mesa/src/amd/vulkan/radv_meta_clear.c

2333 lines
90 KiB
C

/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "nir/nir_builder.h"
#include "radv_debug.h"
#include "radv_meta.h"
#include "radv_private.h"
#include "util/format_rgb9e5.h"
#include "vk_format.h"
enum { DEPTH_CLEAR_SLOW, DEPTH_CLEAR_FAST };
static void
build_color_shaders(struct radv_device *dev, struct nir_shader **out_vs, struct nir_shader **out_fs,
uint32_t frag_output)
{
nir_builder vs_b = radv_meta_init_shader(dev, MESA_SHADER_VERTEX, "meta_clear_color_vs");
nir_builder fs_b =
radv_meta_init_shader(dev, MESA_SHADER_FRAGMENT, "meta_clear_color_fs-%d", frag_output);
const struct glsl_type *position_type = glsl_vec4_type();
const struct glsl_type *color_type = glsl_vec4_type();
nir_variable *vs_out_pos =
nir_variable_create(vs_b.shader, nir_var_shader_out, position_type, "gl_Position");
vs_out_pos->data.location = VARYING_SLOT_POS;
nir_ssa_def *in_color_load =
nir_load_push_constant(&fs_b, 4, 32, nir_imm_int(&fs_b, 0), .range = 16);
nir_variable *fs_out_color =
nir_variable_create(fs_b.shader, nir_var_shader_out, color_type, "f_color");
fs_out_color->data.location = FRAG_RESULT_DATA0 + frag_output;
nir_store_var(&fs_b, fs_out_color, in_color_load, 0xf);
nir_ssa_def *outvec = nir_gen_rect_vertices(&vs_b, NULL, NULL);
nir_store_var(&vs_b, vs_out_pos, outvec, 0xf);
const struct glsl_type *layer_type = glsl_int_type();
nir_variable *vs_out_layer =
nir_variable_create(vs_b.shader, nir_var_shader_out, layer_type, "v_layer");
vs_out_layer->data.location = VARYING_SLOT_LAYER;
vs_out_layer->data.interpolation = INTERP_MODE_FLAT;
nir_ssa_def *inst_id = nir_load_instance_id(&vs_b);
nir_ssa_def *base_instance = nir_load_base_instance(&vs_b);
nir_ssa_def *layer_id = nir_iadd(&vs_b, inst_id, base_instance);
nir_store_var(&vs_b, vs_out_layer, layer_id, 0x1);
*out_vs = vs_b.shader;
*out_fs = fs_b.shader;
}
static VkResult
create_pipeline(struct radv_device *device, uint32_t samples,
struct nir_shader *vs_nir, struct nir_shader *fs_nir,
const VkPipelineVertexInputStateCreateInfo *vi_state,
const VkPipelineDepthStencilStateCreateInfo *ds_state,
const VkPipelineColorBlendStateCreateInfo *cb_state,
const VkPipelineRenderingCreateInfo *dyn_state,
const VkPipelineLayout layout,
const struct radv_graphics_pipeline_create_info *extra,
const VkAllocationCallbacks *alloc, VkPipeline *pipeline)
{
VkDevice device_h = radv_device_to_handle(device);
VkResult result;
result = radv_graphics_pipeline_create(
device_h, device->meta_state.cache,
&(VkGraphicsPipelineCreateInfo){
.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
.pNext = dyn_state,
.stageCount = fs_nir ? 2 : 1,
.pStages =
(VkPipelineShaderStageCreateInfo[]){
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_VERTEX_BIT,
.module = vk_shader_module_handle_from_nir(vs_nir),
.pName = "main",
},
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_FRAGMENT_BIT,
.module = vk_shader_module_handle_from_nir(fs_nir),
.pName = "main",
},
},
.pVertexInputState = vi_state,
.pInputAssemblyState =
&(VkPipelineInputAssemblyStateCreateInfo){
.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
.primitiveRestartEnable = false,
},
.pViewportState =
&(VkPipelineViewportStateCreateInfo){
.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
.viewportCount = 1,
.scissorCount = 1,
},
.pRasterizationState =
&(VkPipelineRasterizationStateCreateInfo){
.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
.rasterizerDiscardEnable = false,
.polygonMode = VK_POLYGON_MODE_FILL,
.cullMode = VK_CULL_MODE_NONE,
.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE,
.depthBiasEnable = false,
.depthBiasConstantFactor = 0.0f,
.depthBiasClamp = 0.0f,
.depthBiasSlopeFactor = 0.0f,
.lineWidth = 1.0f,
},
.pMultisampleState =
&(VkPipelineMultisampleStateCreateInfo){
.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
.rasterizationSamples = samples,
.sampleShadingEnable = false,
.pSampleMask = NULL,
.alphaToCoverageEnable = false,
.alphaToOneEnable = false,
},
.pDepthStencilState = ds_state,
.pColorBlendState = cb_state,
.pDynamicState =
&(VkPipelineDynamicStateCreateInfo){
.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
.dynamicStateCount = 3,
.pDynamicStates =
(VkDynamicState[]){
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR,
VK_DYNAMIC_STATE_STENCIL_REFERENCE,
},
},
.layout = layout,
.flags = 0,
.renderPass = VK_NULL_HANDLE,
.subpass = 0,
},
extra, alloc, pipeline);
ralloc_free(vs_nir);
ralloc_free(fs_nir);
return result;
}
static VkResult
create_color_pipeline(struct radv_device *device, uint32_t samples, uint32_t frag_output,
VkFormat format, VkPipeline *pipeline)
{
struct nir_shader *vs_nir;
struct nir_shader *fs_nir;
VkResult result;
mtx_lock(&device->meta_state.mtx);
if (*pipeline) {
mtx_unlock(&device->meta_state.mtx);
return VK_SUCCESS;
}
build_color_shaders(device, &vs_nir, &fs_nir, frag_output);
const VkPipelineVertexInputStateCreateInfo vi_state = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
.vertexBindingDescriptionCount = 0,
.vertexAttributeDescriptionCount = 0,
};
const VkPipelineDepthStencilStateCreateInfo ds_state = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,
.depthTestEnable = false,
.depthWriteEnable = false,
.depthBoundsTestEnable = false,
.stencilTestEnable = false,
.minDepthBounds = 0.0f,
.maxDepthBounds = 1.0f,
};
VkPipelineColorBlendAttachmentState blend_attachment_state[MAX_RTS] = {0};
blend_attachment_state[frag_output] = (VkPipelineColorBlendAttachmentState){
.blendEnable = false,
.colorWriteMask = VK_COLOR_COMPONENT_A_BIT | VK_COLOR_COMPONENT_R_BIT |
VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT,
};
const VkPipelineColorBlendStateCreateInfo cb_state = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
.logicOpEnable = false,
.attachmentCount = MAX_RTS,
.pAttachments = blend_attachment_state,
.blendConstants = { 0.0f, 0.0f, 0.0f, 0.0f }};
VkFormat att_formats[MAX_RTS] = { 0 };
att_formats[frag_output] = format;
const VkPipelineRenderingCreateInfo rendering_create_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_RENDERING_CREATE_INFO,
.colorAttachmentCount = MAX_RTS,
.pColorAttachmentFormats = att_formats,
};
struct radv_graphics_pipeline_create_info extra = {
.use_rectlist = true,
};
result =
create_pipeline(device, samples, vs_nir, fs_nir, &vi_state, &ds_state, &cb_state,
&rendering_create_info, device->meta_state.clear_color_p_layout,
&extra, &device->meta_state.alloc, pipeline);
mtx_unlock(&device->meta_state.mtx);
return result;
}
static void
finish_meta_clear_htile_mask_state(struct radv_device *device)
{
struct radv_meta_state *state = &device->meta_state;
radv_DestroyPipeline(radv_device_to_handle(device), state->clear_htile_mask_pipeline,
&state->alloc);
radv_DestroyPipelineLayout(radv_device_to_handle(device), state->clear_htile_mask_p_layout,
&state->alloc);
device->vk.dispatch_table.DestroyDescriptorSetLayout(
radv_device_to_handle(device), state->clear_htile_mask_ds_layout, &state->alloc);
}
static void
finish_meta_clear_dcc_comp_to_single_state(struct radv_device *device)
{
struct radv_meta_state *state = &device->meta_state;
for (uint32_t i = 0; i < 2; i++) {
radv_DestroyPipeline(radv_device_to_handle(device),
state->clear_dcc_comp_to_single_pipeline[i], &state->alloc);
}
radv_DestroyPipelineLayout(radv_device_to_handle(device), state->clear_dcc_comp_to_single_p_layout,
&state->alloc);
device->vk.dispatch_table.DestroyDescriptorSetLayout(
radv_device_to_handle(device), state->clear_dcc_comp_to_single_ds_layout, &state->alloc);
}
void
radv_device_finish_meta_clear_state(struct radv_device *device)
{
struct radv_meta_state *state = &device->meta_state;
for (uint32_t i = 0; i < ARRAY_SIZE(state->color_clear); ++i) {
for (uint32_t j = 0; j < ARRAY_SIZE(state->color_clear[0]); ++j) {
for (uint32_t k = 0; k < ARRAY_SIZE(state->color_clear[i][j].color_pipelines); ++k) {
radv_DestroyPipeline(radv_device_to_handle(device),
state->color_clear[i][j].color_pipelines[k], &state->alloc);
}
}
}
for (uint32_t i = 0; i < ARRAY_SIZE(state->ds_clear); ++i) {
for (uint32_t j = 0; j < NUM_DEPTH_CLEAR_PIPELINES; j++) {
radv_DestroyPipeline(radv_device_to_handle(device),
state->ds_clear[i].depth_only_pipeline[j], &state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device),
state->ds_clear[i].stencil_only_pipeline[j], &state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device),
state->ds_clear[i].depthstencil_pipeline[j], &state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device),
state->ds_clear[i].depth_only_unrestricted_pipeline[j],
&state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device),
state->ds_clear[i].stencil_only_unrestricted_pipeline[j],
&state->alloc);
radv_DestroyPipeline(radv_device_to_handle(device),
state->ds_clear[i].depthstencil_unrestricted_pipeline[j],
&state->alloc);
}
}
radv_DestroyPipelineLayout(radv_device_to_handle(device), state->clear_color_p_layout,
&state->alloc);
radv_DestroyPipelineLayout(radv_device_to_handle(device), state->clear_depth_p_layout,
&state->alloc);
radv_DestroyPipelineLayout(radv_device_to_handle(device),
state->clear_depth_unrestricted_p_layout, &state->alloc);
finish_meta_clear_htile_mask_state(device);
finish_meta_clear_dcc_comp_to_single_state(device);
}
static void
emit_color_clear(struct radv_cmd_buffer *cmd_buffer, const VkClearAttachment *clear_att,
const VkClearRect *clear_rect, uint32_t view_mask)
{
struct radv_device *device = cmd_buffer->device;
const struct radv_rendering_state *render = &cmd_buffer->state.render;
uint32_t samples, samples_log2;
VkFormat format;
unsigned fs_key;
VkClearColorValue clear_value = clear_att->clearValue.color;
VkCommandBuffer cmd_buffer_h = radv_cmd_buffer_to_handle(cmd_buffer);
VkPipeline pipeline;
assert(clear_att->aspectMask == VK_IMAGE_ASPECT_COLOR_BIT);
assert(clear_att->colorAttachment < render->color_att_count);
const struct radv_attachment *color_att =
&render->color_att[clear_att->colorAttachment];
/* When a framebuffer is bound to the current command buffer, get the
* number of samples from it. Otherwise, get the number of samples from
* the render pass because it's likely a secondary command buffer.
