mesa/src/amd/vulkan/radv_meta_resolve_cs.c

956 lines
40 KiB
C

/*
* Copyright © 2016 Dave Airlie
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include "nir/nir_builder.h"
#include "radv_meta.h"
#include "radv_private.h"
#include "sid.h"
#include "vk_format.h"
static nir_ssa_def *
radv_meta_build_resolve_srgb_conversion(nir_builder *b, nir_ssa_def *input)
{
unsigned i;
nir_ssa_def *cmp[3];
for (i = 0; i < 3; i++)
cmp[i] = nir_flt(b, nir_channel(b, input, i), nir_imm_int(b, 0x3b4d2e1c));
nir_ssa_def *ltvals[3];
for (i = 0; i < 3; i++)
ltvals[i] = nir_fmul(b, nir_channel(b, input, i), nir_imm_float(b, 12.92));
nir_ssa_def *gtvals[3];
for (i = 0; i < 3; i++) {
gtvals[i] = nir_fpow(b, nir_channel(b, input, i), nir_imm_float(b, 1.0 / 2.4));
gtvals[i] = nir_fmul(b, gtvals[i], nir_imm_float(b, 1.055));
gtvals[i] = nir_fsub(b, gtvals[i], nir_imm_float(b, 0.055));
}
nir_ssa_def *comp[4];
for (i = 0; i < 3; i++)
comp[i] = nir_bcsel(b, cmp[i], ltvals[i], gtvals[i]);
comp[3] = nir_channels(b, input, 1 << 3);
return nir_vec(b, comp, 4);
}
static nir_shader *
build_resolve_compute_shader(struct radv_device *dev, bool is_integer, bool is_srgb, int samples)
{
enum glsl_base_type img_base_type = is_integer ? GLSL_TYPE_UINT : GLSL_TYPE_FLOAT;
const struct glsl_type *sampler_type =
glsl_sampler_type(GLSL_SAMPLER_DIM_MS, false, false, img_base_type);
const struct glsl_type *img_type = glsl_image_type(GLSL_SAMPLER_DIM_2D, false, img_base_type);
nir_builder b = radv_meta_init_shader(dev, MESA_SHADER_COMPUTE, "meta_resolve_cs-%d-%s", samples,
is_integer ? "int" : (is_srgb ? "srgb" : "float"));
b.shader->info.workgroup_size[0] = 8;
b.shader->info.workgroup_size[1] = 8;
nir_variable *input_img = nir_variable_create(b.shader, nir_var_uniform, sampler_type, "s_tex");
input_img->data.descriptor_set = 0;
input_img->data.binding = 0;
nir_variable *output_img = nir_variable_create(b.shader, nir_var_image, img_type, "out_img");
output_img->data.descriptor_set = 0;
output_img->data.binding = 1;
nir_ssa_def *global_id = get_global_ids(&b, 2);
nir_ssa_def *src_offset = nir_load_push_constant(&b, 2, 32, nir_imm_int(&b, 0), .range = 8);
nir_ssa_def *dst_offset = nir_load_push_constant(&b, 2, 32, nir_imm_int(&b, 8), .range = 16);
nir_ssa_def *src_coord = nir_iadd(&b, global_id, src_offset);
nir_ssa_def *dst_coord = nir_iadd(&b, global_id, dst_offset);
nir_variable *color = nir_local_variable_create(b.impl, glsl_vec4_type(), "color");
radv_meta_build_resolve_shader_core(dev, &b, is_integer, samples, input_img, color, src_coord);
nir_ssa_def *outval = nir_load_var(&b, color);
if (is_srgb)
outval = radv_meta_build_resolve_srgb_conversion(&b, outval);
nir_ssa_def *img_coord = nir_vec4(&b, nir_channel(&b, dst_coord, 0),
nir_channel(&b, dst_coord, 1),
nir_ssa_undef(&b, 1, 32),
nir_ssa_undef(&b, 1, 32));
nir_image_deref_store(&b, &nir_build_deref_var(&b, output_img)->dest.ssa, img_coord,
nir_ssa_undef(&b, 1, 32), outval, nir_imm_int(&b, 0),
.image_dim = GLSL_SAMPLER_DIM_2D);
return b.shader;
}
enum {
DEPTH_RESOLVE,
STENCIL_RESOLVE,
};
static const char *
get_resolve_mode_str(VkResolveModeFlagBits resolve_mode)
{
switch (resolve_mode) {
case VK_RESOLVE_MODE_SAMPLE_ZERO_BIT:
return "zero";
case VK_RESOLVE_MODE_AVERAGE_BIT:
return "average";
case VK_RESOLVE_MODE_MIN_BIT:
return "min";
case VK_RESOLVE_MODE_MAX_BIT:
return "max";
default:
unreachable("invalid resolve mode");
}
}
static nir_shader *
build_depth_stencil_resolve_compute_shader(struct radv_device *dev, int samples, int index,
VkResolveModeFlagBits resolve_mode)
{
enum glsl_base_type img_base_type = index == DEPTH_RESOLVE ? GLSL_TYPE_FLOAT : GLSL_TYPE_UINT;
const struct glsl_type *sampler_type =
glsl_sampler_type(GLSL_SAMPLER_DIM_MS, false, true, img_base_type);
