->pMemoryBarriers[i].dstStageMask;
dst_flush_bits |=
radv_dst_access_flush(cmd_buffer, dep_info->pMemoryBarriers[i].dstAccessMask, NULL);
}
for (uint32_t i = 0; i < dep_info->bufferMemoryBarrierCount; i++) {
src_stage_mask |= dep_info->pBufferMemoryBarriers[i].srcStageMask;
src_flush_bits |=
radv_src_access_flush(cmd_buffer, dep_info->pBufferMemoryBarriers[i].srcAccessMask, NULL);
dst_stage_mask |= dep_info->pBufferMemoryBarriers[i].dstStageMask;
dst_flush_bits |=
radv_dst_access_flush(cmd_buffer, dep_info->pBufferMemoryBarriers[i].dstAccessMask, NULL);
}
for (uint32_t i = 0; i < dep_info->imageMemoryBarrierCount; i++) {
RADV_FROM_HANDLE(radv_image, image, dep_info->pImageMemoryBarriers[i].image);
src_stage_mask |= dep_info->pImageMemoryBarriers[i].srcStageMask;
src_flush_bits |=
radv_src_access_flush(cmd_buffer, dep_info->pImageMemoryBarriers[i].srcAccessMask, image);
dst_stage_mask |= dep_info->pImageMemoryBarriers[i].dstStageMask;
dst_flush_bits |=
radv_dst_access_flush(cmd_buffer, dep_info->pImageMemoryBarriers[i].dstAccessMask, image);
}
/* The Vulkan spec 1.1.98 says:
*
* "An execution dependency with only
* VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT in the destination stage mask
* will only prevent that stage from executing in subsequently
* submitted commands. As this stage does not perform any actual
* execution, this is not observable - in effect, it does not delay
* processing of subsequent commands. Similarly an execution dependency
* with only VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT in the source stage mask
* will effectively not wait for any prior commands to complete."
*/
if (dst_stage_mask != VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT)
radv_stage_flush(cmd_buffer, src_stage_mask);
cmd_buffer->state.flush_bits |= src_flush_bits;
radv_ace_internal_barrier(cmd_buffer, src_stage_mask, 0);
for (uint32_t i = 0; i < dep_info->imageMemoryBarrierCount; i++) {
RADV_FROM_HANDLE(radv_image, image, dep_info->pImageMemoryBarriers[i].image);
const struct VkSampleLocationsInfoEXT *sample_locs_info =
vk_find_struct_const(dep_info->pImageMemoryBarriers[i].pNext, SAMPLE_LOCATIONS_INFO_EXT);
struct radv_sample_locations_state sample_locations;
if (sample_locs_info) {
assert(image->vk.create_flags & VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT);
sample_locations.per_pixel = sample_locs_info->sampleLocationsPerPixel;
sample_locations.grid_size = sample_locs_info->sampleLocationGridSize;
sample_locations.count = sample_locs_info->sampleLocationsCount;
typed_memcpy(&sample_locations.locations[0], sample_locs_info->pSampleLocations,
sample_locs_info->sampleLocationsCount);
}
radv_handle_image_transition(
cmd_buffer, image, dep_info->pImageMemoryBarriers[i].oldLayout,
dep_info->pImageMemoryBarriers[i].newLayout,
dep_info->pImageMemoryBarriers[i].srcQueueFamilyIndex,
dep_info->pImageMemoryBarriers[i].dstQueueFamilyIndex,
&dep_info->pImageMemoryBarriers[i].subresourceRange, sample_locs_info ? &sample_locations : NULL);
}
radv_ace_internal_barrier(cmd_buffer, 0, dst_stage_mask);
radv_cp_dma_wait_for_stages(cmd_buffer, src_stage_mask);
cmd_buffer->state.flush_bits |= dst_flush_bits;
radv_describe_barrier_end(cmd_buffer);
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdPipelineBarrier2(VkCommandBuffer commandBuffer,
const VkDependencyInfo *pDependencyInfo)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
radv_barrier(cmd_buffer, pDependencyInfo, RGP_BARRIER_EXTERNAL_CMD_PIPELINE_BARRIER);
}
static void