*/
if (color_att->iview) {
samples = color_att->iview->image->info.samples;
format = color_att->iview->vk.format;
} else {
samples = render->max_samples;
format = color_att->format;
}
assert(format != VK_FORMAT_UNDEFINED);
assert(util_is_power_of_two_nonzero(samples));
samples_log2 = ffs(samples) - 1;
fs_key = radv_format_meta_fs_key(device, format);
assert(fs_key != -1);
if (device->meta_state.color_clear[samples_log2][clear_att->colorAttachment]
.color_pipelines[fs_key] == VK_NULL_HANDLE) {
VkResult ret = create_color_pipeline(
device, samples, clear_att->colorAttachment, radv_fs_key_format_exemplars[fs_key],
&device->meta_state.color_clear[samples_log2][clear_att->colorAttachment]
.color_pipelines[fs_key]);
if (ret != VK_SUCCESS) {
vk_command_buffer_set_error(&cmd_buffer->vk, ret);
return;
}
}
pipeline = device->meta_state.color_clear[samples_log2][clear_att->colorAttachment]
.color_pipelines[fs_key];
assert(samples_log2 < ARRAY_SIZE(device->meta_state.color_clear));
assert(pipeline);
radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
device->meta_state.clear_color_p_layout, VK_SHADER_STAGE_FRAGMENT_BIT, 0,
16, &clear_value);
radv_CmdBindPipeline(cmd_buffer_h, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
radv_CmdSetViewport(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1,
&(VkViewport){.x = clear_rect->rect.offset.x,
.y = clear_rect->rect.offset.y,
.width = clear_rect->rect.extent.width,
.height = clear_rect->rect.extent.height,
.minDepth = 0.0f,
.maxDepth = 1.0f});
radv_CmdSetScissor(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &clear_rect->rect);
if (view_mask) {
u_foreach_bit(i, view_mask) radv_CmdDraw(cmd_buffer_h, 3, 1, 0, i);
} else {
radv_CmdDraw(cmd_buffer_h, 3, clear_rect->layerCount, 0, clear_rect->baseArrayLayer);
}
}
static void
build_depthstencil_shader(struct radv_device *dev, struct nir_shader **out_vs,
struct nir_shader **out_fs, bool unrestricted)
{
nir_builder vs_b = radv_meta_init_shader(
dev, MESA_SHADER_VERTEX,
unrestricted ? "meta_clear_depthstencil_unrestricted_vs" : "meta_clear_depthstencil_vs");
nir_builder fs_b = radv_meta_init_shader(
dev, MESA_SHADER_FRAGMENT,
unrestricted ? "meta_clear_depthstencil_unrestricted_fs" : "meta_clear_depthstencil_fs");
const struct glsl_type *position_out_type = glsl_vec4_type();
nir_variable *vs_out_pos =
nir_variable_create(vs_b.shader, nir_var_shader_out, position_out_type, "gl_Position");
vs_out_pos->data.location = VARYING_SLOT_POS;
nir_ssa_def *z;
if (unrestricted) {
nir_ssa_def *in_color_load =
nir_load_push_constant(&fs_b, 1, 32, nir_imm_int(&fs_b, 0), .range = 4);
nir_variable *fs_out_depth =
nir_variable_create(fs_b.shader, nir_var_shader_out, glsl_int_type(), "f_depth");
fs_out_depth->data.location = FRAG_RESULT_DEPTH;
nir_store_var(&fs_b, fs_out_depth, in_color_load, 0x1);
z = nir_imm_float(&vs_b, 0.0);
} else {
z = nir_load_push_constant(&vs_b, 1, 32, nir_imm_int(&vs_b, 0), .range = 4);
}
nir_ssa_def *outvec = nir_gen_rect_vertices(&vs_b, z, NULL);
nir_store_var(&vs_b, vs_out_pos, outvec, 0xf);
const struct glsl_type *layer_type = glsl_int_type();
nir_variable *vs_out_layer =
nir_variable_create(vs_b.shader, nir_var_shader_out, layer_type, "v_layer");
vs_out_layer->data.location = VARYING_SLOT_LAYER;
vs_out_layer->data.interpolation = INTERP_MODE_FLAT;
nir_ssa_def *inst_id = nir_load_instance_id(&vs_b);
nir_ssa_def *base_instance = nir_load_base_instance(&vs_b);
nir_ssa_def *layer_id = nir_iadd(&vs_b, inst_id, base_instance);
nir_store_var(&vs_b, vs_out_layer, layer_id, 0x1);
*out_vs = vs_b.shader;
*out_fs = fs_b.shader;
}
static VkResult
create_depthstencil_pipeline(struct radv_device *device, VkImageAspectFlags aspects,
uint32_t samples, int index, bool unrestricted, VkPipeline *pipeline)
{
struct nir_shader *vs_nir, *fs_nir;
VkResult result;
mtx_lock(&device->meta_state.mtx);
if (*pipeline) {
mtx_unlock(&device->meta_state.mtx);
return VK_SUCCESS;
}
build_depthstencil_shader(device, &vs_nir, &fs_nir, unrestricted);
const VkPipelineVertexInputStateCreateInfo vi_state = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
.vertexBindingDescriptionCount = 0,
.vertexAttributeDescriptionCount = 0,
};
const VkPipelineDepthStencilStateCreateInfo ds_state = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,
.depthTestEnable = !!(aspects & VK_IMAGE_ASPECT_DEPTH_BIT),
.depthCompareOp = VK_COMPARE_OP_ALWAYS,
.depthWriteEnable = !!(aspects & VK_IMAGE_ASPECT_DEPTH_BIT),
.depthBoundsTestEnable = false,
.stencilTestEnable = !!(aspects & VK_IMAGE_ASPECT_STENCIL_BIT),
.front =
{
.passOp = VK_STENCIL_OP_REPLACE,
.compareOp = VK_COMPARE_OP_ALWAYS,
.writeMask = UINT32_MAX,
.reference = 0, /* dynamic */
},
.back = {0 /* dont care */},
.minDepthBounds = 0.0f,
.maxDepthBounds = 1.0f,
};
const VkPipelineColorBlendStateCreateInfo cb_state = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
.logicOpEnable = false,
.attachmentCount = 0,
.pAttachments = NULL,
.blendConstants = { 0.0f, 0.0f, 0.0f, 0.0f },
};
const VkPipelineRenderingCreateInfo rendering_create_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_RENDERING_CREATE_INFO,
.depthAttachmentFormat =
(aspects & VK_IMAGE_ASPECT_DEPTH_BIT) ? VK_FORMAT_D32_SFLOAT : VK_FORMAT_UNDEFINED,
.stencilAttachmentFormat =
(aspects & VK_IMAGE_ASPECT_STENCIL_BIT) ? VK_FORMAT_S8_UINT : VK_FORMAT_UNDEFINED,
};
struct radv_graphics_pipeline_create_info extra = {
.use_rectlist = true,
};
if (aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
extra.db_depth_clear = index == DEPTH_CLEAR_SLOW ? false : true;
}
if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
extra.db_stencil_clear = index == DEPTH_CLEAR_SLOW ? false : true;
}
result =
create_pipeline(device, samples, vs_nir, fs_nir, &vi_state, &ds_state, &cb_state,
&rendering_create_info, device->meta_state.clear_depth_p_layout, &extra,
&device->meta_state.alloc, pipeline);
mtx_unlock(&device->meta_state.mtx);
return result;
}
static bool
radv_can_fast_clear_depth(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview,
VkImageLayout image_layout,
VkImageAspectFlags aspects, const VkClearRect *clear_rect,
const VkClearDepthStencilValue clear_value, uint32_t view_mask);
static VkPipeline
pick_depthstencil_pipeline(struct radv_cmd_buffer *cmd_buffer, struct radv_meta_state *meta_state,
const struct radv_image_view *iview, int samples_log2,
VkImageAspectFlags aspects, VkImageLayout layout,
const VkClearRect *clear_rect, VkClearDepthStencilValue clear_value,
uint32_t view_mask)
{
bool fast = radv_can_fast_clear_depth(cmd_buffer, iview, layout, aspects, clear_rect,
clear_value, view_mask);
bool unrestricted = cmd_buffer->device->vk.enabled_extensions.EXT_depth_range_unrestricted;
int index = fast ? DEPTH_CLEAR_FAST : DEPTH_CLEAR_SLOW;
VkPipeline *pipeline;
switch (aspects) {
case VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT:
pipeline = unrestricted
? &meta_state->ds_clear[samples_log2].depthstencil_unrestricted_pipeline[index]
: &meta_state->ds_clear[samples_log2].depthstencil_pipeline[index];
break;
case VK_IMAGE_ASPECT_DEPTH_BIT:
pipeline = unrestricted
? &meta_state->ds_clear[samples_log2].depth_only_unrestricted_pipeline[index]
: &meta_state->ds_clear[samples_log2].depth_only_pipeline[index];
break;
case VK_IMAGE_ASPECT_STENCIL_BIT:
pipeline = unrestricted
? &meta_state->ds_clear[samples_log2].stencil_only_unrestricted_pipeline[index]
: &meta_state->ds_clear[samples_log2].stencil_only_pipeline[index];
break;
default:
unreachable("expected depth or stencil aspect");
}
if (*pipeline == VK_NULL_HANDLE) {
VkResult ret = create_depthstencil_pipeline(
cmd_buffer->device, aspects, 1u << samples_log2, index, unrestricted, pipeline);
if (ret != VK_SUCCESS) {
vk_command_buffer_set_error(&cmd_buffer->vk, ret);
return VK_NULL_HANDLE;
}
}
return *pipeline;
}
static void
emit_depthstencil_clear(struct radv_cmd_buffer *cmd_buffer, const VkClearAttachment *clear_att,
const VkClearRect *clear_rect, uint32_t view_mask)
{
struct radv_device *device = cmd_buffer->device;
struct radv_meta_state *meta_state = &device->meta_state;
const struct radv_rendering_state *render = &cmd_buffer->state.render;
VkClearDepthStencilValue clear_value = clear_att->clearValue.depthStencil;
VkImageAspectFlags aspects = clear_att->aspectMask;
uint32_t samples, samples_log2;
VkCommandBuffer cmd_buffer_h = radv_cmd_buffer_to_handle(cmd_buffer);
/* When a framebuffer is bound to the current command buffer, get the
* number of samples from it. Otherwise, get the number of samples from
* the render pass because it's likely a secondary command buffer.