const struct glsl_type *img_type = glsl_image_type(GLSL_SAMPLER_DIM_2D, true, img_base_type);
nir_builder b = radv_meta_init_shader(dev, MESA_SHADER_COMPUTE, "meta_resolve_cs_%s-%s-%d",
index == DEPTH_RESOLVE ? "depth" : "stencil",
get_resolve_mode_str(resolve_mode), samples);
b.shader->info.workgroup_size[0] = 8;
b.shader->info.workgroup_size[1] = 8;
nir_variable *input_img = nir_variable_create(b.shader, nir_var_uniform, sampler_type, "s_tex");
input_img->data.descriptor_set = 0;
input_img->data.binding = 0;
nir_variable *output_img = nir_variable_create(b.shader, nir_var_image, img_type, "out_img");
output_img->data.descriptor_set = 0;
output_img->data.binding = 1;
nir_ssa_def *global_id = get_global_ids(&b, 3);
nir_ssa_def *offset = nir_load_push_constant(&b, 2, 32, nir_imm_int(&b, 0), .range = 8);
nir_ssa_def *resolve_coord = nir_iadd(&b, nir_channels(&b, global_id, 0x3), offset);
nir_ssa_def *img_coord = nir_vec3(&b, nir_channel(&b, resolve_coord, 0),
nir_channel(&b, resolve_coord, 1),
nir_channel(&b, global_id, 2));
nir_ssa_def *input_img_deref = &nir_build_deref_var(&b, input_img)->dest.ssa;
nir_alu_type type = index == DEPTH_RESOLVE ? nir_type_float32 : nir_type_uint32;
nir_tex_instr *tex = nir_tex_instr_create(b.shader, 3);
tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
tex->op = nir_texop_txf_ms;
tex->src[0].src_type = nir_tex_src_coord;
tex->src[0].src = nir_src_for_ssa(img_coord);
tex->src[1].src_type = nir_tex_src_ms_index;
tex->src[1].src = nir_src_for_ssa(nir_imm_int(&b, 0));
tex->src[2].src_type = nir_tex_src_texture_deref;
tex->src[2].src = nir_src_for_ssa(input_img_deref);
tex->dest_type = type;
tex->is_array = true;
tex->coord_components = 3;
nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, "tex");
nir_builder_instr_insert(&b, &tex->instr);
nir_ssa_def *outval = &tex->dest.ssa;
if (resolve_mode != VK_RESOLVE_MODE_SAMPLE_ZERO_BIT) {
for (int i = 1; i < samples; i++) {
nir_tex_instr *tex_add = nir_tex_instr_create(b.shader, 3);
tex_add->sampler_dim = GLSL_SAMPLER_DIM_MS;
tex_add->op = nir_texop_txf_ms;
tex_add->src[0].src_type = nir_tex_src_coord;
tex_add->src[0].src = nir_src_for_ssa(img_coord);
tex_add->src[1].src_type = nir_tex_src_ms_index;
tex_add->src[1].src = nir_src_for_ssa(nir_imm_int(&b, i));
tex_add->src[2].src_type = nir_tex_src_texture_deref;
tex_add->src[2].src = nir_src_for_ssa(input_img_deref);
tex_add->dest_type = type;
tex_add->is_array = true;
tex_add->coord_components = 3;
nir_ssa_dest_init(&tex_add->instr, &tex_add->dest, 4, 32, "tex");
nir_builder_instr_insert(&b, &tex_add->instr);
switch (resolve_mode) {
case VK_RESOLVE_MODE_AVERAGE_BIT:
assert(index == DEPTH_RESOLVE);
outval = nir_fadd(&b, outval, &tex_add->dest.ssa);
break;
case VK_RESOLVE_MODE_MIN_BIT:
if (index == DEPTH_RESOLVE)
outval = nir_fmin(&b, outval, &tex_add->dest.ssa);
else
outval = nir_umin(&b, outval, &tex_add->dest.ssa);
break;
case VK_RESOLVE_MODE_MAX_BIT:
if (index == DEPTH_RESOLVE)
outval = nir_fmax(&b, outval, &tex_add->dest.ssa);
else
outval = nir_umax(&b, outval, &tex_add->dest.ssa);
break;
default:
unreachable("invalid resolve mode");
}
}
if (resolve_mode == VK_RESOLVE_MODE_AVERAGE_BIT)
outval = nir_fdiv(&b, outval, nir_imm_float(&b, samples));
}
nir_ssa_def *coord = nir_vec4(&b, nir_channel(&b, img_coord, 0), nir_channel(&b, img_coord, 1),
nir_channel(&b, img_coord, 2), nir_ssa_undef(&b, 1, 32));
nir_image_deref_store(&b, &nir_build_deref_var(&b, output_img)->dest.ssa, coord,
nir_ssa_undef(&b, 1, 32), outval, nir_imm_int(&b, 0),
.image_dim = GLSL_SAMPLER_DIM_2D, .image_array = true);
return b.shader;
}
static VkResult
create_layout(struct radv_device *device)
{
VkResult result;
/*
* two descriptors one for the image being sampled
* one for the buffer being written.