write_event(struct radv_cmd_buffer *cmd_buffer, struct radv_event *event,
VkPipelineStageFlags2 stageMask, unsigned value)
{
struct radeon_cmdbuf *cs = cmd_buffer->cs;
uint64_t va = radv_buffer_get_va(event->bo);
si_emit_cache_flush(cmd_buffer);
radv_cs_add_buffer(cmd_buffer->device->ws, cs, event->bo);
ASSERTED unsigned cdw_max = radeon_check_space(cmd_buffer->device->ws, cs, 28);
if (stageMask & (VK_PIPELINE_STAGE_2_COPY_BIT |
VK_PIPELINE_STAGE_2_RESOLVE_BIT |
VK_PIPELINE_STAGE_2_BLIT_BIT |
VK_PIPELINE_STAGE_2_CLEAR_BIT)) {
/* Be conservative for now. */
stageMask |= VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT;
}
/* Flags that only require a top-of-pipe event. */
VkPipelineStageFlags2 top_of_pipe_flags = VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT;
/* Flags that only require a post-index-fetch event. */
VkPipelineStageFlags2 post_index_fetch_flags =
top_of_pipe_flags | VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT | VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT;
/* Flags that only require signaling post PS. */
VkPipelineStageFlags2 post_ps_flags =
post_index_fetch_flags | VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT |
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT |
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT | VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT |
VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_NV |
VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT |
VK_PIPELINE_STAGE_2_PRE_RASTERIZATION_SHADERS_BIT |
VK_PIPELINE_STAGE_2_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR |
VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT;
/* Flags that only require signaling post CS. */
VkPipelineStageFlags2 post_cs_flags = VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT;
radv_cp_dma_wait_for_stages(cmd_buffer, stageMask);
if (!(stageMask & ~top_of_pipe_flags)) {
/* Just need to sync the PFP engine. */
radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 3, 0));
radeon_emit(cs, S_370_DST_SEL(V_370_MEM) | S_370_WR_CONFIRM(1) | S_370_ENGINE_SEL(V_370_PFP));
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit(cs, value);
} else if (!(stageMask & ~post_index_fetch_flags)) {
/* Sync ME because PFP reads index and indirect buffers. */
radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 3, 0));
radeon_emit(cs, S_370_DST_SEL(V_370_MEM) | S_370_WR_CONFIRM(1) | S_370_ENGINE_SEL(V_370_ME));
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit(cs, value);
} else {
unsigned event_type;
if (!(stageMask & ~post_ps_flags)) {
/* Sync previous fragment shaders. */
event_type = V_028A90_PS_DONE;
} else if (!(stageMask & ~post_cs_flags)) {
/* Sync previous compute shaders. */
event_type = V_028A90_CS_DONE;
} else {
/* Otherwise, sync all prior GPU work. */
event_type = V_028A90_BOTTOM_OF_PIPE_TS;
}
si_cs_emit_write_event_eop(cs, cmd_buffer->device->physical_device->rad_info.gfx_level,
radv_cmd_buffer_uses_mec(cmd_buffer), event_type, 0,
EOP_DST_SEL_MEM, EOP_DATA_SEL_VALUE_32BIT, va, value,
cmd_buffer->gfx9_eop_bug_va);
}
assert(cmd_buffer->cs->cdw <= cdw_max);
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdSetEvent2(VkCommandBuffer commandBuffer, VkEvent _event,
const VkDependencyInfo* pDependencyInfo)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_event, event, _event);
VkPipelineStageFlags2 src_stage_mask = 0;
for (uint32_t i = 0; i < pDependencyInfo->memoryBarrierCount; i++)
src_stage_mask |= pDependencyInfo->pMemoryBarriers[i].srcStageMask;
for (uint32_t i = 0; i < pDependencyInfo->bufferMemoryBarrierCount; i++)
