mesa/src/amd/vulkan/radv_meta_fmask_expand.c

266 lines
11 KiB
C

/*
* Copyright © 2019 Valve Corporation
* Copyright © 2018 Red Hat
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "radv_meta.h"
#include "radv_private.h"
#include "vk_format.h"
static nir_shader *
build_fmask_expand_compute_shader(struct radv_device *device, int samples)
{
const struct glsl_type *type =
glsl_sampler_type(GLSL_SAMPLER_DIM_MS, false, true, GLSL_TYPE_FLOAT);
const struct glsl_type *img_type = glsl_image_type(GLSL_SAMPLER_DIM_MS, true, GLSL_TYPE_FLOAT);
nir_builder b =
radv_meta_init_shader(device, MESA_SHADER_COMPUTE, "meta_fmask_expand_cs-%d", samples);
b.shader->info.workgroup_size[0] = 8;
b.shader->info.workgroup_size[1] = 8;
nir_variable *input_img = nir_variable_create(b.shader, nir_var_uniform, type, "s_tex");
input_img->data.descriptor_set = 0;
input_img->data.binding = 0;
nir_variable *output_img = nir_variable_create(b.shader, nir_var_image, img_type, "out_img");
output_img->data.descriptor_set = 0;
output_img->data.binding = 1;
output_img->data.access = ACCESS_NON_READABLE;
nir_ssa_def *input_img_deref = &nir_build_deref_var(&b, input_img)->dest.ssa;
nir_ssa_def *output_img_deref = &nir_build_deref_var(&b, output_img)->dest.ssa;
nir_ssa_def *tex_coord = get_global_ids(&b, 3);
nir_tex_instr *tex_instr[8];
for (uint32_t i = 0; i < samples; i++) {
tex_instr[i] = nir_tex_instr_create(b.shader, 3);
nir_tex_instr *tex = tex_instr[i];
tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
tex->op = nir_texop_txf_ms;
tex->src[0].src_type = nir_tex_src_coord;
tex->src[0].src = nir_src_for_ssa(tex_coord);
tex->src[1].src_type = nir_tex_src_ms_index;
tex->src[1].src = nir_src_for_ssa(nir_imm_int(&b, i));
tex->src[2].src_type = nir_tex_src_texture_deref;
tex->src[2].src = nir_src_for_ssa(input_img_deref);
tex->dest_type = nir_type_float32;
tex->is_array = true;
tex->coord_components = 3;
nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, "tex");
nir_builder_instr_insert(&b, &tex->instr);
}
nir_ssa_def *img_coord =
nir_vec4(&b, nir_channel(&b, tex_coord, 0), nir_channel(&b, tex_coord, 1),
nir_channel(&b, tex_coord, 2), nir_ssa_undef(&b, 1, 32));
for (uint32_t i = 0; i < samples; i++) {
nir_ssa_def *outval = &tex_instr[i]->dest.ssa;
nir_image_deref_store(&b, output_img_deref, img_coord, nir_imm_int(&b, i), outval,
nir_imm_int(&b, 0), .image_dim = GLSL_SAMPLER_DIM_MS, .image_array = true);
}
return b.shader;
}
void
radv_expand_fmask_image_inplace(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
const VkImageSubresourceRange *subresourceRange)
{
struct radv_device *device = cmd_buffer->device;
struct radv_meta_saved_state saved_state;
const uint32_t samples = image->info.samples;
const uint32_t samples_log2 = ffs(samples) - 1;
unsigned layer_count = radv_get_layerCount(image, subresourceRange);
struct radv_image_view iview;
radv_meta_save(&saved_state, cmd_buffer,
RADV_META_SAVE_COMPUTE_PIPELINE | RADV_META_SAVE_DESCRIPTORS);
VkPipeline pipeline = device->meta_state.fmask_expand.pipeline[samples_log2];
radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_COMPUTE,
pipeline);
cmd_buffer->state.flush_bits |= radv_dst_access_flush(
cmd_buffer, VK_ACCESS_2_SHADER_READ_BIT | VK_ACCESS_2_SHADER_WRITE_BIT, image);
radv_image_view_init(&iview, device,
&(VkImageViewCreateInfo){
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = radv_image_to_handle(image),
.viewType = radv_meta_get_view_type(image),
.format = vk_format_no_srgb(image->vk.format),
.subresourceRange =
{
.aspectMask = subresourceRange->aspectMask,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = subresourceRange->baseArrayLayer,
.layerCount = layer_count,
},
},
0, NULL);
radv_meta_push_descriptor_set(
cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE,
cmd_buffer->device->meta_state.fmask_expand.p_layout, 0, /* set */
2, /* descriptorWriteCount */
(VkWriteDescriptorSet[]){{.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
.pImageInfo =
(VkDescriptorImageInfo[]){
{.sampler = VK_NULL_HANDLE,
.imageView = radv_image_view_to_handle(&iview),
.imageLayout = VK_IMAGE_LAYOUT_GENERAL},
}},
{.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 1,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.pImageInfo = (VkDescriptorImageInfo[]){
{.sampler = VK_NULL_HANDLE,
.imageView = radv_image_view_to_handle(&iview),
.imageLayout = VK_IMAGE_LAYOUT_GENERAL},
}}});
radv_unaligned_dispatch(cmd_buffer, image->info.width, image->info.height, layer_count);
radv_image_view_finish(&iview);
radv_meta_restore(&saved_state, cmd_buffer);
cmd_buffer->state.flush_bits |=
RADV_CMD_FLAG_CS_PARTIAL_FLUSH |
radv_src_access_flush(cmd_buffer, VK_ACCESS_2_SHADER_WRITE_BIT, image);
/* Re-initialize FMASK in fully expanded mode. */
cmd_buffer->state.flush_bits |= radv_init_fmask(cmd_buffer, image, subresourceRange);
}
void
radv_device_finish_meta_fmask_expand_state(struct radv_device *device)
{
struct radv_meta_state *state = &device->meta_state;
for (uint32_t i = 0; i < MAX_SAMPLES_LOG2; ++i) {
radv_DestroyPipeline(radv_device_to_handle(device), state->fmask_expand.pipeline[i],
&state->alloc);
}
radv_DestroyPipelineLayout(radv_device_to_handle(device), state->fmask_expand.p_layout,
&state->alloc);
device->vk.dispatch_table.DestroyDescriptorSetLayout(
radv_device_to_handle(device), state->fmask_expand.ds_layout, &state->alloc);
}
static VkResult
create_fmask_expand_pipeline(struct radv_device *device, int samples, VkPipeline *pipeline)
{
struct radv_meta_state *state = &device->meta_state;
VkResult result;
nir_shader *cs = build_fmask_expand_compute_shader(device, samples);
;
VkPipelineShaderStageCreateInfo pipeline_shader_stage = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_COMPUTE_BIT,
.module = vk_shader_module_handle_from_nir(cs),
.pName = "main",
.pSpecializationInfo = NULL,
};
VkComputePipelineCreateInfo vk_pipeline_info = {
.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
.stage = pipeline_shader_stage,
.flags = 0,
.layout = state->fmask_expand.p_layout,
};
result = radv_CreateComputePipelines(radv_device_to_handle(device),
state->cache, 1,
&vk_pipeline_info, NULL, pipeline);
ralloc_free(cs);
return result;
}
VkResult
radv_device_init_meta_fmask_expand_state(struct radv_device *device)
{
struct radv_meta_state *state = &device->meta_state;
VkResult result;
VkDescriptorSetLayoutCreateInfo ds_create_info = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR,
.bindingCount = 2,
.pBindings = (VkDescriptorSetLayoutBinding[]){
{.binding = 0,
.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = NULL},
{.binding = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = NULL},
}};
result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device), &ds_create_info,
&state->alloc, &state->fmask_expand.ds_layout);
if (result != VK_SUCCESS)
return result;
VkPipelineLayoutCreateInfo color_create_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.setLayoutCount = 1,
.pSetLayouts = &state->fmask_expand.ds_layout,
.pushConstantRangeCount = 0,
.pPushConstantRanges = NULL,
};
result = radv_CreatePipelineLayout(radv_device_to_handle(device), &color_create_info,
&state->alloc, &state->fmask_expand.p_layout);
if (result != VK_SUCCESS)
return result;
for (uint32_t i = 0; i < MAX_SAMPLES_LOG2; i++) {
uint32_t samples = 1 << i;
result = create_fmask_expand_pipeline(device, samples, &state->fmask_expand.pipeline[i]);
if (result != VK_SUCCESS)
return result;
}
return VK_SUCCESS;
}