*/
VkDescriptorSetLayoutCreateInfo ds_create_info = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR,
.bindingCount = 2,
.pBindings = (VkDescriptorSetLayoutBinding[]){
{.binding = 0,
.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = NULL},
{.binding = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = NULL},
}};
result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device), &ds_create_info,
&device->meta_state.alloc,
&device->meta_state.resolve_compute.ds_layout);
if (result != VK_SUCCESS)
goto fail;
VkPipelineLayoutCreateInfo pl_create_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.setLayoutCount = 1,
.pSetLayouts = &device->meta_state.resolve_compute.ds_layout,
.pushConstantRangeCount = 1,
.pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_COMPUTE_BIT, 0, 16},
};
result = radv_CreatePipelineLayout(radv_device_to_handle(device), &pl_create_info,
&device->meta_state.alloc,
&device->meta_state.resolve_compute.p_layout);
if (result != VK_SUCCESS)
goto fail;
return VK_SUCCESS;
fail:
return result;
}
static VkResult
create_resolve_pipeline(struct radv_device *device, int samples, bool is_integer, bool is_srgb,
VkPipeline *pipeline)
{
VkResult result;
mtx_lock(&device->meta_state.mtx);
if (*pipeline) {
mtx_unlock(&device->meta_state.mtx);
return VK_SUCCESS;
}
nir_shader *cs = build_resolve_compute_shader(device, is_integer, is_srgb, samples);
/* compute shader */
VkPipelineShaderStageCreateInfo pipeline_shader_stage = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_COMPUTE_BIT,
.module = vk_shader_module_handle_from_nir(cs),
.pName = "main",
.pSpecializationInfo = NULL,
};
VkComputePipelineCreateInfo vk_pipeline_info = {
.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
.stage = pipeline_shader_stage,
.flags = 0,
.layout = device->meta_state.resolve_compute.p_layout,
};
result = radv_CreateComputePipelines(radv_device_to_handle(device),
device->meta_state.cache, 1,
&vk_pipeline_info, NULL, pipeline);
if (result != VK_SUCCESS)
goto fail;
ralloc_free(cs);
mtx_unlock(&device->meta_state.mtx);
return VK_SUCCESS;
fail:
ralloc_free(cs);
mtx_unlock(&device->meta_state.mtx);
return result;
}
static VkResult
create_depth_stencil_resolve_pipeline(struct radv_device *device, int samples, int index,
VkResolveModeFlagBits resolve_mode, VkPipeline *pipeline)
{
VkResult result;
mtx_lock(&device->meta_state.mtx);
if (*pipeline) {
mtx_unlock(&device->meta_state.mtx);
return VK_SUCCESS;
}
nir_shader *cs =
build_depth_stencil_resolve_compute_shader(device, samples, index, resolve_mode);
/* compute shader */
VkPipelineShaderStageCreateInfo pipeline_shader_stage = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_COMPUTE_BIT,
.module = vk_shader_module_handle_from_nir(cs),
.pName = "main",
.pSpecializationInfo = NULL,
};
VkComputePipelineCreateInfo vk_pipeline_info = {
.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
.stage = pipeline_shader_stage,
.flags = 0,
.layout = device->meta_state.resolve_compute.p_layout,
};
result = radv_CreateComputePipelines(radv_device_to_handle(device),
device->meta_state.cache, 1,
&vk_pipeline_info, NULL, pipeline);
if (result != VK_SUCCESS)
goto fail;
ralloc_free(cs);
mtx_unlock(&device->meta_state.mtx);
return VK_SUCCESS;
fail:
ralloc_free(cs);
mtx_unlock(&device->meta_state.mtx);
return result;
}
VkResult
radv_device_init_meta_resolve_compute_state(struct radv_device *device, bool on_demand)
{
struct radv_meta_state *state = &device->meta_state;
VkResult res;
res = create_layout(device);
if (res != VK_SUCCESS)
return res;
if (on_demand)
return VK_SUCCESS;
for (uint32_t i = 0; i < MAX_SAMPLES_LOG2; ++i) {
uint32_t samples = 1 << i;
res = create_resolve_pipeline(device, samples, false, false,
&state->resolve_compute.rc[i].pipeline);
if (res != VK_SUCCESS)
return res;
res = create_resolve_pipeline(device, samples, true, false,