src_stage_mask |= pDependencyInfo->pBufferMemoryBarriers[i].srcStageMask;
for (uint32_t i = 0; i < pDependencyInfo->imageMemoryBarrierCount; i++)
src_stage_mask |= pDependencyInfo->pImageMemoryBarriers[i].srcStageMask;
write_event(cmd_buffer, event, src_stage_mask, 1);
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdResetEvent2(VkCommandBuffer commandBuffer, VkEvent _event,
VkPipelineStageFlags2 stageMask)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_event, event, _event);
write_event(cmd_buffer, event, stageMask, 0);
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdWaitEvents2(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent *pEvents,
const VkDependencyInfo* pDependencyInfos)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radeon_cmdbuf *cs = cmd_buffer->cs;
for (unsigned i = 0; i < eventCount; ++i) {
RADV_FROM_HANDLE(radv_event, event, pEvents[i]);
uint64_t va = radv_buffer_get_va(event->bo);
radv_cs_add_buffer(cmd_buffer->device->ws, cs, event->bo);
ASSERTED unsigned cdw_max = radeon_check_space(cmd_buffer->device->ws, cs, 7);
radv_cp_wait_mem(cs, WAIT_REG_MEM_EQUAL, va, 1, 0xffffffff);
assert(cmd_buffer->cs->cdw <= cdw_max);
}
radv_barrier(cmd_buffer, pDependencyInfos, RGP_BARRIER_EXTERNAL_CMD_WAIT_EVENTS);
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdSetDeviceMask(VkCommandBuffer commandBuffer, uint32_t deviceMask)
{
/* No-op */
}
/* VK_EXT_conditional_rendering */
VKAPI_ATTR void VKAPI_CALL
radv_CmdBeginConditionalRenderingEXT(
VkCommandBuffer commandBuffer,
const VkConditionalRenderingBeginInfoEXT *pConditionalRenderingBegin)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_buffer, buffer, pConditionalRenderingBegin->buffer);
struct radeon_cmdbuf *cs = cmd_buffer->cs;
unsigned pred_op = PREDICATION_OP_BOOL32;
bool draw_visible = true;
uint64_t va;
va = radv_buffer_get_va(buffer->bo) + buffer->offset + pConditionalRenderingBegin->offset;
/* By default, if the 32-bit value at offset in buffer memory is zero,
* then the rendering commands are discarded, otherwise they are
* executed as normal. If the inverted flag is set, all commands are
* discarded if the value is non zero.
*/
if (pConditionalRenderingBegin->flags & VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT) {
draw_visible = false;
}
si_emit_cache_flush(cmd_buffer);
if (cmd_buffer->qf == RADV_QUEUE_GENERAL &&
!cmd_buffer->device->physical_device->rad_info.has_32bit_predication) {
uint64_t pred_value = 0, pred_va;
unsigned pred_offset;
/* From the Vulkan spec 1.1.107:
*
* "If the 32-bit value at offset in buffer memory is zero,
* then the rendering commands are discarded, otherwise they
* are executed as normal. If the value of the predicate in
* buffer memory changes while conditional rendering is
* active, the rendering commands may be discarded in an
* implementation-dependent way. Some implementations may
* latch the value of the predicate upon beginning conditional
* rendering while others may read it before every rendering
* command."
*
* But, the AMD hardware treats the predicate as a 64-bit
* value which means we need a workaround in the driver.
* Luckily, it's not required to support if the value changes
* when predication is active.
*
* The workaround is as follows:
* 1) allocate a 64-value in the upload BO and initialize it
* to 0
* 2) copy the 32-bit predicate value to the upload BO
* 3) use the new allocated VA address for predication
*
* Based on the conditionalrender demo, it's faster to do the
* COPY_DATA in ME (+ sync PFP) instead of PFP.
