mesa/src/amd/vulkan/radv_pipeline.c

6549 lines
252 KiB
C

/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "nir/nir.h"
#include "nir/nir_builder.h"
#include "spirv/nir_spirv.h"
#include "util/disk_cache.h"
#include "util/mesa-sha1.h"
#include "util/os_time.h"
#include "util/u_atomic.h"
#include "radv_cs.h"
#include "radv_debug.h"
#include "radv_meta.h"
#include "radv_private.h"
#include "radv_shader.h"
#include "radv_shader_args.h"
#include "vk_pipeline.h"
#include "vk_util.h"
#include "util/u_debug.h"
#include "ac_binary.h"
#include "ac_nir.h"
#include "ac_shader_util.h"
#include "aco_interface.h"
#include "sid.h"
#include "vk_format.h"
struct radv_blend_state {
uint32_t blend_enable_4bit;
uint32_t need_src_alpha;
uint32_t cb_target_mask;
uint32_t cb_target_enabled_4bit;
uint32_t spi_shader_col_format;
uint32_t col_format_is_int8;
uint32_t col_format_is_int10;
uint32_t col_format_is_float32;
uint32_t cb_shader_mask;
uint32_t commutative_4bit;
bool mrt0_is_dual_src;
};
struct radv_depth_stencil_state {
uint32_t db_render_control;
uint32_t db_render_override2;
};
struct radv_dsa_order_invariance {
/* Whether the final result in Z/S buffers is guaranteed to be
* invariant under changes to the order in which fragments arrive.
*/
bool zs;
/* Whether the set of fragments that pass the combined Z/S test is
* guaranteed to be invariant under changes to the order in which
* fragments arrive.
*/
bool pass_set;
};
static bool
radv_is_raster_enabled(const struct radv_graphics_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
return !pCreateInfo->pRasterizationState->rasterizerDiscardEnable ||
(pipeline->dynamic_states & RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE);
}
static bool
radv_is_static_vrs_enabled(const struct radv_graphics_pipeline *pipeline,
const struct vk_graphics_pipeline_state *state)
{
if (!state->fsr)
return false;
return state->fsr->fragment_size.width != 1 || state->fsr->fragment_size.height != 1 ||
state->fsr->combiner_ops[0] != VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR ||
state->fsr->combiner_ops[1] != VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR;
}
static bool
radv_is_vrs_enabled(const struct radv_graphics_pipeline *pipeline,
const struct vk_graphics_pipeline_state *state)
{
return radv_is_static_vrs_enabled(pipeline, state) ||
(pipeline->dynamic_states & RADV_DYNAMIC_FRAGMENT_SHADING_RATE);
}
static bool
radv_pipeline_has_ds_attachments(const struct vk_render_pass_state *rp)
{
return rp->depth_attachment_format != VK_FORMAT_UNDEFINED ||
rp->stencil_attachment_format != VK_FORMAT_UNDEFINED;
}
static bool
radv_pipeline_has_color_attachments(const struct vk_render_pass_state *rp)
{
for (uint32_t i = 0; i < rp->color_attachment_count; ++i) {
if (rp->color_attachment_formats[i] != VK_FORMAT_UNDEFINED)
return true;
}
return false;
}
static bool
radv_pipeline_has_ngg(const struct radv_graphics_pipeline *pipeline)
{
struct radv_shader *shader = pipeline->base.shaders[pipeline->last_vgt_api_stage];
return shader->info.is_ngg;
}
bool
radv_pipeline_has_ngg_passthrough(const struct radv_graphics_pipeline *pipeline)
{
assert(radv_pipeline_has_ngg(pipeline));
struct radv_shader *shader = pipeline->base.shaders[pipeline->last_vgt_api_stage];
return shader->info.is_ngg_passthrough;
}
bool
radv_pipeline_has_gs_copy_shader(const struct radv_pipeline *pipeline)
{
return !!pipeline->gs_copy_shader;
}
static struct radv_pipeline_slab *
radv_pipeline_slab_create(struct radv_device *device, struct radv_pipeline *pipeline,
uint32_t code_size)
{
struct radv_pipeline_slab *slab;
slab = calloc(1, sizeof(*slab));
if (!slab)
return NULL;
slab->ref_count = 1;
slab->alloc = radv_alloc_shader_memory(device, code_size, pipeline);
if (!slab->alloc) {
free(slab);
return NULL;
}
return slab;
}
void
radv_pipeline_slab_destroy(struct radv_device *device, struct radv_pipeline_slab *slab)
{
if (!p_atomic_dec_zero(&slab->ref_count))
return;
radv_free_shader_memory(device, slab->alloc);
free(slab);
}
void
radv_pipeline_destroy(struct radv_device *device, struct radv_pipeline *pipeline,
const VkAllocationCallbacks *allocator)
{
if (pipeline->type == RADV_PIPELINE_GRAPHICS) {
struct radv_graphics_pipeline *graphics_pipeline = radv_pipeline_to_graphics(pipeline);
if (graphics_pipeline->ps_epilog)
radv_shader_part_unref(device, graphics_pipeline->ps_epilog);
vk_free(&device->vk.alloc, graphics_pipeline->state_data);
} else if (pipeline->type == RADV_PIPELINE_RAY_TRACING) {
struct radv_ray_tracing_pipeline *rt_pipeline = radv_pipeline_to_ray_tracing(pipeline);
free(rt_pipeline->group_handles);
free(rt_pipeline->stack_sizes);
} else if (pipeline->type == RADV_PIPELINE_LIBRARY) {
struct radv_library_pipeline *library_pipeline = radv_pipeline_to_library(pipeline);
ralloc_free(library_pipeline->ctx);
} else if (pipeline->type == RADV_PIPELINE_GRAPHICS_LIB) {
struct radv_graphics_lib_pipeline *gfx_pipeline_lib =
radv_pipeline_to_graphics_lib(pipeline);
radv_pipeline_layout_finish(device, &gfx_pipeline_lib->layout);
for (unsigned i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
ralloc_free(pipeline->retained_shaders[i].nir);
}
if (gfx_pipeline_lib->base.ps_epilog)
radv_shader_part_unref(device, gfx_pipeline_lib->base.ps_epilog);
vk_free(&device->vk.alloc, gfx_pipeline_lib->base.state_data);
}
if (pipeline->slab)
radv_pipeline_slab_destroy(device, pipeline->slab);
for (unsigned i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i)
if (pipeline->shaders[i])
radv_shader_unref(device, pipeline->shaders[i]);
if (pipeline->gs_copy_shader)
radv_shader_unref(device, pipeline->gs_copy_shader);
if (pipeline->cs.buf)
free(pipeline->cs.buf);
vk_object_base_finish(&pipeline->base);
vk_free2(&device->vk.alloc, allocator, pipeline);
}
VKAPI_ATTR void VKAPI_CALL
radv_DestroyPipeline(VkDevice _device, VkPipeline _pipeline,
const VkAllocationCallbacks *pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
if (!_pipeline)
return;
radv_pipeline_destroy(device, pipeline, pAllocator);
}
uint32_t
radv_get_hash_flags(const struct radv_device *device, bool stats)
{
uint32_t hash_flags = 0;
if (device->physical_device->use_ngg_culling)
hash_flags |= RADV_HASH_SHADER_USE_NGG_CULLING;
if (device->instance->perftest_flags & RADV_PERFTEST_EMULATE_RT)
hash_flags |= RADV_HASH_SHADER_EMULATE_RT;
if (device->physical_device->rt_wave_size == 64)
hash_flags |= RADV_HASH_SHADER_RT_WAVE64;
if (device->physical_device->cs_wave_size == 32)
hash_flags |= RADV_HASH_SHADER_CS_WAVE32;
if (device->physical_device->ps_wave_size == 32)
hash_flags |= RADV_HASH_SHADER_PS_WAVE32;
if (device->physical_device->ge_wave_size == 32)
hash_flags |= RADV_HASH_SHADER_GE_WAVE32;
if (device->physical_device->use_llvm)
hash_flags |= RADV_HASH_SHADER_LLVM;
if (stats)
hash_flags |= RADV_HASH_SHADER_KEEP_STATISTICS;
if (device->robust_buffer_access) /* forces per-attribute vertex descriptors */
hash_flags |= RADV_HASH_SHADER_ROBUST_BUFFER_ACCESS;
if (device->robust_buffer_access2) /* affects load/store vectorizer */
hash_flags |= RADV_HASH_SHADER_ROBUST_BUFFER_ACCESS2;
if (device->instance->debug_flags & RADV_DEBUG_SPLIT_FMA)
hash_flags |= RADV_HASH_SHADER_SPLIT_FMA;
if (device->instance->debug_flags & RADV_DEBUG_NO_FMASK)
hash_flags |= RADV_HASH_SHADER_NO_FMASK;
return hash_flags;
}
static void
radv_pipeline_init_scratch(const struct radv_device *device, struct radv_pipeline *pipeline)
{
unsigned scratch_bytes_per_wave = 0;
unsigned max_waves = 0;
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
if (pipeline->shaders[i] && pipeline->shaders[i]->config.scratch_bytes_per_wave) {
unsigned max_stage_waves = device->scratch_waves;
scratch_bytes_per_wave =
MAX2(scratch_bytes_per_wave, pipeline->shaders[i]->config.scratch_bytes_per_wave);
max_stage_waves =
MIN2(max_stage_waves, 4 * device->physical_device->rad_info.num_cu *
radv_get_max_waves(device, pipeline->shaders[i], i));
max_waves = MAX2(max_waves, max_stage_waves);
}
}
pipeline->scratch_bytes_per_wave = scratch_bytes_per_wave;
pipeline->max_waves = max_waves;
}
static uint32_t
si_translate_blend_function(VkBlendOp op)
{
switch (op) {
case VK_BLEND_OP_ADD:
return V_028780_COMB_DST_PLUS_SRC;
case VK_BLEND_OP_SUBTRACT:
return V_028780_COMB_SRC_MINUS_DST;
case VK_BLEND_OP_REVERSE_SUBTRACT:
return V_028780_COMB_DST_MINUS_SRC;
case VK_BLEND_OP_MIN:
return V_028780_COMB_MIN_DST_SRC;
case VK_BLEND_OP_MAX:
return V_028780_COMB_MAX_DST_SRC;
default:
return 0;
}
}
static uint32_t
si_translate_blend_factor(enum amd_gfx_level gfx_level, VkBlendFactor factor)
{
switch (factor) {
case VK_BLEND_FACTOR_ZERO:
return V_028780_BLEND_ZERO;
case VK_BLEND_FACTOR_ONE:
return V_028780_BLEND_ONE;
case VK_BLEND_FACTOR_SRC_COLOR:
return V_028780_BLEND_SRC_COLOR;
case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
return V_028780_BLEND_ONE_MINUS_SRC_COLOR;
case VK_BLEND_FACTOR_DST_COLOR:
return V_028780_BLEND_DST_COLOR;
case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR:
return V_028780_BLEND_ONE_MINUS_DST_COLOR;
case VK_BLEND_FACTOR_SRC_ALPHA:
return V_028780_BLEND_SRC_ALPHA;
case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
return V_028780_BLEND_ONE_MINUS_SRC_ALPHA;
case VK_BLEND_FACTOR_DST_ALPHA:
return V_028780_BLEND_DST_ALPHA;
case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
return V_028780_BLEND_ONE_MINUS_DST_ALPHA;
case VK_BLEND_FACTOR_CONSTANT_COLOR:
return gfx_level >= GFX11 ? V_028780_BLEND_CONSTANT_COLOR_GFX11
: V_028780_BLEND_CONSTANT_COLOR_GFX6;
case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR:
return gfx_level >= GFX11 ? V_028780_BLEND_ONE_MINUS_CONSTANT_COLOR_GFX11
: V_028780_BLEND_ONE_MINUS_CONSTANT_COLOR_GFX6;
case VK_BLEND_FACTOR_CONSTANT_ALPHA:
return gfx_level >= GFX11 ? V_028780_BLEND_CONSTANT_ALPHA_GFX11
: V_028780_BLEND_CONSTANT_ALPHA_GFX6;
case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA:
return gfx_level >= GFX11 ? V_028780_BLEND_ONE_MINUS_CONSTANT_ALPHA_GFX11
: V_028780_BLEND_ONE_MINUS_CONSTANT_ALPHA_GFX6;
case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
return V_028780_BLEND_SRC_ALPHA_SATURATE;
case VK_BLEND_FACTOR_SRC1_COLOR:
return gfx_level >= GFX11 ? V_028780_BLEND_SRC1_COLOR_GFX11 : V_028780_BLEND_SRC1_COLOR_GFX6;
case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
return gfx_level >= GFX11 ? V_028780_BLEND_INV_SRC1_COLOR_GFX11
: V_028780_BLEND_INV_SRC1_COLOR_GFX6;
case VK_BLEND_FACTOR_SRC1_ALPHA:
return gfx_level >= GFX11 ? V_028780_BLEND_SRC1_ALPHA_GFX11 : V_028780_BLEND_SRC1_ALPHA_GFX6;
case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
return gfx_level >= GFX11 ? V_028780_BLEND_INV_SRC1_ALPHA_GFX11
: V_028780_BLEND_INV_SRC1_ALPHA_GFX6;
default:
return 0;
}
}
static uint32_t
si_translate_blend_opt_function(VkBlendOp op)
{
switch (op) {
case VK_BLEND_OP_ADD:
return V_028760_OPT_COMB_ADD;
case VK_BLEND_OP_SUBTRACT:
return V_028760_OPT_COMB_SUBTRACT;
case VK_BLEND_OP_REVERSE_SUBTRACT:
return V_028760_OPT_COMB_REVSUBTRACT;
case VK_BLEND_OP_MIN:
return V_028760_OPT_COMB_MIN;
case VK_BLEND_OP_MAX:
return V_028760_OPT_COMB_MAX;
default:
return V_028760_OPT_COMB_BLEND_DISABLED;
}
}
static uint32_t
si_translate_blend_opt_factor(VkBlendFactor factor, bool is_alpha)
{
switch (factor) {
case VK_BLEND_FACTOR_ZERO:
return V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_ALL;
case VK_BLEND_FACTOR_ONE:
return V_028760_BLEND_OPT_PRESERVE_ALL_IGNORE_NONE;
case VK_BLEND_FACTOR_SRC_COLOR:
return is_alpha ? V_028760_BLEND_OPT_PRESERVE_A1_IGNORE_A0
: V_028760_BLEND_OPT_PRESERVE_C1_IGNORE_C0;
case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
return is_alpha ? V_028760_BLEND_OPT_PRESERVE_A0_IGNORE_A1
: V_028760_BLEND_OPT_PRESERVE_C0_IGNORE_C1;
case VK_BLEND_FACTOR_SRC_ALPHA:
return V_028760_BLEND_OPT_PRESERVE_A1_IGNORE_A0;
case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
return V_028760_BLEND_OPT_PRESERVE_A0_IGNORE_A1;
case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
return is_alpha ? V_028760_BLEND_OPT_PRESERVE_ALL_IGNORE_NONE
: V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0;
default:
return V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE;
}
}
/**
* Get rid of DST in the blend factors by commuting the operands:
* func(src * DST, dst * 0) ---> func(src * 0, dst * SRC)
*/
static void
si_blend_remove_dst(VkBlendOp *func, VkBlendFactor *src_factor, VkBlendFactor *dst_factor,
VkBlendFactor expected_dst, VkBlendFactor replacement_src)
{
if (*src_factor == expected_dst && *dst_factor == VK_BLEND_FACTOR_ZERO) {
*src_factor = VK_BLEND_FACTOR_ZERO;
*dst_factor = replacement_src;
/* Commuting the operands requires reversing subtractions. */
if (*func == VK_BLEND_OP_SUBTRACT)
*func = VK_BLEND_OP_REVERSE_SUBTRACT;
else if (*func == VK_BLEND_OP_REVERSE_SUBTRACT)
*func = VK_BLEND_OP_SUBTRACT;
}
}
static bool
si_blend_factor_uses_dst(VkBlendFactor factor)
{
return factor == VK_BLEND_FACTOR_DST_COLOR || factor == VK_BLEND_FACTOR_DST_ALPHA ||
factor == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
factor == VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA ||
factor == VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR;
}
static bool
is_dual_src(VkBlendFactor factor)
{
switch (factor) {
case VK_BLEND_FACTOR_SRC1_COLOR:
case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
case VK_BLEND_FACTOR_SRC1_ALPHA:
case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
return true;
default:
return false;
}
}
static unsigned
radv_choose_spi_color_format(const struct radv_device *device, VkFormat vk_format,
bool blend_enable, bool blend_need_alpha)
{
const struct util_format_description *desc = vk_format_description(vk_format);
bool use_rbplus = device->physical_device->rad_info.rbplus_allowed;
struct ac_spi_color_formats formats = {0};
unsigned format, ntype, swap;
format = radv_translate_colorformat(vk_format);
ntype = radv_translate_color_numformat(vk_format, desc,
vk_format_get_first_non_void_channel(vk_format));
swap = radv_translate_colorswap(vk_format, false);
ac_choose_spi_color_formats(format, swap, ntype, false, use_rbplus, &formats);
if (blend_enable && blend_need_alpha)
return formats.blend_alpha;
else if (blend_need_alpha)
return formats.alpha;
else if (blend_enable)
return formats.blend;
else
return formats.normal;
}
static bool
format_is_int8(VkFormat format)
{
const struct util_format_description *desc = vk_format_description(format);
int channel = vk_format_get_first_non_void_channel(format);
return channel >= 0 && desc->channel[channel].pure_integer && desc->channel[channel].size == 8;
}
static bool
format_is_int10(VkFormat format)
{
const struct util_format_description *desc = vk_format_description(format);
if (desc->nr_channels != 4)
return false;
for (unsigned i = 0; i < 4; i++) {
if (desc->channel[i].pure_integer && desc->channel[i].size == 10)
return true;
}
return false;
}
static bool
format_is_float32(VkFormat format)
{
const struct util_format_description *desc = vk_format_description(format);
int channel = vk_format_get_first_non_void_channel(format);
return channel >= 0 &&
desc->channel[channel].type == UTIL_FORMAT_TYPE_FLOAT && desc->channel[channel].size == 32;
}
static unsigned
radv_compact_spi_shader_col_format(const struct radv_shader *ps,
const struct radv_blend_state *blend)
{
unsigned spi_shader_col_format = blend->spi_shader_col_format;
unsigned value = 0, num_mrts = 0;
unsigned i, num_targets;
/* Make sure to clear color attachments without exports because MRT holes are removed during
* compilation for optimal performance.
*/
spi_shader_col_format &= ps->info.ps.colors_written;
/* Compute the number of MRTs. */
num_targets = DIV_ROUND_UP(util_last_bit(spi_shader_col_format), 4);
/* Remove holes in spi_shader_col_format. */
for (i = 0; i < num_targets; i++) {
unsigned spi_format = (spi_shader_col_format >> (i * 4)) & 0xf;
if (spi_format) {
value |= spi_format << (num_mrts * 4);
num_mrts++;
}
}
return value;
}
static void
radv_pipeline_compute_spi_color_formats(const struct radv_graphics_pipeline *pipeline,
struct radv_blend_state *blend,
const struct vk_graphics_pipeline_state *state,
bool has_ps_epilog)
{
unsigned col_format = 0, is_int8 = 0, is_int10 = 0, is_float32 = 0;
for (unsigned i = 0; i < state->rp->color_attachment_count; ++i) {
unsigned cf;
VkFormat fmt = state->rp->color_attachment_formats[i];
if (fmt == VK_FORMAT_UNDEFINED ||
(!(pipeline->dynamic_states & RADV_DYNAMIC_COLOR_WRITE_MASK) &&
!(blend->cb_target_mask & (0xfu << (i * 4))))) {
cf = V_028714_SPI_SHADER_ZERO;
} else {
/* Assume blend is enabled when the state is dynamic. This might select a suboptimal format
* in some situations but changing color export formats dynamically is hard.
*/
bool blend_enable = (pipeline->dynamic_states & RADV_DYNAMIC_COLOR_BLEND_ENABLE) ||
blend->blend_enable_4bit & (0xfu << (i * 4));
cf = radv_choose_spi_color_format(pipeline->base.device, fmt, blend_enable,
blend->need_src_alpha & (1 << i));
if (format_is_int8(fmt))
is_int8 |= 1 << i;
if (format_is_int10(fmt))
is_int10 |= 1 << i;
if (format_is_float32(fmt))
is_float32 |= 1 << i;
}
col_format |= cf << (4 * i);
}
if (!(col_format & 0xf) && blend->need_src_alpha & (1 << 0)) {
/* When a subpass doesn't have any color attachments, write the
* alpha channel of MRT0 when alpha coverage is enabled because
* the depth attachment needs it.
*/
col_format |= V_028714_SPI_SHADER_32_AR;
}
if (has_ps_epilog) {
/* Do not compact MRTs when the pipeline uses a PS epilog because we can't detect color
* attachments without exports. Without compaction and if the i-th target format is set, all
* previous target formats must be non-zero to avoid hangs.
*/
unsigned num_targets = (util_last_bit(col_format) + 3) / 4;
for (unsigned i = 0; i < num_targets; i++) {
if (!(col_format & (0xfu << (i * 4)))) {
col_format |= V_028714_SPI_SHADER_32_R << (i * 4);
}
}
}
/* The output for dual source blending should have the same format as
* the first output.
*/
if (blend->mrt0_is_dual_src) {
assert(!(col_format >> 4));
col_format |= (col_format & 0xf) << 4;
}
blend->cb_shader_mask = ac_get_cb_shader_mask(col_format);
blend->spi_shader_col_format = col_format;
blend->col_format_is_int8 = is_int8;
blend->col_format_is_int10 = is_int10;
blend->col_format_is_float32 = is_float32;
}
/*
* Ordered so that for each i,
* radv_format_meta_fs_key(radv_fs_key_format_exemplars[i]) == i.
*/
const VkFormat radv_fs_key_format_exemplars[NUM_META_FS_KEYS] = {
VK_FORMAT_R32_SFLOAT,
VK_FORMAT_R32G32_SFLOAT,
VK_FORMAT_R8G8B8A8_UNORM,
VK_FORMAT_R16G16B16A16_UNORM,
VK_FORMAT_R16G16B16A16_SNORM,
VK_FORMAT_R16G16B16A16_UINT,
VK_FORMAT_R16G16B16A16_SINT,
VK_FORMAT_R32G32B32A32_SFLOAT,
VK_FORMAT_R8G8B8A8_UINT,
VK_FORMAT_R8G8B8A8_SINT,
VK_FORMAT_A2R10G10B10_UINT_PACK32,
VK_FORMAT_A2R10G10B10_SINT_PACK32,
};
unsigned
radv_format_meta_fs_key(struct radv_device *device, VkFormat format)
{
unsigned col_format = radv_choose_spi_color_format(device, format, false, false);
assert(col_format != V_028714_SPI_SHADER_32_AR);
bool is_int8 = format_is_int8(format);
bool is_int10 = format_is_int10(format);
if (col_format == V_028714_SPI_SHADER_UINT16_ABGR && is_int8)
return 8;
else if (col_format == V_028714_SPI_SHADER_SINT16_ABGR && is_int8)
return 9;
else if (col_format == V_028714_SPI_SHADER_UINT16_ABGR && is_int10)
return 10;
else if (col_format == V_028714_SPI_SHADER_SINT16_ABGR && is_int10)
return 11;
else {
if (col_format >= V_028714_SPI_SHADER_32_AR)
--col_format; /* Skip V_028714_SPI_SHADER_32_AR since there is no such VkFormat */
--col_format; /* Skip V_028714_SPI_SHADER_ZERO */
return col_format;
}
}
static void
radv_blend_check_commutativity(struct radv_blend_state *blend, VkBlendOp op, VkBlendFactor src,
VkBlendFactor dst, unsigned chanmask)
{
/* Src factor is allowed when it does not depend on Dst. */
static const uint32_t src_allowed =
(1u << VK_BLEND_FACTOR_ONE) | (1u << VK_BLEND_FACTOR_SRC_COLOR) |
(1u << VK_BLEND_FACTOR_SRC_ALPHA) | (1u << VK_BLEND_FACTOR_SRC_ALPHA_SATURATE) |
(1u << VK_BLEND_FACTOR_CONSTANT_COLOR) | (1u << VK_BLEND_FACTOR_CONSTANT_ALPHA) |
(1u << VK_BLEND_FACTOR_SRC1_COLOR) | (1u << VK_BLEND_FACTOR_SRC1_ALPHA) |
(1u << VK_BLEND_FACTOR_ZERO) | (1u << VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR) |
(1u << VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA) |
(1u << VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR) |
(1u << VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA) |
(1u << VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR) | (1u << VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA);
if (dst == VK_BLEND_FACTOR_ONE && (src_allowed & (1u << src))) {
/* Addition is commutative, but floating point addition isn't
* associative: subtle changes can be introduced via different
* rounding. Be conservative, only enable for min and max.
*/
if (op == VK_BLEND_OP_MAX || op == VK_BLEND_OP_MIN)
blend->commutative_4bit |= chanmask;
}
}
static bool
radv_can_enable_dual_src(const struct vk_color_blend_attachment_state *att)
{
VkBlendOp eqRGB = att->color_blend_op;
VkBlendFactor srcRGB = att->src_color_blend_factor;
VkBlendFactor dstRGB = att->dst_color_blend_factor;
VkBlendOp eqA = att->alpha_blend_op;
VkBlendFactor srcA = att->src_alpha_blend_factor;
VkBlendFactor dstA = att->dst_alpha_blend_factor;
bool eqRGB_minmax = eqRGB == VK_BLEND_OP_MIN || eqRGB == VK_BLEND_OP_MAX;
bool eqA_minmax = eqA == VK_BLEND_OP_MIN || eqA == VK_BLEND_OP_MAX;
if (!eqRGB_minmax && (is_dual_src(srcRGB) || is_dual_src(dstRGB)))
return true;
if (!eqA_minmax && (is_dual_src(srcA) || is_dual_src(dstA)))
return true;
return false;
}
static struct radv_blend_state
radv_pipeline_init_blend_state(struct radv_graphics_pipeline *pipeline,
const struct vk_graphics_pipeline_state *state,
bool has_ps_epilog)
{
const struct radv_device *device = pipeline->base.device;
struct radv_blend_state blend = {0};
bool disable_dual_quad = false;
const enum amd_gfx_level gfx_level = device->physical_device->rad_info.gfx_level;
int i;
if (state->ms && ((pipeline->dynamic_states & RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE) ||
state->ms->alpha_to_coverage_enable)) {
/* When alpha to coverage is enabled, the driver needs to select a color export format with
* alpha. When this state is dynamic, always select a format with alpha because it's hard to
* change color export formats dynamically (note that it's suboptimal).
*/
blend.need_src_alpha |= 0x1;
}
blend.cb_target_mask = 0;
if (state->cb) {
for (i = 0; i < state->cb->attachment_count; i++) {
unsigned blend_cntl = 0;
unsigned srcRGB_opt, dstRGB_opt, srcA_opt, dstA_opt;
VkBlendOp eqRGB = state->cb->attachments[i].color_blend_op;
VkBlendFactor srcRGB = state->cb->attachments[i].src_color_blend_factor;
VkBlendFactor dstRGB = state->cb->attachments[i].dst_color_blend_factor;
VkBlendOp eqA = state->cb->attachments[i].alpha_blend_op;
VkBlendFactor srcA = state->cb->attachments[i].src_alpha_blend_factor;
VkBlendFactor dstA = state->cb->attachments[i].dst_alpha_blend_factor;
if (!(pipeline->dynamic_states & RADV_DYNAMIC_COLOR_WRITE_MASK) &&
!state->cb->attachments[i].write_mask)
continue;
/* Ignore other blend targets if dual-source blending
* is enabled to prevent wrong behaviour.
*/
if (blend.mrt0_is_dual_src)
continue;
blend.cb_target_mask |= (unsigned)state->cb->attachments[i].write_mask << (4 * i);
blend.cb_target_enabled_4bit |= 0xfu << (4 * i);
if (!(pipeline->dynamic_states & RADV_DYNAMIC_COLOR_BLEND_ENABLE) &&
!state->cb->attachments[i].blend_enable) {
pipeline->cb_blend_control[i] = blend_cntl;
continue;
}
if (i == 0 && radv_can_enable_dual_src(&state->cb->attachments[i])) {
blend.mrt0_is_dual_src = true;
}
if (eqRGB == VK_BLEND_OP_MIN || eqRGB == VK_BLEND_OP_MAX) {
srcRGB = VK_BLEND_FACTOR_ONE;
dstRGB = VK_BLEND_FACTOR_ONE;
}
if (eqA == VK_BLEND_OP_MIN || eqA == VK_BLEND_OP_MAX) {
srcA = VK_BLEND_FACTOR_ONE;
dstA = VK_BLEND_FACTOR_ONE;
}
radv_blend_check_commutativity(&blend, eqRGB, srcRGB, dstRGB, 0x7u << (4 * i));
radv_blend_check_commutativity(&blend, eqA, srcA, dstA, 0x8u << (4 * i));
/* Blending optimizations for RB+.
* These transformations don't change the behavior.
*
* First, get rid of DST in the blend factors:
* func(src * DST, dst * 0) ---> func(src * 0, dst * SRC)
*/
si_blend_remove_dst(&eqRGB, &srcRGB, &dstRGB, VK_BLEND_FACTOR_DST_COLOR,
VK_BLEND_FACTOR_SRC_COLOR);
si_blend_remove_dst(&eqA, &srcA, &dstA, VK_BLEND_FACTOR_DST_COLOR,
VK_BLEND_FACTOR_SRC_COLOR);
si_blend_remove_dst(&eqA, &srcA, &dstA, VK_BLEND_FACTOR_DST_ALPHA,
VK_BLEND_FACTOR_SRC_ALPHA);
/* Look up the ideal settings from tables. */
srcRGB_opt = si_translate_blend_opt_factor(srcRGB, false);
dstRGB_opt = si_translate_blend_opt_factor(dstRGB, false);
srcA_opt = si_translate_blend_opt_factor(srcA, true);
dstA_opt = si_translate_blend_opt_factor(dstA, true);
/* Handle interdependencies. */
if (si_blend_factor_uses_dst(srcRGB))
dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE;
if (si_blend_factor_uses_dst(srcA))
dstA_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE;
if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE &&
(dstRGB == VK_BLEND_FACTOR_ZERO || dstRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE))
dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0;
/* Set the final value. */
pipeline->sx_mrt_blend_opt[i] =
S_028760_COLOR_SRC_OPT(srcRGB_opt) | S_028760_COLOR_DST_OPT(dstRGB_opt) |
S_028760_COLOR_COMB_FCN(si_translate_blend_opt_function(eqRGB)) |
S_028760_ALPHA_SRC_OPT(srcA_opt) | S_028760_ALPHA_DST_OPT(dstA_opt) |
S_028760_ALPHA_COMB_FCN(si_translate_blend_opt_function(eqA));
blend_cntl |= S_028780_COLOR_COMB_FCN(si_translate_blend_function(eqRGB));
blend_cntl |= S_028780_COLOR_SRCBLEND(si_translate_blend_factor(gfx_level, srcRGB));
blend_cntl |= S_028780_COLOR_DESTBLEND(si_translate_blend_factor(gfx_level, dstRGB));
if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) {
blend_cntl |= S_028780_SEPARATE_ALPHA_BLEND(1);
blend_cntl |= S_028780_ALPHA_COMB_FCN(si_translate_blend_function(eqA));
blend_cntl |= S_028780_ALPHA_SRCBLEND(si_translate_blend_factor(gfx_level, srcA));
blend_cntl |= S_028780_ALPHA_DESTBLEND(si_translate_blend_factor(gfx_level, dstA));
}
pipeline->cb_blend_control[i] = blend_cntl;
blend.blend_enable_4bit |= 0xfu << (i * 4);
if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA || dstRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
srcRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA ||
dstRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA)
blend.need_src_alpha |= 1 << i;
}
}
if (device->physical_device->rad_info.has_rbplus) {
/* Disable RB+ blend optimizations for dual source blending. */
if (blend.mrt0_is_dual_src) {
for (i = 0; i < 8; i++) {
pipeline->sx_mrt_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_NONE) |
S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_NONE);
}
}
/* RB+ doesn't work with dual source blending, logic op and
* RESOLVE.