&state->resolve_compute.rc[i].i_pipeline);
if (res != VK_SUCCESS)
return res;
res = create_resolve_pipeline(device, samples, false, true,
&state->resolve_compute.rc[i].srgb_pipeline);
if (res != VK_SUCCESS)
return res;
res = create_depth_stencil_resolve_pipeline(
device, samples, DEPTH_RESOLVE, VK_RESOLVE_MODE_AVERAGE_BIT,
&state->resolve_compute.depth[i].average_pipeline);
if (res != VK_SUCCESS)
return res;
res = create_depth_stencil_resolve_pipeline(device, samples, DEPTH_RESOLVE,
VK_RESOLVE_MODE_MAX_BIT,
&state->resolve_compute.depth[i].max_pipeline);
if (res != VK_SUCCESS)
return res;
res = create_depth_stencil_resolve_pipeline(device, samples, DEPTH_RESOLVE,
VK_RESOLVE_MODE_MIN_BIT,
&state->resolve_compute.depth[i].min_pipeline);
if (res != VK_SUCCESS)
return res;
res = create_depth_stencil_resolve_pipeline(device, samples, STENCIL_RESOLVE,
VK_RESOLVE_MODE_MAX_BIT,
&state->resolve_compute.stencil[i].max_pipeline);
if (res != VK_SUCCESS)
return res;
res = create_depth_stencil_resolve_pipeline(device, samples, STENCIL_RESOLVE,
VK_RESOLVE_MODE_MIN_BIT,
&state->resolve_compute.stencil[i].min_pipeline);
if (res != VK_SUCCESS)
return res;
}
res = create_depth_stencil_resolve_pipeline(device, 0, DEPTH_RESOLVE,
VK_RESOLVE_MODE_SAMPLE_ZERO_BIT,
&state->resolve_compute.depth_zero_pipeline);
if (res != VK_SUCCESS)
return res;
return create_depth_stencil_resolve_pipeline(device, 0, STENCIL_RESOLVE,
VK_RESOLVE_MODE_SAMPLE_ZERO_BIT,
&state->resolve_compute.stencil_zero_pipeline);
}
void
radv_device_finish_meta_resolve_compute_state(struct radv_device *device)
{
struct radv_meta_state *state = &device->meta_state;
for (uint32_t i = 0; i < MAX_SAMPLES_LOG2; ++i) {
radv_DestroyPipeline(radv_device_to_handle(device), state->resolve_compute.rc[i].pipeline,
&state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device), state->resolve_compute.rc[i].i_pipeline,
&state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device),
state->resolve_compute.rc[i].srgb_pipeline, &state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device),
state->resolve_compute.depth[i].average_pipeline, &state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device),
state->resolve_compute.depth[i].max_pipeline, &state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device),
state->resolve_compute.depth[i].min_pipeline, &state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device),
state->resolve_compute.stencil[i].max_pipeline, &state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device),
state->resolve_compute.stencil[i].min_pipeline, &state->alloc);
}
radv_DestroyPipeline(radv_device_to_handle(device), state->resolve_compute.depth_zero_pipeline,
&state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device), state->resolve_compute.stencil_zero_pipeline,
&state->alloc);
device->vk.dispatch_table.DestroyDescriptorSetLayout(
radv_device_to_handle(device), state->resolve_compute.ds_layout, &state->alloc);
radv_DestroyPipelineLayout(radv_device_to_handle(device), state->resolve_compute.p_layout,
&state->alloc);
}
static VkPipeline *
radv_get_resolve_pipeline(struct radv_cmd_buffer *cmd_buffer, struct radv_image_view *src_iview)
{
struct radv_device *device = cmd_buffer->device;
struct radv_meta_state *state = &device->meta_state;
uint32_t samples = src_iview->image->info.samples;
uint32_t samples_log2 = ffs(samples) - 1;
VkPipeline *pipeline;
if (vk_format_is_int(src_iview->vk.format))
pipeline = &state->resolve_compute.rc[samples_log2].i_pipeline;
else if (vk_format_is_srgb(src_iview->vk.format))
pipeline = &state->resolve_compute.rc[samples_log2].srgb_pipeline;
else
pipeline = &state->resolve_compute.rc[samples_log2].pipeline;
if (!*pipeline) {
VkResult ret;
ret = create_resolve_pipeline(device, samples, vk_format_is_int(src_iview->vk.format),