*/
struct radv_image_view *iview = render->ds_att.iview;
if (iview) {
samples = iview->image->info.samples;
} else {
assert(render->ds_att.format != VK_FORMAT_UNDEFINED);
samples = render->max_samples;
}
assert(util_is_power_of_two_nonzero(samples));
samples_log2 = ffs(samples) - 1;
if (!(aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
clear_value.depth = 1.0f;
if (cmd_buffer->device->vk.enabled_extensions.EXT_depth_range_unrestricted) {
radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
device->meta_state.clear_depth_unrestricted_p_layout,
VK_SHADER_STAGE_FRAGMENT_BIT, 0, 4, &clear_value.depth);
} else {
radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
device->meta_state.clear_depth_p_layout, VK_SHADER_STAGE_VERTEX_BIT, 0,
4, &clear_value.depth);
}
uint32_t prev_reference = cmd_buffer->state.dynamic.stencil_reference.front;
if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
radv_CmdSetStencilReference(cmd_buffer_h, VK_STENCIL_FACE_FRONT_BIT, clear_value.stencil);
}
VkPipeline pipeline =
pick_depthstencil_pipeline(cmd_buffer, meta_state, iview, samples_log2, aspects,
render->ds_att.layout, clear_rect, clear_value, view_mask);
if (!pipeline)
return;
radv_CmdBindPipeline(cmd_buffer_h, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
if (radv_can_fast_clear_depth(cmd_buffer, iview, render->ds_att.layout, aspects,
clear_rect, clear_value, view_mask))
radv_update_ds_clear_metadata(cmd_buffer, iview, clear_value, aspects);
radv_CmdSetViewport(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1,
&(VkViewport){.x = clear_rect->rect.offset.x,
.y = clear_rect->rect.offset.y,
.width = clear_rect->rect.extent.width,
.height = clear_rect->rect.extent.height,
.minDepth = 0.0f,
.maxDepth = 1.0f});
radv_CmdSetScissor(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &clear_rect->rect);
if (view_mask) {
u_foreach_bit(i, view_mask) radv_CmdDraw(cmd_buffer_h, 3, 1, 0, i);
} else {
radv_CmdDraw(cmd_buffer_h, 3, clear_rect->layerCount, 0, clear_rect->baseArrayLayer);
}
if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
radv_CmdSetStencilReference(cmd_buffer_h, VK_STENCIL_FACE_FRONT_BIT, prev_reference);
}
}
static uint32_t
clear_htile_mask(struct radv_cmd_buffer *cmd_buffer, const struct radv_image *image,
struct radeon_winsys_bo *bo, uint64_t offset, uint64_t size, uint32_t htile_value,
uint32_t htile_mask)
{
struct radv_device *device = cmd_buffer->device;
struct radv_meta_state *state = &device->meta_state;
uint64_t block_count = round_up_u64(size, 1024);
struct radv_meta_saved_state saved_state;
struct radv_buffer dst_buffer;
radv_meta_save(
&saved_state, cmd_buffer,
RADV_META_SAVE_COMPUTE_PIPELINE | RADV_META_SAVE_CONSTANTS | RADV_META_SAVE_DESCRIPTORS);
radv_buffer_init(&dst_buffer, device, bo, size, offset);
radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_COMPUTE,
state->clear_htile_mask_pipeline);
radv_meta_push_descriptor_set(
cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, state->clear_htile_mask_p_layout, 0, /* set */
1, /* descriptorWriteCount */
(VkWriteDescriptorSet[]){
{.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.pBufferInfo = &(VkDescriptorBufferInfo){.buffer = radv_buffer_to_handle(&dst_buffer),
.offset = 0,
.range = size}}});
const unsigned constants[2] = {
htile_value & htile_mask,
~htile_mask,
};
radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer), state->clear_htile_mask_p_layout,
VK_SHADER_STAGE_COMPUTE_BIT, 0, 8, constants);
radv_CmdDispatch(radv_cmd_buffer_to_handle(cmd_buffer), block_count, 1, 1);
radv_buffer_finish(&dst_buffer);
radv_meta_restore(&saved_state, cmd_buffer);
return RADV_CMD_FLAG_CS_PARTIAL_FLUSH |
radv_src_access_flush(cmd_buffer, VK_ACCESS_2_SHADER_WRITE_BIT, image);
}
static uint32_t
radv_get_htile_fast_clear_value(const struct radv_device *device, const struct radv_image *image,
VkClearDepthStencilValue value)
{
uint32_t max_zval = 0x3fff; /* maximum 14-bit value. */
uint32_t zmask = 0, smem = 0;
uint32_t htile_value;
uint32_t zmin, zmax;
/* Convert the depth value to 14-bit zmin/zmax values. */
zmin = lroundf(value.depth * max_zval);
zmax = zmin;
if (radv_image_tile_stencil_disabled(device, image)) {
/* Z only (no stencil):
*
* |31 18|17 4|3 0|
* +---------+---------+-------+
* | Max Z | Min Z | ZMask |
*/
htile_value = (((zmax & 0x3fff) << 18) |
((zmin & 0x3fff) << 4) |
((zmask & 0xf) << 0));
} else {
/* Z and stencil:
*
* |31 12|11 10|9 8|7 6|5 4|3 0|
* +-----------+-----+------+-----+-----+-------+
* | Z Range | | SMem | SR1 | SR0 | ZMask |
*
* Z, stencil, 4 bit VRS encoding:
* |31 12| 11 10 |9 8|7 6 |5 4|3 0|
* +-----------+------------+------+------------+-----+-------+
* | Z Range | VRS Y-rate | SMem | VRS X-rate | SR0 | ZMask |
*/
uint32_t delta = 0;
uint32_t zrange = ((zmax << 6) | delta);
uint32_t sresults = 0xf; /* SR0/SR1 both as 0x3. */
if (radv_image_has_vrs_htile(device, image))
sresults = 0x3;
htile_value = (((zrange & 0xfffff) << 12) |
((smem & 0x3) << 8) |
((sresults & 0xf) << 4) |
((zmask & 0xf) << 0));
}
return htile_value;
}
static uint32_t
radv_get_htile_mask(const struct radv_device *device, const struct radv_image *image,
VkImageAspectFlags aspects)
{
uint32_t mask = 0;
if (radv_image_tile_stencil_disabled(device, image)) {
/* All the HTILE buffer is used when there is no stencil. */
mask = UINT32_MAX;
} else {
if (aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
mask |= 0xfffffc0f;
if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT)
mask |= 0x000003f0;
}
return mask;
}
static bool
radv_is_fast_clear_depth_allowed(VkClearDepthStencilValue value)
{
return value.depth == 1.0f || value.depth == 0.0f;
}
static bool
radv_is_fast_clear_stencil_allowed(VkClearDepthStencilValue value)
{
return value.stencil == 0;
}
static bool
radv_can_fast_clear_depth(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview,
VkImageLayout image_layout,
VkImageAspectFlags aspects, const VkClearRect *clear_rect,
const VkClearDepthStencilValue clear_value, uint32_t view_mask)
{
if (!iview || !iview->support_fast_clear)
return false;
if (!radv_layout_is_htile_compressed(
cmd_buffer->device, iview->image, image_layout,
radv_image_queue_family_mask(iview->image, cmd_buffer->qf,
cmd_buffer->qf)))
return false;
if (clear_rect->rect.offset.x || clear_rect->rect.offset.y ||
clear_rect->rect.extent.width != iview->image->info.width ||
clear_rect->rect.extent.height != iview->image->info.height)
return false;
if (view_mask && (iview->image->info.array_size >= 32 ||
(1u << iview->image->info.array_size) - 1u != view_mask))
return false;
if (!view_mask && clear_rect->baseArrayLayer != 0)
return false;
if (!view_mask && clear_rect->layerCount != iview->image->info.array_size)
return false;
if (cmd_buffer->device->vk.enabled_extensions.EXT_depth_range_unrestricted &&
(aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
(clear_value.depth < 0.0 || clear_value.depth > 1.0))
return false;
if (radv_image_is_tc_compat_htile(iview->image) &&
(((aspects & VK_IMAGE_ASPECT_DEPTH_BIT) && !radv_is_fast_clear_depth_allowed(clear_value)) ||
((aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
!radv_is_fast_clear_stencil_allowed(clear_value))))
return false;
if (iview->image->info.levels > 1) {
uint32_t last_level = iview->vk.base_mip_level + iview->vk.level_count - 1;
if (last_level >= iview->image->planes[0].surface.num_meta_levels) {
/* Do not fast clears if one level can't be fast cleared. */
return false;
}
}
return true;
}
static void
radv_fast_clear_depth(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview,
const VkClearAttachment *clear_att, enum radv_cmd_flush_bits *pre_flush,
enum radv_cmd_flush_bits *post_flush)
{
VkClearDepthStencilValue clear_value = clear_att->clearValue.depthStencil;
VkImageAspectFlags aspects = clear_att->aspectMask;
uint32_t clear_word, flush_bits;
clear_word = radv_get_htile_fast_clear_value(cmd_buffer->device, iview->image, clear_value);
if (pre_flush) {
enum radv_cmd_flush_bits bits =
radv_src_access_flush(cmd_buffer, VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,
iview->image) |
radv_dst_access_flush(cmd_buffer, VK_ACCESS_2_SHADER_WRITE_BIT |
VK_ACCESS_2_SHADER_READ_BIT, iview->image);
cmd_buffer->state.flush_bits |= bits & ~*pre_flush;
*pre_flush |= cmd_buffer->state.flush_bits;
}
VkImageSubresourceRange range = {
.aspectMask = aspects,
.baseMipLevel = iview->vk.base_mip_level,
.levelCount = iview->vk.level_count,
.baseArrayLayer = iview->vk.base_array_layer,
.layerCount = iview->vk.layer_count,
};
flush_bits = radv_clear_htile(cmd_buffer, iview->image, &range, clear_word);
if (iview->image->planes[0].surface.has_stencil &&
!(aspects == (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT))) {
/* Synchronize after performing a depth-only or a stencil-only
* fast clear because the driver uses an optimized path which
* performs a read-modify-write operation, and the two separate
* aspects might use the same HTILE memory.