*/
if (blend.mrt0_is_dual_src ||
(state->cb && !(pipeline->dynamic_states & RADV_DYNAMIC_LOGIC_OP_ENABLE) && state->cb->logic_op_enable) ||
(device->physical_device->rad_info.gfx_level >= GFX11 && blend.blend_enable_4bit))
disable_dual_quad = true;
}
if (state->rp)
radv_pipeline_compute_spi_color_formats(pipeline, &blend, state, has_ps_epilog);
pipeline->disable_dual_quad = disable_dual_quad;
return blend;
}
static unsigned
radv_pipeline_color_samples(const struct vk_graphics_pipeline_state *state)
{
if (radv_pipeline_has_color_attachments(state->rp)) {
unsigned color_attachment_samples = 0;
for (uint32_t i = 0; i < state->rp->color_attachment_count; i++) {
if (state->rp->color_attachment_formats[i] != VK_FORMAT_UNDEFINED) {
color_attachment_samples =
MAX2(color_attachment_samples, state->rp->color_attachment_samples[i]);
}
}
if (color_attachment_samples)
return color_attachment_samples;
}
return state->ms ? state->ms->rasterization_samples : 1;
}
static unsigned
radv_pipeline_depth_samples(const struct vk_graphics_pipeline_state *state)
{
if (state->rp->depth_stencil_attachment_samples && radv_pipeline_has_ds_attachments(state->rp)) {
return state->rp->depth_stencil_attachment_samples;
}
return state->ms ? state->ms->rasterization_samples : 1;
}
static bool
radv_is_depth_write_enabled(const struct vk_depth_stencil_state *ds)
{
return ds->depth.test_enable && ds->depth.write_enable &&
ds->depth.compare_op != VK_COMPARE_OP_NEVER;
}
static bool
radv_writes_stencil(const struct vk_stencil_test_face_state *face)
{
return face->write_mask &&
(face->op.fail != VK_STENCIL_OP_KEEP || face->op.pass != VK_STENCIL_OP_KEEP ||
face->op.depth_fail != VK_STENCIL_OP_KEEP);
}
static bool
radv_is_stencil_write_enabled(const struct vk_depth_stencil_state *ds)
{
return ds->stencil.test_enable &&
(radv_writes_stencil(&ds->stencil.front) || radv_writes_stencil(&ds->stencil.back));
}
static bool
radv_order_invariant_stencil_op(VkStencilOp op)
{
/* REPLACE is normally order invariant, except when the stencil
* reference value is written by the fragment shader. Tracking this
* interaction does not seem worth the effort, so be conservative.
*/
return op != VK_STENCIL_OP_INCREMENT_AND_CLAMP && op != VK_STENCIL_OP_DECREMENT_AND_CLAMP &&
op != VK_STENCIL_OP_REPLACE;
}
static bool
radv_order_invariant_stencil_state(const struct vk_stencil_test_face_state *face)
{
/* Compute whether, assuming Z writes are disabled, this stencil state
* is order invariant in the sense that the set of passing fragments as
* well as the final stencil buffer result does not depend on the order
* of fragments.
*/
return !face->write_mask ||
/* The following assumes that Z writes are disabled. */
(face->op.compare == VK_COMPARE_OP_ALWAYS &&
radv_order_invariant_stencil_op(face->op.pass) &&
radv_order_invariant_stencil_op(face->op.depth_fail)) ||
(face->op.compare == VK_COMPARE_OP_NEVER &&
radv_order_invariant_stencil_op(face->op.fail));
}
static bool
radv_pipeline_has_dynamic_ds_states(const struct radv_graphics_pipeline *pipeline)
{
return !!(pipeline->dynamic_states & (RADV_DYNAMIC_DEPTH_TEST_ENABLE |
RADV_DYNAMIC_DEPTH_WRITE_ENABLE |
RADV_DYNAMIC_DEPTH_COMPARE_OP |
RADV_DYNAMIC_STENCIL_TEST_ENABLE |
RADV_DYNAMIC_STENCIL_WRITE_MASK |
RADV_DYNAMIC_STENCIL_OP));
}
static bool
radv_pipeline_out_of_order_rast(struct radv_graphics_pipeline *pipeline,
const struct radv_blend_state *blend,
const struct vk_graphics_pipeline_state *state)
{
unsigned colormask = blend->cb_target_enabled_4bit;
if (!pipeline->base.device->physical_device->out_of_order_rast_allowed)
return false;
/* Be conservative if a logic operation is enabled with color buffers. */
if (colormask && (pipeline->dynamic_states & RADV_DYNAMIC_COLOR_BLEND_ENABLE) &&
((pipeline->dynamic_states & RADV_DYNAMIC_LOGIC_OP_ENABLE) || state->cb->logic_op_enable))
return false;
/* Be conservative if an extended dynamic depth/stencil state is
* enabled because the driver can't update out-of-order rasterization
* dynamically.
*/
if (radv_pipeline_has_dynamic_ds_states(pipeline))
return false;
/* Default depth/stencil invariance when no attachment is bound. */
struct radv_dsa_order_invariance dsa_order_invariant = {.zs = true, .pass_set = true};
if (state->ds) {
bool has_stencil = state->rp->stencil_attachment_format != VK_FORMAT_UNDEFINED;
struct radv_dsa_order_invariance order_invariance[2];
struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT];
/* Compute depth/stencil order invariance in order to know if
* it's safe to enable out-of-order.
*/
bool zfunc_is_ordered = state->ds->depth.compare_op == VK_COMPARE_OP_NEVER ||
state->ds->depth.compare_op == VK_COMPARE_OP_LESS ||
state->ds->depth.compare_op == VK_COMPARE_OP_LESS_OR_EQUAL ||
state->ds->depth.compare_op == VK_COMPARE_OP_GREATER ||
state->ds->depth.compare_op == VK_COMPARE_OP_GREATER_OR_EQUAL;
bool depth_write_enabled = radv_is_depth_write_enabled(state->ds);
bool stencil_write_enabled = radv_is_stencil_write_enabled(state->ds);
bool ds_write_enabled = depth_write_enabled || stencil_write_enabled;
bool nozwrite_and_order_invariant_stencil =
!ds_write_enabled ||
(!depth_write_enabled && radv_order_invariant_stencil_state(&state->ds->stencil.front) &&
radv_order_invariant_stencil_state(&state->ds->stencil.back));
order_invariance[1].zs = nozwrite_and_order_invariant_stencil ||
(!stencil_write_enabled && zfunc_is_ordered);
order_invariance[0].zs = !depth_write_enabled || zfunc_is_ordered;
order_invariance[1].pass_set =
nozwrite_and_order_invariant_stencil ||
(!stencil_write_enabled &&
(state->ds->depth.compare_op == VK_COMPARE_OP_ALWAYS ||
state->ds->depth.compare_op == VK_COMPARE_OP_NEVER));
order_invariance[0].pass_set =
!depth_write_enabled ||
(state->ds->depth.compare_op == VK_COMPARE_OP_ALWAYS ||
state->ds->depth.compare_op == VK_COMPARE_OP_NEVER);
dsa_order_invariant = order_invariance[has_stencil];
if (!dsa_order_invariant.zs)
return false;
/* The set of PS invocations is always order invariant,
* except when early Z/S tests are requested.
*/
if (ps && ps->info.ps.writes_memory && ps->info.ps.early_fragment_test &&
!dsa_order_invariant.pass_set)
return false;
/* Determine if out-of-order rasterization should be disabled when occlusion queries are used. */
pipeline->disable_out_of_order_rast_for_occlusion = !dsa_order_invariant.pass_set;
}
/* No color buffers are enabled for writing. */
if (!colormask)
return true;
unsigned blendmask = colormask & blend->blend_enable_4bit;
if (blendmask) {
/* Only commutative blending. */
if (blendmask & ~blend->commutative_4bit)
return false;
if (!dsa_order_invariant.pass_set)
return false;
}
if (colormask & ~blendmask)
return false;
return true;
}
static void
radv_pipeline_init_multisample_state(struct radv_graphics_pipeline *pipeline,
const struct radv_blend_state *blend,
const struct vk_graphics_pipeline_state *state,
unsigned rast_prim)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
struct radv_multisample_state *ms = &pipeline->ms;
unsigned num_tile_pipes = pdevice->rad_info.num_tile_pipes;
bool out_of_order_rast = false;
int ps_iter_samples = 1;
ms->num_samples = state->ms ? state->ms->rasterization_samples : 1;
/* From the Vulkan 1.1.129 spec, 26.7. Sample Shading:
*
* "Sample shading is enabled for a graphics pipeline:
*
* - If the interface of the fragment shader entry point of the
* graphics pipeline includes an input variable decorated
* with SampleId or SamplePosition. In this case
* minSampleShadingFactor takes the value 1.0.
* - Else if the sampleShadingEnable member of the
* VkPipelineMultisampleStateCreateInfo structure specified
* when creating the graphics pipeline is set to VK_TRUE. In
* this case minSampleShadingFactor takes the value of
* VkPipelineMultisampleStateCreateInfo::minSampleShading.
*
* Otherwise, sample shading is considered disabled."
*/
if (pipeline->base.shaders[MESA_SHADER_FRAGMENT]->info.ps.uses_sample_shading ||
(state->ms && state->ms->sample_shading_enable)) {
uint32_t color_samples = radv_pipeline_color_samples(state);
float min_sample_shading;
if (pipeline->base.shaders[MESA_SHADER_FRAGMENT]->info.ps.uses_sample_shading) {
min_sample_shading = 1.0f;
} else {
min_sample_shading = state->ms->min_sample_shading;
}
ps_iter_samples = ceilf(min_sample_shading * color_samples);
ps_iter_samples = util_next_power_of_two(ps_iter_samples);
}
if (state->rs->rasterization_order_amd == VK_RASTERIZATION_ORDER_RELAXED_AMD) {
/* Out-of-order rasterization is explicitly enabled by the
* application.
*/
out_of_order_rast = true;
} else {
/* Determine if the driver can enable out-of-order
* rasterization internally.
*/
out_of_order_rast = radv_pipeline_out_of_order_rast(pipeline, blend, state);
}
ms->pa_sc_aa_config = 0;
ms->db_eqaa = S_028804_HIGH_QUALITY_INTERSECTIONS(1) | S_028804_INCOHERENT_EQAA_READS(1) |
S_028804_INTERPOLATE_COMP_Z(1) | S_028804_STATIC_ANCHOR_ASSOCIATIONS(1);
ms->pa_sc_mode_cntl_1 =
S_028A4C_WALK_FENCE_ENABLE(1) | // TODO linear dst fixes
S_028A4C_WALK_FENCE_SIZE(num_tile_pipes == 2 ? 2 : 3) |
S_028A4C_OUT_OF_ORDER_PRIMITIVE_ENABLE(out_of_order_rast) |
S_028A4C_OUT_OF_ORDER_WATER_MARK(0x7) |
/* always 1: */
S_028A4C_WALK_ALIGN8_PRIM_FITS_ST(1) | S_028A4C_SUPERTILE_WALK_ORDER_ENABLE(1) |
S_028A4C_TILE_WALK_ORDER_ENABLE(1) | S_028A4C_MULTI_SHADER_ENGINE_PRIM_DISCARD_ENABLE(1) |
S_028A4C_FORCE_EOV_CNTDWN_ENABLE(1) | S_028A4C_FORCE_EOV_REZ_ENABLE(1);
ms->pa_sc_mode_cntl_0 = S_028A48_ALTERNATE_RBS_PER_TILE(pdevice->rad_info.gfx_level >= GFX9) |
S_028A48_VPORT_SCISSOR_ENABLE(1);
if (state->rs->line.mode == VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT &&
radv_rast_prim_is_line(rast_prim)) {
/* From the Vulkan spec 1.3.221:
*
* "When Bresenham lines are being rasterized, sample locations may all be treated as being at
* the pixel center (this may affect attribute and depth interpolation)."
*
* "One consequence of this is that Bresenham lines cover the same pixels regardless of the
* number of rasterization samples, and cover all samples in those pixels (unless masked out
* or killed)."
*/
ms->num_samples = 1;
}
if (ms->num_samples > 1) {
uint32_t z_samples = radv_pipeline_depth_samples(state);
unsigned log_samples = util_logbase2(ms->num_samples);
unsigned log_z_samples = util_logbase2(z_samples);
unsigned log_ps_iter_samples = util_logbase2(ps_iter_samples);
ms->pa_sc_mode_cntl_0 |= S_028A48_MSAA_ENABLE(1);
ms->db_eqaa |= S_028804_MAX_ANCHOR_SAMPLES(log_z_samples) |
S_028804_PS_ITER_SAMPLES(log_ps_iter_samples) |
S_028804_MASK_EXPORT_NUM_SAMPLES(log_samples) |
S_028804_ALPHA_TO_MASK_NUM_SAMPLES(log_samples);
ms->pa_sc_aa_config |=
S_028BE0_MSAA_NUM_SAMPLES(log_samples) |
S_028BE0_MAX_SAMPLE_DIST(radv_get_default_max_sample_dist(log_samples)) |
S_028BE0_MSAA_EXPOSED_SAMPLES(log_samples) | /* CM_R_028BE0_PA_SC_AA_CONFIG */
S_028BE0_COVERED_CENTROID_IS_CENTER(pdevice->rad_info.gfx_level >= GFX10_3);
ms->pa_sc_mode_cntl_1 |= S_028A4C_PS_ITER_SAMPLE(ps_iter_samples > 1);
if (ps_iter_samples > 1)
pipeline->spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
}
}
static void
gfx103_pipeline_init_vrs_state(struct radv_graphics_pipeline *pipeline,
const struct vk_graphics_pipeline_state *state)
{
struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT];
struct radv_multisample_state *ms = &pipeline->ms;
struct radv_vrs_state *vrs = &pipeline->vrs;
if ((state->ms && state->ms->sample_shading_enable) ||
ps->info.ps.uses_sample_shading || ps->info.ps.reads_sample_mask_in) {
/* Disable VRS and use the rates from PS_ITER_SAMPLES if:
*
* 1) sample shading is enabled or per-sample interpolation is
* used by the fragment shader
* 2) the fragment shader reads gl_SampleMaskIn because the
* 16-bit sample coverage mask isn't enough for MSAA8x and
* 2x2 coarse shading isn't enough.
*/
vrs->pa_cl_vrs_cntl = S_028848_SAMPLE_ITER_COMBINER_MODE(V_028848_VRS_COMB_MODE_OVERRIDE);
/* Make sure sample shading is enabled even if only MSAA1x is
* used because the SAMPLE_ITER combiner is in passthrough
* mode if PS_ITER_SAMPLE is 0, and it uses the per-draw rate.
* The default VRS rate when sample shading is enabled is 1x1.
*/
if (!G_028A4C_PS_ITER_SAMPLE(ms->pa_sc_mode_cntl_1))
ms->pa_sc_mode_cntl_1 |= S_028A4C_PS_ITER_SAMPLE(1);
} else {
vrs->pa_cl_vrs_cntl = S_028848_SAMPLE_ITER_COMBINER_MODE(V_028848_VRS_COMB_MODE_PASSTHRU);
}
}
static uint32_t
si_conv_tess_prim_to_gs_out(enum tess_primitive_mode prim)
{
switch (prim) {
case TESS_PRIMITIVE_TRIANGLES:
case TESS_PRIMITIVE_QUADS:
return V_028A6C_TRISTRIP;
case TESS_PRIMITIVE_ISOLINES:
return V_028A6C_LINESTRIP;
default:
assert(0);
return 0;
}
}
static uint32_t
si_conv_gl_prim_to_gs_out(unsigned gl_prim)
{
switch (gl_prim) {
case SHADER_PRIM_POINTS:
return V_028A6C_POINTLIST;
case SHADER_PRIM_LINES:
case SHADER_PRIM_LINE_STRIP:
case SHADER_PRIM_LINES_ADJACENCY:
return V_028A6C_LINESTRIP;
case SHADER_PRIM_TRIANGLES:
case SHADER_PRIM_TRIANGLE_STRIP_ADJACENCY:
case SHADER_PRIM_TRIANGLE_STRIP:
case SHADER_PRIM_QUADS:
return V_028A6C_TRISTRIP;
default:
assert(0);
return 0;
}
}
static uint64_t
radv_dynamic_state_mask(VkDynamicState state)
{
switch (state) {
case VK_DYNAMIC_STATE_VIEWPORT:
case VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT:
return RADV_DYNAMIC_VIEWPORT;
case VK_DYNAMIC_STATE_SCISSOR:
case VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT:
return RADV_DYNAMIC_SCISSOR;
case VK_DYNAMIC_STATE_LINE_WIDTH:
return RADV_DYNAMIC_LINE_WIDTH;
case VK_DYNAMIC_STATE_DEPTH_BIAS:
return RADV_DYNAMIC_DEPTH_BIAS;
case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
return RADV_DYNAMIC_BLEND_CONSTANTS;
case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
return RADV_DYNAMIC_DEPTH_BOUNDS;
case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
return RADV_DYNAMIC_STENCIL_COMPARE_MASK;
case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
return RADV_DYNAMIC_STENCIL_WRITE_MASK;
case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
return RADV_DYNAMIC_STENCIL_REFERENCE;
case VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT:
return RADV_DYNAMIC_DISCARD_RECTANGLE;
case VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT:
return RADV_DYNAMIC_SAMPLE_LOCATIONS;
case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
return RADV_DYNAMIC_LINE_STIPPLE;
case VK_DYNAMIC_STATE_CULL_MODE:
return RADV_DYNAMIC_CULL_MODE;
case VK_DYNAMIC_STATE_FRONT_FACE:
return RADV_DYNAMIC_FRONT_FACE;
case VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY:
return RADV_DYNAMIC_PRIMITIVE_TOPOLOGY;
case VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE:
return RADV_DYNAMIC_DEPTH_TEST_ENABLE;
case VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE:
return RADV_DYNAMIC_DEPTH_WRITE_ENABLE;
case VK_DYNAMIC_STATE_DEPTH_COMPARE_OP:
return RADV_DYNAMIC_DEPTH_COMPARE_OP;
case VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE:
return RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE;
case VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE:
return RADV_DYNAMIC_STENCIL_TEST_ENABLE;
case VK_DYNAMIC_STATE_STENCIL_OP:
return RADV_DYNAMIC_STENCIL_OP;
case VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE:
return RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE;
case VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR:
return RADV_DYNAMIC_FRAGMENT_SHADING_RATE;
case VK_DYNAMIC_STATE_PATCH_CONTROL_POINTS_EXT:
return RADV_DYNAMIC_PATCH_CONTROL_POINTS;
case VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE:
return RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE;
case VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE:
return RADV_DYNAMIC_DEPTH_BIAS_ENABLE;
case VK_DYNAMIC_STATE_LOGIC_OP_EXT:
return RADV_DYNAMIC_LOGIC_OP;
case VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE:
return RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE;
case VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT:
return RADV_DYNAMIC_COLOR_WRITE_ENABLE;
case VK_DYNAMIC_STATE_VERTEX_INPUT_EXT:
return RADV_DYNAMIC_VERTEX_INPUT;
case VK_DYNAMIC_STATE_POLYGON_MODE_EXT:
return RADV_DYNAMIC_POLYGON_MODE;
case VK_DYNAMIC_STATE_TESSELLATION_DOMAIN_ORIGIN_EXT:
return RADV_DYNAMIC_TESS_DOMAIN_ORIGIN;
case VK_DYNAMIC_STATE_LOGIC_OP_ENABLE_EXT:
return RADV_DYNAMIC_LOGIC_OP_ENABLE;
case VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT:
return RADV_DYNAMIC_LINE_STIPPLE_ENABLE;
case VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT:
return RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE;
case VK_DYNAMIC_STATE_SAMPLE_MASK_EXT:
return RADV_DYNAMIC_SAMPLE_MASK;
case VK_DYNAMIC_STATE_DEPTH_CLIP_ENABLE_EXT:
return RADV_DYNAMIC_DEPTH_CLIP_ENABLE;
case VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT:
return RADV_DYNAMIC_CONSERVATIVE_RAST_MODE;
case VK_DYNAMIC_STATE_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE_EXT:
return RADV_DYNAMIC_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE;
case VK_DYNAMIC_STATE_PROVOKING_VERTEX_MODE_EXT:
return RADV_DYNAMIC_PROVOKING_VERTEX_MODE;
case VK_DYNAMIC_STATE_DEPTH_CLAMP_ENABLE_EXT:
return RADV_DYNAMIC_DEPTH_CLAMP_ENABLE;
case VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT:
return RADV_DYNAMIC_COLOR_WRITE_MASK;
case VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT:
return RADV_DYNAMIC_COLOR_BLEND_ENABLE;
default:
unreachable("Unhandled dynamic state");
}
}
static bool
radv_pipeline_is_blend_enabled(const struct radv_graphics_pipeline *pipeline,
const struct vk_color_blend_state *cb)
{
if (cb) {
if (pipeline->dynamic_states & (RADV_DYNAMIC_COLOR_WRITE_MASK |
RADV_DYNAMIC_COLOR_BLEND_ENABLE))
return true;
for (uint32_t i = 0; i < cb->attachment_count; i++) {
if (cb->attachments[i].write_mask && cb->attachments[i].blend_enable)
return true;
}
}
return false;
}
static uint64_t
radv_pipeline_needed_dynamic_state(const struct radv_graphics_pipeline *pipeline,
const struct vk_graphics_pipeline_state *state)
{
bool has_color_att = radv_pipeline_has_color_attachments(state->rp);
bool raster_enabled = !state->rs->rasterizer_discard_enable ||
(pipeline->dynamic_states & RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE);
uint64_t states = RADV_DYNAMIC_ALL;
/* Disable dynamic states that are useless to mesh shading. */
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH)) {
if (!raster_enabled)
return RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE;
states &= ~(RADV_DYNAMIC_VERTEX_INPUT | RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE |
RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE | RADV_DYNAMIC_PRIMITIVE_TOPOLOGY);
}
/* Disable dynamic states that are useless when rasterization is disabled. */
if (!raster_enabled) {
states = RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE |
RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE | RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE |
RADV_DYNAMIC_VERTEX_INPUT;
if (pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT)
states |= RADV_DYNAMIC_PATCH_CONTROL_POINTS | RADV_DYNAMIC_TESS_DOMAIN_ORIGIN;
return states;
}
if (!state->rs->depth_bias.enable &&
!(pipeline->dynamic_states & RADV_DYNAMIC_DEPTH_BIAS_ENABLE))
states &= ~RADV_DYNAMIC_DEPTH_BIAS;
if (!(pipeline->dynamic_states & RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE) &&
(!state->ds || !state->ds->depth.bounds_test.enable))
states &= ~RADV_DYNAMIC_DEPTH_BOUNDS;
if (!(pipeline->dynamic_states & RADV_DYNAMIC_STENCIL_TEST_ENABLE) &&
(!state->ds || !state->ds->stencil.test_enable))
states &= ~(RADV_DYNAMIC_STENCIL_COMPARE_MASK | RADV_DYNAMIC_STENCIL_WRITE_MASK |
RADV_DYNAMIC_STENCIL_REFERENCE | RADV_DYNAMIC_STENCIL_OP);
if (!state->dr->rectangle_count)
states &= ~RADV_DYNAMIC_DISCARD_RECTANGLE;
if (!state->ms || !state->ms->sample_locations_enable)
states &= ~RADV_DYNAMIC_SAMPLE_LOCATIONS;
if (!(pipeline->dynamic_states & RADV_DYNAMIC_LINE_STIPPLE_ENABLE) &&
!state->rs->line.stipple.enable)
states &= ~RADV_DYNAMIC_LINE_STIPPLE;
if (!radv_is_vrs_enabled(pipeline, state))
states &= ~RADV_DYNAMIC_FRAGMENT_SHADING_RATE;
if (!has_color_att || !radv_pipeline_is_blend_enabled(pipeline, state->cb))
states &= ~RADV_DYNAMIC_BLEND_CONSTANTS;
if (!has_color_att)
states &= ~RADV_DYNAMIC_COLOR_WRITE_ENABLE;
if (!(pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT))
states &= ~(RADV_DYNAMIC_PATCH_CONTROL_POINTS | RADV_DYNAMIC_TESS_DOMAIN_ORIGIN);
return states;
}
static struct radv_ia_multi_vgt_param_helpers
radv_compute_ia_multi_vgt_param_helpers(struct radv_graphics_pipeline *pipeline)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
struct radv_ia_multi_vgt_param_helpers ia_multi_vgt_param = {0};
ia_multi_vgt_param.ia_switch_on_eoi = false;
if (pipeline->base.shaders[MESA_SHADER_FRAGMENT]->info.ps.prim_id_input)
ia_multi_vgt_param.ia_switch_on_eoi = true;
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY) && pipeline->base.shaders[MESA_SHADER_GEOMETRY]->info.uses_prim_id)
ia_multi_vgt_param.ia_switch_on_eoi = true;
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL)) {
/* SWITCH_ON_EOI must be set if PrimID is used. */
if (pipeline->base.shaders[MESA_SHADER_TESS_CTRL]->info.uses_prim_id ||
radv_get_shader(&pipeline->base, MESA_SHADER_TESS_EVAL)->info.uses_prim_id)
ia_multi_vgt_param.ia_switch_on_eoi = true;
}
ia_multi_vgt_param.partial_vs_wave = false;
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL)) {
/* Bug with tessellation and GS on Bonaire and older 2 SE chips. */
if ((pdevice->rad_info.family == CHIP_TAHITI ||
pdevice->rad_info.family == CHIP_PITCAIRN ||
pdevice->rad_info.family == CHIP_BONAIRE) &&
radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
ia_multi_vgt_param.partial_vs_wave = true;
/* Needed for 028B6C_DISTRIBUTION_MODE != 0 */
if (pdevice->rad_info.has_distributed_tess) {
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
if (pdevice->rad_info.gfx_level <= GFX8)
ia_multi_vgt_param.partial_es_wave = true;
} else {
ia_multi_vgt_param.partial_vs_wave = true;
}
}
}
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
/* On these chips there is the possibility of a hang if the
* pipeline uses a GS and partial_vs_wave is not set.
*
* This mostly does not hit 4-SE chips, as those typically set
* ia_switch_on_eoi and then partial_vs_wave is set for pipelines
* with GS due to another workaround.
*
* Reproducer: https://bugs.freedesktop.org/show_bug.cgi?id=109242
*/
if (pdevice->rad_info.family == CHIP_TONGA ||
pdevice->rad_info.family == CHIP_FIJI ||
pdevice->rad_info.family == CHIP_POLARIS10 ||
pdevice->rad_info.family == CHIP_POLARIS11 ||
pdevice->rad_info.family == CHIP_POLARIS12 ||
pdevice->rad_info.family == CHIP_VEGAM) {
ia_multi_vgt_param.partial_vs_wave = true;
}
}
ia_multi_vgt_param.base =
/* The following field was moved to VGT_SHADER_STAGES_EN in GFX9. */
S_028AA8_MAX_PRIMGRP_IN_WAVE(pdevice->rad_info.gfx_level == GFX8 ? 2 : 0) |
S_030960_EN_INST_OPT_BASIC(pdevice->rad_info.gfx_level >= GFX9) |
S_030960_EN_INST_OPT_ADV(pdevice->rad_info.gfx_level >= GFX9);
return ia_multi_vgt_param;
}
static uint32_t
radv_get_attrib_stride(const VkPipelineVertexInputStateCreateInfo *vi, uint32_t attrib_binding)
{
for (uint32_t i = 0; i < vi->vertexBindingDescriptionCount; i++) {
const VkVertexInputBindingDescription *input_binding = &vi->pVertexBindingDescriptions[i];
if (input_binding->binding == attrib_binding)
return input_binding->stride;
}
return 0;
}
#define ALL_GRAPHICS_LIB_FLAGS \
(VK_GRAPHICS_PIPELINE_LIBRARY_VERTEX_INPUT_INTERFACE_BIT_EXT | \
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT | \
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT | \
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_OUTPUT_INTERFACE_BIT_EXT)
static VkGraphicsPipelineLibraryFlagBitsEXT
shader_stage_to_pipeline_library_flags(VkShaderStageFlagBits stage)
{
assert(util_bitcount(stage) == 1);
switch (stage) {
case VK_SHADER_STAGE_VERTEX_BIT:
case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
case VK_SHADER_STAGE_GEOMETRY_BIT:
case VK_SHADER_STAGE_TASK_BIT_EXT:
case VK_SHADER_STAGE_MESH_BIT_EXT:
return VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT;
case VK_SHADER_STAGE_FRAGMENT_BIT:
return VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT;
default:
unreachable("Invalid shader stage");
}
}
static VkResult
radv_pipeline_import_graphics_info(struct radv_graphics_pipeline *pipeline,
struct vk_graphics_pipeline_state *state,
struct radv_pipeline_layout *layout,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
VkGraphicsPipelineLibraryFlagBitsEXT lib_flags)
{
RADV_FROM_HANDLE(radv_pipeline_layout, pipeline_layout, pCreateInfo->layout);
struct radv_device *device = pipeline->base.device;
VkResult result;
/* Mark all states declared dynamic at pipeline creation. */
if (pCreateInfo->pDynamicState) {
uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
for (uint32_t s = 0; s < count; s++) {
pipeline->dynamic_states |=
radv_dynamic_state_mask(pCreateInfo->pDynamicState->pDynamicStates[s]);
}
}
/* Mark all active stages at pipeline creation. */
for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
const VkPipelineShaderStageCreateInfo *sinfo = &pCreateInfo->pStages[i];
/* Ignore shader stages that don't need to be imported. */
if (!(shader_stage_to_pipeline_library_flags(sinfo->stage) & lib_flags))
continue;
pipeline->active_stages |= sinfo->stage;
}
result = vk_graphics_pipeline_state_fill(&device->vk, state, pCreateInfo, NULL, NULL, NULL,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT,
&pipeline->state_data);
if (result != VK_SUCCESS)
return result;
if (lib_flags == ALL_GRAPHICS_LIB_FLAGS) {
radv_pipeline_layout_finish(device, layout);
radv_pipeline_layout_init(device, layout, false /* independent_sets */);
}
if (pipeline_layout) {
/* As explained in the specification, the application can provide a non
* compatible pipeline layout when doing optimized linking :
*
* "However, in the specific case that a final link is being
* performed between stages and
* `VK_PIPELINE_CREATE_LINK_TIME_OPTIMIZATION_BIT_EXT` is specified,
* the application can override the pipeline layout with one that is
* compatible with that union but does not have the
* `VK_PIPELINE_LAYOUT_CREATE_INDEPENDENT_SETS_BIT_EXT` flag set,
* allowing a more optimal pipeline layout to be used when
* generating the final pipeline."
*
* In that case discard whatever was imported before.
*/
if (pCreateInfo->flags & VK_PIPELINE_CREATE_LINK_TIME_OPTIMIZATION_BIT_EXT &&
!pipeline_layout->independent_sets) {
radv_pipeline_layout_finish(device, layout);
radv_pipeline_layout_init(device, layout, false /* independent_sets */);
} else {
/* Otherwise if we include a layout that had independent_sets,
* propagate that property.
*/
layout->independent_sets |= pipeline_layout->independent_sets;
}
for (uint32_t s = 0; s < pipeline_layout->num_sets; s++) {
if (pipeline_layout->set[s].layout == NULL)
continue;
radv_pipeline_layout_add_set(layout, s, pipeline_layout->set[s].layout);
}
layout->push_constant_size = pipeline_layout->push_constant_size;
}
return result;
}
static void
radv_graphics_pipeline_import_lib(struct radv_graphics_pipeline *pipeline,
struct vk_graphics_pipeline_state *state,
struct radv_pipeline_layout *layout,
struct radv_graphics_lib_pipeline *lib)
{
/* There should be no common blocks between a lib we import and the current
* pipeline we're building.