*/
radv_cmd_buffer_upload_data(cmd_buffer, 8, &pred_value, &pred_offset);
pred_va = radv_buffer_get_va(cmd_buffer->upload.upload_bo) + pred_offset;
radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_SRC_MEM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) |
COPY_DATA_WR_CONFIRM);
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit(cs, pred_va);
radeon_emit(cs, pred_va >> 32);
radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
radeon_emit(cs, 0);
va = pred_va;
pred_op = PREDICATION_OP_BOOL64;
}
/* MEC doesn't support predication, we emulate it elsewhere. */
if (!radv_cmd_buffer_uses_mec(cmd_buffer)) {
si_emit_set_predication_state(cmd_buffer, draw_visible, pred_op, va);
}
/* Store conditional rendering user info. */
cmd_buffer->state.predicating = true;
cmd_buffer->state.predication_type = draw_visible;
cmd_buffer->state.predication_op = pred_op;
cmd_buffer->state.predication_va = va;
cmd_buffer->mec_inv_pred_emitted = false;
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdEndConditionalRenderingEXT(VkCommandBuffer commandBuffer)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
/* MEC doesn't support predication, no need to emit anything here. */
if (!radv_cmd_buffer_uses_mec(cmd_buffer)) {
si_emit_set_predication_state(cmd_buffer, false, 0, 0);
}
/* Reset conditional rendering user info. */
cmd_buffer->state.predicating = false;
cmd_buffer->state.predication_type = -1;
cmd_buffer->state.predication_op = 0;
cmd_buffer->state.predication_va = 0;
cmd_buffer->mec_inv_pred_emitted = false;
}
/* VK_EXT_transform_feedback */
VKAPI_ATTR void VKAPI_CALL
radv_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer, uint32_t firstBinding,
uint32_t bindingCount, const VkBuffer *pBuffers,
const VkDeviceSize *pOffsets, const VkDeviceSize *pSizes)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_streamout_binding *sb = cmd_buffer->streamout_bindings;
uint8_t enabled_mask = 0;
assert(firstBinding + bindingCount <= MAX_SO_BUFFERS);
for (uint32_t i = 0; i < bindingCount; i++) {
uint32_t idx = firstBinding + i;
sb[idx].buffer = radv_buffer_from_handle(pBuffers[i]);
sb[idx].offset = pOffsets[i];
if (!pSizes || pSizes[i] == VK_WHOLE_SIZE) {
sb[idx].size = sb[idx].buffer->vk.size - sb[idx].offset;
} else {
sb[idx].size = pSizes[i];
}
radv_cs_add_buffer(cmd_buffer->device->ws, cmd_buffer->cs, sb[idx].buffer->bo);
enabled_mask |= 1 << idx;
}
cmd_buffer->state.streamout.enabled_mask |= enabled_mask;
cmd_buffer->state.dirty |= RADV_CMD_DIRTY_STREAMOUT_BUFFER;
}
bool
radv_is_streamout_enabled(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_streamout_state *so = &cmd_buffer->state.streamout;
/* Streamout must be enabled for the PRIMITIVES_GENERATED query to work. */
return (so->streamout_enabled || cmd_buffer->state.prims_gen_query_enabled) &&
!cmd_buffer->state.suspend_streamout;
}
void
radv_emit_streamout_enable(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_streamout_state *so = &cmd_buffer->state.streamout;
struct radv_graphics_pipeline *pipeline = cmd_buffer->state.graphics_pipeline;
bool streamout_enabled = radv_is_streamout_enabled(cmd_buffer);
struct radeon_cmdbuf *cs = cmd_buffer->cs;
uint32_t enabled_stream_buffers_mask = 0;
if (pipeline && pipeline->streamout_shader) {
enabled_stream_buffers_mask = pipeline->streamout_shader->info.so.enabled_stream_buffers_mask;
}
radeon_set_context_reg_seq(cs, R_028B94_VGT_STRMOUT_CONFIG, 2);