*/
cmd_buffer->state.flush_bits |= flush_bits;
}
radv_update_ds_clear_metadata(cmd_buffer, iview, clear_value, aspects);
if (post_flush) {
*post_flush |= flush_bits;
}
}
static nir_shader *
build_clear_htile_mask_shader(struct radv_device *dev)
{
nir_builder b = radv_meta_init_shader(dev, MESA_SHADER_COMPUTE, "meta_clear_htile_mask");
b.shader->info.workgroup_size[0] = 64;
nir_ssa_def *global_id = get_global_ids(&b, 1);
nir_ssa_def *offset = nir_imul_imm(&b, global_id, 16);
offset = nir_channel(&b, offset, 0);
nir_ssa_def *buf = radv_meta_load_descriptor(&b, 0, 0);
nir_ssa_def *constants = nir_load_push_constant(&b, 2, 32, nir_imm_int(&b, 0), .range = 8);
nir_ssa_def *load = nir_load_ssbo(&b, 4, 32, buf, offset, .align_mul = 16);
/* data = (data & ~htile_mask) | (htile_value & htile_mask) */
nir_ssa_def *data = nir_iand(&b, load, nir_channel(&b, constants, 1));
data = nir_ior(&b, data, nir_channel(&b, constants, 0));
nir_store_ssbo(&b, data, buf, offset, .access = ACCESS_NON_READABLE, .align_mul = 16);
return b.shader;
}
static VkResult
init_meta_clear_htile_mask_state(struct radv_device *device)
{
struct radv_meta_state *state = &device->meta_state;
VkResult result;
nir_shader *cs = build_clear_htile_mask_shader(device);
VkDescriptorSetLayoutCreateInfo ds_layout_info = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR,
.bindingCount = 1,
.pBindings = (VkDescriptorSetLayoutBinding[]){
{.binding = 0,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = NULL},
}};
result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device), &ds_layout_info,
&state->alloc, &state->clear_htile_mask_ds_layout);
if (result != VK_SUCCESS)
goto fail;
VkPipelineLayoutCreateInfo p_layout_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.setLayoutCount = 1,
.pSetLayouts = &state->clear_htile_mask_ds_layout,
.pushConstantRangeCount = 1,
.pPushConstantRanges =
&(VkPushConstantRange){
VK_SHADER_STAGE_COMPUTE_BIT,
0,
8,
},
};
result = radv_CreatePipelineLayout(radv_device_to_handle(device), &p_layout_info, &state->alloc,
&state->clear_htile_mask_p_layout);
if (result != VK_SUCCESS)
goto fail;
VkPipelineShaderStageCreateInfo shader_stage = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_COMPUTE_BIT,
.module = vk_shader_module_handle_from_nir(cs),
.pName = "main",
.pSpecializationInfo = NULL,
};
VkComputePipelineCreateInfo pipeline_info = {
.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
.stage = shader_stage,
.flags = 0,
.layout = state->clear_htile_mask_p_layout,
};
result = radv_CreateComputePipelines(radv_device_to_handle(device),
state->cache, 1,
&pipeline_info, NULL, &state->clear_htile_mask_pipeline);
fail:
ralloc_free(cs);
return result;
}
/* Clear DCC using comp-to-single by storing the clear value at the beginning of every 256B block.
* For MSAA images, clearing the first sample should be enough as long as CMASK is also cleared.
*/
static nir_shader *
build_clear_dcc_comp_to_single_shader(struct radv_device *dev, bool is_msaa)
{
enum glsl_sampler_dim dim = is_msaa ? GLSL_SAMPLER_DIM_MS : GLSL_SAMPLER_DIM_2D;
const struct glsl_type *img_type = glsl_image_type(dim, true, GLSL_TYPE_FLOAT);
nir_builder b =
radv_meta_init_shader(dev, MESA_SHADER_COMPUTE, "meta_clear_dcc_comp_to_single-%s",
is_msaa ? "multisampled" : "singlesampled");
b.shader->info.workgroup_size[0] = 8;
b.shader->info.workgroup_size[1] = 8;
nir_ssa_def *global_id = get_global_ids(&b, 3);
/* Load the dimensions in pixels of a block that gets compressed to one DCC byte. */
nir_ssa_def *dcc_block_size = nir_load_push_constant(&b, 2, 32, nir_imm_int(&b, 0), .range = 8);
/* Compute the coordinates. */
nir_ssa_def *coord = nir_channels(&b, global_id, 0x3);
coord = nir_imul(&b, coord, dcc_block_size);
coord = nir_vec4(&b, nir_channel(&b, coord, 0),
nir_channel(&b, coord, 1),
nir_channel(&b, global_id, 2),
nir_ssa_undef(&b, 1, 32));
nir_variable *output_img = nir_variable_create(b.shader, nir_var_image, img_type, "out_img");
output_img->data.descriptor_set = 0;
output_img->data.binding = 0;
/* Load the clear color values. */
nir_ssa_def *clear_values = nir_load_push_constant(&b, 2, 32, nir_imm_int(&b, 8), .range = 8);
nir_ssa_def *data = nir_vec4(&b, nir_channel(&b, clear_values, 0),
nir_channel(&b, clear_values, 1),
nir_channel(&b, clear_values, 1),
nir_channel(&b, clear_values, 1));
/* Store the clear color values. */
nir_ssa_def *sample_id = is_msaa ? nir_imm_int(&b, 0) : nir_ssa_undef(&b, 1, 32);
nir_image_deref_store(&b, &nir_build_deref_var(&b, output_img)->dest.ssa, coord,
sample_id, data, nir_imm_int(&b, 0),
.image_dim = dim, .image_array = true);
return b.shader;
}
static VkResult
create_dcc_comp_to_single_pipeline(struct radv_device *device, bool is_msaa, VkPipeline *pipeline)
{
struct radv_meta_state *state = &device->meta_state;
VkResult result;
nir_shader *cs = build_clear_dcc_comp_to_single_shader(device, is_msaa);
VkPipelineShaderStageCreateInfo shader_stage = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_COMPUTE_BIT,
.module = vk_shader_module_handle_from_nir(cs),
.pName = "main",
.pSpecializationInfo = NULL,
};
VkComputePipelineCreateInfo pipeline_info = {
.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
.stage = shader_stage,
.flags = 0,
.layout = state->clear_dcc_comp_to_single_p_layout,
};
result = radv_CreateComputePipelines(radv_device_to_handle(device),
state->cache, 1,
&pipeline_info, NULL, pipeline);
ralloc_free(cs);
return result;
}
static VkResult
init_meta_clear_dcc_comp_to_single_state(struct radv_device *device)
{
struct radv_meta_state *state = &device->meta_state;
VkResult result;
VkDescriptorSetLayoutCreateInfo ds_layout_info = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR,
.bindingCount = 1,
.pBindings = (VkDescriptorSetLayoutBinding[]){
{.binding = 0,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = NULL},
}};
result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device), &ds_layout_info,
&state->alloc, &state->clear_dcc_comp_to_single_ds_layout);
if (result != VK_SUCCESS)
goto fail;
VkPipelineLayoutCreateInfo p_layout_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.setLayoutCount = 1,
.pSetLayouts = &state->clear_dcc_comp_to_single_ds_layout,
.pushConstantRangeCount = 1,
.pPushConstantRanges =
&(VkPushConstantRange){
VK_SHADER_STAGE_COMPUTE_BIT,
0,
16,
},
};
result = radv_CreatePipelineLayout(radv_device_to_handle(device), &p_layout_info, &state->alloc,
&state->clear_dcc_comp_to_single_p_layout);
if (result != VK_SUCCESS)
goto fail;
for (uint32_t i = 0; i < 2; i++) {
result = create_dcc_comp_to_single_pipeline(device, !!i,
&state->clear_dcc_comp_to_single_pipeline[i]);
if (result != VK_SUCCESS)
goto fail;
}
fail:
return result;
}
VkResult
radv_device_init_meta_clear_state(struct radv_device *device, bool on_demand)
{
VkResult res;
struct radv_meta_state *state = &device->meta_state;
VkPipelineLayoutCreateInfo pl_color_create_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.setLayoutCount = 0,
.pushConstantRangeCount = 1,
.pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_FRAGMENT_BIT, 0, 16},
};
res = radv_CreatePipelineLayout(radv_device_to_handle(device), &pl_color_create_info,
&device->meta_state.alloc,
&device->meta_state.clear_color_p_layout);
if (res != VK_SUCCESS)
return res;
VkPipelineLayoutCreateInfo pl_depth_create_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.setLayoutCount = 0,
.pushConstantRangeCount = 1,
.pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_VERTEX_BIT, 0, 4},
};
res = radv_CreatePipelineLayout(radv_device_to_handle(device), &pl_depth_create_info,
&device->meta_state.alloc,
&device->meta_state.clear_depth_p_layout);
if (res != VK_SUCCESS)
return res;
VkPipelineLayoutCreateInfo pl_depth_unrestricted_create_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.setLayoutCount = 0,
.pushConstantRangeCount = 1,
.pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_FRAGMENT_BIT, 0, 4},
};
res = radv_CreatePipelineLayout(radv_device_to_handle(device),
&pl_depth_unrestricted_create_info, &device->meta_state.alloc,
&device->meta_state.clear_depth_unrestricted_p_layout);
if (res != VK_SUCCESS)
return res;
res = init_meta_clear_htile_mask_state(device);
if (res != VK_SUCCESS)
return res;
res = init_meta_clear_dcc_comp_to_single_state(device);
if (res != VK_SUCCESS)
return res;
if (on_demand)
return VK_SUCCESS;
for (uint32_t i = 0; i < ARRAY_SIZE(state->color_clear); ++i) {
uint32_t samples = 1 << i;
/* Only precompile meta pipelines for attachment 0 as other are uncommon. */
for (uint32_t j = 0; j < NUM_META_FS_KEYS; ++j) {
VkFormat format = radv_fs_key_format_exemplars[j];
unsigned fs_key = radv_format_meta_fs_key(device, format);
assert(!state->color_clear[i][0].color_pipelines[fs_key]);
res = create_color_pipeline(device, samples, 0, format,
&state->color_clear[i][0].color_pipelines[fs_key]);
if (res != VK_SUCCESS)
return res;
}
}
for (uint32_t i = 0; i < ARRAY_SIZE(state->ds_clear); ++i) {
uint32_t samples = 1 << i;
for (uint32_t j = 0; j < NUM_DEPTH_CLEAR_PIPELINES; j++) {
res = create_depthstencil_pipeline(device, VK_IMAGE_ASPECT_DEPTH_BIT, samples, j, false,
&state->ds_clear[i].depth_only_pipeline[j]);
if (res != VK_SUCCESS)
return res;
res = create_depthstencil_pipeline(device, VK_IMAGE_ASPECT_STENCIL_BIT, samples, j, false,
&state->ds_clear[i].stencil_only_pipeline[j]);
if (res != VK_SUCCESS)
return res;
res = create_depthstencil_pipeline(
device, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT, samples, j, false,
&state->ds_clear[i].depthstencil_pipeline[j]);
if (res != VK_SUCCESS)
return res;
res = create_depthstencil_pipeline(device, VK_IMAGE_ASPECT_DEPTH_BIT, samples, j, true,
&state->ds_clear[i].depth_only_unrestricted_pipeline[j]);
if (res != VK_SUCCESS)
return res;
res =
create_depthstencil_pipeline(device, VK_IMAGE_ASPECT_STENCIL_BIT, samples, j, true,
&state->ds_clear[i].stencil_only_unrestricted_pipeline[j]);
if (res != VK_SUCCESS)
return res;
res = create_depthstencil_pipeline(
device, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT, samples, j, true,
&state->ds_clear[i].depthstencil_unrestricted_pipeline[j]);
if (res != VK_SUCCESS)
return res;
}
}
return VK_SUCCESS;
}
static uint32_t
radv_get_cmask_fast_clear_value(const struct radv_image *image)
{
uint32_t value = 0; /* Default value when no DCC. */
/* The fast-clear value is different for images that have both DCC and
* CMASK metadata.