*/
assert((pipeline->active_stages & lib->base.active_stages) == 0);
pipeline->dynamic_states |= lib->base.dynamic_states;
pipeline->active_stages |= lib->base.active_stages;
vk_graphics_pipeline_state_merge(state, &lib->graphics_state);
/* Import the NIR shaders (after SPIRV->NIR). */
for (uint32_t s = 0; s < ARRAY_SIZE(lib->base.base.shaders); s++) {
if (!lib->base.base.retained_shaders[s].nir)
continue;
pipeline->base.retained_shaders[s] = lib->base.base.retained_shaders[s];
}
/* Import the compiled shaders. */
for (uint32_t s = 0; s < ARRAY_SIZE(lib->base.base.shaders); s++) {
if (!lib->base.base.shaders[s])
continue;
pipeline->base.shaders[s] = radv_shader_ref(lib->base.base.shaders[s]);
/* Hold a pointer to the slab BO to indicate the shader is already uploaded. */
pipeline->base.shaders[s]->bo = lib->base.base.slab_bo;
}
/* Import the GS copy shader if present. */
if (lib->base.base.gs_copy_shader) {
assert(!pipeline->base.gs_copy_shader);
pipeline->base.gs_copy_shader = radv_shader_ref(lib->base.base.gs_copy_shader);
/* Hold a pointer to the slab BO to indicate the shader is already uploaded. */
pipeline->base.gs_copy_shader->bo = lib->base.base.slab_bo;
}
/* Refcount the slab BO to make sure it's not freed when the library is destroyed. */
if (lib->base.base.slab) {
p_atomic_inc(&lib->base.base.slab->ref_count);
}
/* Import the PS epilog if present. */
if (lib->base.ps_epilog) {
assert(!pipeline->ps_epilog);
pipeline->ps_epilog = radv_shader_part_ref(lib->base.ps_epilog);
}
/* Import the pipeline layout. */
struct radv_pipeline_layout *lib_layout = &lib->layout;
for (uint32_t s = 0; s < lib_layout->num_sets; s++) {
if (!lib_layout->set[s].layout)
continue;
radv_pipeline_layout_add_set(layout, s, lib_layout->set[s].layout);
}
layout->independent_sets = lib_layout->independent_sets;
layout->push_constant_size = MAX2(layout->push_constant_size, lib_layout->push_constant_size);
}
static void
radv_pipeline_init_input_assembly_state(struct radv_graphics_pipeline *pipeline)
{
pipeline->ia_multi_vgt_param = radv_compute_ia_multi_vgt_param_helpers(pipeline);
}
static void
radv_pipeline_init_dynamic_state(struct radv_graphics_pipeline *pipeline,
const struct vk_graphics_pipeline_state *state)
{
uint64_t needed_states = radv_pipeline_needed_dynamic_state(pipeline, state);
uint64_t states = needed_states;
pipeline->dynamic_state = default_dynamic_state;
pipeline->needed_dynamic_state = needed_states;
states &= ~pipeline->dynamic_states;
struct radv_dynamic_state *dynamic = &pipeline->dynamic_state;
if (needed_states & RADV_DYNAMIC_VIEWPORT) {
dynamic->viewport.count = state->vp->viewport_count;
if (states & RADV_DYNAMIC_VIEWPORT) {
typed_memcpy(dynamic->viewport.viewports, state->vp->viewports, state->vp->viewport_count);
for (unsigned i = 0; i < dynamic->viewport.count; i++)
radv_get_viewport_xform(&dynamic->viewport.viewports[i],
dynamic->viewport.xform[i].scale, dynamic->viewport.xform[i].translate);
}
}
if (needed_states & RADV_DYNAMIC_SCISSOR) {
dynamic->scissor.count = state->vp->scissor_count;
if (states & RADV_DYNAMIC_SCISSOR) {
typed_memcpy(dynamic->scissor.scissors, state->vp->scissors, state->vp->scissor_count);
}
}
if (states & RADV_DYNAMIC_LINE_WIDTH) {
dynamic->line_width = state->rs->line.width;
}
if (states & RADV_DYNAMIC_DEPTH_BIAS) {
dynamic->depth_bias.bias = state->rs->depth_bias.constant;
dynamic->depth_bias.clamp = state->rs->depth_bias.clamp;
dynamic->depth_bias.slope = state->rs->depth_bias.slope;
}
/* Section 9.2 of the Vulkan 1.0.15 spec says:
*
* pColorBlendState is [...] NULL if the pipeline has rasterization
* disabled or if the subpass of the render pass the pipeline is
* created against does not use any color attachments.
*/
if (states & RADV_DYNAMIC_BLEND_CONSTANTS) {
typed_memcpy(dynamic->blend_constants, state->cb->blend_constants, 4);
}
if (states & RADV_DYNAMIC_CULL_MODE) {
dynamic->cull_mode = state->rs->cull_mode;
}
if (states & RADV_DYNAMIC_FRONT_FACE) {
dynamic->front_face = state->rs->front_face;
}
if (states & RADV_DYNAMIC_PRIMITIVE_TOPOLOGY) {
dynamic->primitive_topology = si_translate_prim(state->ia->primitive_topology);
}
/* If there is no depthstencil attachment, then don't read
* pDepthStencilState. The Vulkan spec states that pDepthStencilState may
* be NULL in this case. Even if pDepthStencilState is non-NULL, there is
* no need to override the depthstencil defaults in
* radv_pipeline::dynamic_state when there is no depthstencil attachment.
*
* Section 9.2 of the Vulkan 1.0.15 spec says:
*
* pDepthStencilState is [...] NULL if the pipeline has rasterization
* disabled or if the subpass of the render pass the pipeline is created
* against does not use a depth/stencil attachment.
*/
if (needed_states && radv_pipeline_has_ds_attachments(state->rp)) {
if (states & RADV_DYNAMIC_DEPTH_BOUNDS) {
dynamic->depth_bounds.min = state->ds->depth.bounds_test.min;
dynamic->depth_bounds.max = state->ds->depth.bounds_test.max;
}
if (states & RADV_DYNAMIC_STENCIL_COMPARE_MASK) {
dynamic->stencil_compare_mask.front = state->ds->stencil.front.compare_mask;
dynamic->stencil_compare_mask.back = state->ds->stencil.back.compare_mask;
}
if (states & RADV_DYNAMIC_STENCIL_WRITE_MASK) {
dynamic->stencil_write_mask.front = state->ds->stencil.front.write_mask;
dynamic->stencil_write_mask.back = state->ds->stencil.back.write_mask;
}
if (states & RADV_DYNAMIC_STENCIL_REFERENCE) {
dynamic->stencil_reference.front = state->ds->stencil.front.reference;
dynamic->stencil_reference.back = state->ds->stencil.back.reference;
}
if (states & RADV_DYNAMIC_DEPTH_TEST_ENABLE) {
dynamic->depth_test_enable = state->ds->depth.test_enable;
}
if (states & RADV_DYNAMIC_DEPTH_WRITE_ENABLE) {
dynamic->depth_write_enable = state->ds->depth.write_enable;
}
if (states & RADV_DYNAMIC_DEPTH_COMPARE_OP) {
dynamic->depth_compare_op = state->ds->depth.compare_op;
}
if (states & RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE) {
dynamic->depth_bounds_test_enable = state->ds->depth.bounds_test.enable;
}
if (states & RADV_DYNAMIC_STENCIL_TEST_ENABLE) {
dynamic->stencil_test_enable = state->ds->stencil.test_enable;
}
if (states & RADV_DYNAMIC_STENCIL_OP) {
dynamic->stencil_op.front.compare_op = state->ds->stencil.front.op.compare;
dynamic->stencil_op.front.fail_op = state->ds->stencil.front.op.fail;
dynamic->stencil_op.front.pass_op = state->ds->stencil.front.op.pass;
dynamic->stencil_op.front.depth_fail_op = state->ds->stencil.front.op.depth_fail;
dynamic->stencil_op.back.compare_op = state->ds->stencil.back.op.compare;
dynamic->stencil_op.back.fail_op = state->ds->stencil.back.op.fail;
dynamic->stencil_op.back.pass_op = state->ds->stencil.back.op.pass;
dynamic->stencil_op.back.depth_fail_op = state->ds->stencil.back.op.depth_fail;
}
}
if (needed_states & RADV_DYNAMIC_DISCARD_RECTANGLE) {
dynamic->discard_rectangle.count = state->dr->rectangle_count;
if (states & RADV_DYNAMIC_DISCARD_RECTANGLE) {
typed_memcpy(dynamic->discard_rectangle.rectangles, state->dr->rectangles,
state->dr->rectangle_count);
}
}
if (states & RADV_DYNAMIC_SAMPLE_LOCATIONS) {
unsigned count = state->ms->sample_locations->per_pixel *
state->ms->sample_locations->grid_size.width *
state->ms->sample_locations->grid_size.height;
dynamic->sample_location.per_pixel = state->ms->sample_locations->per_pixel;
dynamic->sample_location.grid_size = state->ms->sample_locations->grid_size;
dynamic->sample_location.count = count;
typed_memcpy(&dynamic->sample_location.locations[0], state->ms->sample_locations->locations,
count);
}
if (states & RADV_DYNAMIC_LINE_STIPPLE) {
dynamic->line_stipple.factor = state->rs->line.stipple.factor;
dynamic->line_stipple.pattern = state->rs->line.stipple.pattern;
}
if (states & RADV_DYNAMIC_FRAGMENT_SHADING_RATE) {
dynamic->fragment_shading_rate.size = state->fsr->fragment_size;
for (int i = 0; i < 2; i++)
dynamic->fragment_shading_rate.combiner_ops[i] = state->fsr->combiner_ops[i];
}
if (states & RADV_DYNAMIC_DEPTH_BIAS_ENABLE) {
dynamic->depth_bias_enable = state->rs->depth_bias.enable;
}
if (states & RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE) {
dynamic->primitive_restart_enable = state->ia->primitive_restart_enable;
}
if (states & RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE) {
dynamic->rasterizer_discard_enable = state->rs->rasterizer_discard_enable;
}
if (radv_pipeline_has_color_attachments(state->rp) && states & RADV_DYNAMIC_LOGIC_OP) {
if ((pipeline->dynamic_states & RADV_DYNAMIC_LOGIC_OP_ENABLE) || state->cb->logic_op_enable) {
dynamic->logic_op = si_translate_blend_logic_op(state->cb->logic_op);
}
}
if (states & RADV_DYNAMIC_COLOR_WRITE_ENABLE) {
u_foreach_bit(i, state->cb->color_write_enables) {
dynamic->color_write_enable |= 0xfu << (i * 4);
}
}
if (states & RADV_DYNAMIC_PATCH_CONTROL_POINTS) {
dynamic->patch_control_points = state->ts->patch_control_points;
}
if (states & RADV_DYNAMIC_POLYGON_MODE) {
dynamic->polygon_mode = si_translate_fill(state->rs->polygon_mode);
}
if (states & RADV_DYNAMIC_TESS_DOMAIN_ORIGIN) {
dynamic->tess_domain_origin = state->ts->domain_origin;
}
if (radv_pipeline_has_color_attachments(state->rp) && states & RADV_DYNAMIC_LOGIC_OP_ENABLE) {
dynamic->logic_op_enable = state->cb->logic_op_enable;
}
if (states & RADV_DYNAMIC_LINE_STIPPLE_ENABLE) {
dynamic->stippled_line_enable = state->rs->line.stipple.enable;
}
if (states & RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE) {
dynamic->alpha_to_coverage_enable = state->ms->alpha_to_coverage_enable;
}
if (states & RADV_DYNAMIC_SAMPLE_MASK) {
dynamic->sample_mask = state->ms->sample_mask & 0xffff;
}
if (states & RADV_DYNAMIC_DEPTH_CLIP_ENABLE) {
dynamic->depth_clip_enable = state->rs->depth_clip_enable == VK_MESA_DEPTH_CLIP_ENABLE_TRUE;
}
if (states & RADV_DYNAMIC_CONSERVATIVE_RAST_MODE) {
dynamic->conservative_rast_mode = state->rs->conservative_mode;
}
if (states & RADV_DYNAMIC_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE) {
dynamic->depth_clip_negative_one_to_one = state->vp->depth_clip_negative_one_to_one;
}
if (states & RADV_DYNAMIC_PROVOKING_VERTEX_MODE) {
dynamic->provoking_vertex_mode = state->rs->provoking_vertex;
}
if (states & RADV_DYNAMIC_DEPTH_CLAMP_ENABLE) {
dynamic->depth_clamp_enable = state->rs->depth_clamp_enable;
}
if (radv_pipeline_has_color_attachments(state->rp) && states & RADV_DYNAMIC_COLOR_WRITE_MASK) {
for (unsigned i = 0; i < state->cb->attachment_count; i++) {
dynamic->color_write_mask |= state->cb->attachments[i].write_mask << (4 * i);
}
}
if (radv_pipeline_has_color_attachments(state->rp) && states & RADV_DYNAMIC_COLOR_BLEND_ENABLE) {
for (unsigned i = 0; i < state->cb->attachment_count; i++) {
if (!state->cb->attachments[i].blend_enable)
continue;
dynamic->color_blend_enable |= 0xfu << (i * 4);
}
}
pipeline->dynamic_state.mask = states;
}
static struct radv_depth_stencil_state
radv_pipeline_init_depth_stencil_state(struct radv_graphics_pipeline *pipeline,
const struct vk_graphics_pipeline_state *state)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
struct radv_depth_stencil_state ds_state = {0};
bool has_depth_attachment = state->rp->depth_attachment_format != VK_FORMAT_UNDEFINED;
if (has_depth_attachment) {
/* from amdvlk: For 4xAA and 8xAA need to decompress on flush for better performance */
ds_state.db_render_override2 |=
S_028010_DECOMPRESS_Z_ON_FLUSH(state->ms && state->ms->rasterization_samples > 2);
if (pdevice->rad_info.gfx_level >= GFX10_3)
ds_state.db_render_override2 |= S_028010_CENTROID_COMPUTATION_MODE(1);
}
if (pdevice->rad_info.gfx_level >= GFX11) {
unsigned max_allowed_tiles_in_wave = 0;
unsigned num_samples = MAX2(radv_pipeline_color_samples(state),
radv_pipeline_depth_samples(state));
if (pdevice->rad_info.has_dedicated_vram) {
if (num_samples == 8)
max_allowed_tiles_in_wave = 7;
else if (num_samples == 4)
max_allowed_tiles_in_wave = 14;
} else {
if (num_samples == 8)
max_allowed_tiles_in_wave = 8;
}
/* TODO: We may want to disable this workaround for future chips. */
if (num_samples >= 4) {
if (max_allowed_tiles_in_wave)
max_allowed_tiles_in_wave--;
else
max_allowed_tiles_in_wave = 15;
}
ds_state.db_render_control |= S_028000_OREO_MODE(V_028000_OMODE_O_THEN_B) |
S_028000_MAX_ALLOWED_TILES_IN_WAVE(max_allowed_tiles_in_wave);
}
return ds_state;
}
static void
gfx10_emit_ge_pc_alloc(struct radeon_cmdbuf *cs, enum amd_gfx_level gfx_level,
uint32_t oversub_pc_lines)
{
radeon_set_uconfig_reg(
cs, R_030980_GE_PC_ALLOC,
S_030980_OVERSUB_EN(oversub_pc_lines > 0) | S_030980_NUM_PC_LINES(oversub_pc_lines - 1));
}
static void
radv_pipeline_init_gs_ring_state(struct radv_graphics_pipeline *pipeline, const struct gfx9_gs_info *gs)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
unsigned num_se = pdevice->rad_info.max_se;
unsigned wave_size = 64;
unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
/* On GFX6-GFX7, the value comes from VGT_GS_VERTEX_REUSE = 16.
* On GFX8+, the value comes from VGT_VERTEX_REUSE_BLOCK_CNTL = 30 (+2).
*/
unsigned gs_vertex_reuse = (pdevice->rad_info.gfx_level >= GFX8 ? 32 : 16) * num_se;
unsigned alignment = 256 * num_se;
/* The maximum size is 63.999 MB per SE. */
unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
struct radv_shader_info *gs_info = &pipeline->base.shaders[MESA_SHADER_GEOMETRY]->info;
/* Calculate the minimum size. */
unsigned min_esgs_ring_size =
align(gs->vgt_esgs_ring_itemsize * 4 * gs_vertex_reuse * wave_size, alignment);
/* These are recommended sizes, not minimum sizes. */
unsigned esgs_ring_size =
max_gs_waves * 2 * wave_size * gs->vgt_esgs_ring_itemsize * 4 * gs_info->gs.vertices_in;
unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size * gs_info->gs.max_gsvs_emit_size;
min_esgs_ring_size = align(min_esgs_ring_size, alignment);
esgs_ring_size = align(esgs_ring_size, alignment);
gsvs_ring_size = align(gsvs_ring_size, alignment);
if (pdevice->rad_info.gfx_level <= GFX8)
pipeline->esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
pipeline->gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
}
struct radv_shader *
radv_get_shader(const struct radv_pipeline *pipeline, gl_shader_stage stage)
{
if (stage == MESA_SHADER_VERTEX) {
if (pipeline->shaders[MESA_SHADER_VERTEX])
return pipeline->shaders[MESA_SHADER_VERTEX];
if (pipeline->shaders[MESA_SHADER_TESS_CTRL])
return pipeline->shaders[MESA_SHADER_TESS_CTRL];
if (pipeline->shaders[MESA_SHADER_GEOMETRY])
return pipeline->shaders[MESA_SHADER_GEOMETRY];
} else if (stage == MESA_SHADER_TESS_EVAL) {
if (!pipeline->shaders[MESA_SHADER_TESS_CTRL])
return NULL;
if (pipeline->shaders[MESA_SHADER_TESS_EVAL])
return pipeline->shaders[MESA_SHADER_TESS_EVAL];
if (pipeline->shaders[MESA_SHADER_GEOMETRY])
return pipeline->shaders[MESA_SHADER_GEOMETRY];
}
return pipeline->shaders[stage];
}
static const struct radv_vs_output_info *
get_vs_output_info(const struct radv_graphics_pipeline *pipeline)
{
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
if (radv_pipeline_has_ngg(pipeline))
return &pipeline->base.shaders[MESA_SHADER_GEOMETRY]->info.outinfo;
else
return &pipeline->base.gs_copy_shader->info.outinfo;
else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL))
return &pipeline->base.shaders[MESA_SHADER_TESS_EVAL]->info.outinfo;
else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH))
return &pipeline->base.shaders[MESA_SHADER_MESH]->info.outinfo;
else
return &pipeline->base.shaders[MESA_SHADER_VERTEX]->info.outinfo;
}
static bool
radv_lower_viewport_to_zero(nir_shader *nir)
{
nir_function_impl *impl = nir_shader_get_entrypoint(nir);
bool progress = false;
nir_builder b;
nir_builder_init(&b, impl);
/* There should be only one deref load for VIEWPORT after lower_io_to_temporaries. */
nir_foreach_block(block, impl) {
nir_foreach_instr(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
if (intr->intrinsic != nir_intrinsic_load_deref)
continue;
nir_variable *var = nir_intrinsic_get_var(intr, 0);
if (var->data.mode != nir_var_shader_in ||
var->data.location != VARYING_SLOT_VIEWPORT)
continue;
b.cursor = nir_before_instr(instr);
nir_ssa_def_rewrite_uses(&intr->dest.ssa, nir_imm_zero(&b, 1, 32));
progress = true;
break;
}
if (progress)
break;
}
if (progress)
nir_metadata_preserve(impl, nir_metadata_block_index | nir_metadata_dominance);
else
nir_metadata_preserve(impl, nir_metadata_all);
return progress;
}
static nir_variable *
find_layer_out_var(nir_shader *nir)
{
nir_variable *var = nir_find_variable_with_location(nir, nir_var_shader_out, VARYING_SLOT_LAYER);
if (var != NULL)
return var;
var = nir_variable_create(nir, nir_var_shader_out, glsl_int_type(), "layer id");
var->data.location = VARYING_SLOT_LAYER;
var->data.interpolation = INTERP_MODE_NONE;
return var;
}
static bool
radv_should_export_multiview(const struct radv_pipeline_stage *producer,
const struct radv_pipeline_stage *consumer,
const struct radv_pipeline_key *pipeline_key)
{
/* Export the layer in the last VGT stage if multiview is used. When the next stage is unknown
* (with graphics pipeline library), the layer is exported unconditionally.
*/
return pipeline_key->has_multiview_view_index &&
(!consumer || consumer->stage == MESA_SHADER_FRAGMENT) &&
!(producer->nir->info.outputs_written & VARYING_BIT_LAYER);
}
static bool
radv_export_multiview(nir_shader *nir)
{
nir_function_impl *impl = nir_shader_get_entrypoint(nir);
bool progress = false;
nir_builder b;
nir_builder_init(&b, impl);
/* This pass is not suitable for mesh shaders, because it can't know the mapping between API mesh
* shader invocations and output primitives. Needs to be handled in ac_nir_lower_ngg.
*/
assert(nir->info.stage == MESA_SHADER_VERTEX ||
nir->info.stage == MESA_SHADER_TESS_EVAL ||
nir->info.stage == MESA_SHADER_GEOMETRY);
/* Iterate in reverse order since there should be only one deref store to POS after
* lower_io_to_temporaries for vertex shaders and inject the layer there. For geometry shaders,
* the layer is injected right before every emit_vertex_with_counter.
*/
nir_variable *layer = NULL;
nir_foreach_block_reverse(block, impl) {
nir_foreach_instr_reverse(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
if (nir->info.stage == MESA_SHADER_GEOMETRY) {
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
if (intr->intrinsic != nir_intrinsic_emit_vertex_with_counter)
continue;
b.cursor = nir_before_instr(instr);
} else {
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
if (intr->intrinsic != nir_intrinsic_store_deref)
continue;
nir_variable *var = nir_intrinsic_get_var(intr, 0);
if (var->data.mode != nir_var_shader_out || var->data.location != VARYING_SLOT_POS)
continue;
b.cursor = nir_after_instr(instr);
}
if (!layer)
layer = find_layer_out_var(nir);
nir_store_var(&b, layer, nir_load_view_index(&b), 1);
/* Update outputs_written to reflect that the pass added a new output. */
nir->info.outputs_written |= BITFIELD64_BIT(VARYING_SLOT_LAYER);
progress = true;
if (nir->info.stage == MESA_SHADER_VERTEX)
break;
}
if (nir->info.stage == MESA_SHADER_VERTEX && progress)
break;
}
if (progress)
nir_metadata_preserve(impl, nir_metadata_block_index | nir_metadata_dominance);
else
nir_metadata_preserve(impl, nir_metadata_all);
return progress;
}
static bool
radv_should_export_implicit_primitive_id(const struct radv_pipeline_stage *producer,
const struct radv_pipeline_stage *consumer)
{
/* When the primitive ID is read by FS, we must ensure that it's exported by the previous vertex
* stage because it's implicit for VS or TES (but required by the Vulkan spec for GS or MS).
*
* There is two situations to handle:
* - when the next stage is unknown (with graphics pipeline library), the primitive ID is
* exported unconditionally
* - when the pipeline uses NGG, the primitive ID is exported during NGG lowering
*/
assert(producer->stage == MESA_SHADER_VERTEX || producer->stage == MESA_SHADER_TESS_EVAL);
if ((producer->nir->info.outputs_written & VARYING_BIT_PRIMITIVE_ID) || producer->info.is_ngg)
return false;
return !consumer || (consumer->stage == MESA_SHADER_FRAGMENT &&
(consumer->nir->info.inputs_read & VARYING_BIT_PRIMITIVE_ID));
}
static bool
radv_export_implicit_primitive_id(nir_shader *nir)
{
nir_function_impl *impl = nir_shader_get_entrypoint(nir);
nir_builder b;
nir_builder_init(&b, impl);
b.cursor = nir_after_cf_list(&impl->body);
nir_variable *var = nir_variable_create(nir, nir_var_shader_out, glsl_int_type(), NULL);
var->data.location = VARYING_SLOT_PRIMITIVE_ID;
var->data.interpolation = INTERP_MODE_NONE;
nir_store_var(&b, var, nir_load_primitive_id(&b), 1);
/* Update outputs_written to reflect that the pass added a new output. */
nir->info.outputs_written |= BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_ID);
nir_metadata_preserve(impl, nir_metadata_block_index | nir_metadata_dominance);
return true;
}
static void
radv_remove_point_size(const struct radv_pipeline_key *pipeline_key,
nir_shader *producer, nir_shader *consumer)
{
if ((consumer->info.inputs_read & VARYING_BIT_PSIZ) ||
!(producer->info.outputs_written & VARYING_BIT_PSIZ))
return;
/* Do not remove PSIZ if the shader uses XFB because it might be stored. */
if (producer->xfb_info)
return;
/* Do not remove PSIZ for vertex shaders when the topology is unknown. */
if (producer->info.stage == MESA_SHADER_VERTEX &&
pipeline_key->vs.topology == V_008958_DI_PT_NONE)
return;
/* Do not remove PSIZ if the rasterization primitive uses points. */
if (consumer->info.stage == MESA_SHADER_FRAGMENT &&
((producer->info.stage == MESA_SHADER_VERTEX &&
pipeline_key->vs.topology == V_008958_DI_PT_POINTLIST) ||
(producer->info.stage == MESA_SHADER_TESS_EVAL && producer->info.tess.point_mode) ||
(producer->info.stage == MESA_SHADER_GEOMETRY &&
producer->info.gs.output_primitive == SHADER_PRIM_POINTS) ||
(producer->info.stage == MESA_SHADER_MESH &&
producer->info.mesh.primitive_type == SHADER_PRIM_POINTS)))
return;
nir_variable *var =
nir_find_variable_with_location(producer, nir_var_shader_out, VARYING_SLOT_PSIZ);
assert(var);
/* Change PSIZ to a global variable which allows it to be DCE'd. */
var->data.location = 0;
var->data.mode = nir_var_shader_temp;
producer->info.outputs_written &= ~VARYING_BIT_PSIZ;
NIR_PASS_V(producer, nir_fixup_deref_modes);
NIR_PASS(_, producer, nir_remove_dead_variables, nir_var_shader_temp, NULL);
NIR_PASS(_, producer, nir_opt_dce);
}
static void
radv_remove_color_exports(const struct radv_pipeline_key *pipeline_key, nir_shader *nir)
{
bool fixup_derefs = false;
/* Do not remove color exports when the write mask is dynamic. */
if (pipeline_key->dynamic_color_write_mask)
return;
nir_foreach_shader_out_variable(var, nir) {
int idx = var->data.location;
idx -= FRAG_RESULT_DATA0;
if (idx < 0)
continue;
unsigned col_format = (pipeline_key->ps.col_format >> (4 * idx)) & 0xf;
unsigned cb_target_mask = (pipeline_key->ps.cb_target_mask >> (4 * idx)) & 0xf;
if (col_format == V_028714_SPI_SHADER_ZERO ||
(col_format == V_028714_SPI_SHADER_32_R && !cb_target_mask &&
!pipeline_key->ps.mrt0_is_dual_src)) {
/* Remove the color export if it's unused or in presence of holes. */
nir->info.outputs_written &= ~BITFIELD64_BIT(var->data.location);
var->data.location = 0;
var->data.mode = nir_var_shader_temp;
fixup_derefs = true;
}
}
if (fixup_derefs) {
NIR_PASS_V(nir, nir_fixup_deref_modes);
NIR_PASS(_, nir, nir_remove_dead_variables, nir_var_shader_temp, NULL);
NIR_PASS(_, nir, nir_opt_dce);
}
}
static void
merge_tess_info(struct shader_info *tes_info, struct shader_info *tcs_info)
{
/* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
*
* "PointMode. Controls generation of points rather than triangles
* or lines. This functionality defaults to disabled, and is
* enabled if either shader stage includes the execution mode.
*
* and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
* PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
* and OutputVertices, it says:
*
* "One mode must be set in at least one of the tessellation
* shader stages."
*
* So, the fields can be set in either the TCS or TES, but they must
* agree if set in both. Our backend looks at TES, so bitwise-or in
* the values from the TCS.
*/
assert(tcs_info->tess.tcs_vertices_out == 0 || tes_info->tess.tcs_vertices_out == 0 ||
tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
tcs_info->tess.spacing == tes_info->tess.spacing);
tes_info->tess.spacing |= tcs_info->tess.spacing;
assert(tcs_info->tess._primitive_mode == TESS_PRIMITIVE_UNSPECIFIED ||
tes_info->tess._primitive_mode == TESS_PRIMITIVE_UNSPECIFIED ||
tcs_info->tess._primitive_mode == tes_info->tess._primitive_mode);
tes_info->tess._primitive_mode |= tcs_info->tess._primitive_mode;
tes_info->tess.ccw |= tcs_info->tess.ccw;
tes_info->tess.point_mode |= tcs_info->tess.point_mode;
/* Copy the merged info back to the TCS */
tcs_info->tess.tcs_vertices_out = tes_info->tess.tcs_vertices_out;
tcs_info->tess.spacing = tes_info->tess.spacing;
tcs_info->tess._primitive_mode = tes_info->tess._primitive_mode;
tcs_info->tess.ccw = tes_info->tess.ccw;
tcs_info->tess.point_mode = tes_info->tess.point_mode;
}
static void
radv_lower_io_to_scalar_early(nir_shader *nir, nir_variable_mode mask)
{
bool progress = false;
NIR_PASS(progress, nir, nir_lower_io_to_scalar_early, mask);
if (progress) {
/* Optimize the new vector code and then remove dead vars */
NIR_PASS(_, nir, nir_copy_prop);
NIR_PASS(_, nir, nir_opt_shrink_vectors);
if (mask & nir_var_shader_out) {
/* Optimize swizzled movs of load_const for nir_link_opt_varyings's constant propagation. */
NIR_PASS(_, nir, nir_opt_constant_folding);
/* For nir_link_opt_varyings's duplicate input opt */
NIR_PASS(_, nir, nir_opt_cse);
}
/* Run copy-propagation to help remove dead output variables (some shaders have useless copies
* to/from an output), so compaction later will be more effective.
*
* This will have been done earlier but it might not have worked because the outputs were
* vector.
*/
if (nir->info.stage == MESA_SHADER_TESS_CTRL)
NIR_PASS(_, nir, nir_opt_copy_prop_vars);
NIR_PASS(_, nir, nir_opt_dce);
NIR_PASS(_, nir, nir_remove_dead_variables,
nir_var_function_temp | nir_var_shader_in | nir_var_shader_out, NULL);
}
}
static void
radv_pipeline_link_shaders(const struct radv_device *device,
nir_shader *producer, nir_shader *consumer,
const struct radv_pipeline_key *pipeline_key)
{
const enum amd_gfx_level gfx_level = device->physical_device->rad_info.gfx_level;
bool progress;
if (consumer->info.stage == MESA_SHADER_FRAGMENT) {
/* Lower the viewport index to zero when the last vertex stage doesn't export it. */
if ((consumer->info.inputs_read & VARYING_BIT_VIEWPORT) &&
!(producer->info.outputs_written & VARYING_BIT_VIEWPORT)) {
NIR_PASS(_, consumer, radv_lower_viewport_to_zero);
}
/* Lower the view index to map on the layer. */
NIR_PASS(_, consumer, radv_lower_view_index, producer->info.stage == MESA_SHADER_MESH);
}
if (pipeline_key->optimisations_disabled)
return;
if (consumer->info.stage == MESA_SHADER_FRAGMENT &&
producer->info.has_transform_feedback_varyings) {
nir_link_xfb_varyings(producer, consumer);
}
nir_lower_io_arrays_to_elements(producer, consumer);
nir_validate_shader(producer, "after nir_lower_io_arrays_to_elements");
nir_validate_shader(consumer, "after nir_lower_io_arrays_to_elements");
radv_lower_io_to_scalar_early(producer, nir_var_shader_out);
radv_lower_io_to_scalar_early(consumer, nir_var_shader_in);
/* Remove PSIZ from shaders when it's not needed.
* This is typically produced by translation layers like Zink or D9VK.
*/
radv_remove_point_size(pipeline_key, producer, consumer);
if (nir_link_opt_varyings(producer, consumer)) {
nir_validate_shader(producer, "after nir_link_opt_varyings");
nir_validate_shader(consumer, "after nir_link_opt_varyings");
NIR_PASS(_, consumer, nir_opt_constant_folding);
NIR_PASS(_, consumer, nir_opt_algebraic);
NIR_PASS(_, consumer, nir_opt_dce);
}
NIR_PASS(_, producer, nir_remove_dead_variables, nir_var_shader_out, NULL);
NIR_PASS(_, consumer, nir_remove_dead_variables, nir_var_shader_in, NULL);
progress = nir_remove_unused_varyings(producer, consumer);
nir_compact_varyings(producer, consumer, true);
/* nir_compact_varyings changes deleted varyings into shader_temp.
* We need to remove these otherwise we risk them being lowered to scratch.
* This can especially happen to arrayed outputs.