radeon_emit(cs, S_028B94_STREAMOUT_0_EN(streamout_enabled) | S_028B94_RAST_STREAM(0) |
S_028B94_STREAMOUT_1_EN(streamout_enabled) |
S_028B94_STREAMOUT_2_EN(streamout_enabled) |
S_028B94_STREAMOUT_3_EN(streamout_enabled));
radeon_emit(cs, so->hw_enabled_mask & enabled_stream_buffers_mask);
cmd_buffer->state.context_roll_without_scissor_emitted = true;
}
static void
radv_set_streamout_enable(struct radv_cmd_buffer *cmd_buffer, bool enable)
{
struct radv_streamout_state *so = &cmd_buffer->state.streamout;
bool old_streamout_enabled = radv_is_streamout_enabled(cmd_buffer);
uint32_t old_hw_enabled_mask = so->hw_enabled_mask;
so->streamout_enabled = enable;
so->hw_enabled_mask = so->enabled_mask | (so->enabled_mask << 4) | (so->enabled_mask << 8) |
(so->enabled_mask << 12);
if (!cmd_buffer->device->physical_device->use_ngg_streamout &&
((old_streamout_enabled != radv_is_streamout_enabled(cmd_buffer)) ||
(old_hw_enabled_mask != so->hw_enabled_mask)))
radv_emit_streamout_enable(cmd_buffer);
if (cmd_buffer->device->physical_device->use_ngg_streamout) {
cmd_buffer->gds_needed = true;
cmd_buffer->gds_oa_needed = true;
}
}
static void
radv_flush_vgt_streamout(struct radv_cmd_buffer *cmd_buffer)
{
struct radeon_cmdbuf *cs = cmd_buffer->cs;
unsigned reg_strmout_cntl;
/* The register is at different places on different ASICs. */
if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX9) {
reg_strmout_cntl = R_0300FC_CP_STRMOUT_CNTL;
radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 3, 0));
radeon_emit(cs, S_370_DST_SEL(V_370_MEM_MAPPED_REGISTER) | S_370_ENGINE_SEL(V_370_ME));
radeon_emit(cs, R_0300FC_CP_STRMOUT_CNTL >> 2);
radeon_emit(cs, 0);
radeon_emit(cs, 0);
} else if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX7) {
reg_strmout_cntl = R_0300FC_CP_STRMOUT_CNTL;
radeon_set_uconfig_reg(cs, reg_strmout_cntl, 0);
} else {
reg_strmout_cntl = R_0084FC_CP_STRMOUT_CNTL;
radeon_set_config_reg(cs, reg_strmout_cntl, 0);
}
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_SO_VGTSTREAMOUT_FLUSH) | EVENT_INDEX(0));
radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, 0));
radeon_emit(cs,
WAIT_REG_MEM_EQUAL); /* wait until the register is equal to the reference value */
radeon_emit(cs, reg_strmout_cntl >> 2); /* register */
radeon_emit(cs, 0);
radeon_emit(cs, S_0084FC_OFFSET_UPDATE_DONE(1)); /* reference value */
radeon_emit(cs, S_0084FC_OFFSET_UPDATE_DONE(1)); /* mask */
radeon_emit(cs, 4); /* poll interval */
}
static void
radv_emit_streamout_begin(struct radv_cmd_buffer *cmd_buffer, uint32_t firstCounterBuffer,
uint32_t counterBufferCount, const VkBuffer *pCounterBuffers,
const VkDeviceSize *pCounterBufferOffsets)
{
struct radv_streamout_binding *sb = cmd_buffer->streamout_bindings;
struct radv_streamout_state *so = &cmd_buffer->state.streamout;
struct radv_graphics_pipeline *pipeline = cmd_buffer->state.graphics_pipeline;
struct radv_shader_info *info = &pipeline->streamout_shader->info;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
radv_flush_vgt_streamout(cmd_buffer);
assert(firstCounterBuffer + counterBufferCount <= MAX_SO_BUFFERS);
u_foreach_bit(i, so->enabled_mask)
{
int32_t counter_buffer_idx = i - firstCounterBuffer;
if (counter_buffer_idx >= 0 && counter_buffer_idx >= counterBufferCount)
counter_buffer_idx = -1;
/* AMD GCN binds streamout buffers as shader resources.
* VGT only counts primitives and tells the shader through
* SGPRs what to do.