*/
if (radv_image_has_dcc(image)) {
/* DCC fast clear with MSAA should clear CMASK to 0xC. */
return image->info.samples > 1 ? 0xcccccccc : 0xffffffff;
}
return value;
}
uint32_t
radv_clear_cmask(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
const VkImageSubresourceRange *range, uint32_t value)
{
uint64_t offset = image->bindings[0].offset + image->planes[0].surface.cmask_offset;
uint64_t size;
if (cmd_buffer->device->physical_device->rad_info.gfx_level == GFX9) {
/* TODO: clear layers. */
size = image->planes[0].surface.cmask_size;
} else {
unsigned slice_size = image->planes[0].surface.cmask_slice_size;
offset += slice_size * range->baseArrayLayer;
size = slice_size * radv_get_layerCount(image, range);
}
return radv_fill_buffer(cmd_buffer, image, image->bindings[0].bo,
radv_buffer_get_va(image->bindings[0].bo) + offset, size, value);
}
uint32_t
radv_clear_fmask(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
const VkImageSubresourceRange *range, uint32_t value)
{
uint64_t offset = image->bindings[0].offset + image->planes[0].surface.fmask_offset;
unsigned slice_size = image->planes[0].surface.fmask_slice_size;
uint64_t size;
/* MSAA images do not support mipmap levels. */
assert(range->baseMipLevel == 0 && radv_get_levelCount(image, range) == 1);
offset += slice_size * range->baseArrayLayer;
size = slice_size * radv_get_layerCount(image, range);
return radv_fill_buffer(cmd_buffer, image, image->bindings[0].bo,
radv_buffer_get_va(image->bindings[0].bo) + offset, size, value);
}
uint32_t
radv_clear_dcc(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
const VkImageSubresourceRange *range, uint32_t value)
{
uint32_t level_count = radv_get_levelCount(image, range);
uint32_t layer_count = radv_get_layerCount(image, range);
uint32_t flush_bits = 0;
/* Mark the image as being compressed. */
radv_update_dcc_metadata(cmd_buffer, image, range, true);
for (uint32_t l = 0; l < level_count; l++) {
uint64_t offset = image->bindings[0].offset + image->planes[0].surface.meta_offset;
uint32_t level = range->baseMipLevel + l;
uint64_t size;
if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX10) {
/* DCC for mipmaps+layers is currently disabled. */
offset += image->planes[0].surface.meta_slice_size * range->baseArrayLayer +
image->planes[0].surface.u.gfx9.meta_levels[level].offset;
size = image->planes[0].surface.u.gfx9.meta_levels[level].size * layer_count;
} else if (cmd_buffer->device->physical_device->rad_info.gfx_level == GFX9) {
/* Mipmap levels and layers aren't implemented. */
assert(level == 0);
size = image->planes[0].surface.meta_size;
} else {
const struct legacy_surf_dcc_level *dcc_level =
&image->planes[0].surface.u.legacy.color.dcc_level[level];
/* If dcc_fast_clear_size is 0 (which might happens for
* mipmaps) the fill buffer operation below is a no-op.
* This can only happen during initialization as the
* fast clear path fallbacks to slow clears if one
* level can't be fast cleared.
*/
offset +=
dcc_level->dcc_offset + dcc_level->dcc_slice_fast_clear_size * range->baseArrayLayer;
size = dcc_level->dcc_slice_fast_clear_size * radv_get_layerCount(image, range);
}
/* Do not clear this level if it can't be compressed. */
if (!size)
continue;
flush_bits |= radv_fill_buffer(cmd_buffer, image, image->bindings[0].bo,
radv_buffer_get_va(image->bindings[0].bo) + offset,
size, value);
}
return flush_bits;
}
static uint32_t
radv_clear_dcc_comp_to_single(struct radv_cmd_buffer *cmd_buffer,
struct radv_image *image,
const VkImageSubresourceRange *range,
uint32_t color_values[2])
{
struct radv_device *device = cmd_buffer->device;
unsigned bytes_per_pixel = vk_format_get_blocksize(image->vk.format);
unsigned layer_count = radv_get_layerCount(image, range);
struct radv_meta_saved_state saved_state;
bool is_msaa = image->info.samples > 1;
struct radv_image_view iview;
VkFormat format;
switch (bytes_per_pixel) {
case 1:
format = VK_FORMAT_R8_UINT;
break;
case 2:
format = VK_FORMAT_R16_UINT;
break;
case 4:
format = VK_FORMAT_R32_UINT;
break;
case 8:
format = VK_FORMAT_R32G32_UINT;
break;
case 16:
format = VK_FORMAT_R32G32B32A32_UINT;
break;
default:
unreachable("Unsupported number of bytes per pixel");
}
radv_meta_save(
&saved_state, cmd_buffer,
RADV_META_SAVE_DESCRIPTORS | RADV_META_SAVE_COMPUTE_PIPELINE | RADV_META_SAVE_CONSTANTS);
VkPipeline pipeline = device->meta_state.clear_dcc_comp_to_single_pipeline[is_msaa];
radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_COMPUTE,
pipeline);
for (uint32_t l = 0; l < radv_get_levelCount(image, range); l++) {
uint32_t width, height;
/* Do not write the clear color value for levels without DCC. */
if (!radv_dcc_enabled(image, range->baseMipLevel + l))
continue;
width = radv_minify(image->info.width, range->baseMipLevel + l);
height = radv_minify(image->info.height, range->baseMipLevel + l);
radv_image_view_init(
&iview, cmd_buffer->device,
&(VkImageViewCreateInfo){
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = radv_image_to_handle(image),
.viewType = VK_IMAGE_VIEW_TYPE_2D,
.format = format,
.subresourceRange = {.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = range->baseMipLevel + l,
.levelCount = 1,
.baseArrayLayer = range->baseArrayLayer,
.layerCount = layer_count},
},
0, &(struct radv_image_view_extra_create_info){.disable_compression = true});
radv_meta_push_descriptor_set(
cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE,
device->meta_state.clear_dcc_comp_to_single_p_layout, 0,
1,
(VkWriteDescriptorSet[]){{.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.pImageInfo =
(VkDescriptorImageInfo[]){
{
.sampler = VK_NULL_HANDLE,
.imageView = radv_image_view_to_handle(&iview),
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
},
}}});
unsigned dcc_width =
DIV_ROUND_UP(width, image->planes[0].surface.u.gfx9.color.dcc_block_width);
unsigned dcc_height =
DIV_ROUND_UP(height, image->planes[0].surface.u.gfx9.color.dcc_block_height);
const unsigned constants[4] = {
image->planes[0].surface.u.gfx9.color.dcc_block_width,
image->planes[0].surface.u.gfx9.color.dcc_block_height,
color_values[0],
color_values[1],
};
radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
device->meta_state.clear_dcc_comp_to_single_p_layout,
VK_SHADER_STAGE_COMPUTE_BIT, 0, 16, constants);
radv_unaligned_dispatch(cmd_buffer, dcc_width, dcc_height, layer_count);
radv_image_view_finish(&iview);
}
radv_meta_restore(&saved_state, cmd_buffer);
return RADV_CMD_FLAG_CS_PARTIAL_FLUSH |
radv_src_access_flush(cmd_buffer, VK_ACCESS_2_SHADER_WRITE_BIT, image);
}
uint32_t
radv_clear_htile(struct radv_cmd_buffer *cmd_buffer, const struct radv_image *image,
const VkImageSubresourceRange *range, uint32_t value)
{
uint32_t level_count = radv_get_levelCount(image, range);
uint32_t flush_bits = 0;
uint32_t htile_mask;
htile_mask = radv_get_htile_mask(cmd_buffer->device, image, range->aspectMask);
if (level_count != image->info.levels) {
assert(cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX10);
/* Clear individuals levels separately. */
for (uint32_t l = 0; l < level_count; l++) {
uint32_t level = range->baseMipLevel + l;
uint64_t offset = image->bindings[0].offset + image->planes[0].surface.meta_offset +
image->planes[0].surface.u.gfx9.meta_levels[level].offset;
uint32_t size = image->planes[0].surface.u.gfx9.meta_levels[level].size;
/* Do not clear this level if it can be compressed. */
if (!size)
continue;
if (htile_mask == UINT_MAX) {
/* Clear the whole HTILE buffer. */
flush_bits |= radv_fill_buffer(cmd_buffer, image, image->bindings[0].bo,
radv_buffer_get_va(image->bindings[0].bo) + offset,
size, value);
} else {
/* Only clear depth or stencil bytes in the HTILE buffer. */
flush_bits |=
clear_htile_mask(cmd_buffer, image, image->bindings[0].bo, offset, size, value, htile_mask);
}
}
} else {
unsigned layer_count = radv_get_layerCount(image, range);
uint64_t size = image->planes[0].surface.meta_slice_size * layer_count;
uint64_t offset = image->bindings[0].offset + image->planes[0].surface.meta_offset +
image->planes[0].surface.meta_slice_size * range->baseArrayLayer;
if (htile_mask == UINT_MAX) {
/* Clear the whole HTILE buffer. */
flush_bits = radv_fill_buffer(cmd_buffer, image, image->bindings[0].bo,
radv_buffer_get_va(image->bindings[0].bo) + offset,
size, value);
} else {
/* Only clear depth or stencil bytes in the HTILE buffer. */
flush_bits =
clear_htile_mask(cmd_buffer, image, image->bindings[0].bo, offset, size, value, htile_mask);
}
}
return flush_bits;
}
enum {
RADV_DCC_CLEAR_0000 = 0x00000000U,
RADV_DCC_GFX8_CLEAR_0001 = 0x40404040U,
RADV_DCC_GFX8_CLEAR_1110 = 0x80808080U,
RADV_DCC_GFX8_CLEAR_1111 = 0xC0C0C0C0U,
RADV_DCC_GFX8_CLEAR_REG = 0x20202020U,
RADV_DCC_GFX9_CLEAR_SINGLE = 0x10101010U,
RADV_DCC_GFX11_CLEAR_SINGLE = 0x01010101U,
RADV_DCC_GFX11_CLEAR_0000 = 0x00000000U,
RADV_DCC_GFX11_CLEAR_1111_UNORM = 0x02020202U,
RADV_DCC_GFX11_CLEAR_1111_FP16 = 0x04040404U,