*/
NIR_PASS(_, producer, nir_remove_dead_variables, nir_var_shader_temp, NULL);
NIR_PASS(_, consumer, nir_remove_dead_variables, nir_var_shader_temp, NULL);
nir_validate_shader(producer, "after nir_compact_varyings");
nir_validate_shader(consumer, "after nir_compact_varyings");
if (producer->info.stage == MESA_SHADER_MESH) {
/* nir_compact_varyings can change the location of per-vertex and per-primitive outputs */
nir_shader_gather_info(producer, nir_shader_get_entrypoint(producer));
}
const bool has_geom_or_tess = consumer->info.stage == MESA_SHADER_GEOMETRY ||
consumer->info.stage == MESA_SHADER_TESS_CTRL;
const bool merged_gs = consumer->info.stage == MESA_SHADER_GEOMETRY && gfx_level >= GFX9;
if (producer->info.stage == MESA_SHADER_TESS_CTRL ||
producer->info.stage == MESA_SHADER_MESH ||
(producer->info.stage == MESA_SHADER_VERTEX && has_geom_or_tess) ||
(producer->info.stage == MESA_SHADER_TESS_EVAL && merged_gs)) {
NIR_PASS(_, producer, nir_lower_io_to_vector, nir_var_shader_out);
if (producer->info.stage == MESA_SHADER_TESS_CTRL)
NIR_PASS(_, producer, nir_vectorize_tess_levels);
NIR_PASS(_, producer, nir_opt_combine_stores, nir_var_shader_out);
}
if (consumer->info.stage == MESA_SHADER_GEOMETRY ||
consumer->info.stage == MESA_SHADER_TESS_CTRL ||
consumer->info.stage == MESA_SHADER_TESS_EVAL) {
NIR_PASS(_, consumer, nir_lower_io_to_vector, nir_var_shader_in);
}
if (progress) {
progress = false;
NIR_PASS(progress, producer, nir_lower_global_vars_to_local);
if (progress) {
ac_nir_lower_indirect_derefs(producer, gfx_level);
/* remove dead writes, which can remove input loads */
NIR_PASS(_, producer, nir_lower_vars_to_ssa);
NIR_PASS(_, producer, nir_opt_dce);
}
progress = false;
NIR_PASS(progress, consumer, nir_lower_global_vars_to_local);
if (progress) {
ac_nir_lower_indirect_derefs(consumer, gfx_level);
}
}
}
static const gl_shader_stage graphics_shader_order[] = {
MESA_SHADER_VERTEX,
MESA_SHADER_TESS_CTRL,
MESA_SHADER_TESS_EVAL,
MESA_SHADER_GEOMETRY,
MESA_SHADER_TASK,
MESA_SHADER_MESH,
MESA_SHADER_FRAGMENT,
};
static void
radv_pipeline_link_vs(const struct radv_device *device, struct radv_pipeline_stage *vs_stage,
struct radv_pipeline_stage *next_stage,
const struct radv_pipeline_key *pipeline_key)
{
assert(vs_stage->nir->info.stage == MESA_SHADER_VERTEX);
if (radv_should_export_implicit_primitive_id(vs_stage, next_stage)) {
NIR_PASS(_, vs_stage->nir, radv_export_implicit_primitive_id);
}
if (radv_should_export_multiview(vs_stage, next_stage, pipeline_key)) {
NIR_PASS(_, vs_stage->nir, radv_export_multiview);
}
if (next_stage) {
assert(next_stage->nir->info.stage == MESA_SHADER_TESS_CTRL ||
next_stage->nir->info.stage == MESA_SHADER_GEOMETRY ||
next_stage->nir->info.stage == MESA_SHADER_FRAGMENT);
radv_pipeline_link_shaders(device, vs_stage->nir, next_stage->nir, pipeline_key);
}
nir_foreach_shader_in_variable(var, vs_stage->nir) {
var->data.driver_location = var->data.location;
}
if (next_stage && next_stage->nir->info.stage == MESA_SHADER_TESS_CTRL) {
nir_linked_io_var_info vs2tcs =
nir_assign_linked_io_var_locations(vs_stage->nir, next_stage->nir);
vs_stage->info.vs.num_linked_outputs = vs2tcs.num_linked_io_vars;
next_stage->info.tcs.num_linked_inputs = vs2tcs.num_linked_io_vars;
} else if (next_stage && next_stage->nir->info.stage == MESA_SHADER_GEOMETRY) {
nir_linked_io_var_info vs2gs =
nir_assign_linked_io_var_locations(vs_stage->nir, next_stage->nir);
vs_stage->info.vs.num_linked_outputs = vs2gs.num_linked_io_vars;
next_stage->info.gs.num_linked_inputs = vs2gs.num_linked_io_vars;
} else {
nir_foreach_shader_out_variable(var, vs_stage->nir) {
var->data.driver_location = var->data.location;
}
}
}
static void
radv_pipeline_link_tcs(const struct radv_device *device, struct radv_pipeline_stage *tcs_stage,
struct radv_pipeline_stage *tes_stage,
const struct radv_pipeline_key *pipeline_key)
{
assert(tcs_stage->nir->info.stage == MESA_SHADER_TESS_CTRL);
assert(tes_stage->nir->info.stage == MESA_SHADER_TESS_EVAL);
radv_pipeline_link_shaders(device, tcs_stage->nir, tes_stage->nir, pipeline_key);
nir_lower_patch_vertices(tes_stage->nir, tcs_stage->nir->info.tess.tcs_vertices_out, NULL);
/* Copy TCS info into the TES info */
merge_tess_info(&tes_stage->nir->info, &tcs_stage->nir->info);
nir_linked_io_var_info tcs2tes =
nir_assign_linked_io_var_locations(tcs_stage->nir, tes_stage->nir);
tcs_stage->info.tcs.num_linked_outputs = tcs2tes.num_linked_io_vars;
tcs_stage->info.tcs.num_linked_patch_outputs = tcs2tes.num_linked_patch_io_vars;
tes_stage->info.tes.num_linked_inputs = tcs2tes.num_linked_io_vars;
tes_stage->info.tes.num_linked_patch_inputs = tcs2tes.num_linked_patch_io_vars;
}
static void
radv_pipeline_link_tes(const struct radv_device *device, struct radv_pipeline_stage *tes_stage,
struct radv_pipeline_stage *next_stage,
const struct radv_pipeline_key *pipeline_key)
{
assert(tes_stage->nir->info.stage == MESA_SHADER_TESS_EVAL);
if (radv_should_export_implicit_primitive_id(tes_stage, next_stage)) {
NIR_PASS(_, tes_stage->nir, radv_export_implicit_primitive_id);
}
if (radv_should_export_multiview(tes_stage, next_stage, pipeline_key)) {
NIR_PASS(_, tes_stage->nir, radv_export_multiview);
}
if (next_stage) {
assert(next_stage->nir->info.stage == MESA_SHADER_GEOMETRY ||
next_stage->nir->info.stage == MESA_SHADER_FRAGMENT);
radv_pipeline_link_shaders(device, tes_stage->nir, next_stage->nir, pipeline_key);
}
if (next_stage && next_stage->nir->info.stage == MESA_SHADER_GEOMETRY) {
nir_linked_io_var_info tes2gs =
nir_assign_linked_io_var_locations(tes_stage->nir, next_stage->nir);
tes_stage->info.tes.num_linked_outputs = tes2gs.num_linked_io_vars;
next_stage->info.gs.num_linked_inputs = tes2gs.num_linked_io_vars;
} else {
nir_foreach_shader_out_variable(var, tes_stage->nir) {
var->data.driver_location = var->data.location;
}
}
}
static void
radv_pipeline_link_gs(const struct radv_device *device, struct radv_pipeline_stage *gs_stage,
struct radv_pipeline_stage *fs_stage,
const struct radv_pipeline_key *pipeline_key)
{
assert(gs_stage->nir->info.stage == MESA_SHADER_GEOMETRY);
if (radv_should_export_multiview(gs_stage, fs_stage, pipeline_key)) {
NIR_PASS(_, gs_stage->nir, radv_export_multiview);
}
if (fs_stage) {
assert(fs_stage->nir->info.stage == MESA_SHADER_FRAGMENT);
radv_pipeline_link_shaders(device, gs_stage->nir, fs_stage->nir, pipeline_key);
}
nir_foreach_shader_out_variable(var, gs_stage->nir) {
var->data.driver_location = var->data.location;
}
}
static void
radv_pipeline_link_task(const struct radv_device *device, struct radv_pipeline_stage *task_stage,
struct radv_pipeline_stage *mesh_stage,
const struct radv_pipeline_key *pipeline_key)
{
assert(task_stage->nir->info.stage == MESA_SHADER_TASK);
assert(mesh_stage->nir->info.stage == MESA_SHADER_MESH);
/* Linking task and mesh shaders shouldn't do anything for now but keep it for consistency. */
radv_pipeline_link_shaders(device, task_stage->nir, mesh_stage->nir, pipeline_key);
}
static void
radv_pipeline_link_mesh(const struct radv_device *device, struct radv_pipeline_stage *mesh_stage,
struct radv_pipeline_stage *fs_stage,
const struct radv_pipeline_key *pipeline_key)
{
assert(mesh_stage->nir->info.stage == MESA_SHADER_MESH);
if (fs_stage) {
assert(fs_stage->nir->info.stage == MESA_SHADER_FRAGMENT);
nir_foreach_shader_in_variable(var, fs_stage->nir) {
/* These variables are per-primitive when used with a mesh shader. */
if (var->data.location == VARYING_SLOT_PRIMITIVE_ID ||
var->data.location == VARYING_SLOT_VIEWPORT ||
var->data.location == VARYING_SLOT_LAYER) {
var->data.per_primitive = true;
}
}
radv_pipeline_link_shaders(device, mesh_stage->nir, fs_stage->nir, pipeline_key);
}
/* ac_nir_lower_ngg ignores driver locations for mesh shaders, but set them to all zero just to
* be on the safe side.
*/
nir_foreach_shader_out_variable(var, mesh_stage->nir) {
var->data.driver_location = 0;
}
}
static void
radv_pipeline_link_fs(struct radv_pipeline_stage *fs_stage,
const struct radv_pipeline_key *pipeline_key)
{
assert(fs_stage->nir->info.stage == MESA_SHADER_FRAGMENT);
if (!pipeline_key->ps.has_epilog) {
/* Only remove color exports when the format is known. */
radv_remove_color_exports(pipeline_key, fs_stage->nir);
}
nir_foreach_shader_out_variable(var, fs_stage->nir) {
var->data.driver_location = var->data.location + var->data.index;
}
}
static void
radv_graphics_pipeline_link(const struct radv_pipeline *pipeline,
const struct radv_pipeline_key *pipeline_key,
struct radv_pipeline_stage *stages)
{
const struct radv_device *device = pipeline->device;
/* Walk backwards to link */
struct radv_pipeline_stage *next_stage = NULL;
for (int i = ARRAY_SIZE(graphics_shader_order) - 1; i >= 0; i--) {
gl_shader_stage s = graphics_shader_order[i];
if (!stages[s].nir)
continue;
switch (s) {
case MESA_SHADER_VERTEX:
radv_pipeline_link_vs(device, &stages[s], next_stage, pipeline_key);
break;
case MESA_SHADER_TESS_CTRL:
radv_pipeline_link_tcs(device, &stages[s], next_stage, pipeline_key);
break;
case MESA_SHADER_TESS_EVAL:
radv_pipeline_link_tes(device, &stages[s], next_stage, pipeline_key);
break;
case MESA_SHADER_GEOMETRY:
radv_pipeline_link_gs(device, &stages[s], next_stage, pipeline_key);
break;
case MESA_SHADER_TASK:
radv_pipeline_link_task(device, &stages[s], next_stage, pipeline_key);
break;
case MESA_SHADER_MESH:
radv_pipeline_link_mesh(device, &stages[s], next_stage, pipeline_key);
break;
case MESA_SHADER_FRAGMENT:
radv_pipeline_link_fs(&stages[s], pipeline_key);
break;
default:
unreachable("Invalid graphics shader stage");
}
next_stage = &stages[s];
}
}
struct radv_pipeline_key
radv_generate_pipeline_key(const struct radv_pipeline *pipeline, VkPipelineCreateFlags flags)
{
struct radv_device *device = pipeline->device;
struct radv_pipeline_key key;
memset(&key, 0, sizeof(key));
if (flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT)
key.optimisations_disabled = 1;
key.disable_aniso_single_level = device->instance->disable_aniso_single_level &&
device->physical_device->rad_info.gfx_level < GFX8;
key.image_2d_view_of_3d = device->image_2d_view_of_3d &&
device->physical_device->rad_info.gfx_level == GFX9;
return key;
}
static struct radv_pipeline_key
radv_generate_graphics_pipeline_key(const struct radv_graphics_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct vk_graphics_pipeline_state *state,
const struct radv_blend_state *blend)
{
struct radv_device *device = pipeline->base.device;
const struct radv_physical_device *pdevice = device->physical_device;
struct radv_pipeline_key key = radv_generate_pipeline_key(&pipeline->base, pCreateInfo->flags);
key.has_multiview_view_index = state->rp ? !!state->rp->view_mask : 0;
if (pipeline->dynamic_states & RADV_DYNAMIC_VERTEX_INPUT) {
key.vs.has_prolog = true;
}
/* Vertex input state */
if (state->vi) {
u_foreach_bit(i, state->vi->attributes_valid) {
uint32_t binding = state->vi->attributes[i].binding;
uint32_t offset = state->vi->attributes[i].offset;
enum pipe_format format = vk_format_to_pipe_format(state->vi->attributes[i].format);
key.vs.vertex_attribute_formats[i] = format;
key.vs.vertex_attribute_bindings[i] = binding;
key.vs.vertex_attribute_offsets[i] = offset;
key.vs.instance_rate_divisors[i] = state->vi->bindings[binding].divisor;
if (!(pipeline->dynamic_states & RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE)) {
/* From the Vulkan spec 1.2.157:
*
* "If the bound pipeline state object was created with the
* VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE dynamic state enabled then pStrides[i]
* specifies the distance in bytes between two consecutive elements within the
* corresponding buffer. In this case the VkVertexInputBindingDescription::stride state
* from the pipeline state object is ignored."
*
* Make sure the vertex attribute stride is zero to avoid computing a wrong offset if
* it's initialized to something else than zero.
*/
key.vs.vertex_attribute_strides[i] = state->vi->bindings[binding].stride;
}
if (state->vi->bindings[binding].input_rate) {
key.vs.instance_rate_inputs |= 1u << i;
}
const struct ac_vtx_format_info *vtx_info =
ac_get_vtx_format_info(pdevice->rad_info.gfx_level, pdevice->rad_info.family, format);
unsigned attrib_align =
vtx_info->chan_byte_size ? vtx_info->chan_byte_size : vtx_info->element_size;
/* If offset is misaligned, then the buffer offset must be too. Just skip updating
* vertex_binding_align in this case.
*/
if (offset % attrib_align == 0) {
key.vs.vertex_binding_align[binding] =
MAX2(key.vs.vertex_binding_align[binding], attrib_align);
}
}
}
if (state->ts)
key.tcs.tess_input_vertices = state->ts->patch_control_points;
if (state->ms) {
key.ps.sample_shading_enable = state->ms->sample_shading_enable;
if (state->ms->rasterization_samples > 1) {
key.ps.num_samples = state->ms->rasterization_samples;
}
}
key.ps.col_format = blend->spi_shader_col_format;
key.ps.cb_target_mask = blend->cb_target_mask;
key.ps.mrt0_is_dual_src = blend->mrt0_is_dual_src;
if (device->physical_device->rad_info.gfx_level < GFX8) {
key.ps.is_int8 = blend->col_format_is_int8;
key.ps.is_int10 = blend->col_format_is_int10;
}
if (device->physical_device->rad_info.gfx_level >= GFX11 && state->ms) {
key.ps.alpha_to_coverage_via_mrtz = state->ms->alpha_to_coverage_enable;
}
if (state->ia) {
key.vs.topology = si_translate_prim(state->ia->primitive_topology);
}
if (device->physical_device->rad_info.gfx_level >= GFX10 && state->rs) {
key.vs.provoking_vtx_last =
state->rs->provoking_vertex == VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT;
}
if (device->instance->debug_flags & RADV_DEBUG_DISCARD_TO_DEMOTE)
key.ps.lower_discard_to_demote = true;
if (device->instance->enable_mrt_output_nan_fixup)
key.ps.enable_mrt_output_nan_fixup = blend->col_format_is_float32;
key.ps.force_vrs_enabled = device->force_vrs_enabled;
if (device->instance->debug_flags & RADV_DEBUG_INVARIANT_GEOM)
key.invariant_geom = true;
key.use_ngg = device->physical_device->use_ngg;
if ((radv_is_vrs_enabled(pipeline, state) || device->force_vrs_enabled) &&
(device->physical_device->rad_info.family == CHIP_NAVI21 ||
device->physical_device->rad_info.family == CHIP_NAVI22 ||
device->physical_device->rad_info.family == CHIP_VANGOGH))
key.adjust_frag_coord_z = true;
if (device->instance->disable_sinking_load_input_fs)
key.disable_sinking_load_input_fs = true;
if (device->primitives_generated_query)
key.primitives_generated_query = true;
key.ps.has_epilog =
!!(pipeline->active_stages & VK_SHADER_STAGE_FRAGMENT_BIT) && !!pipeline->ps_epilog;
key.dynamic_patch_control_points =
!!(pipeline->dynamic_states & RADV_DYNAMIC_PATCH_CONTROL_POINTS);
key.dynamic_rasterization_samples =
!!(pipeline->active_stages & VK_SHADER_STAGE_FRAGMENT_BIT) && !state->ms;
key.dynamic_color_write_mask = !!(pipeline->dynamic_states & RADV_DYNAMIC_COLOR_WRITE_MASK);
if (device->physical_device->use_ngg) {
VkShaderStageFlags ngg_stage;
if (pipeline->active_stages & VK_SHADER_STAGE_GEOMETRY_BIT) {
ngg_stage = VK_SHADER_STAGE_GEOMETRY_BIT;
} else if (pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) {
ngg_stage = VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT;
} else {
ngg_stage = VK_SHADER_STAGE_VERTEX_BIT;
}
key.dynamic_provoking_vtx_mode =
!!(pipeline->dynamic_states & RADV_DYNAMIC_PROVOKING_VERTEX_MODE) &&
(ngg_stage == VK_SHADER_STAGE_VERTEX_BIT || ngg_stage == VK_SHADER_STAGE_GEOMETRY_BIT);
}
return key;
}
static void
radv_fill_shader_info_ngg(struct radv_pipeline *pipeline,
const struct radv_pipeline_key *pipeline_key,
struct radv_pipeline_stage *stages)
{
struct radv_device *device = pipeline->device;
if (pipeline_key->use_ngg) {
if (stages[MESA_SHADER_TESS_CTRL].nir) {
stages[MESA_SHADER_TESS_EVAL].info.is_ngg = true;
} else if (stages[MESA_SHADER_VERTEX].nir) {
stages[MESA_SHADER_VERTEX].info.is_ngg = true;
} else if (stages[MESA_SHADER_MESH].nir) {
stages[MESA_SHADER_MESH].info.is_ngg = true;
}
if (device->physical_device->rad_info.gfx_level < GFX11 &&
stages[MESA_SHADER_TESS_CTRL].nir && stages[MESA_SHADER_GEOMETRY].nir &&
stages[MESA_SHADER_GEOMETRY].nir->info.gs.invocations *
stages[MESA_SHADER_GEOMETRY].nir->info.gs.vertices_out >
256) {
/* Fallback to the legacy path if tessellation is
* enabled with extreme geometry because
* EN_MAX_VERT_OUT_PER_GS_INSTANCE doesn't work and it
* might hang.
*/
stages[MESA_SHADER_TESS_EVAL].info.is_ngg = false;
}
gl_shader_stage last_xfb_stage = MESA_SHADER_VERTEX;
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
if (stages[i].nir)
last_xfb_stage = i;
}
bool uses_xfb = stages[last_xfb_stage].nir &&
stages[last_xfb_stage].nir->xfb_info;
if (!device->physical_device->use_ngg_streamout && uses_xfb) {
/* GFX11+ requires NGG. */
assert(device->physical_device->rad_info.gfx_level < GFX11);
if (stages[MESA_SHADER_TESS_CTRL].nir)
stages[MESA_SHADER_TESS_EVAL].info.is_ngg = false;
else
stages[MESA_SHADER_VERTEX].info.is_ngg = false;
}
}
}
static void
radv_fill_shader_info(struct radv_pipeline *pipeline,
struct radv_pipeline_layout *pipeline_layout,
const struct radv_pipeline_key *pipeline_key,
struct radv_pipeline_stage *stages)
{
struct radv_device *device = pipeline->device;
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) {
if (!stages[i].nir)
continue;
radv_nir_shader_info_init(&stages[i].info);
radv_nir_shader_info_pass(device, stages[i].nir, pipeline_layout, pipeline_key,
&stages[i].info);
}
radv_nir_shader_info_link(device, pipeline_key, stages);
}
static void
radv_declare_pipeline_args(struct radv_device *device, struct radv_pipeline_stage *stages,
const struct radv_pipeline_key *pipeline_key)
{
enum amd_gfx_level gfx_level = device->physical_device->rad_info.gfx_level;
unsigned active_stages = 0;
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) {
if (stages[i].nir)
active_stages |= (1 << i);
}
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
stages[i].args.is_gs_copy_shader = false;
stages[i].args.explicit_scratch_args = !radv_use_llvm_for_stage(device, i);
stages[i].args.remap_spi_ps_input = !radv_use_llvm_for_stage(device, i);
stages[i].args.load_grid_size_from_user_sgpr = device->load_grid_size_from_user_sgpr;
}
if (gfx_level >= GFX9 && stages[MESA_SHADER_TESS_CTRL].nir) {
radv_declare_shader_args(gfx_level, pipeline_key, &stages[MESA_SHADER_TESS_CTRL].info,
MESA_SHADER_TESS_CTRL, true, MESA_SHADER_VERTEX,
&stages[MESA_SHADER_TESS_CTRL].args);
stages[MESA_SHADER_TESS_CTRL].info.user_sgprs_locs = stages[MESA_SHADER_TESS_CTRL].args.user_sgprs_locs;
stages[MESA_SHADER_TESS_CTRL].info.inline_push_constant_mask =
stages[MESA_SHADER_TESS_CTRL].args.ac.inline_push_const_mask;
stages[MESA_SHADER_VERTEX].info.user_sgprs_locs = stages[MESA_SHADER_TESS_CTRL].info.user_sgprs_locs;
stages[MESA_SHADER_VERTEX].info.inline_push_constant_mask = stages[MESA_SHADER_TESS_CTRL].info.inline_push_constant_mask;
stages[MESA_SHADER_VERTEX].args = stages[MESA_SHADER_TESS_CTRL].args;
active_stages &= ~(1 << MESA_SHADER_VERTEX);
active_stages &= ~(1 << MESA_SHADER_TESS_CTRL);
}
if (gfx_level >= GFX9 && stages[MESA_SHADER_GEOMETRY].nir) {
gl_shader_stage pre_stage =
stages[MESA_SHADER_TESS_EVAL].nir ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX;
radv_declare_shader_args(gfx_level, pipeline_key, &stages[MESA_SHADER_GEOMETRY].info,
MESA_SHADER_GEOMETRY, true, pre_stage,
&stages[MESA_SHADER_GEOMETRY].args);
stages[MESA_SHADER_GEOMETRY].info.user_sgprs_locs = stages[MESA_SHADER_GEOMETRY].args.user_sgprs_locs;
stages[MESA_SHADER_GEOMETRY].info.inline_push_constant_mask =
stages[MESA_SHADER_GEOMETRY].args.ac.inline_push_const_mask;
stages[pre_stage].info.user_sgprs_locs = stages[MESA_SHADER_GEOMETRY].info.user_sgprs_locs;
stages[pre_stage].info.inline_push_constant_mask = stages[MESA_SHADER_GEOMETRY].info.inline_push_constant_mask;
stages[pre_stage].args = stages[MESA_SHADER_GEOMETRY].args;
active_stages &= ~(1 << pre_stage);
active_stages &= ~(1 << MESA_SHADER_GEOMETRY);
}
u_foreach_bit(i, active_stages) {
radv_declare_shader_args(gfx_level, pipeline_key, &stages[i].info, i, false,
MESA_SHADER_VERTEX, &stages[i].args);
stages[i].info.user_sgprs_locs = stages[i].args.user_sgprs_locs;
stages[i].info.inline_push_constant_mask = stages[i].args.ac.inline_push_const_mask;
}
}
static bool
mem_vectorize_callback(unsigned align_mul, unsigned align_offset, unsigned bit_size,
unsigned num_components, nir_intrinsic_instr *low, nir_intrinsic_instr *high,
void *data)
{
if (num_components > 4)
return false;
/* >128 bit loads are split except with SMEM */
if (bit_size * num_components > 128)
return false;
uint32_t align;
if (align_offset)
align = 1 << (ffs(align_offset) - 1);
else
align = align_mul;
switch (low->intrinsic) {
case nir_intrinsic_load_global:
case nir_intrinsic_store_global:
case nir_intrinsic_store_ssbo:
case nir_intrinsic_load_ssbo:
case nir_intrinsic_load_ubo:
case nir_intrinsic_load_push_constant: {
unsigned max_components;
if (align % 4 == 0)
max_components = NIR_MAX_VEC_COMPONENTS;
else if (align % 2 == 0)
max_components = 16u / bit_size;
else
max_components = 8u / bit_size;
return (align % (bit_size / 8u)) == 0 && num_components <= max_components;
}
case nir_intrinsic_load_deref:
case nir_intrinsic_store_deref:
assert(nir_deref_mode_is(nir_src_as_deref(low->src[0]), nir_var_mem_shared));
FALLTHROUGH;
case nir_intrinsic_load_shared:
case nir_intrinsic_store_shared:
if (bit_size * num_components ==
96) { /* 96 bit loads require 128 bit alignment and are split otherwise */
return align % 16 == 0;
} else if (bit_size == 16 && (align % 4)) {
/* AMD hardware can't do 2-byte aligned f16vec2 loads, but they are useful for ALU
* vectorization, because our vectorizer requires the scalar IR to already contain vectors.
*/
return (align % 2 == 0) && num_components <= 2;
} else {
if (num_components == 3) {
/* AMD hardware can't do 3-component loads except for 96-bit loads, handled above. */
return false;
}
unsigned req = bit_size * num_components;
if (req == 64 || req == 128) /* 64-bit and 128-bit loads can use ds_read2_b{32,64} */
req /= 2u;
return align % (req / 8u) == 0;
}
default:
return false;
}
return false;
}
static unsigned
lower_bit_size_callback(const nir_instr *instr, void *_)
{
struct radv_device *device = _;
enum amd_gfx_level chip = device->physical_device->rad_info.gfx_level;
if (instr->type != nir_instr_type_alu)
return 0;
nir_alu_instr *alu = nir_instr_as_alu(instr);
/* If an instruction is not scalarized by this point,
* it can be emitted as packed instruction */
if (alu->dest.dest.ssa.num_components > 1)
return 0;
if (alu->dest.dest.ssa.bit_size & (8 | 16)) {
unsigned bit_size = alu->dest.dest.ssa.bit_size;
switch (alu->op) {
case nir_op_bitfield_select:
case nir_op_imul_high:
case nir_op_umul_high:
case nir_op_uadd_carry:
case nir_op_usub_borrow:
return 32;
case nir_op_iabs:
case nir_op_imax:
case nir_op_umax:
case nir_op_imin:
case nir_op_umin:
case nir_op_ishr:
case nir_op_ushr:
case nir_op_ishl:
case nir_op_isign:
case nir_op_uadd_sat:
case nir_op_usub_sat:
return (bit_size == 8 || !(chip >= GFX8 && nir_dest_is_divergent(alu->dest.dest))) ? 32
: 0;
case nir_op_iadd_sat:
case nir_op_isub_sat:
return bit_size == 8 || !nir_dest_is_divergent(alu->dest.dest) ? 32 : 0;
default:
return 0;
}
}
if (nir_src_bit_size(alu->src[0].src) & (8 | 16)) {
unsigned bit_size = nir_src_bit_size(alu->src[0].src);
switch (alu->op) {
case nir_op_bit_count:
case nir_op_find_lsb:
case nir_op_ufind_msb:
case nir_op_i2b1:
return 32;
case nir_op_ilt:
case nir_op_ige:
case nir_op_ieq:
case nir_op_ine:
case nir_op_ult:
case nir_op_uge:
return (bit_size == 8 || !(chip >= GFX8 && nir_dest_is_divergent(alu->dest.dest))) ? 32
: 0;
default:
return 0;
}
}
return 0;
}
static uint8_t
opt_vectorize_callback(const nir_instr *instr, const void *_)
{
if (instr->type != nir_instr_type_alu)
return 0;
const struct radv_device *device = _;
enum amd_gfx_level chip = device->physical_device->rad_info.gfx_level;
if (chip < GFX9)
return 1;
const nir_alu_instr *alu = nir_instr_as_alu(instr);
const unsigned bit_size = alu->dest.dest.ssa.bit_size;
if (bit_size != 16)
return 1;
switch (alu->op) {
case nir_op_fadd:
case nir_op_fsub:
case nir_op_fmul:
case nir_op_ffma:
case nir_op_fdiv:
case nir_op_flrp:
case nir_op_fabs:
case nir_op_fneg:
case nir_op_fsat:
case nir_op_fmin:
case nir_op_fmax:
case nir_op_iabs:
case nir_op_iadd:
case nir_op_iadd_sat:
case nir_op_uadd_sat:
case nir_op_isub:
case nir_op_isub_sat:
case nir_op_usub_sat:
case nir_op_ineg:
case nir_op_imul:
case nir_op_imin:
case nir_op_imax:
case nir_op_umin:
case nir_op_umax:
return 2;
case nir_op_ishl: /* TODO: in NIR, these have 32bit shift operands */
case nir_op_ishr: /* while Radeon needs 16bit operands when vectorized */
case nir_op_ushr:
default:
return 1;
}
}
static nir_component_mask_t
non_uniform_access_callback(const nir_src *src, void *_)
{
if (src->ssa->num_components == 1)
return 0x1;
return nir_chase_binding(*src).success ? 0x2 : 0x3;
}
VkResult
radv_upload_shaders(struct radv_device *device, struct radv_pipeline *pipeline,
struct radv_shader_binary **binaries, struct radv_shader_binary *gs_copy_binary)
{
uint32_t code_size = 0;
/* Compute the total code size. */
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) {
struct radv_shader *shader = pipeline->shaders[i];
if (!shader)
continue;
if (shader->bo)
continue;
code_size += align(shader->code_size, RADV_SHADER_ALLOC_ALIGNMENT);
}
if (pipeline->gs_copy_shader && !pipeline->gs_copy_shader->bo) {
code_size += align(pipeline->gs_copy_shader->code_size, RADV_SHADER_ALLOC_ALIGNMENT);
}
/* Allocate memory for all shader binaries. */
pipeline->slab = radv_pipeline_slab_create(device, pipeline, code_size);
if (!pipeline->slab)
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
pipeline->slab_bo = pipeline->slab->alloc->arena->bo;
/* Upload shader binaries. */
uint64_t slab_va = radv_buffer_get_va(pipeline->slab_bo);
uint32_t slab_offset = pipeline->slab->alloc->offset;
char *slab_ptr = pipeline->slab->alloc->arena->ptr;
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
struct radv_shader *shader = pipeline->shaders[i];
if (!shader)
continue;
if (shader->bo)
continue;
shader->va = slab_va + slab_offset;
void *dest_ptr = slab_ptr + slab_offset;
if (!radv_shader_binary_upload(device, binaries[i], shader, dest_ptr))
return VK_ERROR_OUT_OF_HOST_MEMORY;
slab_offset += align(shader->code_size, RADV_SHADER_ALLOC_ALIGNMENT);
}
if (pipeline->gs_copy_shader && !pipeline->gs_copy_shader->bo) {
pipeline->gs_copy_shader->va = slab_va + slab_offset;
void *dest_ptr = slab_ptr + slab_offset;
if (!radv_shader_binary_upload(device, gs_copy_binary, pipeline->gs_copy_shader, dest_ptr))
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
return VK_SUCCESS;
}
static bool
radv_consider_force_vrs(const struct radv_pipeline *pipeline, bool noop_fs,
const struct radv_pipeline_stage *stages,
gl_shader_stage last_vgt_api_stage)
{
struct radv_device *device = pipeline->device;
if (!device->force_vrs_enabled)
return false;
if (last_vgt_api_stage != MESA_SHADER_VERTEX &&
last_vgt_api_stage != MESA_SHADER_TESS_EVAL &&
last_vgt_api_stage != MESA_SHADER_GEOMETRY)
return false;
nir_shader *last_vgt_shader = stages[last_vgt_api_stage].nir;
if (last_vgt_shader->info.outputs_written & BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_SHADING_RATE))
return false;
/* VRS has no effect if there is no pixel shader. */
if (noop_fs)
return false;
/* Do not enable if the PS uses gl_FragCoord because it breaks postprocessing in some games. */
nir_shader *fs_shader = stages[MESA_SHADER_FRAGMENT].nir;
if (fs_shader &&
BITSET_TEST(fs_shader->info.system_values_read, SYSTEM_VALUE_FRAG_COORD)) {
return false;
}
return true;
}
static nir_ssa_def *
radv_adjust_vertex_fetch_alpha(nir_builder *b, enum ac_vs_input_alpha_adjust alpha_adjust,
nir_ssa_def *alpha)
{
if (alpha_adjust == AC_ALPHA_ADJUST_SSCALED)
alpha = nir_f2u32(b, alpha);
/* For the integer-like cases, do a natural sign extension.
*
* For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0 and happen to contain 0, 1, 2, 3 as
* the two LSBs of the exponent.