*/
radeon_set_context_reg_seq(cs, R_028AD0_VGT_STRMOUT_BUFFER_SIZE_0 + 16 * i, 2);
radeon_emit(cs, sb[i].size >> 2); /* BUFFER_SIZE (in DW) */
radeon_emit(cs, info->so.strides[i]); /* VTX_STRIDE (in DW) */
cmd_buffer->state.context_roll_without_scissor_emitted = true;
if (counter_buffer_idx >= 0 && pCounterBuffers && pCounterBuffers[counter_buffer_idx]) {
/* The array of counter buffers is optional. */
RADV_FROM_HANDLE(radv_buffer, buffer, pCounterBuffers[counter_buffer_idx]);
uint64_t va = radv_buffer_get_va(buffer->bo);
uint64_t counter_buffer_offset = 0;
if (pCounterBufferOffsets)
counter_buffer_offset = pCounterBufferOffsets[counter_buffer_idx];
va += buffer->offset + counter_buffer_offset;
/* Append */
radeon_emit(cs, PKT3(PKT3_STRMOUT_BUFFER_UPDATE, 4, 0));
radeon_emit(cs, STRMOUT_SELECT_BUFFER(i) | STRMOUT_DATA_TYPE(1) | /* offset in bytes */
STRMOUT_OFFSET_SOURCE(STRMOUT_OFFSET_FROM_MEM)); /* control */
radeon_emit(cs, 0); /* unused */
radeon_emit(cs, 0); /* unused */
radeon_emit(cs, va); /* src address lo */
radeon_emit(cs, va >> 32); /* src address hi */
radv_cs_add_buffer(cmd_buffer->device->ws, cs, buffer->bo);
} else {
/* Start from the beginning. */
radeon_emit(cs, PKT3(PKT3_STRMOUT_BUFFER_UPDATE, 4, 0));
radeon_emit(cs, STRMOUT_SELECT_BUFFER(i) | STRMOUT_DATA_TYPE(1) | /* offset in bytes */
STRMOUT_OFFSET_SOURCE(STRMOUT_OFFSET_FROM_PACKET)); /* control */
radeon_emit(cs, 0); /* unused */
radeon_emit(cs, 0); /* unused */
radeon_emit(cs, 0); /* unused */
radeon_emit(cs, 0); /* unused */
}
}
radv_set_streamout_enable(cmd_buffer, true);
}
static void
gfx10_emit_streamout_begin(struct radv_cmd_buffer *cmd_buffer, uint32_t firstCounterBuffer,
uint32_t counterBufferCount, const VkBuffer *pCounterBuffers,
const VkDeviceSize *pCounterBufferOffsets)
{
struct radv_streamout_state *so = &cmd_buffer->state.streamout;
unsigned last_target = util_last_bit(so->enabled_mask) - 1;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
assert(cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX10);
assert(firstCounterBuffer + counterBufferCount <= MAX_SO_BUFFERS);
/* Sync because the next streamout operation will overwrite GDS and we
* have to make sure it's idle.
* TODO: Improve by tracking if there is a streamout operation in
* flight.
*/
cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VS_PARTIAL_FLUSH;
si_emit_cache_flush(cmd_buffer);
u_foreach_bit(i, so->enabled_mask)
{
int32_t counter_buffer_idx = i - firstCounterBuffer;
if (counter_buffer_idx >= 0 && counter_buffer_idx >= counterBufferCount)
counter_buffer_idx = -1;
bool append =
counter_buffer_idx >= 0 && pCounterBuffers && pCounterBuffers[counter_buffer_idx];
uint64_t va = 0;
if (append) {
RADV_FROM_HANDLE(radv_buffer, buffer, pCounterBuffers[counter_buffer_idx]);
uint64_t counter_buffer_offset = 0;
if (pCounterBufferOffsets)
counter_buffer_offset = pCounterBufferOffsets[counter_buffer_idx];
va += radv_buffer_get_va(buffer->bo);
va += buffer->offset + counter_buffer_offset;
radv_cs_add_buffer(cmd_buffer->device->ws, cs, buffer->bo);
}
radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, 0));
radeon_emit(cs, S_411_SRC_SEL(append ? V_411_SRC_ADDR_TC_L2 : V_411_DATA) |
S_411_DST_SEL(V_411_GDS) | S_411_CP_SYNC(i == last_target));
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit(cs, 4 * i); /* destination in GDS */
radeon_emit(cs, 0);