vk_format_is_srgb(src_iview->vk.format), pipeline);
if (ret != VK_SUCCESS) {
vk_command_buffer_set_error(&cmd_buffer->vk, ret);
return NULL;
}
}
return pipeline;
}
static void
emit_resolve(struct radv_cmd_buffer *cmd_buffer, struct radv_image_view *src_iview,
struct radv_image_view *dest_iview, const VkOffset2D *src_offset,
const VkOffset2D *dest_offset, const VkExtent2D *resolve_extent)
{
struct radv_device *device = cmd_buffer->device;
VkPipeline *pipeline;
radv_meta_push_descriptor_set(
cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, device->meta_state.resolve_compute.p_layout,
0, /* set */
2, /* descriptorWriteCount */
(VkWriteDescriptorSet[]){{.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
.pImageInfo =
(VkDescriptorImageInfo[]){
{.sampler = VK_NULL_HANDLE,
.imageView = radv_image_view_to_handle(src_iview),
.imageLayout = VK_IMAGE_LAYOUT_GENERAL},
}},
{.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 1,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.pImageInfo = (VkDescriptorImageInfo[]){
{
.sampler = VK_NULL_HANDLE,
.imageView = radv_image_view_to_handle(dest_iview),
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
},
}}});
pipeline = radv_get_resolve_pipeline(cmd_buffer, src_iview);
radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_COMPUTE,
*pipeline);
unsigned push_constants[4] = {
src_offset->x,
src_offset->y,
dest_offset->x,
dest_offset->y,
};
radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
device->meta_state.resolve_compute.p_layout, VK_SHADER_STAGE_COMPUTE_BIT,
0, 16, push_constants);
radv_unaligned_dispatch(cmd_buffer, resolve_extent->width, resolve_extent->height, 1);
}
static void
emit_depth_stencil_resolve(struct radv_cmd_buffer *cmd_buffer, struct radv_image_view *src_iview,
struct radv_image_view *dest_iview, const VkOffset2D *resolve_offset,
const VkExtent3D *resolve_extent, VkImageAspectFlags aspects,
VkResolveModeFlagBits resolve_mode)
{
struct radv_device *device = cmd_buffer->device;
const uint32_t samples = src_iview->image->info.samples;
const uint32_t samples_log2 = ffs(samples) - 1;
VkPipeline *pipeline;
radv_meta_push_descriptor_set(
cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, device->meta_state.resolve_compute.p_layout,
0, /* set */
2, /* descriptorWriteCount */
(VkWriteDescriptorSet[]){{.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
.pImageInfo =
(VkDescriptorImageInfo[]){
{.sampler = VK_NULL_HANDLE,
.imageView = radv_image_view_to_handle(src_iview),
.imageLayout = VK_IMAGE_LAYOUT_GENERAL},
}},
{.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 1,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.pImageInfo = (VkDescriptorImageInfo[]){
{
.sampler = VK_NULL_HANDLE,
.imageView = radv_image_view_to_handle(dest_iview),
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
},
}}});
switch (resolve_mode) {
case VK_RESOLVE_MODE_SAMPLE_ZERO_BIT:
if (aspects == VK_IMAGE_ASPECT_DEPTH_BIT)
pipeline = &device->meta_state.resolve_compute.depth_zero_pipeline;
else
pipeline = &device->meta_state.resolve_compute.stencil_zero_pipeline;
break;
case VK_RESOLVE_MODE_AVERAGE_BIT:
assert(aspects == VK_IMAGE_ASPECT_DEPTH_BIT);
pipeline = &device->meta_state.resolve_compute.depth[samples_log2].average_pipeline;
break;
case VK_RESOLVE_MODE_MIN_BIT:
if (aspects == VK_IMAGE_ASPECT_DEPTH_BIT)
pipeline = &device->meta_state.resolve_compute.depth[samples_log2].min_pipeline;
else
pipeline = &device->meta_state.resolve_compute.stencil[samples_log2].min_pipeline;
break;
case VK_RESOLVE_MODE_MAX_BIT:
if (aspects == VK_IMAGE_ASPECT_DEPTH_BIT)
pipeline = &device->meta_state.resolve_compute.depth[samples_log2].max_pipeline;
else
pipeline = &device->meta_state.resolve_compute.stencil[samples_log2].max_pipeline;
break;
default:
unreachable("invalid resolve mode");
}
if (!*pipeline) {