*/
unsigned offset = alpha_adjust == AC_ALPHA_ADJUST_SNORM ? 23u : 0u;
alpha = nir_ibfe_imm(b, alpha, offset, 2u);
/* Convert back to the right type. */
if (alpha_adjust == AC_ALPHA_ADJUST_SNORM) {
alpha = nir_i2f32(b, alpha);
alpha = nir_fmax(b, alpha, nir_imm_float(b, -1.0f));
} else if (alpha_adjust == AC_ALPHA_ADJUST_SSCALED) {
alpha = nir_i2f32(b, alpha);
}
return alpha;
}
static bool
radv_lower_vs_input(nir_shader *nir, const struct radv_physical_device *pdevice,
const struct radv_pipeline_key *pipeline_key)
{
nir_function_impl *impl = nir_shader_get_entrypoint(nir);
bool progress = false;
if (pipeline_key->vs.has_prolog)
return false;
nir_builder b;
nir_builder_init(&b, impl);
nir_foreach_block(block, impl) {
nir_foreach_instr(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
if (intrin->intrinsic != nir_intrinsic_load_input)
continue;
unsigned location = nir_intrinsic_base(intrin) - VERT_ATTRIB_GENERIC0;
unsigned component = nir_intrinsic_component(intrin);
unsigned num_components = intrin->dest.ssa.num_components;
enum pipe_format attrib_format = pipeline_key->vs.vertex_attribute_formats[location];
const struct ac_vtx_format_info *desc = ac_get_vtx_format_info(
pdevice->rad_info.gfx_level, pdevice->rad_info.family, attrib_format);
bool is_float =
nir_alu_type_get_base_type(nir_intrinsic_dest_type(intrin)) == nir_type_float;
unsigned mask = nir_ssa_def_components_read(&intrin->dest.ssa) << component;
unsigned num_channels = MIN2(util_last_bit(mask), desc->num_channels);
static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
bool post_shuffle = G_008F0C_DST_SEL_X(desc->dst_sel) == V_008F0C_SQ_SEL_Z;
const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
b.cursor = nir_after_instr(instr);
nir_ssa_def *channels[4];
if (post_shuffle) {
/* Expand to load 3 components because it's shuffled like X<->Z. */
intrin->num_components = MAX2(component + num_components, 3);
intrin->dest.ssa.num_components = intrin->num_components;
nir_intrinsic_set_component(intrin, 0);
num_channels = MAX2(num_channels, 3);
}
for (uint32_t i = 0; i < num_components; i++) {
unsigned idx = i + (post_shuffle ? component : 0);
if (swizzle[i + component] < num_channels) {
channels[i] = nir_channel(&b, &intrin->dest.ssa, swizzle[idx]);
} else if (i + component == 3) {
channels[i] = is_float ? nir_imm_floatN_t(&b, 1.0f, intrin->dest.ssa.bit_size)
: nir_imm_intN_t(&b, 1u, intrin->dest.ssa.bit_size);
} else {
channels[i] = nir_imm_zero(&b, 1, intrin->dest.ssa.bit_size);
}
}
if (desc->alpha_adjust != AC_ALPHA_ADJUST_NONE && component + num_components == 4) {
unsigned idx = num_components - 1;
channels[idx] = radv_adjust_vertex_fetch_alpha(&b, desc->alpha_adjust, channels[idx]);
}
nir_ssa_def *new_dest = nir_vec(&b, channels, num_components);
nir_ssa_def_rewrite_uses_after(&intrin->dest.ssa, new_dest,
new_dest->parent_instr);
progress = true;
}
}
if (progress)
nir_metadata_preserve(impl, nir_metadata_block_index | nir_metadata_dominance);
else
nir_metadata_preserve(impl, nir_metadata_all);
return progress;
}
static bool
radv_lower_fs_output(nir_shader *nir, const struct radv_pipeline_key *pipeline_key)
{
if (pipeline_key->ps.has_epilog)
return false;
nir_function_impl *impl = nir_shader_get_entrypoint(nir);
bool progress = false;
nir_builder b;
nir_builder_init(&b, impl);
nir_foreach_block(block, impl) {
nir_foreach_instr(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
if (intrin->intrinsic != nir_intrinsic_store_output)
continue;
int slot = nir_intrinsic_base(intrin) - FRAG_RESULT_DATA0;
if (slot < 0)
continue;
unsigned write_mask = nir_intrinsic_write_mask(intrin);
unsigned col_format = (pipeline_key->ps.col_format >> (4 * slot)) & 0xf;
bool is_int8 = (pipeline_key->ps.is_int8 >> slot) & 1;
bool is_int10 = (pipeline_key->ps.is_int10 >> slot) & 1;
bool enable_mrt_output_nan_fixup = (pipeline_key->ps.enable_mrt_output_nan_fixup >> slot) & 1;
bool is_16bit = intrin->src[0].ssa->bit_size == 16;
if (col_format == V_028714_SPI_SHADER_ZERO)
continue;
b.cursor = nir_before_instr(instr);
nir_ssa_def *values[4];
/* Extract the export values. */
for (unsigned i = 0; i < 4; i++) {
if (write_mask & (1 << i)) {
values[i] = nir_channel(&b, intrin->src[0].ssa, i);
} else {
values[i] = nir_ssa_undef(&b, 1, 32);
}
}
/* Replace NaN by zero (for 32-bit float formats) to fix game bugs if requested. */
if (enable_mrt_output_nan_fixup && !nir->info.internal && !is_16bit) {
u_foreach_bit(i, write_mask) {
const bool save_exact = b.exact;
b.exact = true;
nir_ssa_def *isnan = nir_fneu(&b, values[i], values[i]);
b.exact = save_exact;
values[i] = nir_bcsel(&b, isnan, nir_imm_zero(&b, 1, 32), values[i]);
}
}
if (col_format == V_028714_SPI_SHADER_FP16_ABGR ||
col_format == V_028714_SPI_SHADER_UNORM16_ABGR ||
col_format == V_028714_SPI_SHADER_SNORM16_ABGR ||
col_format == V_028714_SPI_SHADER_UINT16_ABGR ||
col_format == V_028714_SPI_SHADER_SINT16_ABGR) {
/* Convert and/or clamp the export values. */
switch (col_format) {
case V_028714_SPI_SHADER_UINT16_ABGR: {
unsigned max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
u_foreach_bit(i, write_mask) {
if (is_int8 || is_int10) {
values[i] = nir_umin(&b, values[i], i == 3 && is_int10 ? nir_imm_int(&b, 3u)
: nir_imm_int(&b, max_rgb));
} else if (is_16bit) {
values[i] = nir_u2u32(&b, values[i]);
}
}
break;
}
case V_028714_SPI_SHADER_SINT16_ABGR: {
unsigned max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
unsigned min_rgb = is_int8 ? -128 : is_int10 ? -512 : 0;
u_foreach_bit(i, write_mask) {
if (is_int8 || is_int10) {
values[i] = nir_imin(&b, values[i], i == 3 && is_int10 ? nir_imm_int(&b, 1u)
: nir_imm_int(&b, max_rgb));
values[i] = nir_imax(&b, values[i], i == 3 && is_int10 ? nir_imm_int(&b, -2u)
: nir_imm_int(&b, min_rgb));
} else if (is_16bit) {
values[i] = nir_i2i32(&b, values[i]);
}
}
break;
}
case V_028714_SPI_SHADER_UNORM16_ABGR:
case V_028714_SPI_SHADER_SNORM16_ABGR:
u_foreach_bit(i, write_mask) {
if (is_16bit) {
values[i] = nir_f2f32(&b, values[i]);
}
}
break;
default:
break;
}
/* Only nir_pack_32_2x16_split needs 16-bit inputs. */
bool input_16_bit = col_format == V_028714_SPI_SHADER_FP16_ABGR && is_16bit;
unsigned new_write_mask = 0;
/* Pack the export values. */
for (unsigned i = 0; i < 2; i++) {
bool enabled = (write_mask >> (i * 2)) & 0x3;
if (!enabled) {
values[i] = nir_ssa_undef(&b, 1, 32);
continue;
}
nir_ssa_def *src0 = values[i * 2];
nir_ssa_def *src1 = values[i * 2 + 1];
if (!(write_mask & (1 << (i * 2))))
src0 = nir_imm_zero(&b, 1, input_16_bit ? 16 : 32);
if (!(write_mask & (1 << (i * 2 + 1))))
src1 = nir_imm_zero(&b, 1, input_16_bit ? 16 : 32);
if (col_format == V_028714_SPI_SHADER_FP16_ABGR) {
if (is_16bit) {
values[i] = nir_pack_32_2x16_split(&b, src0, src1);
} else {
values[i] = nir_pack_half_2x16_split(&b, src0, src1);
}
} else if (col_format == V_028714_SPI_SHADER_UNORM16_ABGR) {
values[i] = nir_pack_unorm_2x16(&b, nir_vec2(&b, src0, src1));
} else if (col_format == V_028714_SPI_SHADER_SNORM16_ABGR) {
values[i] = nir_pack_snorm_2x16(&b, nir_vec2(&b, src0, src1));
} else if (col_format == V_028714_SPI_SHADER_UINT16_ABGR) {
values[i] = nir_pack_uint_2x16(&b, nir_vec2(&b, src0, src1));
} else if (col_format == V_028714_SPI_SHADER_SINT16_ABGR) {
values[i] = nir_pack_sint_2x16(&b, nir_vec2(&b, src0, src1));
}
new_write_mask |= 1 << i;
}
/* Update the write mask for compressed outputs. */
nir_intrinsic_set_write_mask(intrin, new_write_mask);
intrin->num_components = util_last_bit(new_write_mask);
}
nir_ssa_def *new_src = nir_vec(&b, values, intrin->num_components);
nir_instr_rewrite_src(&intrin->instr, &intrin->src[0], nir_src_for_ssa(new_src));
progress = true;
}
}
if (progress)
nir_metadata_preserve(impl, nir_metadata_block_index | nir_metadata_dominance);
else
nir_metadata_preserve(impl, nir_metadata_all);
return progress;
}
void
radv_pipeline_stage_init(const VkPipelineShaderStageCreateInfo *sinfo,
struct radv_pipeline_stage *out_stage, gl_shader_stage stage)
{
const VkShaderModuleCreateInfo *minfo =
vk_find_struct_const(sinfo->pNext, SHADER_MODULE_CREATE_INFO);
const VkPipelineShaderStageModuleIdentifierCreateInfoEXT *iinfo =
vk_find_struct_const(sinfo->pNext, PIPELINE_SHADER_STAGE_MODULE_IDENTIFIER_CREATE_INFO_EXT);
if (sinfo->module == VK_NULL_HANDLE && !minfo && !iinfo)
return;
memset(out_stage, 0, sizeof(*out_stage));
out_stage->stage = stage;
out_stage->entrypoint = sinfo->pName;
out_stage->spec_info = sinfo->pSpecializationInfo;
out_stage->feedback.flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT;
if (sinfo->module != VK_NULL_HANDLE) {
struct vk_shader_module *module = vk_shader_module_from_handle(sinfo->module);
STATIC_ASSERT(sizeof(out_stage->spirv.sha1) == sizeof(module->sha1));
out_stage->spirv.data = module->data;
out_stage->spirv.size = module->size;
out_stage->spirv.object = &module->base;
if (module->nir)
out_stage->internal_nir = module->nir;
} else if (minfo) {
out_stage->spirv.data = (const char *) minfo->pCode;
out_stage->spirv.size = minfo->codeSize;
}
vk_pipeline_hash_shader_stage(sinfo, NULL, out_stage->shader_sha1);
}
static struct radv_shader *
radv_pipeline_create_gs_copy_shader(struct radv_pipeline *pipeline,
struct radv_pipeline_stage *stages,
const struct radv_pipeline_key *pipeline_key,
const struct radv_pipeline_layout *pipeline_layout,
bool keep_executable_info, bool keep_statistic_info,
struct radv_shader_binary **gs_copy_binary)
{
struct radv_device *device = pipeline->device;
struct radv_shader_info info = {0};
radv_nir_shader_info_pass(device, stages[MESA_SHADER_GEOMETRY].nir, pipeline_layout, pipeline_key,
&info);
info.wave_size = 64; /* Wave32 not supported. */
info.workgroup_size = 64; /* HW VS: separate waves, no workgroups */
info.ballot_bit_size = 64;
if (stages[MESA_SHADER_GEOMETRY].info.outinfo.export_clip_dists) {
if (stages[MESA_SHADER_GEOMETRY].nir->info.outputs_written & VARYING_BIT_CLIP_DIST0)
info.outinfo.vs_output_param_offset[VARYING_SLOT_CLIP_DIST0] = info.outinfo.param_exports++;
if (stages[MESA_SHADER_GEOMETRY].nir->info.outputs_written & VARYING_BIT_CLIP_DIST1)
info.outinfo.vs_output_param_offset[VARYING_SLOT_CLIP_DIST1] = info.outinfo.param_exports++;
info.outinfo.export_clip_dists = true;
}
struct radv_shader_args gs_copy_args = {0};
gs_copy_args.is_gs_copy_shader = true;
gs_copy_args.explicit_scratch_args = !radv_use_llvm_for_stage(device, MESA_SHADER_VERTEX);
radv_declare_shader_args(device->physical_device->rad_info.gfx_level, pipeline_key, &info,
MESA_SHADER_VERTEX, false, MESA_SHADER_VERTEX, &gs_copy_args);
info.user_sgprs_locs = gs_copy_args.user_sgprs_locs;
info.inline_push_constant_mask = gs_copy_args.ac.inline_push_const_mask;
return radv_create_gs_copy_shader(device, stages[MESA_SHADER_GEOMETRY].nir, &info, &gs_copy_args,
gs_copy_binary, keep_executable_info, keep_statistic_info,
pipeline_key->optimisations_disabled);
}
static void
radv_pipeline_nir_to_asm(struct radv_pipeline *pipeline, struct radv_pipeline_stage *stages,
const struct radv_pipeline_key *pipeline_key,
const struct radv_pipeline_layout *pipeline_layout,
bool keep_executable_info, bool keep_statistic_info,
gl_shader_stage last_vgt_api_stage,
struct radv_shader_binary **binaries,
struct radv_shader_binary **gs_copy_binary)
{
struct radv_device *device = pipeline->device;
unsigned active_stages = 0;
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) {
if (stages[i].nir)
active_stages |= (1 << i);
}
bool pipeline_has_ngg = last_vgt_api_stage != MESA_SHADER_NONE &&
stages[last_vgt_api_stage].info.is_ngg;
if (stages[MESA_SHADER_GEOMETRY].nir && !pipeline_has_ngg) {
pipeline->gs_copy_shader =
radv_pipeline_create_gs_copy_shader(pipeline, stages, pipeline_key, pipeline_layout,
keep_executable_info, keep_statistic_info,
gs_copy_binary);
}
for (int s = MESA_VULKAN_SHADER_STAGES - 1; s >= 0; s--) {
if (!(active_stages & (1 << s)) || pipeline->shaders[s])
continue;
nir_shader *shaders[2] = { stages[s].nir, NULL };
unsigned shader_count = 1;
/* On GFX9+, TES is merged with GS and VS is merged with TCS or GS. */
if (device->physical_device->rad_info.gfx_level >= GFX9 &&
(s == MESA_SHADER_TESS_CTRL || s == MESA_SHADER_GEOMETRY)) {
gl_shader_stage pre_stage;
if (s == MESA_SHADER_GEOMETRY && stages[MESA_SHADER_TESS_EVAL].nir) {
pre_stage = MESA_SHADER_TESS_EVAL;
} else {
pre_stage = MESA_SHADER_VERTEX;
}
shaders[0] = stages[pre_stage].nir;
shaders[1] = stages[s].nir;
shader_count = 2;
}
int64_t stage_start = os_time_get_nano();
pipeline->shaders[s] = radv_shader_nir_to_asm(device, &stages[s], shaders, shader_count,
pipeline_key, keep_executable_info,
keep_statistic_info, &binaries[s]);
stages[s].feedback.duration += os_time_get_nano() - stage_start;
active_stages &= ~(1 << shaders[0]->info.stage);
if (shaders[1])
active_stages &= ~(1 << shaders[1]->info.stage);
}
}
static void
radv_pipeline_stage_retain_shader(struct radv_pipeline *pipeline, struct radv_pipeline_stage *stage)
{
gl_shader_stage s = stage->stage;
pipeline->retained_shaders[s].nir = stage->nir;
}
static void
radv_pipeline_get_nir(struct radv_pipeline *pipeline, struct radv_pipeline_stage *stages,
const struct radv_pipeline_key *pipeline_key, bool retain_shaders)
{
struct radv_device *device = pipeline->device;
for (unsigned s = 0; s < MESA_VULKAN_SHADER_STAGES; s++) {
if (!stages[s].entrypoint)
continue;
/* Do not try to get the NIR when we already have the assembly. */
if (pipeline->shaders[s])
continue;
int64_t stage_start = os_time_get_nano();
assert(retain_shaders || pipeline->shaders[s] == NULL);
if (pipeline->retained_shaders[s].nir) {
stages[s].nir = nir_shader_clone(NULL, pipeline->retained_shaders[s].nir);
} else {
stages[s].nir = radv_shader_spirv_to_nir(device, &stages[s], pipeline_key);
}
if (retain_shaders)
radv_pipeline_stage_retain_shader(pipeline, &stages[s]);
stages[s].feedback.duration += os_time_get_nano() - stage_start;
}
}
static void
radv_pipeline_load_retained_shaders(struct radv_pipeline *pipeline,
struct radv_pipeline_stage *stages)
{
for (uint32_t s = 0; s < MESA_VULKAN_SHADER_STAGES; s++) {
if (!pipeline->retained_shaders[s].nir)
continue;
int64_t stage_start = os_time_get_nano();
assert(pipeline->shaders[s] == NULL);
stages[s].stage = s;
stages[s].entrypoint =
nir_shader_get_entrypoint(pipeline->retained_shaders[s].nir)->function->name;
stages[s].feedback.duration += os_time_get_nano() - stage_start;
stages[s].feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT;
}
}
static void
radv_postprocess_nir(struct radv_pipeline *pipeline,
const struct radv_pipeline_layout *pipeline_layout,
const struct radv_pipeline_key *pipeline_key,
bool pipeline_has_ngg, unsigned last_vgt_api_stage,
struct radv_pipeline_stage *stage)
{
struct radv_device *device = pipeline->device;
enum amd_gfx_level gfx_level = device->physical_device->rad_info.gfx_level;
/* Wave and workgroup size should already be filled. */
assert(stage->info.wave_size && stage->info.workgroup_size);
if (stage->stage == MESA_SHADER_FRAGMENT) {
NIR_PASS(_, stage->nir, nir_opt_cse);
NIR_PASS(_, stage->nir, radv_lower_fs_intrinsics, stage, pipeline_key);
}
enum nir_lower_non_uniform_access_type lower_non_uniform_access_types =
nir_lower_non_uniform_ubo_access | nir_lower_non_uniform_ssbo_access |
nir_lower_non_uniform_texture_access | nir_lower_non_uniform_image_access;
/* In practice, most shaders do not have non-uniform-qualified
* accesses (see
* https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/17558#note_1475069)
* thus a cheaper and likely to fail check is run first.
*/
if (nir_has_non_uniform_access(stage->nir, lower_non_uniform_access_types)) {
NIR_PASS(_, stage->nir, nir_opt_non_uniform_access);
if (!radv_use_llvm_for_stage(device, stage->stage)) {
nir_lower_non_uniform_access_options options = {
.types = lower_non_uniform_access_types,
.callback = &non_uniform_access_callback,
.callback_data = NULL,
};
NIR_PASS(_, stage->nir, nir_lower_non_uniform_access, &options);
}
}
NIR_PASS(_, stage->nir, nir_lower_memory_model);
nir_load_store_vectorize_options vectorize_opts = {
.modes = nir_var_mem_ssbo | nir_var_mem_ubo | nir_var_mem_push_const |
nir_var_mem_shared | nir_var_mem_global,
.callback = mem_vectorize_callback,
.robust_modes = 0,
/* On GFX6, read2/write2 is out-of-bounds if the offset register is negative, even if
* the final offset is not.
*/
.has_shared2_amd = gfx_level >= GFX7,
};
if (device->robust_buffer_access2) {
vectorize_opts.robust_modes =
nir_var_mem_ubo | nir_var_mem_ssbo | nir_var_mem_push_const;
}
bool progress = false;
NIR_PASS(progress, stage->nir, nir_opt_load_store_vectorize, &vectorize_opts);
if (progress) {
NIR_PASS(_, stage->nir, nir_copy_prop);
NIR_PASS(_, stage->nir, nir_opt_shrink_stores,
!device->instance->disable_shrink_image_store);
/* Gather info again, to update whether 8/16-bit are used. */
nir_shader_gather_info(stage->nir, nir_shader_get_entrypoint(stage->nir));
}
NIR_PASS(_, stage->nir, radv_nir_lower_ycbcr_textures, pipeline_layout);
if (stage->nir->info.uses_resource_info_query)
NIR_PASS(_, stage->nir, ac_nir_lower_resinfo, gfx_level);
NIR_PASS_V(stage->nir, radv_nir_apply_pipeline_layout, device, pipeline_layout,
&stage->info, &stage->args);
NIR_PASS(_, stage->nir, nir_opt_shrink_vectors);
NIR_PASS(_, stage->nir, nir_lower_alu_width, opt_vectorize_callback, device);
/* lower ALU operations */
NIR_PASS(_, stage->nir, nir_lower_int64);
nir_move_options sink_opts = nir_move_const_undef | nir_move_copies;
if (stage->stage != MESA_SHADER_FRAGMENT || !pipeline_key->disable_sinking_load_input_fs)
sink_opts |= nir_move_load_input;
NIR_PASS(_, stage->nir, nir_opt_sink, sink_opts);
NIR_PASS(_, stage->nir, nir_opt_move,
nir_move_load_input | nir_move_const_undef | nir_move_copies);
/* Lower I/O intrinsics to memory instructions. */
bool io_to_mem = radv_lower_io_to_mem(device, stage);
bool lowered_ngg = pipeline_has_ngg && stage->stage == last_vgt_api_stage;
if (lowered_ngg)
radv_lower_ngg(device, stage, pipeline_key);
NIR_PASS(_, stage->nir, nir_opt_idiv_const, 8);
NIR_PASS(_, stage->nir, nir_lower_idiv,
&(nir_lower_idiv_options){
.allow_fp16 = gfx_level >= GFX9,
});
NIR_PASS(_, stage->nir, ac_nir_lower_global_access);
NIR_PASS_V(stage->nir, radv_nir_lower_abi, gfx_level, &stage->info, &stage->args, pipeline_key,
radv_use_llvm_for_stage(device, stage->stage),
device->physical_device->rad_info.address32_hi);
radv_optimize_nir_algebraic(
stage->nir, io_to_mem || lowered_ngg || stage->stage == MESA_SHADER_COMPUTE ||
stage->stage == MESA_SHADER_TASK);
if (stage->nir->info.bit_sizes_int & (8 | 16)) {
if (gfx_level >= GFX8) {
NIR_PASS(_, stage->nir, nir_convert_to_lcssa, true, true);
nir_divergence_analysis(stage->nir);
}
if (nir_lower_bit_size(stage->nir, lower_bit_size_callback, device)) {
NIR_PASS(_, stage->nir, nir_opt_constant_folding);
}
if (gfx_level >= GFX8)
NIR_PASS(_, stage->nir, nir_opt_remove_phis); /* cleanup LCSSA phis */
}
if (((stage->nir->info.bit_sizes_int | stage->nir->info.bit_sizes_float) & 16) &&
gfx_level >= GFX9) {
bool separate_g16 = gfx_level >= GFX10;
struct nir_fold_tex_srcs_options fold_srcs_options[] = {
{
.sampler_dims =
~(BITFIELD_BIT(GLSL_SAMPLER_DIM_CUBE) | BITFIELD_BIT(GLSL_SAMPLER_DIM_BUF)),
.src_types = (1 << nir_tex_src_coord) | (1 << nir_tex_src_lod) |
(1 << nir_tex_src_bias) | (1 << nir_tex_src_min_lod) |
(1 << nir_tex_src_ms_index) |
(separate_g16 ? 0 : (1 << nir_tex_src_ddx) | (1 << nir_tex_src_ddy)),
},
{
.sampler_dims = ~BITFIELD_BIT(GLSL_SAMPLER_DIM_CUBE),
.src_types = (1 << nir_tex_src_ddx) | (1 << nir_tex_src_ddy),
},
};
struct nir_fold_16bit_tex_image_options fold_16bit_options = {
.rounding_mode = nir_rounding_mode_rtne,
.fold_tex_dest = true,
.fold_image_load_store_data = true,
.fold_image_srcs = !radv_use_llvm_for_stage(device, stage->stage),
.fold_srcs_options_count = separate_g16 ? 2 : 1,
.fold_srcs_options = fold_srcs_options,
};
NIR_PASS(_, stage->nir, nir_fold_16bit_tex_image, &fold_16bit_options);
NIR_PASS(_, stage->nir, nir_opt_vectorize, opt_vectorize_callback, device);
}
/* cleanup passes */
NIR_PASS(_, stage->nir, nir_lower_alu_width, opt_vectorize_callback, device);
NIR_PASS(_, stage->nir, nir_lower_load_const_to_scalar);
NIR_PASS(_, stage->nir, nir_copy_prop);
NIR_PASS(_, stage->nir, nir_opt_dce);
sink_opts |= nir_move_comparisons | nir_move_load_ubo | nir_move_load_ssbo;
NIR_PASS(_, stage->nir, nir_opt_sink, sink_opts);
nir_move_options move_opts = nir_move_const_undef | nir_move_load_ubo |
nir_move_load_input | nir_move_comparisons | nir_move_copies;
NIR_PASS(_, stage->nir, nir_opt_move, move_opts);
}
static bool
radv_pipeline_create_ps_epilog(struct radv_graphics_pipeline *pipeline,
const struct radv_pipeline_key *pipeline_key)
{
struct radv_device *device = pipeline->base.device;
if (pipeline->base.shaders[MESA_SHADER_FRAGMENT] &&
pipeline->base.shaders[MESA_SHADER_FRAGMENT]->info.ps.has_epilog && !pipeline->ps_epilog) {
struct radv_ps_epilog_key epilog_key = {
.spi_shader_col_format = pipeline_key->ps.col_format,
.color_is_int8 = pipeline_key->ps.is_int8,
.color_is_int10 = pipeline_key->ps.is_int10,
.enable_mrt_output_nan_fixup = pipeline_key->ps.enable_mrt_output_nan_fixup,
.mrt0_is_dual_src = pipeline_key->ps.mrt0_is_dual_src,
};
pipeline->ps_epilog = radv_create_ps_epilog(device, &epilog_key);
if (!pipeline->ps_epilog)
return false;
}
return true;
}
VkResult
radv_create_shaders(struct radv_pipeline *pipeline, struct radv_pipeline_layout *pipeline_layout,
struct radv_device *device, struct radv_pipeline_cache *cache,
const struct radv_pipeline_key *pipeline_key,
const VkPipelineShaderStageCreateInfo *pStages,
uint32_t stageCount,
const VkPipelineCreateFlags flags, const uint8_t *custom_hash,
const VkPipelineCreationFeedbackCreateInfo *creation_feedback,
struct radv_pipeline_shader_stack_size **stack_sizes,
uint32_t *num_stack_sizes,
gl_shader_stage *last_vgt_api_stage)
{
const char *noop_fs_entrypoint = "noop_fs";
struct radv_shader_binary *binaries[MESA_VULKAN_SHADER_STAGES] = {NULL};
struct radv_shader_binary *gs_copy_binary = NULL;
unsigned char hash[20];
bool keep_executable_info =
(flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR) ||
device->keep_shader_info;
bool keep_statistic_info = (flags & VK_PIPELINE_CREATE_CAPTURE_STATISTICS_BIT_KHR) ||
(device->instance->debug_flags & RADV_DEBUG_DUMP_SHADER_STATS) ||
device->keep_shader_info;
struct radv_pipeline_stage stages[MESA_VULKAN_SHADER_STAGES] = {0};
VkPipelineCreationFeedback pipeline_feedback = {
.flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
};
bool noop_fs = false;
VkResult result = VK_SUCCESS;
const bool retain_shaders =
!!(flags & VK_PIPELINE_CREATE_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT);
int64_t pipeline_start = os_time_get_nano();
for (uint32_t i = 0; i < stageCount; i++) {
const VkPipelineShaderStageCreateInfo *sinfo = &pStages[i];
gl_shader_stage stage = vk_to_mesa_shader_stage(sinfo->stage);
radv_pipeline_stage_init(sinfo, &stages[stage], stage);
}
radv_pipeline_load_retained_shaders(pipeline, stages);
if (pipeline->type == RADV_PIPELINE_GRAPHICS ||
pipeline->type == RADV_PIPELINE_GRAPHICS_LIB) {
VkShaderStageFlags active_stages;
if (pipeline->type == RADV_PIPELINE_GRAPHICS) {
active_stages = radv_pipeline_to_graphics(pipeline)->active_stages;
} else {
active_stages = radv_pipeline_to_graphics_lib(pipeline)->base.active_stages;
}
radv_foreach_stage(s, active_stages) {
if (s < MESA_SHADER_FRAGMENT || s == MESA_SHADER_MESH)
*last_vgt_api_stage = s;
}
}
ASSERTED bool primitive_shading =
stages[MESA_SHADER_VERTEX].entrypoint || stages[MESA_SHADER_TESS_CTRL].entrypoint ||
stages[MESA_SHADER_TESS_EVAL].entrypoint || stages[MESA_SHADER_GEOMETRY].entrypoint;
ASSERTED bool mesh_shading =
stages[MESA_SHADER_MESH].entrypoint;
/* Primitive and mesh shading must not be mixed in the same pipeline. */
assert(!primitive_shading || !mesh_shading);
/* Mesh shaders are mandatory in mesh shading pipelines. */
assert(mesh_shading == !!stages[MESA_SHADER_MESH].entrypoint);
/* Mesh shaders always need NGG. */
assert(!mesh_shading || pipeline_key->use_ngg);
if (custom_hash)
memcpy(hash, custom_hash, 20);
else {
radv_hash_shaders(hash, stages, pipeline_layout, pipeline_key,
radv_get_hash_flags(device, keep_statistic_info));
}
pipeline->pipeline_hash = *(uint64_t *)hash;
bool found_in_application_cache = true;
if (!keep_executable_info &&
radv_create_shaders_from_pipeline_cache(device, cache, hash, pipeline,
stack_sizes, num_stack_sizes,
&found_in_application_cache)) {
if (found_in_application_cache)
pipeline_feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
result = VK_SUCCESS;
goto done;
}
if (flags & VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT) {
if (found_in_application_cache)
pipeline_feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
result = VK_PIPELINE_COMPILE_REQUIRED;
goto done;
}
if (pipeline->type == RADV_PIPELINE_GRAPHICS &&
!(radv_pipeline_to_graphics(pipeline)->active_stages & VK_SHADER_STAGE_FRAGMENT_BIT)) {
nir_builder fs_b = radv_meta_init_shader(device, MESA_SHADER_FRAGMENT, "noop_fs");
stages[MESA_SHADER_FRAGMENT] = (struct radv_pipeline_stage) {
.stage = MESA_SHADER_FRAGMENT,
.internal_nir = fs_b.shader,
.entrypoint = noop_fs_entrypoint,
.feedback = {
.flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
},
};
noop_fs = true;
}
radv_pipeline_get_nir(pipeline, stages, pipeline_key, retain_shaders);
if (retain_shaders) {
result = VK_SUCCESS;
goto done;
}
/* Force per-vertex VRS. */
if (radv_consider_force_vrs(pipeline, noop_fs, stages, *last_vgt_api_stage)) {
assert(*last_vgt_api_stage == MESA_SHADER_VERTEX ||
*last_vgt_api_stage == MESA_SHADER_TESS_EVAL ||
*last_vgt_api_stage == MESA_SHADER_GEOMETRY);
nir_shader *last_vgt_shader = stages[*last_vgt_api_stage].nir;
NIR_PASS(_, last_vgt_shader, radv_force_primitive_shading_rate, device);
}
bool optimize_conservatively = pipeline_key->optimisations_disabled;
/* Determine if shaders uses NGG before linking because it's needed for some NIR pass. */
radv_fill_shader_info_ngg(pipeline, pipeline_key, stages);
bool pipeline_has_ngg = (stages[MESA_SHADER_VERTEX].nir && stages[MESA_SHADER_VERTEX].info.is_ngg) ||
(stages[MESA_SHADER_TESS_EVAL].nir && stages[MESA_SHADER_TESS_EVAL].info.is_ngg) ||
(stages[MESA_SHADER_MESH].nir && stages[MESA_SHADER_MESH].info.is_ngg);
if (stages[MESA_SHADER_GEOMETRY].nir) {
unsigned nir_gs_flags = nir_lower_gs_intrinsics_per_stream;
if (pipeline_has_ngg) {
nir_gs_flags |= nir_lower_gs_intrinsics_count_primitives |
nir_lower_gs_intrinsics_count_vertices_per_primitive |
nir_lower_gs_intrinsics_overwrite_incomplete;
}
NIR_PASS(_, stages[MESA_SHADER_GEOMETRY].nir, nir_lower_gs_intrinsics, nir_gs_flags);
}
radv_graphics_pipeline_link(pipeline, pipeline_key, stages);
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
if (stages[i].nir) {
int64_t stage_start = os_time_get_nano();
radv_optimize_nir(stages[i].nir, optimize_conservatively, false);
/* Gather info again, information such as outputs_read can be out-of-date. */
nir_shader_gather_info(stages[i].nir, nir_shader_get_entrypoint(stages[i].nir));
radv_lower_io(device, stages[i].nir);
stages[i].feedback.duration += os_time_get_nano() - stage_start;
}
}
if (stages[MESA_SHADER_VERTEX].nir) {
NIR_PASS(_, stages[MESA_SHADER_VERTEX].nir, radv_lower_vs_input, device->physical_device,
pipeline_key);
}
if (stages[MESA_SHADER_FRAGMENT].nir && !radv_use_llvm_for_stage(device, MESA_SHADER_FRAGMENT)) {
/* TODO: Convert the LLVM backend. */
NIR_PASS(_, stages[MESA_SHADER_FRAGMENT].nir, radv_lower_fs_output, pipeline_key);
}
radv_fill_shader_info(pipeline, pipeline_layout, pipeline_key, stages);
radv_declare_pipeline_args(device, stages, pipeline_key);
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
if (!stages[i].nir)
continue;
int64_t stage_start = os_time_get_nano();
radv_postprocess_nir(pipeline, pipeline_layout, pipeline_key, pipeline_has_ngg,
*last_vgt_api_stage, &stages[i]);
stages[i].feedback.duration += os_time_get_nano() - stage_start;
if (radv_can_dump_shader(device, stages[i].nir, false))
nir_print_shader(stages[i].nir, stderr);
}
/* Compile NIR shaders to AMD assembly. */
radv_pipeline_nir_to_asm(pipeline, stages, pipeline_key, pipeline_layout, keep_executable_info,
keep_statistic_info, *last_vgt_api_stage, binaries, &gs_copy_binary);
if (keep_executable_info) {
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
struct radv_shader *shader = pipeline->shaders[i];
if (!shader)
continue;
if (!stages[i].spirv.size)
continue;
shader->spirv = malloc(stages[i].spirv.size);
memcpy(shader->spirv, stages[i].spirv.data, stages[i].spirv.size);
shader->spirv_size = stages[i].spirv.size;
}
}
if (pipeline->type == RADV_PIPELINE_GRAPHICS) {
struct radv_graphics_pipeline *graphics_pipeline = radv_pipeline_to_graphics(pipeline);
if (noop_fs && graphics_pipeline->ps_epilog) {
/* Discard the PS epilog when the pipeline doesn't use a FS because it makes no sense. */
radv_shader_part_unref(device, graphics_pipeline->ps_epilog);
graphics_pipeline->ps_epilog = NULL;
} else {
/* When the main FS is compiled inside a library, we need to compile a PS epilog if it
* hasn't been already imported.