RADV_DCC_GFX11_CLEAR_1111_FP32 = 0x06060606U,
RADV_DCC_GFX11_CLEAR_0001_UNORM = 0x08080808U,
RADV_DCC_GFX11_CLEAR_1110_UNORM = 0x0A0A0A0AU,
};
static uint32_t
radv_dcc_single_clear_value(const struct radv_device *device)
{
return device->physical_device->rad_info.gfx_level >= GFX11 ? RADV_DCC_GFX11_CLEAR_SINGLE
: RADV_DCC_GFX9_CLEAR_SINGLE;
}
static void
gfx8_get_fast_clear_parameters(struct radv_device *device, const struct radv_image_view *iview,
const VkClearColorValue *clear_value, uint32_t *reset_value,
bool *can_avoid_fast_clear_elim)
{
bool values[4] = {0};
int extra_channel;
bool main_value = false;
bool extra_value = false;
bool has_color = false;
bool has_alpha = false;
/* comp-to-single allows to perform DCC fast clears without requiring a FCE. */
if (iview->image->support_comp_to_single) {
*reset_value = RADV_DCC_GFX9_CLEAR_SINGLE;
*can_avoid_fast_clear_elim = true;
} else {
*reset_value = RADV_DCC_GFX8_CLEAR_REG;
*can_avoid_fast_clear_elim = false;
}
const struct util_format_description *desc = vk_format_description(iview->vk.format);
if (iview->vk.format == VK_FORMAT_B10G11R11_UFLOAT_PACK32 ||
iview->vk.format == VK_FORMAT_R5G6B5_UNORM_PACK16 || iview->vk.format == VK_FORMAT_B5G6R5_UNORM_PACK16)
extra_channel = -1;
else if (desc->layout == UTIL_FORMAT_LAYOUT_PLAIN) {
if (vi_alpha_is_on_msb(device, iview->vk.format))
extra_channel = desc->nr_channels - 1;
else
extra_channel = 0;
} else
return;
for (int i = 0; i < 4; i++) {
int index = desc->swizzle[i] - PIPE_SWIZZLE_X;
if (desc->swizzle[i] < PIPE_SWIZZLE_X || desc->swizzle[i] > PIPE_SWIZZLE_W)
continue;
if (desc->channel[i].pure_integer && desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) {
/* Use the maximum value for clamping the clear color. */
int max = u_bit_consecutive(0, desc->channel[i].size - 1);
values[i] = clear_value->int32[i] != 0;
if (clear_value->int32[i] != 0 && MIN2(clear_value->int32[i], max) != max)
return;
} else if (desc->channel[i].pure_integer &&
desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED) {
/* Use the maximum value for clamping the clear color. */
unsigned max = u_bit_consecutive(0, desc->channel[i].size);
values[i] = clear_value->uint32[i] != 0U;
if (clear_value->uint32[i] != 0U && MIN2(clear_value->uint32[i], max) != max)
return;
} else {
values[i] = clear_value->float32[i] != 0.0F;
if (clear_value->float32[i] != 0.0F && clear_value->float32[i] != 1.0F)
return;
}
if (index == extra_channel) {
extra_value = values[i];
has_alpha = true;
} else {
main_value = values[i];
has_color = true;
}
}
/* If alpha isn't present, make it the same as color, and vice versa. */
if (!has_alpha)
extra_value = main_value;
else if (!has_color)
main_value = extra_value;
for (int i = 0; i < 4; ++i)
if (values[i] != main_value && desc->swizzle[i] - PIPE_SWIZZLE_X != extra_channel &&
desc->swizzle[i] >= PIPE_SWIZZLE_X && desc->swizzle[i] <= PIPE_SWIZZLE_W)
return;
/* Only DCC clear code 0000 is allowed for signed<->unsigned formats. */
if ((main_value || extra_value) && iview->image->dcc_sign_reinterpret)
return;
*can_avoid_fast_clear_elim = true;
if (main_value) {
if (extra_value)
*reset_value = RADV_DCC_GFX8_CLEAR_1111;
else
*reset_value = RADV_DCC_GFX8_CLEAR_1110;
} else {
if (extra_value)
*reset_value = RADV_DCC_GFX8_CLEAR_0001;
else
*reset_value = RADV_DCC_CLEAR_0000;
}
}
static bool
gfx11_get_fast_clear_parameters(struct radv_device *device, const struct radv_image_view *iview,
const VkClearColorValue *clear_value, uint32_t *reset_value)
{
const struct util_format_description *desc = vk_format_description(iview->vk.format);
unsigned start_bit = UINT_MAX;
unsigned end_bit = 0;
/* TODO: 8bpp and 16bpp fast DCC clears don't work. */
if (desc->block.bits <= 16)
return false;
/* Find the used bit range. */
for (unsigned i = 0; i < 4; i++) {
unsigned swizzle = desc->swizzle[i];
if (swizzle >= PIPE_SWIZZLE_0)
continue;
start_bit = MIN2(start_bit, desc->channel[swizzle].shift);
end_bit = MAX2(end_bit, desc->channel[swizzle].shift + desc->channel[swizzle].size);
}
union {
uint8_t ub[16];
uint16_t us[8];
uint32_t ui[4];
} value;
memset(&value, 0, sizeof(value));
util_format_pack_rgba(vk_format_to_pipe_format(iview->vk.format), &value, clear_value, 1);
/* Check the cases where all components or bits are either all 0 or all 1. */
bool all_bits_are_0 = true;
bool all_bits_are_1 = true;
bool all_words_are_fp16_1 = false;
bool all_words_are_fp32_1 = false;
for (unsigned i = start_bit; i < end_bit; i++) {
bool bit = value.ub[i / 8] & BITFIELD_BIT(i % 8);
all_bits_are_0 &= !bit;
all_bits_are_1 &= bit;
}
if (start_bit % 16 == 0 && end_bit % 16 == 0) {
all_words_are_fp16_1 = true;
for (unsigned i = start_bit / 16; i < end_bit / 16; i++)
all_words_are_fp16_1 &= value.us[i] == 0x3c00;
}
if (start_bit % 32 == 0 && end_bit % 32 == 0) {
all_words_are_fp32_1 = true;
for (unsigned i = start_bit / 32; i < end_bit / 32; i++)
all_words_are_fp32_1 &= value.ui[i] == 0x3f800000;
}
if (all_bits_are_0 || all_bits_are_1 || all_words_are_fp16_1 || all_words_are_fp32_1) {
if (all_bits_are_0)
*reset_value = RADV_DCC_CLEAR_0000;
else if (all_bits_are_1)
*reset_value = RADV_DCC_GFX11_CLEAR_1111_UNORM;
else if (all_words_are_fp16_1)
*reset_value = RADV_DCC_GFX11_CLEAR_1111_FP16;
else if (all_words_are_fp32_1)
*reset_value = RADV_DCC_GFX11_CLEAR_1111_FP32;
return true;
}
if (vi_alpha_is_on_msb(device, iview->vk.format)) {
if (desc->nr_channels == 2 && desc->channel[0].size == 8) {
if (value.ub[0] == 0x00 && value.ub[1] == 0xff) {
*reset_value = RADV_DCC_GFX11_CLEAR_0001_UNORM;
return true;
} else if (value.ub[0] == 0xff && value.ub[1] == 0x00) {
*reset_value = RADV_DCC_GFX11_CLEAR_1110_UNORM;
return true;
}
} else if (desc->nr_channels == 4 && desc->channel[0].size == 8) {
if (value.ub[0] == 0x00 && value.ub[1] == 0x00 &&
value.ub[2] == 0x00 && value.ub[3] == 0xff) {
*reset_value = RADV_DCC_GFX11_CLEAR_0001_UNORM;
return true;
} else if (value.ub[0] == 0xff && value.ub[1] == 0xff &&
value.ub[2] == 0xff && value.ub[3] == 0x00) {
*reset_value = RADV_DCC_GFX11_CLEAR_1110_UNORM;
return true;
}
} else if (desc->nr_channels == 4 && desc->channel[0].size == 16) {
if (value.us[0] == 0x0000 && value.us[1] == 0x0000 &&
value.us[2] == 0x0000 && value.us[3] == 0xffff) {
*reset_value = RADV_DCC_GFX11_CLEAR_0001_UNORM;
return true;
} else if (value.us[0] == 0xffff && value.us[1] == 0xffff &&
value.us[2] == 0xffff && value.us[3] == 0x0000) {
*reset_value = RADV_DCC_GFX11_CLEAR_1110_UNORM;
return true;
}
}
}
if (iview->image->support_comp_to_single) {
*reset_value = RADV_DCC_GFX11_CLEAR_SINGLE;
return true;
}
return false;
}
static bool
radv_can_fast_clear_color(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview,
VkImageLayout image_layout,
const VkClearRect *clear_rect, VkClearColorValue clear_value,
uint32_t view_mask)
{
uint32_t clear_color[2];
if (!iview || !iview->support_fast_clear)
return false;
if (!radv_layout_can_fast_clear(
cmd_buffer->device, iview->image, iview->vk.base_mip_level, image_layout,
radv_image_queue_family_mask(iview->image, cmd_buffer->qf,
cmd_buffer->qf)))
return false;
if (clear_rect->rect.offset.x || clear_rect->rect.offset.y ||
clear_rect->rect.extent.width != iview->image->info.width ||
clear_rect->rect.extent.height != iview->image->info.height)
return false;
if (view_mask && (iview->image->info.array_size >= 32 ||
(1u << iview->image->info.array_size) - 1u != view_mask))
return false;
if (!view_mask && clear_rect->baseArrayLayer != 0)
return false;
if (!view_mask && clear_rect->layerCount != iview->image->info.array_size)
return false;
/* DCC */
if (!radv_format_pack_clear_color(iview->vk.format, clear_color, &clear_value))
return false;
/* Images that support comp-to-single clears don't have clear values. */
if (!iview->image->support_comp_to_single &&
!radv_image_has_clear_value(iview->image) && (clear_color[0] != 0 || clear_color[1] != 0))
return false;
if (radv_dcc_enabled(iview->image, iview->vk.base_mip_level)) {
bool can_avoid_fast_clear_elim;
uint32_t reset_value;
if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX11) {
if (!gfx11_get_fast_clear_parameters(cmd_buffer->device, iview, &clear_value,
&reset_value))
return false;
} else {
gfx8_get_fast_clear_parameters(cmd_buffer->device, iview, &clear_value, &reset_value,
&can_avoid_fast_clear_elim);
}
if (iview->image->info.levels > 1) {
if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX9) {
uint32_t last_level = iview->vk.base_mip_level + iview->vk.level_count - 1;
if (last_level >= iview->image->planes[0].surface.num_meta_levels) {
/* Do not fast clears if one level can't be fast cleard. */
return false;
}
} else {
for (uint32_t l = 0; l < iview->vk.level_count; l++) {
uint32_t level = iview->vk.base_mip_level + l;
struct legacy_surf_dcc_level *dcc_level =
&iview->image->planes[0].surface.u.legacy.color.dcc_level[level];
/* Do not fast clears if one level can't be
* fast cleared.