int index = aspects == VK_IMAGE_ASPECT_DEPTH_BIT ? DEPTH_RESOLVE : STENCIL_RESOLVE;
VkResult ret;
ret = create_depth_stencil_resolve_pipeline(device, samples, index, resolve_mode, pipeline);
if (ret != VK_SUCCESS) {
vk_command_buffer_set_error(&cmd_buffer->vk, ret);
return;
}
}
radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_COMPUTE,
*pipeline);
uint32_t push_constants[2] = { resolve_offset->x, resolve_offset->y };
radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
device->meta_state.resolve_compute.p_layout, VK_SHADER_STAGE_COMPUTE_BIT,
0, sizeof(push_constants), push_constants);
radv_unaligned_dispatch(cmd_buffer, resolve_extent->width, resolve_extent->height,
resolve_extent->depth);
}
void
radv_meta_resolve_compute_image(struct radv_cmd_buffer *cmd_buffer, struct radv_image *src_image,
VkFormat src_format, VkImageLayout src_image_layout,
struct radv_image *dest_image, VkFormat dest_format,
VkImageLayout dest_image_layout, const VkImageResolve2 *region)
{
struct radv_meta_saved_state saved_state;
radv_decompress_resolve_src(cmd_buffer, src_image, src_image_layout, region);
/* For partial resolves, DCC should be decompressed before resolving
* because the metadata is re-initialized to the uncompressed after.
*/
uint32_t queue_mask = radv_image_queue_family_mask(dest_image, cmd_buffer->qf,
cmd_buffer->qf);
if (!radv_image_use_dcc_image_stores(cmd_buffer->device, dest_image) &&
radv_layout_dcc_compressed(cmd_buffer->device, dest_image, region->dstSubresource.mipLevel,
dest_image_layout, queue_mask) &&
(region->dstOffset.x || region->dstOffset.y || region->dstOffset.z ||
region->extent.width != dest_image->info.width ||
region->extent.height != dest_image->info.height ||
region->extent.depth != dest_image->info.depth)) {
radv_decompress_dcc(cmd_buffer, dest_image,
&(VkImageSubresourceRange){
.aspectMask = region->dstSubresource.aspectMask,
.baseMipLevel = region->dstSubresource.mipLevel,
.levelCount = 1,
.baseArrayLayer = region->dstSubresource.baseArrayLayer,
.layerCount = region->dstSubresource.layerCount,
});
}
radv_meta_save(
&saved_state, cmd_buffer,
RADV_META_SAVE_COMPUTE_PIPELINE | RADV_META_SAVE_CONSTANTS | RADV_META_SAVE_DESCRIPTORS);
assert(region->srcSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT);
assert(region->dstSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT);
assert(region->srcSubresource.layerCount == region->dstSubresource.layerCount);
const uint32_t src_base_layer =
radv_meta_get_iview_layer(src_image, &region->srcSubresource, &region->srcOffset);
const uint32_t dest_base_layer =
radv_meta_get_iview_layer(dest_image, &region->dstSubresource, &region->dstOffset);
const struct VkExtent3D extent = vk_image_sanitize_extent(&src_image->vk, region->extent);
const struct VkOffset3D srcOffset = vk_image_sanitize_offset(&src_image->vk, region->srcOffset);
const struct VkOffset3D dstOffset = vk_image_sanitize_offset(&dest_image->vk, region->dstOffset);
for (uint32_t layer = 0; layer < region->srcSubresource.layerCount; ++layer) {
struct radv_image_view src_iview;
radv_image_view_init(&src_iview, cmd_buffer->device,
&(VkImageViewCreateInfo){
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = radv_image_to_handle(src_image),
.viewType = radv_meta_get_view_type(src_image),
.format = src_format,
.subresourceRange =
{
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = region->srcSubresource.mipLevel,
.levelCount = 1,
.baseArrayLayer = src_base_layer + layer,
.layerCount = 1,
},
},
0, NULL);
struct radv_image_view dest_iview;
radv_image_view_init(&dest_iview, cmd_buffer->device,
&(VkImageViewCreateInfo){
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = radv_image_to_handle(dest_image),
.viewType = radv_meta_get_view_type(dest_image),
.format = vk_to_non_srgb_format(dest_format),
.subresourceRange =
{
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = region->dstSubresource.mipLevel,