*/
if (!radv_pipeline_create_ps_epilog(graphics_pipeline, pipeline_key))
return result;
}
}
/* Upload shader binaries. */
radv_upload_shaders(device, pipeline, binaries, gs_copy_binary);
if (!keep_executable_info) {
if (pipeline->gs_copy_shader) {
assert(!binaries[MESA_SHADER_COMPUTE] && !pipeline->shaders[MESA_SHADER_COMPUTE]);
binaries[MESA_SHADER_COMPUTE] = gs_copy_binary;
pipeline->shaders[MESA_SHADER_COMPUTE] = pipeline->gs_copy_shader;
}
radv_pipeline_cache_insert_shaders(device, cache, hash, pipeline, binaries,
stack_sizes ? *stack_sizes : NULL,
num_stack_sizes ? *num_stack_sizes : 0);
if (pipeline->gs_copy_shader) {
pipeline->gs_copy_shader = pipeline->shaders[MESA_SHADER_COMPUTE];
pipeline->shaders[MESA_SHADER_COMPUTE] = NULL;
binaries[MESA_SHADER_COMPUTE] = NULL;
}
}
free(gs_copy_binary);
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
free(binaries[i]);
if (stages[i].nir) {
if (radv_can_dump_shader_stats(device, stages[i].nir) && pipeline->shaders[i]) {
radv_dump_shader_stats(device, pipeline, i, stderr);
}
ralloc_free(stages[i].nir);
}
}
done:
pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
if (creation_feedback) {
*creation_feedback->pPipelineCreationFeedback = pipeline_feedback;
uint32_t stage_count = creation_feedback->pipelineStageCreationFeedbackCount;
assert(stage_count == 0 || stageCount == stage_count);
for (uint32_t i = 0; i < stage_count; i++) {
gl_shader_stage s = vk_to_mesa_shader_stage(pStages[i].stage);
creation_feedback->pPipelineStageCreationFeedbacks[i] = stages[s].feedback;
}
}
return result;
}
static uint32_t
radv_pipeline_stage_to_user_data_0(struct radv_graphics_pipeline *pipeline, gl_shader_stage stage,
enum amd_gfx_level gfx_level)
{
bool has_gs = radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY);
bool has_tess = radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL);
bool has_ngg = radv_pipeline_has_ngg(pipeline);
switch (stage) {
case MESA_SHADER_FRAGMENT:
return R_00B030_SPI_SHADER_USER_DATA_PS_0;
case MESA_SHADER_VERTEX:
if (has_tess) {
if (gfx_level >= GFX10) {
return R_00B430_SPI_SHADER_USER_DATA_HS_0;
} else if (gfx_level == GFX9) {
return R_00B430_SPI_SHADER_USER_DATA_LS_0;
} else {
return R_00B530_SPI_SHADER_USER_DATA_LS_0;
}
}
if (has_gs) {
if (gfx_level >= GFX10) {
return R_00B230_SPI_SHADER_USER_DATA_GS_0;
} else {
return R_00B330_SPI_SHADER_USER_DATA_ES_0;
}
}
if (has_ngg)
return R_00B230_SPI_SHADER_USER_DATA_GS_0;
return R_00B130_SPI_SHADER_USER_DATA_VS_0;
case MESA_SHADER_GEOMETRY:
return gfx_level == GFX9 ? R_00B330_SPI_SHADER_USER_DATA_ES_0
: R_00B230_SPI_SHADER_USER_DATA_GS_0;
case MESA_SHADER_COMPUTE:
case MESA_SHADER_TASK:
return R_00B900_COMPUTE_USER_DATA_0;
case MESA_SHADER_TESS_CTRL:
return gfx_level == GFX9 ? R_00B430_SPI_SHADER_USER_DATA_LS_0
: R_00B430_SPI_SHADER_USER_DATA_HS_0;
case MESA_SHADER_TESS_EVAL:
if (has_gs) {
return gfx_level >= GFX10 ? R_00B230_SPI_SHADER_USER_DATA_GS_0
: R_00B330_SPI_SHADER_USER_DATA_ES_0;
} else if (has_ngg) {
return R_00B230_SPI_SHADER_USER_DATA_GS_0;
} else {
return R_00B130_SPI_SHADER_USER_DATA_VS_0;
}
case MESA_SHADER_MESH:
assert(has_ngg);
return R_00B230_SPI_SHADER_USER_DATA_GS_0;
default:
unreachable("unknown shader");
}
}
static void
radv_pipeline_emit_depth_stencil_state(struct radeon_cmdbuf *ctx_cs,
const struct radv_depth_stencil_state *ds_state)
{
radeon_set_context_reg(ctx_cs, R_028000_DB_RENDER_CONTROL, ds_state->db_render_control);
radeon_set_context_reg(ctx_cs, R_028010_DB_RENDER_OVERRIDE2, ds_state->db_render_override2);
}
static void
radv_pipeline_emit_blend_state(struct radeon_cmdbuf *ctx_cs,
const struct radv_graphics_pipeline *pipeline,
const struct radv_blend_state *blend)
{
radeon_set_context_reg(ctx_cs, R_028714_SPI_SHADER_COL_FORMAT, blend->spi_shader_col_format);
radeon_set_context_reg(ctx_cs, R_02823C_CB_SHADER_MASK, blend->cb_shader_mask);
}
static void
radv_pipeline_emit_multisample_state(struct radeon_cmdbuf *ctx_cs,
const struct radv_graphics_pipeline *pipeline)
{
const struct radv_multisample_state *ms = &pipeline->ms;
radeon_set_context_reg(ctx_cs, R_028A4C_PA_SC_MODE_CNTL_1, ms->pa_sc_mode_cntl_1);
}
static void
radv_pipeline_emit_vgt_gs_mode(struct radeon_cmdbuf *ctx_cs,
const struct radv_graphics_pipeline *pipeline)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline);
const struct radv_shader *vs = pipeline->base.shaders[MESA_SHADER_TESS_EVAL]
? pipeline->base.shaders[MESA_SHADER_TESS_EVAL]
: pipeline->base.shaders[MESA_SHADER_VERTEX];
unsigned vgt_primitiveid_en = 0;
uint32_t vgt_gs_mode = 0;
if (radv_pipeline_has_ngg(pipeline))
return;
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
const struct radv_shader *gs = pipeline->base.shaders[MESA_SHADER_GEOMETRY];
vgt_gs_mode = ac_vgt_gs_mode(gs->info.gs.vertices_out, pdevice->rad_info.gfx_level);
} else if (outinfo->export_prim_id || vs->info.uses_prim_id) {
vgt_gs_mode = S_028A40_MODE(V_028A40_GS_SCENARIO_A);
vgt_primitiveid_en |= S_028A84_PRIMITIVEID_EN(1);
}
radeon_set_context_reg(ctx_cs, R_028A84_VGT_PRIMITIVEID_EN, vgt_primitiveid_en);
radeon_set_context_reg(ctx_cs, R_028A40_VGT_GS_MODE, vgt_gs_mode);
}
static void
radv_pipeline_emit_hw_vs(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs,
const struct radv_graphics_pipeline *pipeline, const struct radv_shader *shader)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
uint64_t va = radv_shader_get_va(shader);
radeon_set_sh_reg_seq(cs, R_00B120_SPI_SHADER_PGM_LO_VS, 4);
radeon_emit(cs, va >> 8);
radeon_emit(cs, S_00B124_MEM_BASE(va >> 40));
radeon_emit(cs, shader->config.rsrc1);
radeon_emit(cs, shader->config.rsrc2);
const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline);
unsigned clip_dist_mask, cull_dist_mask, total_mask;
clip_dist_mask = outinfo->clip_dist_mask;
cull_dist_mask = outinfo->cull_dist_mask;
total_mask = clip_dist_mask | cull_dist_mask;
bool misc_vec_ena = outinfo->writes_pointsize || outinfo->writes_layer ||
outinfo->writes_viewport_index || outinfo->writes_primitive_shading_rate;
unsigned spi_vs_out_config, nparams;
/* VS is required to export at least one param. */
nparams = MAX2(outinfo->param_exports, 1);
spi_vs_out_config = S_0286C4_VS_EXPORT_COUNT(nparams - 1);
if (pdevice->rad_info.gfx_level >= GFX10) {
spi_vs_out_config |= S_0286C4_NO_PC_EXPORT(outinfo->param_exports == 0);
}
radeon_set_context_reg(ctx_cs, R_0286C4_SPI_VS_OUT_CONFIG, spi_vs_out_config);
radeon_set_context_reg(
ctx_cs, R_02870C_SPI_SHADER_POS_FORMAT,
S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
S_02870C_POS1_EXPORT_FORMAT(outinfo->pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP
: V_02870C_SPI_SHADER_NONE) |
S_02870C_POS2_EXPORT_FORMAT(outinfo->pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP
: V_02870C_SPI_SHADER_NONE) |
S_02870C_POS3_EXPORT_FORMAT(outinfo->pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP
: V_02870C_SPI_SHADER_NONE));
radeon_set_context_reg(ctx_cs, R_02881C_PA_CL_VS_OUT_CNTL,
S_02881C_USE_VTX_POINT_SIZE(outinfo->writes_pointsize) |
S_02881C_USE_VTX_RENDER_TARGET_INDX(outinfo->writes_layer) |
S_02881C_USE_VTX_VIEWPORT_INDX(outinfo->writes_viewport_index) |
S_02881C_USE_VTX_VRS_RATE(outinfo->writes_primitive_shading_rate) |
S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena) |
S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0f) != 0) |
S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xf0) != 0) |
total_mask << 8 | clip_dist_mask);
if (pdevice->rad_info.gfx_level <= GFX8)
radeon_set_context_reg(ctx_cs, R_028AB4_VGT_REUSE_OFF, outinfo->writes_viewport_index);
unsigned late_alloc_wave64, cu_mask;
ac_compute_late_alloc(&pdevice->rad_info, false, false, shader->config.scratch_bytes_per_wave > 0,
&late_alloc_wave64, &cu_mask);
if (pdevice->rad_info.gfx_level >= GFX7) {
if (pdevice->rad_info.gfx_level >= GFX10) {
ac_set_reg_cu_en(cs, R_00B118_SPI_SHADER_PGM_RSRC3_VS,
S_00B118_CU_EN(cu_mask) | S_00B118_WAVE_LIMIT(0x3F),
C_00B118_CU_EN, 0, &pdevice->rad_info,
(void*)gfx10_set_sh_reg_idx3);
} else {
radeon_set_sh_reg_idx(pdevice, cs, R_00B118_SPI_SHADER_PGM_RSRC3_VS, 3,
S_00B118_CU_EN(cu_mask) | S_00B118_WAVE_LIMIT(0x3F));
}
radeon_set_sh_reg(cs, R_00B11C_SPI_SHADER_LATE_ALLOC_VS, S_00B11C_LIMIT(late_alloc_wave64));
}
if (pdevice->rad_info.gfx_level >= GFX10) {
uint32_t oversub_pc_lines = late_alloc_wave64 ? pdevice->rad_info.pc_lines / 4 : 0;
gfx10_emit_ge_pc_alloc(cs, pdevice->rad_info.gfx_level, oversub_pc_lines);
}
}
static void
radv_pipeline_emit_hw_es(struct radeon_cmdbuf *cs, const struct radv_graphics_pipeline *pipeline,
const struct radv_shader *shader)
{
uint64_t va = radv_shader_get_va(shader);
radeon_set_sh_reg_seq(cs, R_00B320_SPI_SHADER_PGM_LO_ES, 4);
radeon_emit(cs, va >> 8);
radeon_emit(cs, S_00B324_MEM_BASE(va >> 40));
radeon_emit(cs, shader->config.rsrc1);
radeon_emit(cs, shader->config.rsrc2);
}
static void
radv_pipeline_emit_hw_ls(struct radeon_cmdbuf *cs, const struct radv_graphics_pipeline *pipeline,
const struct radv_shader *shader)
{
uint64_t va = radv_shader_get_va(shader);
radeon_set_sh_reg(cs, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
radeon_set_sh_reg(cs, R_00B528_SPI_SHADER_PGM_RSRC1_LS, shader->config.rsrc1);
}
static void
radv_pipeline_emit_hw_ngg(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs,
const struct radv_graphics_pipeline *pipeline,
const struct radv_shader *shader)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
uint64_t va = radv_shader_get_va(shader);
gl_shader_stage es_type =
radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH) ? MESA_SHADER_MESH :
radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL) ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX;
struct radv_shader *es = pipeline->base.shaders[es_type];
const struct gfx10_ngg_info *ngg_state = &shader->info.ngg_info;
radeon_set_sh_reg(cs, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
radeon_set_sh_reg_seq(cs, R_00B228_SPI_SHADER_PGM_RSRC1_GS, 2);
radeon_emit(cs, shader->config.rsrc1);
radeon_emit(cs, shader->config.rsrc2);
const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline);
unsigned clip_dist_mask, cull_dist_mask, total_mask;
clip_dist_mask = outinfo->clip_dist_mask;
cull_dist_mask = outinfo->cull_dist_mask;
total_mask = clip_dist_mask | cull_dist_mask;
bool misc_vec_ena = outinfo->writes_pointsize || outinfo->writes_layer ||
outinfo->writes_viewport_index || outinfo->writes_primitive_shading_rate;
bool es_enable_prim_id = outinfo->export_prim_id || (es && es->info.uses_prim_id);
bool break_wave_at_eoi = false;
unsigned ge_cntl;
if (es_type == MESA_SHADER_TESS_EVAL) {
struct radv_shader *gs = pipeline->base.shaders[MESA_SHADER_GEOMETRY];
if (es_enable_prim_id || (gs && gs->info.uses_prim_id))
break_wave_at_eoi = true;
}
bool no_pc_export = outinfo->param_exports == 0 && outinfo->prim_param_exports == 0;
unsigned num_params = MAX2(outinfo->param_exports, 1);
unsigned num_prim_params = outinfo->prim_param_exports;
radeon_set_context_reg(
ctx_cs, R_0286C4_SPI_VS_OUT_CONFIG,
S_0286C4_VS_EXPORT_COUNT(num_params - 1) |
S_0286C4_PRIM_EXPORT_COUNT(num_prim_params) |
S_0286C4_NO_PC_EXPORT(no_pc_export));
unsigned idx_format = V_028708_SPI_SHADER_1COMP;
if (outinfo->writes_layer_per_primitive ||
outinfo->writes_viewport_index_per_primitive ||
outinfo->writes_primitive_shading_rate_per_primitive)
idx_format = V_028708_SPI_SHADER_2COMP;
radeon_set_context_reg(ctx_cs, R_028708_SPI_SHADER_IDX_FORMAT,
S_028708_IDX0_EXPORT_FORMAT(idx_format));
radeon_set_context_reg(
ctx_cs, R_02870C_SPI_SHADER_POS_FORMAT,
S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
S_02870C_POS1_EXPORT_FORMAT(outinfo->pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP
: V_02870C_SPI_SHADER_NONE) |
S_02870C_POS2_EXPORT_FORMAT(outinfo->pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP
: V_02870C_SPI_SHADER_NONE) |
S_02870C_POS3_EXPORT_FORMAT(outinfo->pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP
: V_02870C_SPI_SHADER_NONE));
radeon_set_context_reg(ctx_cs, R_02881C_PA_CL_VS_OUT_CNTL,
S_02881C_USE_VTX_POINT_SIZE(outinfo->writes_pointsize) |
S_02881C_USE_VTX_RENDER_TARGET_INDX(outinfo->writes_layer) |
S_02881C_USE_VTX_VIEWPORT_INDX(outinfo->writes_viewport_index) |
S_02881C_USE_VTX_VRS_RATE(outinfo->writes_primitive_shading_rate) |
S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena) |
S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0f) != 0) |
S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xf0) != 0) |
total_mask << 8 | clip_dist_mask);
radeon_set_context_reg(ctx_cs, R_028A84_VGT_PRIMITIVEID_EN,
S_028A84_PRIMITIVEID_EN(es_enable_prim_id) |
S_028A84_NGG_DISABLE_PROVOK_REUSE(outinfo->export_prim_id));
radeon_set_context_reg(ctx_cs, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
ngg_state->vgt_esgs_ring_itemsize);
/* NGG specific registers. */
struct radv_shader *gs = pipeline->base.shaders[MESA_SHADER_GEOMETRY];
uint32_t gs_num_invocations = gs ? gs->info.gs.invocations : 1;
if (pdevice->rad_info.gfx_level < GFX11) {
radeon_set_context_reg(
ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL,
S_028A44_ES_VERTS_PER_SUBGRP(ngg_state->hw_max_esverts) |
S_028A44_GS_PRIMS_PER_SUBGRP(ngg_state->max_gsprims) |
S_028A44_GS_INST_PRIMS_IN_SUBGRP(ngg_state->max_gsprims * gs_num_invocations));
}
radeon_set_context_reg(ctx_cs, R_0287FC_GE_MAX_OUTPUT_PER_SUBGROUP,
S_0287FC_MAX_VERTS_PER_SUBGROUP(ngg_state->max_out_verts));
radeon_set_context_reg(ctx_cs, R_028B4C_GE_NGG_SUBGRP_CNTL,
S_028B4C_PRIM_AMP_FACTOR(ngg_state->prim_amp_factor) |
S_028B4C_THDS_PER_SUBGRP(0)); /* for fast launch */
radeon_set_context_reg(
ctx_cs, R_028B90_VGT_GS_INSTANCE_CNT,
S_028B90_CNT(gs_num_invocations) | S_028B90_ENABLE(gs_num_invocations > 1) |
S_028B90_EN_MAX_VERT_OUT_PER_GS_INSTANCE(ngg_state->max_vert_out_per_gs_instance));
if (pdevice->rad_info.gfx_level >= GFX11) {
ge_cntl = S_03096C_PRIMS_PER_SUBGRP(ngg_state->max_gsprims) |
S_03096C_VERTS_PER_SUBGRP(ngg_state->hw_max_esverts) |
S_03096C_BREAK_PRIMGRP_AT_EOI(break_wave_at_eoi) |
S_03096C_PRIM_GRP_SIZE_GFX11(252);
} else {
ge_cntl = S_03096C_PRIM_GRP_SIZE_GFX10(ngg_state->max_gsprims) |
S_03096C_VERT_GRP_SIZE(ngg_state->hw_max_esverts) |
S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi);
}
/* Bug workaround for a possible hang with non-tessellation cases.
* Tessellation always sets GE_CNTL.VERT_GRP_SIZE = 0
*
* Requirement: GE_CNTL.VERT_GRP_SIZE = VGT_GS_ONCHIP_CNTL.ES_VERTS_PER_SUBGRP - 5
*/
if (pdevice->rad_info.gfx_level == GFX10 &&
!radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL) && ngg_state->hw_max_esverts != 256) {
ge_cntl &= C_03096C_VERT_GRP_SIZE;
if (ngg_state->hw_max_esverts > 5) {
ge_cntl |= S_03096C_VERT_GRP_SIZE(ngg_state->hw_max_esverts - 5);
}
}
radeon_set_uconfig_reg(ctx_cs, R_03096C_GE_CNTL, ge_cntl);
unsigned late_alloc_wave64, cu_mask;
ac_compute_late_alloc(&pdevice->rad_info, true, shader->info.has_ngg_culling,
shader->config.scratch_bytes_per_wave > 0, &late_alloc_wave64, &cu_mask);
if (pdevice->rad_info.gfx_level >= GFX11) {
/* TODO: figure out how S_00B204_CU_EN_GFX11 interacts with ac_set_reg_cu_en */
gfx10_set_sh_reg_idx3(cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
S_00B21C_CU_EN(cu_mask) | S_00B21C_WAVE_LIMIT(0x3F));
gfx10_set_sh_reg_idx3(
cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS,
S_00B204_CU_EN_GFX11(0x1) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(late_alloc_wave64));
} else if (pdevice->rad_info.gfx_level >= GFX10) {
ac_set_reg_cu_en(cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
S_00B21C_CU_EN(cu_mask) | S_00B21C_WAVE_LIMIT(0x3F),
C_00B21C_CU_EN, 0, &pdevice->rad_info, (void*)gfx10_set_sh_reg_idx3);
ac_set_reg_cu_en(cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS,
S_00B204_CU_EN_GFX10(0xffff) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(late_alloc_wave64),
C_00B204_CU_EN_GFX10, 16, &pdevice->rad_info,
(void*)gfx10_set_sh_reg_idx3);
} else {
radeon_set_sh_reg_idx(
pdevice, cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS, 3,
S_00B21C_CU_EN(cu_mask) | S_00B21C_WAVE_LIMIT(0x3F));
radeon_set_sh_reg_idx(
pdevice, cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS, 3,
S_00B204_CU_EN_GFX10(0xffff) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(late_alloc_wave64));
}
uint32_t oversub_pc_lines = late_alloc_wave64 ? pdevice->rad_info.pc_lines / 4 : 0;
if (shader->info.has_ngg_culling) {
unsigned oversub_factor = 2;
if (outinfo->param_exports > 4)
oversub_factor = 4;
else if (outinfo->param_exports > 2)
oversub_factor = 3;
oversub_pc_lines *= oversub_factor;
}
gfx10_emit_ge_pc_alloc(cs, pdevice->rad_info.gfx_level, oversub_pc_lines);
}
static void
radv_pipeline_emit_hw_hs(struct radeon_cmdbuf *cs, const struct radv_graphics_pipeline *pipeline,
const struct radv_shader *shader)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
uint64_t va = radv_shader_get_va(shader);
if (pdevice->rad_info.gfx_level >= GFX9) {
if (pdevice->rad_info.gfx_level >= GFX10) {
radeon_set_sh_reg(cs, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
} else {
radeon_set_sh_reg(cs, R_00B410_SPI_SHADER_PGM_LO_LS, va >> 8);
}
radeon_set_sh_reg(cs, R_00B428_SPI_SHADER_PGM_RSRC1_HS, shader->config.rsrc1);
} else {
radeon_set_sh_reg_seq(cs, R_00B420_SPI_SHADER_PGM_LO_HS, 4);
radeon_emit(cs, va >> 8);
radeon_emit(cs, S_00B424_MEM_BASE(va >> 40));
radeon_emit(cs, shader->config.rsrc1);
radeon_emit(cs, shader->config.rsrc2);
}
}
static void
radv_pipeline_emit_vertex_shader(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs,
const struct radv_graphics_pipeline *pipeline)
{
struct radv_shader *vs;
/* Skip shaders merged into HS/GS */
vs = pipeline->base.shaders[MESA_SHADER_VERTEX];
if (!vs)
return;
if (vs->info.vs.as_ls)
radv_pipeline_emit_hw_ls(cs, pipeline, vs);
else if (vs->info.vs.as_es)
radv_pipeline_emit_hw_es(cs, pipeline, vs);
else if (vs->info.is_ngg)
radv_pipeline_emit_hw_ngg(ctx_cs, cs, pipeline, vs);
else
radv_pipeline_emit_hw_vs(ctx_cs, cs, pipeline, vs);
}
static void
radv_pipeline_emit_tess_shaders(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs,
const struct radv_graphics_pipeline *pipeline)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
struct radv_shader *tes, *tcs;
tcs = pipeline->base.shaders[MESA_SHADER_TESS_CTRL];
tes = pipeline->base.shaders[MESA_SHADER_TESS_EVAL];
if (tes) {
if (tes->info.is_ngg) {
radv_pipeline_emit_hw_ngg(ctx_cs, cs, pipeline, tes);
} else if (tes->info.tes.as_es)
radv_pipeline_emit_hw_es(cs, pipeline, tes);
else
radv_pipeline_emit_hw_vs(ctx_cs, cs, pipeline, tes);
}
radv_pipeline_emit_hw_hs(cs, pipeline, tcs);
if (pdevice->rad_info.gfx_level >= GFX10 &&
!radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY) && !radv_pipeline_has_ngg(pipeline)) {
radeon_set_context_reg(ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL,
S_028A44_ES_VERTS_PER_SUBGRP(250) | S_028A44_GS_PRIMS_PER_SUBGRP(126) |
S_028A44_GS_INST_PRIMS_IN_SUBGRP(126));
}
}
static void
radv_pipeline_emit_hw_gs(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs,
const struct radv_graphics_pipeline *pipeline, const struct radv_shader *gs)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
const struct gfx9_gs_info *gs_state = &gs->info.gs_ring_info;
unsigned gs_max_out_vertices;
const uint8_t *num_components;
uint8_t max_stream;
unsigned offset;
uint64_t va;
gs_max_out_vertices = gs->info.gs.vertices_out;
max_stream = gs->info.gs.max_stream;
num_components = gs->info.gs.num_stream_output_components;
offset = num_components[0] * gs_max_out_vertices;
radeon_set_context_reg_seq(ctx_cs, R_028A60_VGT_GSVS_RING_OFFSET_1, 3);
radeon_emit(ctx_cs, offset);
if (max_stream >= 1)
offset += num_components[1] * gs_max_out_vertices;
radeon_emit(ctx_cs, offset);
if (max_stream >= 2)
offset += num_components[2] * gs_max_out_vertices;
radeon_emit(ctx_cs, offset);
if (max_stream >= 3)
offset += num_components[3] * gs_max_out_vertices;
radeon_set_context_reg(ctx_cs, R_028AB0_VGT_GSVS_RING_ITEMSIZE, offset);
radeon_set_context_reg_seq(ctx_cs, R_028B5C_VGT_GS_VERT_ITEMSIZE, 4);
radeon_emit(ctx_cs, num_components[0]);
radeon_emit(ctx_cs, (max_stream >= 1) ? num_components[1] : 0);
radeon_emit(ctx_cs, (max_stream >= 2) ? num_components[2] : 0);
radeon_emit(ctx_cs, (max_stream >= 3) ? num_components[3] : 0);
uint32_t gs_num_invocations = gs->info.gs.invocations;
radeon_set_context_reg(
ctx_cs, R_028B90_VGT_GS_INSTANCE_CNT,
S_028B90_CNT(MIN2(gs_num_invocations, 127)) | S_028B90_ENABLE(gs_num_invocations > 0));
radeon_set_context_reg(ctx_cs, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
gs_state->vgt_esgs_ring_itemsize);
va = radv_shader_get_va(gs);
if (pdevice->rad_info.gfx_level >= GFX9) {
if (pdevice->rad_info.gfx_level >= GFX10) {
radeon_set_sh_reg(cs, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
} else {
radeon_set_sh_reg(cs, R_00B210_SPI_SHADER_PGM_LO_ES, va >> 8);
}
radeon_set_sh_reg_seq(cs, R_00B228_SPI_SHADER_PGM_RSRC1_GS, 2);
radeon_emit(cs, gs->config.rsrc1);
radeon_emit(cs, gs->config.rsrc2 | S_00B22C_LDS_SIZE(gs_state->lds_size));
radeon_set_context_reg(ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL, gs_state->vgt_gs_onchip_cntl);
radeon_set_context_reg(ctx_cs, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
gs_state->vgt_gs_max_prims_per_subgroup);
} else {
radeon_set_sh_reg_seq(cs, R_00B220_SPI_SHADER_PGM_LO_GS, 4);
radeon_emit(cs, va >> 8);
radeon_emit(cs, S_00B224_MEM_BASE(va >> 40));
radeon_emit(cs, gs->config.rsrc1);
radeon_emit(cs, gs->config.rsrc2);
}
if (pdevice->rad_info.gfx_level >= GFX10) {
ac_set_reg_cu_en(cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
S_00B21C_CU_EN(0xffff) | S_00B21C_WAVE_LIMIT(0x3F),
C_00B21C_CU_EN, 0, &pdevice->rad_info,
(void*)gfx10_set_sh_reg_idx3);
ac_set_reg_cu_en(cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS,
S_00B204_CU_EN_GFX10(0xffff) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(0),
C_00B204_CU_EN_GFX10, 16, &pdevice->rad_info,
(void*)gfx10_set_sh_reg_idx3);
} else if (pdevice->rad_info.gfx_level >= GFX7) {
radeon_set_sh_reg_idx(
pdevice, cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS, 3,
S_00B21C_CU_EN(0xffff) | S_00B21C_WAVE_LIMIT(0x3F));
if (pdevice->rad_info.gfx_level >= GFX10) {
radeon_set_sh_reg_idx(
pdevice, cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS, 3,
S_00B204_CU_EN_GFX10(0xffff) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(0));
}
}
radv_pipeline_emit_hw_vs(ctx_cs, cs, pipeline, pipeline->base.gs_copy_shader);
}
static void
radv_pipeline_emit_geometry_shader(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs,
const struct radv_graphics_pipeline *pipeline)
{
struct radv_shader *gs;
gs = pipeline->base.shaders[MESA_SHADER_GEOMETRY];
if (!gs)
return;
if (gs->info.is_ngg)
radv_pipeline_emit_hw_ngg(ctx_cs, cs, pipeline, gs);
else
radv_pipeline_emit_hw_gs(ctx_cs, cs, pipeline, gs);
radeon_set_context_reg(ctx_cs, R_028B38_VGT_GS_MAX_VERT_OUT, gs->info.gs.vertices_out);
}
static void
radv_pipeline_emit_mesh_shader(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs,
const struct radv_graphics_pipeline *pipeline)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
struct radv_shader *ms = pipeline->base.shaders[MESA_SHADER_MESH];
if (!ms)
return;
radv_pipeline_emit_hw_ngg(ctx_cs, cs, pipeline, ms);
radeon_set_context_reg(ctx_cs, R_028B38_VGT_GS_MAX_VERT_OUT, ms->info.workgroup_size);
radeon_set_uconfig_reg_idx(pdevice, ctx_cs,
R_030908_VGT_PRIMITIVE_TYPE, 1, V_008958_DI_PT_POINTLIST);
}
static uint32_t
offset_to_ps_input(uint32_t offset, bool flat_shade, bool explicit, bool float16)
{
uint32_t ps_input_cntl;
if (offset <= AC_EXP_PARAM_OFFSET_31) {
ps_input_cntl = S_028644_OFFSET(offset);
if (flat_shade || explicit)
ps_input_cntl |= S_028644_FLAT_SHADE(1);
if (explicit) {
/* Force parameter cache to be read in passthrough
* mode.