*/
if (!dcc_level->dcc_fast_clear_size)
return false;
}
}
}
}
return true;
}
static void
radv_fast_clear_color(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview,
const VkClearAttachment *clear_att, enum radv_cmd_flush_bits *pre_flush,
enum radv_cmd_flush_bits *post_flush)
{
VkClearColorValue clear_value = clear_att->clearValue.color;
uint32_t clear_color[2], flush_bits = 0;
uint32_t cmask_clear_value;
VkImageSubresourceRange range = {
.aspectMask = iview->vk.aspects,
.baseMipLevel = iview->vk.base_mip_level,
.levelCount = iview->vk.level_count,
.baseArrayLayer = iview->vk.base_array_layer,
.layerCount = iview->vk.layer_count,
};
if (pre_flush) {
enum radv_cmd_flush_bits bits =
radv_src_access_flush(cmd_buffer, VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT, iview->image) |
radv_dst_access_flush(cmd_buffer, VK_ACCESS_2_SHADER_WRITE_BIT, iview->image);
cmd_buffer->state.flush_bits |= bits & ~*pre_flush;
*pre_flush |= cmd_buffer->state.flush_bits;
}
/* DCC */
radv_format_pack_clear_color(iview->vk.format, clear_color, &clear_value);
cmask_clear_value = radv_get_cmask_fast_clear_value(iview->image);
/* clear cmask buffer */
bool need_decompress_pass = false;
if (radv_dcc_enabled(iview->image, iview->vk.base_mip_level)) {
uint32_t reset_value;
bool can_avoid_fast_clear_elim = true;
if (cmd_buffer->device->physical_device->rad_info.gfx_level >= GFX11) {
ASSERTED bool result =
gfx11_get_fast_clear_parameters(cmd_buffer->device, iview, &clear_value, &reset_value);
assert(result);
} else {
gfx8_get_fast_clear_parameters(cmd_buffer->device, iview, &clear_value, &reset_value,
&can_avoid_fast_clear_elim);
}
if (radv_image_has_cmask(iview->image)) {
flush_bits = radv_clear_cmask(cmd_buffer, iview->image, &range, cmask_clear_value);
}
if (!can_avoid_fast_clear_elim)
need_decompress_pass = true;
flush_bits |= radv_clear_dcc(cmd_buffer, iview->image, &range, reset_value);
if (reset_value == radv_dcc_single_clear_value(cmd_buffer->device)) {
/* Write the clear color to the first byte of each 256B block when the image supports DCC
* fast clears with comp-to-single.
*/
flush_bits |= radv_clear_dcc_comp_to_single(cmd_buffer, iview->image, &range, clear_color);
}
} else {
flush_bits = radv_clear_cmask(cmd_buffer, iview->image, &range, cmask_clear_value);
/* Fast clearing with CMASK should always be eliminated. */
need_decompress_pass = true;
}
if (post_flush) {
*post_flush |= flush_bits;
}
/* Update the FCE predicate to perform a fast-clear eliminate. */
radv_update_fce_metadata(cmd_buffer, iview->image, &range, need_decompress_pass);
radv_update_color_clear_metadata(cmd_buffer, iview, clear_att->colorAttachment, clear_color);
}
/**
* The parameters mean that same as those in vkCmdClearAttachments.
*/
static void
emit_clear(struct radv_cmd_buffer *cmd_buffer, const VkClearAttachment *clear_att,
const VkClearRect *clear_rect, enum radv_cmd_flush_bits *pre_flush,
enum radv_cmd_flush_bits *post_flush, uint32_t view_mask)
{
const struct radv_rendering_state *render = &cmd_buffer->state.render;
VkImageAspectFlags aspects = clear_att->aspectMask;
if (aspects & VK_IMAGE_ASPECT_COLOR_BIT) {
assert(clear_att->colorAttachment < render->color_att_count);
const struct radv_attachment *color_att =
&render->color_att[clear_att->colorAttachment];
if (color_att->format == VK_FORMAT_UNDEFINED)
return;
VkClearColorValue clear_value = clear_att->clearValue.color;
if (radv_can_fast_clear_color(cmd_buffer, color_att->iview, color_att->layout, clear_rect,
clear_value, view_mask)) {
radv_fast_clear_color(cmd_buffer, color_att->iview, clear_att, pre_flush, post_flush);
} else {
emit_color_clear(cmd_buffer, clear_att, clear_rect, view_mask);
}
} else {
const struct radv_attachment *ds_att = &render->ds_att;
if (ds_att->format == VK_FORMAT_UNDEFINED)
return;
VkClearDepthStencilValue clear_value = clear_att->clearValue.depthStencil;
assert(aspects & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT));
if (radv_can_fast_clear_depth(cmd_buffer, ds_att->iview, ds_att->layout, aspects,
clear_rect, clear_value, view_mask)) {
radv_fast_clear_depth(cmd_buffer, ds_att->iview, clear_att, pre_flush, post_flush);
} else {
emit_depthstencil_clear(cmd_buffer, clear_att, clear_rect, view_mask);
}
}
}
static bool
radv_rendering_needs_clear(const VkRenderingInfo *pRenderingInfo)
{
for (uint32_t i = 0; i < pRenderingInfo->colorAttachmentCount; i++) {
if (pRenderingInfo->pColorAttachments[i].imageView != VK_NULL_HANDLE &&
pRenderingInfo->pColorAttachments[i].loadOp == VK_ATTACHMENT_LOAD_OP_CLEAR)
return true;
}
if (pRenderingInfo->pDepthAttachment != NULL &&
pRenderingInfo->pDepthAttachment->imageView != VK_NULL_HANDLE &&
pRenderingInfo->pDepthAttachment->loadOp == VK_ATTACHMENT_LOAD_OP_CLEAR)
return true;
if (pRenderingInfo->pStencilAttachment != NULL &&
pRenderingInfo->pStencilAttachment->imageView != VK_NULL_HANDLE &&
pRenderingInfo->pStencilAttachment->loadOp == VK_ATTACHMENT_LOAD_OP_CLEAR)
return true;
return false;
}
static void
radv_subpass_clear_attachment(struct radv_cmd_buffer *cmd_buffer,
const VkClearAttachment *clear_att,
enum radv_cmd_flush_bits *pre_flush,
enum radv_cmd_flush_bits *post_flush)
{
const struct radv_rendering_state *render = &cmd_buffer->state.render;
VkClearRect clear_rect = {
.rect = render->area,
.baseArrayLayer = 0,
.layerCount = render->layer_count,
};
radv_describe_begin_render_pass_clear(cmd_buffer, clear_att->aspectMask);
emit_clear(cmd_buffer, clear_att, &clear_rect, pre_flush, post_flush, render->view_mask);
radv_describe_end_render_pass_clear(cmd_buffer);
}
/**
* Emit any pending attachment clears for the current subpass.
*
* @see radv_attachment_state::pending_clear_aspects
*/
void
radv_cmd_buffer_clear_rendering(struct radv_cmd_buffer *cmd_buffer,
const VkRenderingInfo *pRenderingInfo)
{
const struct radv_rendering_state *render = &cmd_buffer->state.render;
struct radv_meta_saved_state saved_state;
enum radv_cmd_flush_bits pre_flush = 0;
enum radv_cmd_flush_bits post_flush = 0;
if (!radv_rendering_needs_clear(pRenderingInfo))
return;
/* Subpass clear should not be affected by conditional rendering. */
radv_meta_save(
&saved_state, cmd_buffer,
RADV_META_SAVE_GRAPHICS_PIPELINE | RADV_META_SAVE_CONSTANTS | RADV_META_SUSPEND_PREDICATING);
assert(render->color_att_count == pRenderingInfo->colorAttachmentCount);
for (uint32_t i = 0; i < render->color_att_count; i++) {
if (render->color_att[i].iview == NULL ||
pRenderingInfo->pColorAttachments[i].loadOp != VK_ATTACHMENT_LOAD_OP_CLEAR)
continue;
VkClearAttachment clear_att = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.colorAttachment = i,
.clearValue = pRenderingInfo->pColorAttachments[i].clearValue,
};
radv_subpass_clear_attachment(cmd_buffer, &clear_att, &pre_flush, &post_flush);
}
if (render->ds_att.iview != NULL) {
VkClearAttachment clear_att = { .aspectMask = 0 };
if (pRenderingInfo->pDepthAttachment != NULL &&
pRenderingInfo->pDepthAttachment->imageView != VK_NULL_HANDLE &&
pRenderingInfo->pDepthAttachment->loadOp == VK_ATTACHMENT_LOAD_OP_CLEAR) {
clear_att.aspectMask |= VK_IMAGE_ASPECT_DEPTH_BIT;
clear_att.clearValue.depthStencil.depth =
pRenderingInfo->pDepthAttachment->clearValue.depthStencil.depth;
}
if (pRenderingInfo->pStencilAttachment != NULL &&
pRenderingInfo->pStencilAttachment->imageView != VK_NULL_HANDLE &&
pRenderingInfo->pStencilAttachment->loadOp == VK_ATTACHMENT_LOAD_OP_CLEAR) {
clear_att.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
clear_att.clearValue.depthStencil.stencil =
pRenderingInfo->pStencilAttachment->clearValue.depthStencil.stencil;
}
if (clear_att.aspectMask != 0) {
radv_subpass_clear_attachment(cmd_buffer, &clear_att, &pre_flush, &post_flush);
}
}
radv_meta_restore(&saved_state, cmd_buffer);
cmd_buffer->state.flush_bits |= post_flush;
}
static void
radv_clear_image_layer(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
VkImageLayout image_layout, const VkImageSubresourceRange *range,
VkFormat format, int level, unsigned layer_count,
const VkClearValue *clear_val)
{
struct radv_image_view iview;
uint32_t width = radv_minify(image->info.width, range->baseMipLevel + level);
uint32_t height = radv_minify(image->info.height, range->baseMipLevel + level);
radv_image_view_init(&iview, cmd_buffer->device,
&(VkImageViewCreateInfo){
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = radv_image_to_handle(image),
.viewType = radv_meta_get_view_type(image),
.format = format,
.subresourceRange = {.aspectMask = range->aspectMask,
.baseMipLevel = range->baseMipLevel + level,
.levelCount = 1,
.baseArrayLayer = range->baseArrayLayer,
.layerCount = layer_count},
},
0, NULL);
VkClearAttachment clear_att = {
.aspectMask = range->aspectMask,
.colorAttachment = 0,
.clearValue = *clear_val,
};
VkClearRect clear_rect = {
.rect =
{
.offset = {0, 0},
.extent = {width, height},
},
.baseArrayLayer = 0,
.layerCount = layer_count,
};
VkRenderingAttachmentInfo att = {
.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO,
.imageView = radv_image_view_to_handle(&iview),
.imageLayout = image_layout,
.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
.storeOp = VK_ATTACHMENT_STORE_OP_STORE,
};
VkRenderingInfo rendering_info = {
.sType = VK_STRUCTURE_TYPE_RENDERING_INFO,
.renderArea = {
.offset = { 0, 0 },
.extent = { width, height },
},
.layerCount = layer_count,
};
if (image->vk.aspects & VK_IMAGE_ASPECT_COLOR_BIT) {
rendering_info.colorAttachmentCount = 1;
rendering_info.pColorAttachments = &att;
}
if (image->vk.aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
rendering_info.pDepthAttachment = &att;
if (image->vk.aspects & VK_IMAGE_ASPECT_STENCIL_BIT)
rendering_info.pStencilAttachment = &att;
radv_CmdBeginRendering(radv_cmd_buffer_to_handle(cmd_buffer), &rendering_info);
emit_clear(cmd_buffer, &clear_att, &clear_rect, NULL, NULL, 0);
radv_CmdEndRendering(radv_cmd_buffer_to_handle(cmd_buffer));
radv_image_view_finish(&iview);
}
/**
* Return TRUE if a fast color or depth clear has been performed.