.levelCount = 1,
.baseArrayLayer = dest_base_layer + layer,
.layerCount = 1,
},
},
0, NULL);
emit_resolve(cmd_buffer, &src_iview, &dest_iview, &(VkOffset2D){srcOffset.x, srcOffset.y},
&(VkOffset2D){dstOffset.x, dstOffset.y},
&(VkExtent2D){extent.width, extent.height});
radv_image_view_finish(&src_iview);
radv_image_view_finish(&dest_iview);
}
radv_meta_restore(&saved_state, cmd_buffer);
if (!radv_image_use_dcc_image_stores(cmd_buffer->device, dest_image) &&
radv_layout_dcc_compressed(cmd_buffer->device, dest_image, region->dstSubresource.mipLevel,
dest_image_layout, queue_mask)) {
cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH | RADV_CMD_FLAG_INV_VCACHE;
VkImageSubresourceRange range = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = region->dstSubresource.mipLevel,
.levelCount = 1,
.baseArrayLayer = dest_base_layer,
.layerCount = region->dstSubresource.layerCount,
};
cmd_buffer->state.flush_bits |= radv_init_dcc(cmd_buffer, dest_image, &range, 0xffffffff);
}
}
/**
* Emit any needed resolves for the current subpass.
*/
void
radv_cmd_buffer_resolve_rendering_cs(struct radv_cmd_buffer *cmd_buffer)
{
const struct radv_rendering_state *render = &cmd_buffer->state.render;
VkRect2D resolve_area = render->area;
struct radv_resolve_barrier barrier;
uint32_t layer_count = render->layer_count;
if (render->view_mask)
layer_count = util_last_bit(render->view_mask);
/* Resolves happen before the end-of-subpass barriers get executed, so
* we have to make the attachment shader-readable.
*/
barrier.src_stage_mask = VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT;
barrier.src_access_mask = VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT;
barrier.dst_access_mask = VK_ACCESS_2_SHADER_READ_BIT | VK_ACCESS_2_SHADER_WRITE_BIT;
radv_emit_resolve_barrier(cmd_buffer, &barrier);
for (uint32_t i = 0; i < render->color_att_count; ++i) {
if (render->color_att[i].resolve_iview == NULL)
continue;
struct radv_image_view *src_iview = render->color_att[i].iview;
struct radv_image_view *dst_iview = render->color_att[i].resolve_iview;
VkImageLayout src_layout = render->color_att[i].layout;
VkImageLayout dst_layout = render->color_att[i].resolve_layout;
VkImageResolve2 region = {
.sType = VK_STRUCTURE_TYPE_IMAGE_RESOLVE_2,
.extent = {
.width = resolve_area.extent.width,
.height = resolve_area.extent.height,
.depth = 1,
},
.srcSubresource =
(VkImageSubresourceLayers){
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.mipLevel = src_iview->vk.base_mip_level,
.baseArrayLayer = src_iview->vk.base_array_layer,
.layerCount = layer_count,
},
.dstSubresource =
(VkImageSubresourceLayers){
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.mipLevel = dst_iview->vk.base_mip_level,
.baseArrayLayer = dst_iview->vk.base_array_layer,
.layerCount = layer_count,
},
.srcOffset = { resolve_area.offset.x, resolve_area.offset.y, 0 },
.dstOffset = { resolve_area.offset.x, resolve_area.offset.y, 0 },
};
radv_meta_resolve_compute_image(cmd_buffer,
src_iview->image, src_iview->vk.format, src_layout,
dst_iview->image, dst_iview->vk.format, dst_layout,
&region);
}
cmd_buffer->state.flush_bits |=
RADV_CMD_FLAG_CS_PARTIAL_FLUSH | RADV_CMD_FLAG_INV_VCACHE |
radv_src_access_flush(cmd_buffer, VK_ACCESS_2_SHADER_WRITE_BIT, NULL);
}
void
radv_depth_stencil_resolve_rendering_cs(struct radv_cmd_buffer *cmd_buffer,
VkImageAspectFlags aspects,
VkResolveModeFlagBits resolve_mode)
{
const struct radv_rendering_state *render = &cmd_buffer->state.render;
VkRect2D resolve_area = render->area;
struct radv_meta_saved_state saved_state;
uint32_t layer_count = render->layer_count;
if (render->view_mask)
layer_count = util_last_bit(render->view_mask);
/* Resolves happen before the end-of-subpass barriers get executed, so
* we have to make the attachment shader-readable.