*/
ps_input_cntl |= S_028644_OFFSET(1 << 5);
}
if (float16) {
ps_input_cntl |= S_028644_FP16_INTERP_MODE(1) | S_028644_ATTR0_VALID(1);
}
} else {
/* The input is a DEFAULT_VAL constant. */
assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 && offset <= AC_EXP_PARAM_DEFAULT_VAL_1111);
offset -= AC_EXP_PARAM_DEFAULT_VAL_0000;
ps_input_cntl = S_028644_OFFSET(0x20) | S_028644_DEFAULT_VAL(offset);
}
return ps_input_cntl;
}
static void
single_slot_to_ps_input(const struct radv_vs_output_info *outinfo,
unsigned slot, uint32_t *ps_input_cntl, unsigned *ps_offset,
bool skip_undef, bool use_default_0, bool flat_shade)
{
unsigned vs_offset = outinfo->vs_output_param_offset[slot];
if (vs_offset == AC_EXP_PARAM_UNDEFINED) {
if (skip_undef)
return;
else if (use_default_0)
vs_offset = AC_EXP_PARAM_DEFAULT_VAL_0000;
else
unreachable("vs_offset should not be AC_EXP_PARAM_UNDEFINED.");
}
ps_input_cntl[*ps_offset] = offset_to_ps_input(vs_offset, flat_shade, false, false);
++(*ps_offset);
}
static void
input_mask_to_ps_inputs(const struct radv_vs_output_info *outinfo, const struct radv_shader *ps,
uint32_t input_mask, uint32_t *ps_input_cntl, unsigned *ps_offset)
{
u_foreach_bit(i, input_mask) {
unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_VAR0 + i];
if (vs_offset == AC_EXP_PARAM_UNDEFINED) {
ps_input_cntl[*ps_offset] = S_028644_OFFSET(0x20);
++(*ps_offset);
continue;
}
bool flat_shade = !!(ps->info.ps.flat_shaded_mask & (1u << *ps_offset));
bool explicit = !!(ps->info.ps.explicit_shaded_mask & (1u << *ps_offset));
bool float16 = !!(ps->info.ps.float16_shaded_mask & (1u << *ps_offset));
ps_input_cntl[*ps_offset] = offset_to_ps_input(vs_offset, flat_shade, explicit, float16);
++(*ps_offset);
}
}
static void
radv_pipeline_emit_ps_inputs(struct radeon_cmdbuf *ctx_cs,
const struct radv_graphics_pipeline *pipeline)
{
struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT];
const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline);
bool mesh = radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH);
uint32_t ps_input_cntl[32];
unsigned ps_offset = 0;
if (ps->info.ps.prim_id_input && !mesh)
single_slot_to_ps_input(outinfo, VARYING_SLOT_PRIMITIVE_ID, ps_input_cntl, &ps_offset,
true, false, true);
if (ps->info.ps.layer_input && !mesh)
single_slot_to_ps_input(outinfo, VARYING_SLOT_LAYER, ps_input_cntl, &ps_offset,
false, true, true);
if (ps->info.ps.viewport_index_input && !mesh)
single_slot_to_ps_input(outinfo, VARYING_SLOT_VIEWPORT, ps_input_cntl, &ps_offset,
false, true, true);
if (ps->info.ps.has_pcoord)
ps_input_cntl[ps_offset++] = S_028644_PT_SPRITE_TEX(1) | S_028644_OFFSET(0x20);
if (ps->info.ps.num_input_clips_culls) {
single_slot_to_ps_input(outinfo, VARYING_SLOT_CLIP_DIST0, ps_input_cntl, &ps_offset,
true, false, false);
if (ps->info.ps.num_input_clips_culls > 4)
single_slot_to_ps_input(outinfo, VARYING_SLOT_CLIP_DIST1, ps_input_cntl, &ps_offset,
true, false, false);
}
input_mask_to_ps_inputs(outinfo, ps, ps->info.ps.input_mask,
ps_input_cntl, &ps_offset);
/* Per-primitive PS inputs: the HW needs these to be last. */
if (ps->info.ps.prim_id_input && mesh)
single_slot_to_ps_input(outinfo, VARYING_SLOT_PRIMITIVE_ID, ps_input_cntl, &ps_offset,
true, false, false);
if (ps->info.ps.layer_input && mesh)
single_slot_to_ps_input(outinfo, VARYING_SLOT_LAYER, ps_input_cntl, &ps_offset,
false, true, false);
if (ps->info.ps.viewport_index_input && mesh)
single_slot_to_ps_input(outinfo, VARYING_SLOT_VIEWPORT, ps_input_cntl, &ps_offset,
false, true, false);
input_mask_to_ps_inputs(outinfo, ps, ps->info.ps.input_per_primitive_mask,
ps_input_cntl, &ps_offset);
if (ps_offset) {
radeon_set_context_reg_seq(ctx_cs, R_028644_SPI_PS_INPUT_CNTL_0, ps_offset);
for (unsigned i = 0; i < ps_offset; i++) {
radeon_emit(ctx_cs, ps_input_cntl[i]);
}
}
}
static uint32_t
radv_compute_db_shader_control(const struct radv_physical_device *pdevice,
const struct radv_graphics_pipeline *pipeline,
const struct radv_shader *ps)
{
unsigned conservative_z_export = V_02880C_EXPORT_ANY_Z;
unsigned z_order;
if (ps->info.ps.early_fragment_test || !ps->info.ps.writes_memory)
z_order = V_02880C_EARLY_Z_THEN_LATE_Z;
else
z_order = V_02880C_LATE_Z;
if (ps->info.ps.depth_layout == FRAG_DEPTH_LAYOUT_GREATER)
conservative_z_export = V_02880C_EXPORT_GREATER_THAN_Z;
else if (ps->info.ps.depth_layout == FRAG_DEPTH_LAYOUT_LESS)
conservative_z_export = V_02880C_EXPORT_LESS_THAN_Z;
bool disable_rbplus = pdevice->rad_info.has_rbplus && !pdevice->rad_info.rbplus_allowed;
/* It shouldn't be needed to export gl_SampleMask when MSAA is disabled
* but this appears to break Project Cars (DXVK). See
* https://bugs.freedesktop.org/show_bug.cgi?id=109401
*/
bool mask_export_enable = ps->info.ps.writes_sample_mask;
return S_02880C_Z_EXPORT_ENABLE(ps->info.ps.writes_z) |
S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(ps->info.ps.writes_stencil) |
S_02880C_KILL_ENABLE(!!ps->info.ps.can_discard) |
S_02880C_MASK_EXPORT_ENABLE(mask_export_enable) |
S_02880C_CONSERVATIVE_Z_EXPORT(conservative_z_export) | S_02880C_Z_ORDER(z_order) |
S_02880C_DEPTH_BEFORE_SHADER(ps->info.ps.early_fragment_test) |
S_02880C_PRE_SHADER_DEPTH_COVERAGE_ENABLE(ps->info.ps.post_depth_coverage) |
S_02880C_EXEC_ON_HIER_FAIL(ps->info.ps.writes_memory) |
S_02880C_EXEC_ON_NOOP(ps->info.ps.writes_memory) |
S_02880C_DUAL_QUAD_DISABLE(disable_rbplus);
}
static void
radv_pipeline_emit_fragment_shader(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs,
const struct radv_graphics_pipeline *pipeline)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
struct radv_shader *ps;
bool param_gen;
uint64_t va;
assert(pipeline->base.shaders[MESA_SHADER_FRAGMENT]);
ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT];
va = radv_shader_get_va(ps);
radeon_set_sh_reg_seq(cs, R_00B020_SPI_SHADER_PGM_LO_PS, 4);
radeon_emit(cs, va >> 8);
radeon_emit(cs, S_00B024_MEM_BASE(va >> 40));
radeon_emit(cs, ps->config.rsrc1);
radeon_emit(cs, ps->config.rsrc2);
radeon_set_context_reg(ctx_cs, R_02880C_DB_SHADER_CONTROL,
radv_compute_db_shader_control(pdevice, pipeline, ps));
radeon_set_context_reg_seq(ctx_cs, R_0286CC_SPI_PS_INPUT_ENA, 2);
radeon_emit(ctx_cs, ps->config.spi_ps_input_ena);
radeon_emit(ctx_cs, ps->config.spi_ps_input_addr);
/* Workaround when there are no PS inputs but LDS is used. */
param_gen = pdevice->rad_info.gfx_level >= GFX11 &&
!ps->info.ps.num_interp && ps->config.lds_size;
radeon_set_context_reg(
ctx_cs, R_0286D8_SPI_PS_IN_CONTROL,
S_0286D8_NUM_INTERP(ps->info.ps.num_interp) |
S_0286D8_NUM_PRIM_INTERP(ps->info.ps.num_prim_interp) |
S_0286D8_PS_W32_EN(ps->info.wave_size == 32) |
S_0286D8_PARAM_GEN(param_gen));
radeon_set_context_reg(ctx_cs, R_0286E0_SPI_BARYC_CNTL, pipeline->spi_baryc_cntl);
radeon_set_context_reg(
ctx_cs, R_028710_SPI_SHADER_Z_FORMAT,
ac_get_spi_shader_z_format(ps->info.ps.writes_z, ps->info.ps.writes_stencil,
ps->info.ps.writes_sample_mask, false));
struct radv_userdata_info *loc =
radv_lookup_user_sgpr(&pipeline->base, MESA_SHADER_FRAGMENT, AC_UD_PS_NUM_SAMPLES);
if (loc->sgpr_idx != -1) {
uint32_t base_reg = pipeline->base.user_data_0[MESA_SHADER_FRAGMENT];
radeon_set_sh_reg(cs, base_reg + loc->sgpr_idx * 4, pipeline->ms.num_samples);
}
}
static void
radv_pipeline_emit_vgt_vertex_reuse(struct radeon_cmdbuf *ctx_cs,
const struct radv_graphics_pipeline *pipeline)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
if (pdevice->rad_info.family < CHIP_POLARIS10 || pdevice->rad_info.gfx_level >= GFX10)
return;
unsigned vtx_reuse_depth = 30;
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL) &&
radv_get_shader(&pipeline->base, MESA_SHADER_TESS_EVAL)->info.tes.spacing ==
TESS_SPACING_FRACTIONAL_ODD) {
vtx_reuse_depth = 14;
}
radeon_set_context_reg(ctx_cs, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
S_028C58_VTX_REUSE_DEPTH(vtx_reuse_depth));
}
static void
radv_pipeline_emit_vgt_shader_config(struct radeon_cmdbuf *ctx_cs,
const struct radv_graphics_pipeline *pipeline)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
uint32_t stages = 0;
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL)) {
stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) | S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1);
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) | S_028B54_GS_EN(1);
else if (radv_pipeline_has_ngg(pipeline))
stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS);
else
stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
} else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) | S_028B54_GS_EN(1);
} else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH)) {
assert(!radv_pipeline_has_ngg_passthrough(pipeline));
stages |= S_028B54_GS_EN(1) | S_028B54_GS_FAST_LAUNCH(1);
if (pipeline->base.shaders[MESA_SHADER_MESH]->info.ms.needs_ms_scratch_ring)
stages |= S_028B54_NGG_WAVE_ID_EN(1);
} else if (radv_pipeline_has_ngg(pipeline)) {
stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL);
}
if (radv_pipeline_has_ngg(pipeline)) {
stages |= S_028B54_PRIMGEN_EN(1);
if (pipeline->streamout_shader)
stages |= S_028B54_NGG_WAVE_ID_EN(1);
if (radv_pipeline_has_ngg_passthrough(pipeline)) {
stages |= S_028B54_PRIMGEN_PASSTHRU_EN(1);
if (pdevice->rad_info.family >= CHIP_NAVI23)
stages |= S_028B54_PRIMGEN_PASSTHRU_NO_MSG(1);
}
} else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
}
if (pdevice->rad_info.gfx_level >= GFX9)
stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2);
if (pdevice->rad_info.gfx_level >= GFX10) {
uint8_t hs_size = 64, gs_size = 64, vs_size = 64;
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL))
hs_size = pipeline->base.shaders[MESA_SHADER_TESS_CTRL]->info.wave_size;
if (pipeline->base.shaders[MESA_SHADER_GEOMETRY]) {
vs_size = gs_size = pipeline->base.shaders[MESA_SHADER_GEOMETRY]->info.wave_size;
if (radv_pipeline_has_gs_copy_shader(&pipeline->base))
vs_size = pipeline->base.gs_copy_shader->info.wave_size;
} else if (pipeline->base.shaders[MESA_SHADER_TESS_EVAL])
vs_size = pipeline->base.shaders[MESA_SHADER_TESS_EVAL]->info.wave_size;
else if (pipeline->base.shaders[MESA_SHADER_VERTEX])
vs_size = pipeline->base.shaders[MESA_SHADER_VERTEX]->info.wave_size;
else if (pipeline->base.shaders[MESA_SHADER_MESH])
vs_size = gs_size = pipeline->base.shaders[MESA_SHADER_MESH]->info.wave_size;
if (radv_pipeline_has_ngg(pipeline)) {
assert(!radv_pipeline_has_gs_copy_shader(&pipeline->base));
gs_size = vs_size;
}
/* legacy GS only supports Wave64 */
stages |= S_028B54_HS_W32_EN(hs_size == 32 ? 1 : 0) |
S_028B54_GS_W32_EN(gs_size == 32 ? 1 : 0) |
S_028B54_VS_W32_EN(vs_size == 32 ? 1 : 0);
}
radeon_set_context_reg(ctx_cs, R_028B54_VGT_SHADER_STAGES_EN, stages);
}
static void
radv_pipeline_emit_cliprect_rule(struct radeon_cmdbuf *ctx_cs,
const struct vk_graphics_pipeline_state *state)
{
uint32_t cliprect_rule = 0;
if (!state->dr->rectangle_count) {
cliprect_rule = 0xffff;
} else {
for (unsigned i = 0; i < (1u << MAX_DISCARD_RECTANGLES); ++i) {
/* Interpret i as a bitmask, and then set the bit in
* the mask if that combination of rectangles in which
* the pixel is contained should pass the cliprect
* test.
*/
unsigned relevant_subset = i & ((1u << state->dr->rectangle_count) - 1);
if (state->dr->mode == VK_DISCARD_RECTANGLE_MODE_INCLUSIVE_EXT && !relevant_subset)
continue;
if (state->dr->mode == VK_DISCARD_RECTANGLE_MODE_EXCLUSIVE_EXT && relevant_subset)
continue;
cliprect_rule |= 1u << i;
}
}
radeon_set_context_reg(ctx_cs, R_02820C_PA_SC_CLIPRECT_RULE, cliprect_rule);
}
static void
radv_pipeline_emit_vgt_gs_out(struct radeon_cmdbuf *ctx_cs,
const struct radv_graphics_pipeline *pipeline,
uint32_t vgt_gs_out_prim_type)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
if (pdevice->rad_info.gfx_level >= GFX11) {
radeon_set_uconfig_reg(ctx_cs, R_030998_VGT_GS_OUT_PRIM_TYPE, vgt_gs_out_prim_type);
} else {
radeon_set_context_reg(ctx_cs, R_028A6C_VGT_GS_OUT_PRIM_TYPE, vgt_gs_out_prim_type);
}
}
static void
gfx103_pipeline_emit_vgt_draw_payload_cntl(struct radeon_cmdbuf *ctx_cs,
const struct radv_graphics_pipeline *pipeline,
const struct vk_graphics_pipeline_state *state)
{
const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline);
bool enable_vrs = radv_is_vrs_enabled(pipeline, state);
/* Enables the second channel of the primitive export instruction.
* This channel contains: VRS rate x, y, viewport and layer.
*/
bool enable_prim_payload =
outinfo &&
(outinfo->writes_viewport_index_per_primitive ||
outinfo->writes_layer_per_primitive ||
outinfo->writes_primitive_shading_rate_per_primitive);
radeon_set_context_reg(ctx_cs, R_028A98_VGT_DRAW_PAYLOAD_CNTL,
S_028A98_EN_VRS_RATE(enable_vrs) |
S_028A98_EN_PRIM_PAYLOAD(enable_prim_payload));
}
static bool
gfx103_pipeline_vrs_coarse_shading(const struct radv_graphics_pipeline *pipeline)
{
struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT];
struct radv_device *device = pipeline->base.device;
if (device->instance->debug_flags & RADV_DEBUG_NO_VRS_FLAT_SHADING)
return false;
if (!ps->info.ps.allow_flat_shading)
return false;
return true;
}
static void
gfx103_pipeline_emit_vrs_state(struct radeon_cmdbuf *ctx_cs,
const struct radv_graphics_pipeline *pipeline,
const struct vk_graphics_pipeline_state *state)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
uint32_t mode = V_028064_VRS_COMB_MODE_PASSTHRU;
uint8_t rate_x = 0, rate_y = 0;
bool enable_vrs = radv_is_vrs_enabled(pipeline, state);
if (!enable_vrs && gfx103_pipeline_vrs_coarse_shading(pipeline)) {
/* When per-draw VRS is not enabled at all, try enabling VRS coarse shading 2x2 if the driver
* determined that it's safe to enable.
*/
mode = V_028064_VRS_COMB_MODE_OVERRIDE;
rate_x = rate_y = 1;
} else if (!radv_is_static_vrs_enabled(pipeline, state) && pipeline->force_vrs_per_vertex &&
get_vs_output_info(pipeline)->writes_primitive_shading_rate) {
/* Otherwise, if per-draw VRS is not enabled statically, try forcing per-vertex VRS if
* requested by the user. Note that vkd3d-proton always has to declare VRS as dynamic because
* in DX12 it's fully dynamic.
*/
radeon_set_context_reg(ctx_cs, R_028848_PA_CL_VRS_CNTL,
S_028848_SAMPLE_ITER_COMBINER_MODE(V_028848_VRS_COMB_MODE_OVERRIDE) |
S_028848_VERTEX_RATE_COMBINER_MODE(V_028848_VRS_COMB_MODE_OVERRIDE));
/* If the shader is using discard, turn off coarse shading because discard at 2x2 pixel
* granularity degrades quality too much. MIN allows sample shading but not coarse shading.
*/
struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT];
mode = ps->info.ps.can_discard ? V_028064_VRS_COMB_MODE_MIN : V_028064_VRS_COMB_MODE_PASSTHRU;
}
if (pdevice->rad_info.gfx_level >= GFX11) {
radeon_set_context_reg(ctx_cs, R_0283D0_PA_SC_VRS_OVERRIDE_CNTL,
S_0283D0_VRS_OVERRIDE_RATE_COMBINER_MODE(mode) |
S_0283D0_VRS_RATE((rate_x << 2) | rate_y));
} else {
radeon_set_context_reg(ctx_cs, R_028064_DB_VRS_OVERRIDE_CNTL,
S_028064_VRS_OVERRIDE_RATE_COMBINER_MODE(mode) |
S_028064_VRS_OVERRIDE_RATE_X(rate_x) |
S_028064_VRS_OVERRIDE_RATE_Y(rate_y));
}
}
static void
radv_pipeline_emit_pm4(struct radv_graphics_pipeline *pipeline,
const struct radv_blend_state *blend,
const struct radv_depth_stencil_state *ds_state,
uint32_t vgt_gs_out_prim_type,
const struct vk_graphics_pipeline_state *state)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
struct radeon_cmdbuf *ctx_cs = &pipeline->base.ctx_cs;
struct radeon_cmdbuf *cs = &pipeline->base.cs;
cs->max_dw = 64;
ctx_cs->max_dw = 256;
cs->buf = malloc(4 * (cs->max_dw + ctx_cs->max_dw));
ctx_cs->buf = cs->buf + cs->max_dw;
radv_pipeline_emit_depth_stencil_state(ctx_cs, ds_state);
radv_pipeline_emit_blend_state(ctx_cs, pipeline, blend);
radv_pipeline_emit_multisample_state(ctx_cs, pipeline);
radv_pipeline_emit_vgt_gs_mode(ctx_cs, pipeline);
radv_pipeline_emit_vertex_shader(ctx_cs, cs, pipeline);
radv_pipeline_emit_mesh_shader(ctx_cs, cs, pipeline);
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL)) {
radv_pipeline_emit_tess_shaders(ctx_cs, cs, pipeline);
}
radv_pipeline_emit_geometry_shader(ctx_cs, cs, pipeline);
radv_pipeline_emit_fragment_shader(ctx_cs, cs, pipeline);
radv_pipeline_emit_ps_inputs(ctx_cs, pipeline);
radv_pipeline_emit_vgt_vertex_reuse(ctx_cs, pipeline);
radv_pipeline_emit_vgt_shader_config(ctx_cs, pipeline);
radv_pipeline_emit_cliprect_rule(ctx_cs, state);
radv_pipeline_emit_vgt_gs_out(ctx_cs, pipeline, vgt_gs_out_prim_type);
if (pdevice->rad_info.gfx_level >= GFX10_3) {
gfx103_pipeline_emit_vgt_draw_payload_cntl(ctx_cs, pipeline, state);
gfx103_pipeline_emit_vrs_state(ctx_cs, pipeline, state);
}
pipeline->base.ctx_cs_hash = _mesa_hash_data(ctx_cs->buf, ctx_cs->cdw * 4);
assert(ctx_cs->cdw <= ctx_cs->max_dw);
assert(cs->cdw <= cs->max_dw);
}
static void
radv_pipeline_init_vertex_input_state(struct radv_graphics_pipeline *pipeline,
const struct vk_graphics_pipeline_state *state)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
const struct radv_shader_info *vs_info = &radv_get_shader(&pipeline->base, MESA_SHADER_VERTEX)->info;
if (state->vi) {
u_foreach_bit(i, state->vi->attributes_valid) {
uint32_t binding = state->vi->attributes[i].binding;
uint32_t offset = state->vi->attributes[i].offset;
VkFormat format = state->vi->attributes[i].format;
pipeline->attrib_ends[i] = offset + vk_format_get_blocksize(format);
pipeline->attrib_bindings[i] = binding;
if (state->vi->bindings[binding].stride) {
pipeline->attrib_index_offset[i] = offset / state->vi->bindings[binding].stride;
}
}
u_foreach_bit(i, state->vi->bindings_valid) {
pipeline->binding_stride[i] = state->vi->bindings[i].stride;
}
}
pipeline->use_per_attribute_vb_descs = vs_info->vs.use_per_attribute_vb_descs;
pipeline->last_vertex_attrib_bit = util_last_bit(vs_info->vs.vb_desc_usage_mask);
if (pipeline->base.shaders[MESA_SHADER_VERTEX])
pipeline->next_vertex_stage = MESA_SHADER_VERTEX;
else if (pipeline->base.shaders[MESA_SHADER_TESS_CTRL])
pipeline->next_vertex_stage = MESA_SHADER_TESS_CTRL;
else
pipeline->next_vertex_stage = MESA_SHADER_GEOMETRY;
if (pipeline->next_vertex_stage == MESA_SHADER_VERTEX) {
const struct radv_shader *vs_shader = pipeline->base.shaders[MESA_SHADER_VERTEX];
pipeline->can_use_simple_input = vs_shader->info.is_ngg == pdevice->use_ngg &&
vs_shader->info.wave_size == pdevice->ge_wave_size;
} else {
pipeline->can_use_simple_input = false;
}
if (vs_info->vs.dynamic_inputs)
pipeline->vb_desc_usage_mask = BITFIELD_MASK(pipeline->last_vertex_attrib_bit);
else
pipeline->vb_desc_usage_mask = vs_info->vs.vb_desc_usage_mask;
pipeline->vb_desc_alloc_size = util_bitcount(pipeline->vb_desc_usage_mask) * 16;
/* Prepare the VS input state for prologs created inside a library. */
if (vs_info->vs.has_prolog && !(pipeline->dynamic_states & RADV_DYNAMIC_VERTEX_INPUT)) {
const enum amd_gfx_level gfx_level = pdevice->rad_info.gfx_level;
const enum radeon_family family = pdevice->rad_info.family;
const struct ac_vtx_format_info *vtx_info_table = ac_get_vtx_format_info_table(gfx_level, family);
pipeline->vs_input_state.bindings_match_attrib = true;
u_foreach_bit(i, state->vi->attributes_valid) {
uint32_t binding = state->vi->attributes[i].binding;
uint32_t offset = state->vi->attributes[i].offset;
pipeline->vs_input_state.attribute_mask |= BITFIELD_BIT(i);
pipeline->vs_input_state.bindings[i] = binding;
pipeline->vs_input_state.bindings_match_attrib &= binding == i;
if (state->vi->bindings[binding].input_rate) {
pipeline->vs_input_state.instance_rate_inputs |= BITFIELD_BIT(i);
pipeline->vs_input_state.divisors[i] = state->vi->bindings[binding].divisor;
if (state->vi->bindings[binding].divisor == 0) {
pipeline->vs_input_state.zero_divisors |= BITFIELD_BIT(i);
} else if (state->vi->bindings[binding].divisor > 1) {
pipeline->vs_input_state.nontrivial_divisors |= BITFIELD_BIT(i);
}
}
pipeline->vs_input_state.offsets[i] = offset;
enum pipe_format format = vk_format_to_pipe_format(state->vi->attributes[i].format);
const struct ac_vtx_format_info *vtx_info = &vtx_info_table[format];
pipeline->vs_input_state.formats[i] = format;
uint8_t align_req_minus_1 = vtx_info->chan_byte_size >= 4 ? 3 : (vtx_info->element_size - 1);
pipeline->vs_input_state.format_align_req_minus_1[i] = align_req_minus_1;
pipeline->vs_input_state.format_sizes[i] = vtx_info->element_size;
pipeline->vs_input_state.alpha_adjust_lo |= (vtx_info->alpha_adjust & 0x1) << i;
pipeline->vs_input_state.alpha_adjust_hi |= (vtx_info->alpha_adjust >> 1) << i;
if (G_008F0C_DST_SEL_X(vtx_info->dst_sel) == V_008F0C_SQ_SEL_Z) {
pipeline->vs_input_state.post_shuffle |= BITFIELD_BIT(i);
}
if (!(vtx_info->has_hw_format & BITFIELD_BIT(vtx_info->num_channels - 1))) {
pipeline->vs_input_state.nontrivial_formats |= BITFIELD_BIT(i);
}
}
}
}
static struct radv_shader *
radv_pipeline_get_streamout_shader(struct radv_graphics_pipeline *pipeline)
{
int i;
for (i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
struct radv_shader *shader = radv_get_shader(&pipeline->base, i);
if (shader && shader->info.so.num_outputs > 0)
return shader;
}
return NULL;
}
static bool
radv_shader_need_indirect_descriptor_sets(struct radv_pipeline *pipeline, gl_shader_stage stage)
{
struct radv_userdata_info *loc =
radv_lookup_user_sgpr(pipeline, stage, AC_UD_INDIRECT_DESCRIPTOR_SETS);
return loc->sgpr_idx != -1;
}
static void
radv_pipeline_init_shader_stages_state(struct radv_graphics_pipeline *pipeline)
{
struct radv_device *device = pipeline->base.device;
for (unsigned i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) {
bool shader_exists = !!pipeline->base.shaders[i];
if (shader_exists || i < MESA_SHADER_COMPUTE) {
/* We need this info for some stages even when the shader doesn't exist. */
pipeline->base.user_data_0[i] = radv_pipeline_stage_to_user_data_0(
pipeline, i, device->physical_device->rad_info.gfx_level);
if (shader_exists)
pipeline->base.need_indirect_descriptor_sets |=
radv_shader_need_indirect_descriptor_sets(&pipeline->base, i);
}
}
gl_shader_stage first_stage =
radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH) ? MESA_SHADER_MESH : MESA_SHADER_VERTEX;
struct radv_userdata_info *loc =
radv_lookup_user_sgpr(&pipeline->base, first_stage, AC_UD_VS_BASE_VERTEX_START_INSTANCE);
if (loc->sgpr_idx != -1) {
pipeline->vtx_base_sgpr = pipeline->base.user_data_0[first_stage];
pipeline->vtx_base_sgpr += loc->sgpr_idx * 4;
pipeline->vtx_emit_num = loc->num_sgprs;
pipeline->uses_drawid =
radv_get_shader(&pipeline->base, first_stage)->info.vs.needs_draw_id;
pipeline->uses_baseinstance =
radv_get_shader(&pipeline->base, first_stage)->info.vs.needs_base_instance;
assert(first_stage != MESA_SHADER_MESH || !pipeline->uses_baseinstance);
}
}
static uint32_t
radv_pipeline_init_vgt_gs_out(struct radv_graphics_pipeline *pipeline,
const struct vk_graphics_pipeline_state *state)
{
uint32_t gs_out;
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
gs_out =
si_conv_gl_prim_to_gs_out(pipeline->base.shaders[MESA_SHADER_GEOMETRY]->info.gs.output_prim);
} else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL)) {
if (pipeline->base.shaders[MESA_SHADER_TESS_EVAL]->info.tes.point_mode) {
gs_out = V_028A6C_POINTLIST;
} else {
gs_out = si_conv_tess_prim_to_gs_out(
pipeline->base.shaders[MESA_SHADER_TESS_EVAL]->info.tes._primitive_mode);
}
} else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH)) {
gs_out =
si_conv_gl_prim_to_gs_out(pipeline->base.shaders[MESA_SHADER_MESH]->info.ms.output_prim);
} else {
gs_out = si_conv_prim_to_gs_out(si_translate_prim(state->ia->primitive_topology));
}
return gs_out;
}
static void
radv_pipeline_init_tess_state(struct radv_graphics_pipeline *pipeline,
const struct vk_graphics_pipeline_state *state)
{
const struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
struct radv_shader *tes = radv_get_shader(&pipeline->base, MESA_SHADER_TESS_EVAL);
unsigned type = 0, partitioning = 0, distribution_mode = 0;
switch (tes->info.tes._primitive_mode) {
case TESS_PRIMITIVE_TRIANGLES:
type = V_028B6C_TESS_TRIANGLE;
break;
case TESS_PRIMITIVE_QUADS:
type = V_028B6C_TESS_QUAD;
break;
case TESS_PRIMITIVE_ISOLINES:
type = V_028B6C_TESS_ISOLINE;
break;
default:
break;
}
switch (tes->info.tes.spacing) {
case TESS_SPACING_EQUAL:
partitioning = V_028B6C_PART_INTEGER;
break;
case TESS_SPACING_FRACTIONAL_ODD:
partitioning = V_028B6C_PART_FRAC_ODD;
break;
case TESS_SPACING_FRACTIONAL_EVEN:
partitioning = V_028B6C_PART_FRAC_EVEN;
break;
default:
break;
}
if (pdevice->rad_info.has_distributed_tess) {
if (pdevice->rad_info.family == CHIP_FIJI || pdevice->rad_info.family >= CHIP_POLARIS10)
distribution_mode = V_028B6C_TRAPEZOIDS;
else
distribution_mode = V_028B6C_DONUTS;
} else
distribution_mode = V_028B6C_NO_DIST;
pipeline->vgt_tf_param = S_028B6C_TYPE(type) | S_028B6C_PARTITIONING(partitioning) |
S_028B6C_DISTRIBUTION_MODE(distribution_mode);
}
static void
radv_pipeline_init_extra(struct radv_graphics_pipeline *pipeline,
const struct radv_graphics_pipeline_create_info *extra,
struct radv_blend_state *blend_state,
struct radv_depth_stencil_state *ds_state,
const struct vk_graphics_pipeline_state *state,
uint32_t *vgt_gs_out_prim_type)
{
if (extra->custom_blend_mode == V_028808_CB_ELIMINATE_FAST_CLEAR ||
extra->custom_blend_mode == V_028808_CB_FMASK_DECOMPRESS ||
extra->custom_blend_mode == V_028808_CB_DCC_DECOMPRESS_GFX8 ||
extra->custom_blend_mode == V_028808_CB_DCC_DECOMPRESS_GFX11 ||
extra->custom_blend_mode == V_028808_CB_RESOLVE) {
/* According to the CB spec states, CB_SHADER_MASK should be set to enable writes to all four
* channels of MRT0.