radeon_emit(cs, S_415_BYTE_COUNT_GFX9(4) | S_415_DISABLE_WR_CONFIRM_GFX9(i != last_target));
}
radv_set_streamout_enable(cmd_buffer, true);
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer, uint32_t firstCounterBuffer,
uint32_t counterBufferCount, const VkBuffer *pCounterBuffers,
const VkDeviceSize *pCounterBufferOffsets)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
if (cmd_buffer->device->physical_device->use_ngg_streamout) {
gfx10_emit_streamout_begin(cmd_buffer, firstCounterBuffer, counterBufferCount,
pCounterBuffers, pCounterBufferOffsets);
} else {
radv_emit_streamout_begin(cmd_buffer, firstCounterBuffer, counterBufferCount, pCounterBuffers,
pCounterBufferOffsets);
}
}
static void
radv_emit_streamout_end(struct radv_cmd_buffer *cmd_buffer, uint32_t firstCounterBuffer,
uint32_t counterBufferCount, const VkBuffer *pCounterBuffers,
const VkDeviceSize *pCounterBufferOffsets)
{
struct radv_streamout_state *so = &cmd_buffer->state.streamout;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
radv_flush_vgt_streamout(cmd_buffer);
assert(firstCounterBuffer + counterBufferCount <= MAX_SO_BUFFERS);
u_foreach_bit(i, so->enabled_mask)
{
int32_t counter_buffer_idx = i - firstCounterBuffer;
if (counter_buffer_idx >= 0 && counter_buffer_idx >= counterBufferCount)
counter_buffer_idx = -1;
if (counter_buffer_idx >= 0 && pCounterBuffers && pCounterBuffers[counter_buffer_idx]) {
/* The array of counters buffer is optional. */
RADV_FROM_HANDLE(radv_buffer, buffer, pCounterBuffers[counter_buffer_idx]);
uint64_t va = radv_buffer_get_va(buffer->bo);
uint64_t counter_buffer_offset = 0;
if (pCounterBufferOffsets)
counter_buffer_offset = pCounterBufferOffsets[counter_buffer_idx];
va += buffer->offset + counter_buffer_offset;
radeon_emit(cs, PKT3(PKT3_STRMOUT_BUFFER_UPDATE, 4, 0));
radeon_emit(cs, STRMOUT_SELECT_BUFFER(i) | STRMOUT_DATA_TYPE(1) | /* offset in bytes */
STRMOUT_OFFSET_SOURCE(STRMOUT_OFFSET_NONE) |
STRMOUT_STORE_BUFFER_FILLED_SIZE); /* control */
radeon_emit(cs, va); /* dst address lo */
radeon_emit(cs, va >> 32); /* dst address hi */
radeon_emit(cs, 0); /* unused */
radeon_emit(cs, 0); /* unused */
radv_cs_add_buffer(cmd_buffer->device->ws, cs, buffer->bo);
}
/* Deactivate transform feedback by zeroing the buffer size.
* The counters (primitives generated, primitives emitted) may
* be enabled even if there is not buffer bound. This ensures
* that the primitives-emitted query won't increment.
*/
radeon_set_context_reg(cs, R_028AD0_VGT_STRMOUT_BUFFER_SIZE_0 + 16 * i, 0);
cmd_buffer->state.context_roll_without_scissor_emitted = true;
}
radv_set_streamout_enable(cmd_buffer, false);
}
static void
gfx10_emit_streamout_end(struct radv_cmd_buffer *cmd_buffer, uint32_t firstCounterBuffer,
uint32_t counterBufferCount, const VkBuffer *pCounterBuffers,
const VkDeviceSize *pCounterBufferOffsets)
{
struct radv_streamout_state *so = &cmd_buffer->state.streamout;
struct radeon_cmdbuf *cs = cmd_buffer->cs;
assert(cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX10);
assert(firstCounterBuffer + counterBufferCount <= MAX_SO_BUFFERS);
u_foreach_bit(i, so->enabled_mask)
{
int32_t counter_buffer_idx = i - firstCounterBuffer;
if (counter_buffer_idx >= 0 && counter_buffer_idx >= counterBufferCount)
counter_buffer_idx = -1;
if (counter_buffer_idx >= 0 && pCounterBuffers && pCounterBuffers[counter_buffer_idx]) {