*/
static bool
radv_fast_clear_range(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, VkFormat format,
VkImageLayout image_layout,
const VkImageSubresourceRange *range, const VkClearValue *clear_val)
{
struct radv_image_view iview;
bool fast_cleared = false;
radv_image_view_init(&iview, cmd_buffer->device,
&(VkImageViewCreateInfo){
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = radv_image_to_handle(image),
.viewType = radv_meta_get_view_type(image),
.format = image->vk.format,
.subresourceRange =
{
.aspectMask = range->aspectMask,
.baseMipLevel = range->baseMipLevel,
.levelCount = range->levelCount,
.baseArrayLayer = range->baseArrayLayer,
.layerCount = range->layerCount,
},
},
0, NULL);
VkClearRect clear_rect = {
.rect =
{
.offset = {0, 0},
.extent =
{
radv_minify(image->info.width, range->baseMipLevel),
radv_minify(image->info.height, range->baseMipLevel),
},
},
.baseArrayLayer = range->baseArrayLayer,
.layerCount = range->layerCount,
};
VkClearAttachment clear_att = {
.aspectMask = range->aspectMask,
.colorAttachment = 0,
.clearValue = *clear_val,
};
if (vk_format_is_color(format)) {
if (radv_can_fast_clear_color(cmd_buffer, &iview, image_layout, &clear_rect,
clear_att.clearValue.color, 0)) {
radv_fast_clear_color(cmd_buffer, &iview, &clear_att, NULL, NULL);
fast_cleared = true;
}
} else {
if (radv_can_fast_clear_depth(cmd_buffer, &iview, image_layout,
range->aspectMask, &clear_rect,
clear_att.clearValue.depthStencil, 0)) {
radv_fast_clear_depth(cmd_buffer, &iview, &clear_att, NULL, NULL);
fast_cleared = true;
}
}
radv_image_view_finish(&iview);
return fast_cleared;
}
static void
radv_cmd_clear_image(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
VkImageLayout image_layout, const VkClearValue *clear_value,
uint32_t range_count, const VkImageSubresourceRange *ranges, bool cs)
{
VkFormat format = image->vk.format;
VkClearValue internal_clear_value;
if (ranges->aspectMask & VK_IMAGE_ASPECT_COLOR_BIT)
internal_clear_value.color = clear_value->color;
else
internal_clear_value.depthStencil = clear_value->depthStencil;
bool disable_compression = false;
if (format == VK_FORMAT_E5B9G9R9_UFLOAT_PACK32) {
bool blendable;
if (cs ? !radv_is_storage_image_format_supported(cmd_buffer->device->physical_device, format)
: !radv_is_colorbuffer_format_supported(cmd_buffer->device->physical_device, format,
&blendable)) {
format = VK_FORMAT_R32_UINT;
internal_clear_value.color.uint32[0] = float3_to_rgb9e5(clear_value->color.float32);
uint32_t queue_mask = radv_image_queue_family_mask(image, cmd_buffer->qf,
cmd_buffer->qf);
for (uint32_t r = 0; r < range_count; r++) {
const VkImageSubresourceRange *range = &ranges[r];
/* Don't use compressed image stores because they will use an incompatible format. */
if (radv_layout_dcc_compressed(cmd_buffer->device, image, range->baseMipLevel,
image_layout, queue_mask)) {
disable_compression = cs;
break;
}
}
}
}
if (format == VK_FORMAT_R4G4_UNORM_PACK8) {
uint8_t r, g;
format = VK_FORMAT_R8_UINT;
r = float_to_ubyte(clear_value->color.float32[0]) >> 4;
g = float_to_ubyte(clear_value->color.float32[1]) >> 4;
internal_clear_value.color.uint32[0] = (r << 4) | (g & 0xf);
}
for (uint32_t r = 0; r < range_count; r++) {
const VkImageSubresourceRange *range = &ranges[r];
/* Try to perform a fast clear first, otherwise fallback to
* the legacy path.
*/
if (!cs && radv_fast_clear_range(cmd_buffer, image, format, image_layout, range,
&internal_clear_value)) {
continue;
}
for (uint32_t l = 0; l < radv_get_levelCount(image, range); ++l) {
const uint32_t layer_count = image->vk.image_type == VK_IMAGE_TYPE_3D
? radv_minify(image->info.depth, range->baseMipLevel + l)
: radv_get_layerCount(image, range);
if (cs) {
for (uint32_t s = 0; s < layer_count; ++s) {
struct radv_meta_blit2d_surf surf;
surf.format = format;
surf.image = image;
surf.level = range->baseMipLevel + l;
surf.layer = range->baseArrayLayer + s;
surf.aspect_mask = range->aspectMask;
surf.disable_compression = disable_compression;
radv_meta_clear_image_cs(cmd_buffer, &surf, &internal_clear_value.color);
}
} else {
assert(!disable_compression);
radv_clear_image_layer(cmd_buffer, image, image_layout, range, format, l, layer_count,
&internal_clear_value);
}
}
}
if (disable_compression) {
enum radv_cmd_flush_bits flush_bits = 0;
for (unsigned i = 0; i < range_count; i++) {
if (radv_dcc_enabled(image, ranges[i].baseMipLevel))
flush_bits |= radv_clear_dcc(cmd_buffer, image, &ranges[i], 0xffffffffu);
}
cmd_buffer->state.flush_bits |= flush_bits;
}
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdClearColorImage(VkCommandBuffer commandBuffer, VkImage image_h, VkImageLayout imageLayout,
const VkClearColorValue *pColor, uint32_t rangeCount,
const VkImageSubresourceRange *pRanges)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_image, image, image_h);
struct radv_meta_saved_state saved_state;
bool cs;
cs = cmd_buffer->qf == RADV_QUEUE_COMPUTE ||
!radv_image_is_renderable(cmd_buffer->device, image);
/* Clear commands (except vkCmdClearAttachments) should not be affected by conditional rendering.
*/
enum radv_meta_save_flags save_flags = RADV_META_SAVE_CONSTANTS | RADV_META_SUSPEND_PREDICATING;
if (cs)
save_flags |= RADV_META_SAVE_COMPUTE_PIPELINE | RADV_META_SAVE_DESCRIPTORS;
else
save_flags |= RADV_META_SAVE_GRAPHICS_PIPELINE;
radv_meta_save(&saved_state, cmd_buffer, save_flags);
radv_cmd_clear_image(cmd_buffer, image, imageLayout, (const VkClearValue *)pColor, rangeCount,
pRanges, cs);
radv_meta_restore(&saved_state, cmd_buffer);
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdClearDepthStencilImage(VkCommandBuffer commandBuffer, VkImage image_h,
VkImageLayout imageLayout,
const VkClearDepthStencilValue *pDepthStencil, uint32_t rangeCount,
const VkImageSubresourceRange *pRanges)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
RADV_FROM_HANDLE(radv_image, image, image_h);
struct radv_meta_saved_state saved_state;
/* Clear commands (except vkCmdClearAttachments) should not be affected by conditional rendering. */
radv_meta_save(
&saved_state, cmd_buffer,
RADV_META_SAVE_GRAPHICS_PIPELINE | RADV_META_SAVE_CONSTANTS | RADV_META_SUSPEND_PREDICATING);
radv_cmd_clear_image(cmd_buffer, image, imageLayout, (const VkClearValue *)pDepthStencil,
rangeCount, pRanges, false);
radv_meta_restore(&saved_state, cmd_buffer);
}
VKAPI_ATTR void VKAPI_CALL
radv_CmdClearAttachments(VkCommandBuffer commandBuffer, uint32_t attachmentCount,
const VkClearAttachment *pAttachments, uint32_t rectCount,
const VkClearRect *pRects)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
struct radv_meta_saved_state saved_state;
enum radv_cmd_flush_bits pre_flush = 0;
enum radv_cmd_flush_bits post_flush = 0;
if (!cmd_buffer->state.render.active)
return;
radv_meta_save(&saved_state, cmd_buffer,
RADV_META_SAVE_GRAPHICS_PIPELINE | RADV_META_SAVE_CONSTANTS);
/* FINISHME: We can do better than this dumb loop. It thrashes too much
* state.
*/
for (uint32_t a = 0; a < attachmentCount; ++a) {
for (uint32_t r = 0; r < rectCount; ++r) {
emit_clear(cmd_buffer, &pAttachments[a], &pRects[r], &pre_flush, &post_flush,
cmd_buffer->state.render.view_mask);
}
}
radv_meta_restore(&saved_state, cmd_buffer);
cmd_buffer->state.flush_bits |= post_flush;
}