*/
blend_state->cb_shader_mask = 0xf;
if (extra->custom_blend_mode == V_028808_CB_RESOLVE)
pipeline->disable_dual_quad = true;
pipeline->custom_blend_mode = extra->custom_blend_mode;
}
if (extra->use_rectlist) {
struct radv_dynamic_state *dynamic = &pipeline->dynamic_state;
dynamic->primitive_topology = V_008958_DI_PT_RECTLIST;
*vgt_gs_out_prim_type = V_028A6C_TRISTRIP;
if (radv_pipeline_has_ngg(pipeline))
*vgt_gs_out_prim_type = V_028A6C_RECTLIST;
pipeline->rast_prim = *vgt_gs_out_prim_type;
}
if (radv_pipeline_has_ds_attachments(state->rp)) {
ds_state->db_render_control |= S_028000_DEPTH_CLEAR_ENABLE(extra->db_depth_clear);
ds_state->db_render_control |= S_028000_STENCIL_CLEAR_ENABLE(extra->db_stencil_clear);
ds_state->db_render_control |= S_028000_RESUMMARIZE_ENABLE(extra->resummarize_enable);
ds_state->db_render_control |= S_028000_DEPTH_COMPRESS_DISABLE(extra->depth_compress_disable);
ds_state->db_render_control |= S_028000_STENCIL_COMPRESS_DISABLE(extra->stencil_compress_disable);
}
}
void
radv_pipeline_init(struct radv_device *device, struct radv_pipeline *pipeline,
enum radv_pipeline_type type)
{
vk_object_base_init(&device->vk, &pipeline->base, VK_OBJECT_TYPE_PIPELINE);
pipeline->device = device;
pipeline->type = type;
}
static VkResult
radv_graphics_pipeline_init(struct radv_graphics_pipeline *pipeline, struct radv_device *device,
struct radv_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct radv_graphics_pipeline_create_info *extra)
{
struct radv_pipeline_layout pipeline_layout = {0};
struct vk_graphics_pipeline_state state = {0};
VkResult result;
pipeline->last_vgt_api_stage = MESA_SHADER_NONE;
const VkPipelineLibraryCreateInfoKHR *libs_info =
vk_find_struct_const(pCreateInfo->pNext, PIPELINE_LIBRARY_CREATE_INFO_KHR);
VkGraphicsPipelineLibraryFlagBitsEXT imported_flags = 0;
radv_pipeline_layout_init(device, &pipeline_layout, false);
/* If we have libraries, import them first. */
if (libs_info) {
ASSERTED const bool link_optimize =
(pCreateInfo->flags & VK_PIPELINE_CREATE_LINK_TIME_OPTIMIZATION_BIT_EXT) != 0;
for (uint32_t i = 0; i < libs_info->libraryCount; i++) {
RADV_FROM_HANDLE(radv_pipeline, pipeline_lib, libs_info->pLibraries[i]);
struct radv_graphics_lib_pipeline *gfx_pipeline_lib =
radv_pipeline_to_graphics_lib(pipeline_lib);
assert(pipeline_lib->type == RADV_PIPELINE_GRAPHICS_LIB);
/* If we have link time optimization, all libraries must be created with
* VK_PIPELINE_CREATE_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT.
*/
assert(!link_optimize || gfx_pipeline_lib->base.base.retain_shaders);
radv_graphics_pipeline_import_lib(pipeline, &state, &pipeline_layout, gfx_pipeline_lib);
imported_flags |= gfx_pipeline_lib->lib_flags;
}
}
/* Import graphics pipeline info that was not included in the libraries. */
result = radv_pipeline_import_graphics_info(pipeline, &state, &pipeline_layout, pCreateInfo,
(~imported_flags) & ALL_GRAPHICS_LIB_FLAGS);
if (result != VK_SUCCESS) {
radv_pipeline_layout_finish(device, &pipeline_layout);
return result;
}
radv_pipeline_layout_hash(&pipeline_layout);
struct radv_blend_state blend = radv_pipeline_init_blend_state(pipeline, &state,
pipeline->ps_epilog);
const VkPipelineCreationFeedbackCreateInfo *creation_feedback =
vk_find_struct_const(pCreateInfo->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO);
struct radv_pipeline_key key =
radv_generate_graphics_pipeline_key(pipeline, pCreateInfo, &state, &blend);
result = radv_create_shaders(&pipeline->base, &pipeline_layout, device, cache, &key, pCreateInfo->pStages,
pCreateInfo->stageCount, pCreateInfo->flags, NULL,
creation_feedback, NULL, NULL, &pipeline->last_vgt_api_stage);
if (result != VK_SUCCESS) {
radv_pipeline_layout_finish(device, &pipeline_layout);
return result;
}
pipeline->spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1);
uint32_t vgt_gs_out_prim_type = radv_pipeline_init_vgt_gs_out(pipeline, &state);
radv_pipeline_init_multisample_state(pipeline, &blend, &state, vgt_gs_out_prim_type);
if (!radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH))
radv_pipeline_init_input_assembly_state(pipeline);
radv_pipeline_init_dynamic_state(pipeline, &state);
struct radv_depth_stencil_state ds_state =
radv_pipeline_init_depth_stencil_state(pipeline, &state);
if (device->physical_device->rad_info.gfx_level >= GFX10_3)
gfx103_pipeline_init_vrs_state(pipeline, &state);
/* Copy the non-compacted SPI_SHADER_COL_FORMAT which is used to emit RBPLUS state. */
pipeline->col_format_non_compacted = blend.spi_shader_col_format;
struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT];
bool enable_mrt_compaction = !blend.mrt0_is_dual_src && !ps->info.ps.has_epilog;
if (enable_mrt_compaction) {
blend.spi_shader_col_format = radv_compact_spi_shader_col_format(ps, &blend);
}
/* Ensure that some export memory is always allocated, for two reasons:
*
* 1) Correctness: The hardware ignores the EXEC mask if no export
* memory is allocated, so KILL and alpha test do not work correctly
* without this.
* 2) Performance: Every shader needs at least a NULL export, even when
* it writes no color/depth output. The NULL export instruction
* stalls without this setting.
*
* Don't add this to CB_SHADER_MASK.
*
* GFX10 supports pixel shaders without exports by setting both the
* color and Z formats to SPI_SHADER_ZERO. The hw will skip export
* instructions if any are present.
*/
if ((device->physical_device->rad_info.gfx_level <= GFX9 || ps->info.ps.can_discard) &&
!blend.spi_shader_col_format) {
if (!ps->info.ps.writes_z && !ps->info.ps.writes_stencil && !ps->info.ps.writes_sample_mask) {
blend.spi_shader_col_format = V_028714_SPI_SHADER_32_R;
pipeline->col_format_non_compacted = V_028714_SPI_SHADER_32_R;
}
}
if (enable_mrt_compaction) {
/* In presense of MRT holes (ie. the FS exports MRT1 but not MRT0), the compiler will remap
* them, so that only MRT0 is exported and the driver will compact SPI_SHADER_COL_FORMAT to
* match what the FS actually exports. Though, to make sure the hw remapping works as
* expected, we should also clear color attachments without exports in CB_SHADER_MASK.
*/
blend.cb_shader_mask &= ps->info.ps.colors_written;
}
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY) && !radv_pipeline_has_ngg(pipeline)) {
struct radv_shader *gs = pipeline->base.shaders[MESA_SHADER_GEOMETRY];
radv_pipeline_init_gs_ring_state(pipeline, &gs->info.gs_ring_info);
}
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL)) {
radv_pipeline_init_tess_state(pipeline, &state);
}
if (!radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH))
radv_pipeline_init_vertex_input_state(pipeline, &state);
radv_pipeline_init_shader_stages_state(pipeline);
radv_pipeline_init_scratch(device, &pipeline->base);
/* Find the last vertex shader stage that eventually uses streamout. */
pipeline->streamout_shader = radv_pipeline_get_streamout_shader(pipeline);
pipeline->is_ngg = radv_pipeline_has_ngg(pipeline);
pipeline->has_ngg_culling =
pipeline->is_ngg &&
pipeline->base.shaders[pipeline->last_vgt_api_stage]->info.has_ngg_culling;
pipeline->force_vrs_per_vertex =
pipeline->base.shaders[pipeline->last_vgt_api_stage]->info.force_vrs_per_vertex;
pipeline->uses_user_sample_locations = state.ms && state.ms->sample_locations_enable;
pipeline->rast_prim = vgt_gs_out_prim_type;
pipeline->last_vgt_api_stage_locs = pipeline->base.shaders[pipeline->last_vgt_api_stage]->info.user_sgprs_locs.shader_data;
pipeline->base.push_constant_size = pipeline_layout.push_constant_size;
pipeline->base.dynamic_offset_count = pipeline_layout.dynamic_offset_count;
if (extra) {
radv_pipeline_init_extra(pipeline, extra, &blend, &ds_state, &state, &vgt_gs_out_prim_type);
}
radv_pipeline_emit_pm4(pipeline, &blend, &ds_state, vgt_gs_out_prim_type, &state);
radv_pipeline_layout_finish(device, &pipeline_layout);
return result;
}
VkResult
radv_graphics_pipeline_create(VkDevice _device, VkPipelineCache _cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct radv_graphics_pipeline_create_info *extra,
const VkAllocationCallbacks *pAllocator,
VkPipeline *pPipeline)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
struct radv_graphics_pipeline *pipeline;
VkResult result;
pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (pipeline == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
radv_pipeline_init(device, &pipeline->base, RADV_PIPELINE_GRAPHICS);
result = radv_graphics_pipeline_init(pipeline, device, cache, pCreateInfo, extra);
if (result != VK_SUCCESS) {
radv_pipeline_destroy(device, &pipeline->base, pAllocator);
return result;
}
*pPipeline = radv_pipeline_to_handle(&pipeline->base);
return VK_SUCCESS;
}
static VkResult
radv_graphics_lib_pipeline_init(struct radv_graphics_lib_pipeline *pipeline,
struct radv_device *device, struct radv_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
VkResult result;
const VkGraphicsPipelineLibraryCreateInfoEXT *lib_info =
vk_find_struct_const(pCreateInfo->pNext, GRAPHICS_PIPELINE_LIBRARY_CREATE_INFO_EXT);
const VkGraphicsPipelineLibraryFlagBitsEXT lib_flags = lib_info ? lib_info->flags : 0;
const VkPipelineLibraryCreateInfoKHR *libs_info =
vk_find_struct_const(pCreateInfo->pNext, PIPELINE_LIBRARY_CREATE_INFO_KHR);
VkGraphicsPipelineLibraryFlagBitsEXT imported_flags = lib_flags;
struct vk_graphics_pipeline_state *state = &pipeline->graphics_state;
struct radv_pipeline_layout *pipeline_layout = &pipeline->layout;
pipeline->base.last_vgt_api_stage = MESA_SHADER_NONE;
pipeline->base.base.retain_shaders =
(pCreateInfo->flags & VK_PIPELINE_CREATE_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT) != 0;
pipeline->lib_flags = lib_flags;
radv_pipeline_layout_init(device, pipeline_layout, false);
/* If we have libraries, import them first. */
if (libs_info) {
for (uint32_t i = 0; i < libs_info->libraryCount; i++) {
RADV_FROM_HANDLE(radv_pipeline, pipeline_lib, libs_info->pLibraries[i]);
struct radv_graphics_lib_pipeline *gfx_pipeline_lib =
radv_pipeline_to_graphics_lib(pipeline_lib);
radv_graphics_pipeline_import_lib(&pipeline->base, state, pipeline_layout,
gfx_pipeline_lib);
pipeline->lib_flags |= gfx_pipeline_lib->lib_flags;
imported_flags &= ~gfx_pipeline_lib->lib_flags;
}
}
result = radv_pipeline_import_graphics_info(&pipeline->base, state, pipeline_layout, pCreateInfo,
imported_flags);
if (result != VK_SUCCESS)
goto fail_layout;
radv_pipeline_layout_hash(pipeline_layout);
/* Compile a PS epilog if the fragment shader output interface is present without the main
* fragment shader.
*/
if ((imported_flags & VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_OUTPUT_INTERFACE_BIT_EXT) &&
!(imported_flags & VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT)) {
struct radv_blend_state blend =
radv_pipeline_init_blend_state(&pipeline->base, state, true);
struct radv_pipeline_key key =
radv_generate_graphics_pipeline_key(&pipeline->base, pCreateInfo, state, &blend);
struct radv_ps_epilog_key epilog_key = {
.spi_shader_col_format = blend.spi_shader_col_format,
.color_is_int8 = blend.col_format_is_int8,
.color_is_int10 = blend.col_format_is_int10,
.enable_mrt_output_nan_fixup = key.ps.enable_mrt_output_nan_fixup,
.mrt0_is_dual_src = blend.mrt0_is_dual_src,
};
pipeline->base.ps_epilog = radv_create_ps_epilog(device, &epilog_key);
if (!pipeline->base.ps_epilog)
goto fail_layout;
}
if (pipeline->base.active_stages != 0) {
const VkPipelineCreationFeedbackCreateInfo *creation_feedback =
vk_find_struct_const(pCreateInfo->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO);
struct radv_blend_state blend =
radv_pipeline_init_blend_state(&pipeline->base, state, pipeline->base.ps_epilog);
struct radv_pipeline_key key =
radv_generate_graphics_pipeline_key(&pipeline->base, pCreateInfo, state, &blend);
/* Compile the main FS only when the fragment shader output interface is missing. */
if ((imported_flags & VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT) &&
!(imported_flags & VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_OUTPUT_INTERFACE_BIT_EXT)) {
key.ps.has_epilog = true;
}
/* Compile the pre-rasterization stages only when the vertex input interface is missing. */
if ((imported_flags & VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT) &&
!(imported_flags & VK_GRAPHICS_PIPELINE_LIBRARY_VERTEX_INPUT_INTERFACE_BIT_EXT)) {
key.vs.has_prolog = true;
}
result = radv_create_shaders(&pipeline->base.base, pipeline_layout, device, cache, &key,
pCreateInfo->pStages, pCreateInfo->stageCount, pCreateInfo->flags,
NULL, creation_feedback, NULL, NULL,
&pipeline->base.last_vgt_api_stage);
if (result != VK_SUCCESS && result != VK_PIPELINE_COMPILE_REQUIRED)
goto fail_shaders;
}
return VK_SUCCESS;
fail_shaders:
if (pipeline->base.ps_epilog)
radv_shader_part_unref(device, pipeline->base.ps_epilog);
fail_layout:
radv_pipeline_layout_finish(device, pipeline_layout);
return result;
}
static VkResult
radv_graphics_lib_pipeline_create(VkDevice _device, VkPipelineCache _cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipeline)
{
RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
RADV_FROM_HANDLE(radv_device, device, _device);
struct radv_graphics_lib_pipeline *pipeline;
VkResult result;
pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (pipeline == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
radv_pipeline_init(device, &pipeline->base.base, RADV_PIPELINE_GRAPHICS_LIB);
result = radv_graphics_lib_pipeline_init(pipeline, device, cache, pCreateInfo);
if (result != VK_SUCCESS) {
radv_pipeline_destroy(device, &pipeline->base.base, pAllocator);
return result;
}
*pPipeline = radv_pipeline_to_handle(&pipeline->base.base);
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_CreateGraphicsPipelines(VkDevice _device, VkPipelineCache pipelineCache, uint32_t count,
const VkGraphicsPipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines)
{
VkResult result = VK_SUCCESS;
unsigned i = 0;
for (; i < count; i++) {
VkResult r;
if (pCreateInfos[i].flags & VK_PIPELINE_CREATE_LIBRARY_BIT_KHR) {
r = radv_graphics_lib_pipeline_create(_device, pipelineCache, &pCreateInfos[i],
pAllocator, &pPipelines[i]);
} else {
r = radv_graphics_pipeline_create(_device, pipelineCache, &pCreateInfos[i], NULL,
pAllocator, &pPipelines[i]);
}
if (r != VK_SUCCESS) {
result = r;
pPipelines[i] = VK_NULL_HANDLE;
if (pCreateInfos[i].flags & VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT)
break;
}
}
for (; i < count; ++i)
pPipelines[i] = VK_NULL_HANDLE;
return result;
}
void
radv_pipeline_emit_hw_cs(const struct radv_physical_device *pdevice, struct radeon_cmdbuf *cs,
const struct radv_shader *shader)
{
uint64_t va = radv_shader_get_va(shader);
radeon_set_sh_reg(cs, R_00B830_COMPUTE_PGM_LO, va >> 8);
radeon_set_sh_reg_seq(cs, R_00B848_COMPUTE_PGM_RSRC1, 2);
radeon_emit(cs, shader->config.rsrc1);
radeon_emit(cs, shader->config.rsrc2);
if (pdevice->rad_info.gfx_level >= GFX10) {
radeon_set_sh_reg(cs, R_00B8A0_COMPUTE_PGM_RSRC3, shader->config.rsrc3);
}
}
void
radv_pipeline_emit_compute_state(const struct radv_physical_device *pdevice,
struct radeon_cmdbuf *cs, const struct radv_shader *shader)
{
unsigned threads_per_threadgroup;
unsigned threadgroups_per_cu = 1;
unsigned waves_per_threadgroup;
unsigned max_waves_per_sh = 0;
/* Calculate best compute resource limits. */
threads_per_threadgroup =
shader->info.cs.block_size[0] * shader->info.cs.block_size[1] * shader->info.cs.block_size[2];
waves_per_threadgroup = DIV_ROUND_UP(threads_per_threadgroup, shader->info.wave_size);
if (pdevice->rad_info.gfx_level >= GFX10 && waves_per_threadgroup == 1)
threadgroups_per_cu = 2;
radeon_set_sh_reg(
cs, R_00B854_COMPUTE_RESOURCE_LIMITS,
ac_get_compute_resource_limits(&pdevice->rad_info, waves_per_threadgroup,
max_waves_per_sh, threadgroups_per_cu));
radeon_set_sh_reg_seq(cs, R_00B81C_COMPUTE_NUM_THREAD_X, 3);
radeon_emit(cs, S_00B81C_NUM_THREAD_FULL(shader->info.cs.block_size[0]));
radeon_emit(cs, S_00B81C_NUM_THREAD_FULL(shader->info.cs.block_size[1]));
radeon_emit(cs, S_00B81C_NUM_THREAD_FULL(shader->info.cs.block_size[2]));
}
static void
radv_compute_generate_pm4(struct radv_compute_pipeline *pipeline)
{
struct radv_physical_device *pdevice = pipeline->base.device->physical_device;
struct radv_shader *shader = pipeline->base.shaders[MESA_SHADER_COMPUTE];
struct radeon_cmdbuf *cs = &pipeline->base.cs;
cs->max_dw = pdevice->rad_info.gfx_level >= GFX10 ? 19 : 16;
cs->buf = malloc(cs->max_dw * 4);
radv_pipeline_emit_hw_cs(pdevice, cs, shader);
radv_pipeline_emit_compute_state(pdevice, cs, shader);
assert(pipeline->base.cs.cdw <= pipeline->base.cs.max_dw);
}
static struct radv_pipeline_key
radv_generate_compute_pipeline_key(struct radv_compute_pipeline *pipeline,
const VkComputePipelineCreateInfo *pCreateInfo)
{
const VkPipelineShaderStageCreateInfo *stage = &pCreateInfo->stage;
struct radv_pipeline_key key = radv_generate_pipeline_key(&pipeline->base, pCreateInfo->flags);
const VkPipelineShaderStageRequiredSubgroupSizeCreateInfo *subgroup_size =
vk_find_struct_const(stage->pNext,
PIPELINE_SHADER_STAGE_REQUIRED_SUBGROUP_SIZE_CREATE_INFO);
if (subgroup_size) {
assert(subgroup_size->requiredSubgroupSize == 32 ||
subgroup_size->requiredSubgroupSize == 64);
key.cs.compute_subgroup_size = subgroup_size->requiredSubgroupSize;
} else if (stage->flags & VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT) {
key.cs.require_full_subgroups = true;
}
return key;
}
void
radv_compute_pipeline_init(struct radv_compute_pipeline *pipeline,
const struct radv_pipeline_layout *layout)
{
const struct radv_device *device = pipeline->base.device;
pipeline->base.user_data_0[MESA_SHADER_COMPUTE] = R_00B900_COMPUTE_USER_DATA_0;
pipeline->base.need_indirect_descriptor_sets |=
radv_shader_need_indirect_descriptor_sets(&pipeline->base, MESA_SHADER_COMPUTE);
radv_pipeline_init_scratch(device, &pipeline->base);
pipeline->base.push_constant_size = layout->push_constant_size;
pipeline->base.dynamic_offset_count = layout->dynamic_offset_count;
if (device->physical_device->rad_info.has_cs_regalloc_hang_bug) {
struct radv_shader *compute_shader = pipeline->base.shaders[MESA_SHADER_COMPUTE];
unsigned *cs_block_size = compute_shader->info.cs.block_size;
pipeline->cs_regalloc_hang_bug = cs_block_size[0] * cs_block_size[1] * cs_block_size[2] > 256;
}
radv_compute_generate_pm4(pipeline);
}
VkResult
radv_compute_pipeline_create(VkDevice _device, VkPipelineCache _cache,
const VkComputePipelineCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipeline)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
RADV_FROM_HANDLE(radv_pipeline_layout, pipeline_layout, pCreateInfo->layout);
struct radv_compute_pipeline *pipeline;
VkResult result;
pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (pipeline == NULL) {
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
}
radv_pipeline_init(device, &pipeline->base, RADV_PIPELINE_COMPUTE);
const VkPipelineCreationFeedbackCreateInfo *creation_feedback =
vk_find_struct_const(pCreateInfo->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO);
struct radv_pipeline_key key = radv_generate_compute_pipeline_key(pipeline, pCreateInfo);
UNUSED gl_shader_stage last_vgt_api_stage = MESA_SHADER_NONE;
result = radv_create_shaders(&pipeline->base, pipeline_layout, device, cache, &key,
&pCreateInfo->stage, 1, pCreateInfo->flags, NULL, creation_feedback,
NULL, NULL, &last_vgt_api_stage);
if (result != VK_SUCCESS) {
radv_pipeline_destroy(device, &pipeline->base, pAllocator);
return result;
}
radv_compute_pipeline_init(pipeline, pipeline_layout);
*pPipeline = radv_pipeline_to_handle(&pipeline->base);
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_CreateComputePipelines(VkDevice _device, VkPipelineCache pipelineCache, uint32_t count,
const VkComputePipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines)
{
VkResult result = VK_SUCCESS;
unsigned i = 0;
for (; i < count; i++) {
VkResult r;
r = radv_compute_pipeline_create(_device, pipelineCache, &pCreateInfos[i], pAllocator,
&pPipelines[i]);
if (r != VK_SUCCESS) {
result = r;
pPipelines[i] = VK_NULL_HANDLE;
if (pCreateInfos[i].flags & VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT)
break;
}
}
for (; i < count; ++i)
pPipelines[i] = VK_NULL_HANDLE;
return result;
}
static uint32_t
radv_get_executable_count(struct radv_pipeline *pipeline)
{
uint32_t ret = 0;
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
if (!pipeline->shaders[i])
continue;
if (i == MESA_SHADER_GEOMETRY &&
!radv_pipeline_has_ngg(radv_pipeline_to_graphics(pipeline))) {
ret += 2u;
} else {
ret += 1u;
}
}
return ret;
}
static struct radv_shader *
radv_get_shader_from_executable_index(struct radv_pipeline *pipeline, int index,
gl_shader_stage *stage)
{
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
if (!pipeline->shaders[i])
continue;
if (!index) {
*stage = i;
return pipeline->shaders[i];
}
--index;
if (i == MESA_SHADER_GEOMETRY &&
!radv_pipeline_has_ngg(radv_pipeline_to_graphics(pipeline))) {
if (!index) {
*stage = i;
return pipeline->gs_copy_shader;
}
--index;
}
}
*stage = -1;
return NULL;
}
/* Basically strlcpy (which does not exist on linux) specialized for
* descriptions. */
static void
desc_copy(char *desc, const char *src)
{
int len = strlen(src);
assert(len < VK_MAX_DESCRIPTION_SIZE);
memcpy(desc, src, len);
memset(desc + len, 0, VK_MAX_DESCRIPTION_SIZE - len);
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_GetPipelineExecutablePropertiesKHR(VkDevice _device, const VkPipelineInfoKHR *pPipelineInfo,
uint32_t *pExecutableCount,
VkPipelineExecutablePropertiesKHR *pProperties)
{
RADV_FROM_HANDLE(radv_pipeline, pipeline, pPipelineInfo->pipeline);
const uint32_t total_count = radv_get_executable_count(pipeline);
if (!pProperties) {
*pExecutableCount = total_count;
return VK_SUCCESS;
}
const uint32_t count = MIN2(total_count, *pExecutableCount);
for (unsigned i = 0, executable_idx = 0; i < MESA_VULKAN_SHADER_STAGES && executable_idx < count; ++i) {
if (!pipeline->shaders[i])
continue;
pProperties[executable_idx].stages = mesa_to_vk_shader_stage(i);
const char *name = NULL;
const char *description = NULL;
switch (i) {
case MESA_SHADER_VERTEX:
name = "Vertex Shader";
description = "Vulkan Vertex Shader";
break;
case MESA_SHADER_TESS_CTRL:
if (!pipeline->shaders[MESA_SHADER_VERTEX]) {
pProperties[executable_idx].stages |= VK_SHADER_STAGE_VERTEX_BIT;
name = "Vertex + Tessellation Control Shaders";
description = "Combined Vulkan Vertex and Tessellation Control Shaders";
} else {
name = "Tessellation Control Shader";
description = "Vulkan Tessellation Control Shader";
}
break;
case MESA_SHADER_TESS_EVAL:
name = "Tessellation Evaluation Shader";
description = "Vulkan Tessellation Evaluation Shader";
break;
case MESA_SHADER_GEOMETRY:
if (pipeline->shaders[MESA_SHADER_TESS_CTRL] && !pipeline->shaders[MESA_SHADER_TESS_EVAL]) {
pProperties[executable_idx].stages |= VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT;
name = "Tessellation Evaluation + Geometry Shaders";
description = "Combined Vulkan Tessellation Evaluation and Geometry Shaders";
} else if (!pipeline->shaders[MESA_SHADER_TESS_CTRL] && !pipeline->shaders[MESA_SHADER_VERTEX]) {
pProperties[executable_idx].stages |= VK_SHADER_STAGE_VERTEX_BIT;
name = "Vertex + Geometry Shader";
description = "Combined Vulkan Vertex and Geometry Shaders";
} else {
name = "Geometry Shader";
description = "Vulkan Geometry Shader";
}
break;
case MESA_SHADER_FRAGMENT:
name = "Fragment Shader";
description = "Vulkan Fragment Shader";
break;
case MESA_SHADER_COMPUTE:
name = "Compute Shader";
description = "Vulkan Compute Shader";
break;
case MESA_SHADER_MESH:
name = "Mesh Shader";
description = "Vulkan Mesh Shader";
break;
case MESA_SHADER_TASK:
name = "Task Shader";
description = "Vulkan Task Shader";
break;
}
pProperties[executable_idx].subgroupSize = pipeline->shaders[i]->info.wave_size;
desc_copy(pProperties[executable_idx].name, name);
desc_copy(pProperties[executable_idx].description, description);
++executable_idx;
if (i == MESA_SHADER_GEOMETRY &&
!radv_pipeline_has_ngg(radv_pipeline_to_graphics(pipeline))) {
assert(pipeline->gs_copy_shader);
if (executable_idx >= count)
break;
pProperties[executable_idx].stages = VK_SHADER_STAGE_GEOMETRY_BIT;
pProperties[executable_idx].subgroupSize = 64;
desc_copy(pProperties[executable_idx].name, "GS Copy Shader");
desc_copy(pProperties[executable_idx].description,
"Extra shader stage that loads the GS output ringbuffer into the rasterizer");
++executable_idx;
}
}
VkResult result = *pExecutableCount < total_count ? VK_INCOMPLETE : VK_SUCCESS;
*pExecutableCount = count;
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_GetPipelineExecutableStatisticsKHR(VkDevice _device,
const VkPipelineExecutableInfoKHR *pExecutableInfo,
uint32_t *pStatisticCount,
VkPipelineExecutableStatisticKHR *pStatistics)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_pipeline, pipeline, pExecutableInfo->pipeline);
gl_shader_stage stage;
struct radv_shader *shader =
radv_get_shader_from_executable_index(pipeline, pExecutableInfo->executableIndex, &stage);
const struct radv_physical_device *pdevice = device->physical_device;
unsigned lds_increment = pdevice->rad_info.gfx_level >= GFX11 && stage == MESA_SHADER_FRAGMENT
? 1024 : pdevice->rad_info.lds_encode_granularity;
unsigned max_waves = radv_get_max_waves(device, shader, stage);
VkPipelineExecutableStatisticKHR *s = pStatistics;
VkPipelineExecutableStatisticKHR *end = s + (pStatistics ? *pStatisticCount : 0);
VkResult result = VK_SUCCESS;
if (s < end) {
desc_copy(s->name, "Driver pipeline hash");
desc_copy(s->description, "Driver pipeline hash used by RGP");
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = pipeline->pipeline_hash;
}
++s;
if (s < end) {
desc_copy(s->name, "SGPRs");
desc_copy(s->description, "Number of SGPR registers allocated per subgroup");
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = shader->config.num_sgprs;
}
++s;
if (s < end) {
desc_copy(s->name, "VGPRs");
desc_copy(s->description, "Number of VGPR registers allocated per subgroup");
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = shader->config.num_vgprs;
}
++s;
if (s < end) {
desc_copy(s->name, "Spilled SGPRs");
desc_copy(s->description, "Number of SGPR registers spilled per subgroup");
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = shader->config.spilled_sgprs;
}
++s;
if (s < end) {
desc_copy(s->name, "Spilled VGPRs");
desc_copy(s->description, "Number of VGPR registers spilled per subgroup");
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = shader->config.spilled_vgprs;
}
++s;
if (s < end) {
desc_copy(s->name, "Code size");
desc_copy(s->description, "Code size in bytes");
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = shader->exec_size;
}
++s;
if (s < end) {
desc_copy(s->name, "LDS size");
desc_copy(s->description, "LDS size in bytes per workgroup");
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = shader->config.lds_size * lds_increment;
}
++s;
if (s < end) {
desc_copy(s->name, "Scratch size");
desc_copy(s->description, "Private memory in bytes per subgroup");
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = shader->config.scratch_bytes_per_wave;
}
++s;
if (s < end) {
desc_copy(s->name, "Subgroups per SIMD");
desc_copy(s->description, "The maximum number of subgroups in flight on a SIMD unit");
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = max_waves;
}
++s;
if (shader->statistics) {
for (unsigned i = 0; i < aco_num_statistics; i++) {
const struct aco_compiler_statistic_info *info = &aco_statistic_infos[i];
if (s < end) {
desc_copy(s->name, info->name);
desc_copy(s->description, info->desc);
s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
s->value.u64 = shader->statistics[i];
}
++s;
}
}
if (!pStatistics)
*pStatisticCount = s - pStatistics;
else if (s > end) {
*pStatisticCount = end - pStatistics;
result = VK_INCOMPLETE;
} else {
*pStatisticCount = s - pStatistics;
}
return result;
}
static VkResult
radv_copy_representation(void *data, size_t *data_size, const char *src)
{
size_t total_size = strlen(src) + 1;
if (!data) {
*data_size = total_size;
return VK_SUCCESS;
}
size_t size = MIN2(total_size, *data_size);
memcpy(data, src, size);
if (size)
*((char *)data + size - 1) = 0;
return size < total_size ? VK_INCOMPLETE : VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_GetPipelineExecutableInternalRepresentationsKHR(
VkDevice _device, const VkPipelineExecutableInfoKHR *pExecutableInfo,
uint32_t *pInternalRepresentationCount,
VkPipelineExecutableInternalRepresentationKHR *pInternalRepresentations)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_pipeline, pipeline, pExecutableInfo->pipeline);
gl_shader_stage stage;
struct radv_shader *shader =
radv_get_shader_from_executable_index(pipeline, pExecutableInfo->executableIndex, &stage);
VkPipelineExecutableInternalRepresentationKHR *p = pInternalRepresentations;
VkPipelineExecutableInternalRepresentationKHR *end =
p + (pInternalRepresentations ? *pInternalRepresentationCount : 0);
VkResult result = VK_SUCCESS;
/* optimized NIR */
if (p < end) {
p->isText = true;
desc_copy(p->name, "NIR Shader(s)");
desc_copy(p->description, "The optimized NIR shader(s)");
if (radv_copy_representation(p->pData, &p->dataSize, shader->nir_string) != VK_SUCCESS)
result = VK_INCOMPLETE;
}
++p;
/* backend IR */
if (p < end) {
p->isText = true;
if (radv_use_llvm_for_stage(device, stage)) {
desc_copy(p->name, "LLVM IR");
desc_copy(p->description, "The LLVM IR after some optimizations");
} else {
desc_copy(p->name, "ACO IR");
desc_copy(p->description, "The ACO IR after some optimizations");
}
if (radv_copy_representation(p->pData, &p->dataSize, shader->ir_string) != VK_SUCCESS)
result = VK_INCOMPLETE;
}
++p;
/* Disassembler */
if (p < end && shader->disasm_string) {
p->isText = true;
desc_copy(p->name, "Assembly");
desc_copy(p->description, "Final Assembly");
if (radv_copy_representation(p->pData, &p->dataSize, shader->disasm_string) != VK_SUCCESS)
result = VK_INCOMPLETE;
}
++p;
if (!pInternalRepresentations)
*pInternalRepresentationCount = p - pInternalRepresentations;
else if (p > end) {
result = VK_INCOMPLETE;
*pInternalRepresentationCount = end - pInternalRepresentations;
} else {
*pInternalRepresentationCount = p - pInternalRepresentations;
}
return result;
}