/* The array of counters buffer is optional. */
RADV_FROM_HANDLE(radv_buffer, buffer, pCounterBuffers[counter_buffer_idx]);
uint64_t va = radv_buffer_get_va(buffer->bo);
uint64_t counter_buffer_offset = 0;
if (pCounterBufferOffsets)
counter_buffer_offset = pCounterBufferOffsets[counter_buffer_idx];
va += buffer->offset + counter_buffer_offset;
si_cs_emit_write_event_eop(cs, cmd_buffer->device->physical_device->rad_info.gfx_level,
radv_cmd_buffer_uses_mec(cmd_buffer), V_028A90_PS_DONE, 0,
EOP_DST_SEL_TC_L2, EOP_DATA_SEL_GDS, va, EOP_DATA_GDS(i, 1), 0);
radv_cs_add_buffer(cmd_buffer->device->ws, cs, buffer->bo);
}
}
radv_set_streamout_enable(cmd_buffer, false);
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer, uint32_t firstCounterBuffer,
uint32_t counterBufferCount, const VkBuffer *pCounterBuffers,
const VkDeviceSize *pCounterBufferOffsets)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
if (cmd_buffer->device->physical_device->use_ngg_streamout) {
gfx10_emit_streamout_end(cmd_buffer, firstCounterBuffer, counterBufferCount, pCounterBuffers,
pCounterBufferOffsets);
} else {
radv_emit_streamout_end(cmd_buffer, firstCounterBuffer, counterBufferCount, pCounterBuffers,
pCounterBufferOffsets);
}
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer, uint32_t instanceCount,
uint32_t firstInstance, VkBuffer _counterBuffer,
VkDeviceSize counterBufferOffset, uint32_t counterOffset,
uint32_t vertexStride)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_buffer, counterBuffer, _counterBuffer);
struct radv_draw_info info;
info.count = 0;
info.instance_count = instanceCount;
info.first_instance = firstInstance;
info.strmout_buffer = counterBuffer;
info.strmout_buffer_offset = counterBufferOffset;
info.stride = vertexStride;
info.indexed = false;
info.indirect = NULL;
if (!radv_before_draw(cmd_buffer, &info, 1))
return;
struct VkMultiDrawInfoEXT minfo = { 0, 0 };
radv_emit_direct_draw_packets(cmd_buffer, &info, 1, &minfo, S_0287F0_USE_OPAQUE(1), 0);
radv_after_draw(cmd_buffer);
}
/* VK_AMD_buffer_marker */
VKAPI_ATTR void VKAPI_CALL
radv_CmdWriteBufferMarker2AMD(VkCommandBuffer commandBuffer, VkPipelineStageFlags2 stage,
VkBuffer dstBuffer, VkDeviceSize dstOffset, uint32_t marker)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_buffer, buffer, dstBuffer);
struct radeon_cmdbuf *cs = cmd_buffer->cs;
uint64_t va = radv_buffer_get_va(buffer->bo) + buffer->offset + dstOffset;
si_emit_cache_flush(cmd_buffer);
ASSERTED unsigned cdw_max = radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, 12);
if (!(stage & ~VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT)) {
radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_IMM) | COPY_DATA_DST_SEL(COPY_DATA_DST_MEM) |
COPY_DATA_WR_CONFIRM);
radeon_emit(cs, marker);
radeon_emit(cs, 0);
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
} else {
si_cs_emit_write_event_eop(cs, cmd_buffer->device->physical_device->rad_info.gfx_level,
radv_cmd_buffer_uses_mec(cmd_buffer), V_028A90_BOTTOM_OF_PIPE_TS,
0, EOP_DST_SEL_MEM, EOP_DATA_SEL_VALUE_32BIT, va, marker,
cmd_buffer->gfx9_eop_bug_va);
}
assert(cmd_buffer->cs->cdw <= cdw_max);
}
void
radv_CmdBindPipelineShaderGroupNV(VkCommandBuffer commandBuffer,
VkPipelineBindPoint pipelineBindPoint, VkPipeline pipeline,
uint32_t groupIndex)
{
fprintf(stderr, "radv: unimplemented vkCmdBindPipelineShaderGroupNV\n");
abort();
}