*/
cmd_buffer->state.flush_bits |=
radv_src_access_flush(cmd_buffer, VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, NULL) |
radv_dst_access_flush(cmd_buffer, VK_ACCESS_2_SHADER_READ_BIT, NULL) |
radv_dst_access_flush(cmd_buffer, VK_ACCESS_2_SHADER_WRITE_BIT, NULL);
struct radv_image_view *src_iview = render->ds_att.iview;
VkImageLayout src_layout = render->ds_att.layout;
struct radv_image *src_image = src_iview->image;
VkImageResolve2 region = {0};
region.sType = VK_STRUCTURE_TYPE_IMAGE_RESOLVE_2;
region.srcSubresource.aspectMask = aspects;
region.srcSubresource.mipLevel = 0;
region.srcSubresource.baseArrayLayer = src_iview->vk.base_array_layer;
region.srcSubresource.layerCount = layer_count;
radv_decompress_resolve_src(cmd_buffer, src_image, src_layout, &region);
radv_meta_save(&saved_state, cmd_buffer,
RADV_META_SAVE_COMPUTE_PIPELINE | RADV_META_SAVE_DESCRIPTORS);
struct radv_image_view *dst_iview = render->ds_att.resolve_iview;
VkImageLayout dst_layout = render->ds_att.resolve_layout;
struct radv_image *dst_image = dst_iview->image;
struct radv_image_view tsrc_iview;
radv_image_view_init(&tsrc_iview, cmd_buffer->device,
&(VkImageViewCreateInfo){
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = radv_image_to_handle(src_image),
.viewType = radv_meta_get_view_type(src_image),
.format = src_iview->vk.format,
.subresourceRange =
{
.aspectMask = aspects,
.baseMipLevel = src_iview->vk.base_mip_level,
.levelCount = 1,
.baseArrayLayer = src_iview->vk.base_array_layer,
.layerCount = layer_count,
},
},
0, NULL);
struct radv_image_view tdst_iview;
radv_image_view_init(&tdst_iview, cmd_buffer->device,
&(VkImageViewCreateInfo){
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = radv_image_to_handle(dst_image),
.viewType = radv_meta_get_view_type(dst_image),
.format = dst_iview->vk.format,
.subresourceRange =
{
.aspectMask = aspects,
.baseMipLevel = dst_iview->vk.base_mip_level,
.levelCount = 1,
.baseArrayLayer = dst_iview->vk.base_array_layer,
.layerCount = layer_count,
},
},
0, NULL);
emit_depth_stencil_resolve(cmd_buffer, &tsrc_iview, &tdst_iview, &resolve_area.offset,
&(VkExtent3D){resolve_area.extent.width, resolve_area.extent.height, layer_count},
aspects, resolve_mode);
cmd_buffer->state.flush_bits |=
RADV_CMD_FLAG_CS_PARTIAL_FLUSH | RADV_CMD_FLAG_INV_VCACHE |
radv_src_access_flush(cmd_buffer, VK_ACCESS_2_SHADER_WRITE_BIT, NULL);
uint32_t queue_mask = radv_image_queue_family_mask(dst_image, cmd_buffer->qf,
cmd_buffer->qf);
if (radv_layout_is_htile_compressed(cmd_buffer->device, dst_image, dst_layout, queue_mask)) {
VkImageSubresourceRange range = {0};
range.aspectMask = aspects;
range.baseMipLevel = dst_iview->vk.base_mip_level;
range.levelCount = 1;
range.baseArrayLayer = dst_iview->vk.base_array_layer;
range.layerCount = layer_count;
uint32_t htile_value = radv_get_htile_initial_value(cmd_buffer->device, dst_image);
cmd_buffer->state.flush_bits |= radv_clear_htile(cmd_buffer, dst_image, &range, htile_value);
}
radv_image_view_finish(&tsrc_iview);
radv_image_view_finish(&tdst_iview);
radv_meta_restore(&saved_state, cmd_buffer);
}