mesa/src/compiler/nir/nir_from_ssa.c

1291 lines
43 KiB
C

/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "nir.h"
#include "nir_builder.h"
#include "nir_builder_opcodes.h"
#include "nir_vla.h"
/*
* This file implements an out-of-SSA pass as described in "Revisiting
* Out-of-SSA Translation for Correctness, Code Quality, and Efficiency" by
* Boissinot et al.
*/
struct from_ssa_state {
nir_builder builder;
void *dead_ctx;
struct exec_list dead_instrs;
bool phi_webs_only;
struct hash_table *merge_node_table;
nir_instr *instr;
bool progress;
};
/* Returns if def @a comes after def @b.
*
* The core observation that makes the Boissinot algorithm efficient
* is that, given two properly sorted sets, we can check for
* interference in these sets via a linear walk. This is accomplished
* by doing single combined walk over union of the two sets in DFS
* order. It doesn't matter what DFS we do so long as we're
* consistent. Fortunately, the dominance algorithm we ran prior to
* this pass did such a walk and recorded the pre- and post-indices in
* the blocks.
*
* We treat SSA undefs as always coming before other instruction types.
*/
static bool
def_after(nir_def *a, nir_def *b)
{
if (a->parent_instr->type == nir_instr_type_undef)
return false;
if (b->parent_instr->type == nir_instr_type_undef)
return true;
/* If they're in the same block, we can rely on whichever instruction
* comes first in the block.
*/
if (a->parent_instr->block == b->parent_instr->block)
return a->parent_instr->index > b->parent_instr->index;
/* Otherwise, if blocks are distinct, we sort them in DFS pre-order */
return a->parent_instr->block->dom_pre_index >
b->parent_instr->block->dom_pre_index;
}
/* Returns true if a dominates b */
static bool
ssa_def_dominates(nir_def *a, nir_def *b)
{
if (a->parent_instr->type == nir_instr_type_undef) {
/* SSA undefs always dominate */
return true;
}
if (def_after(a, b)) {
return false;
} else if (a->parent_instr->block == b->parent_instr->block) {
return def_after(b, a);
} else {
return nir_block_dominates(a->parent_instr->block,
b->parent_instr->block);
}
}
/* The following data structure, which I have named merge_set is a way of
* representing a set registers of non-interfering registers. This is
* based on the concept of a "dominance forest" presented in "Fast Copy
* Coalescing and Live-Range Identification" by Budimlic et al. but the
* implementation concept is taken from "Revisiting Out-of-SSA Translation
* for Correctness, Code Quality, and Efficiency" by Boissinot et al.
*
* Each SSA definition is associated with a merge_node and the association
* is represented by a combination of a hash table and the "def" parameter
* in the merge_node structure. The merge_set stores a linked list of
* merge_nodes, ordered by a pre-order DFS walk of the dominance tree. (Since
* the liveness analysis pass indexes the SSA values in dominance order for
* us, this is an easy thing to keep up.) It is assumed that no pair of the
* nodes in a given set interfere. Merging two sets or checking for
* interference can be done in a single linear-time merge-sort walk of the
* two lists of nodes.
*/
struct merge_set;
typedef struct {
struct exec_node node;
struct merge_set *set;
nir_def *def;
} merge_node;
typedef struct merge_set {
struct exec_list nodes;
unsigned size;
bool divergent;
nir_def *reg_decl;
} merge_set;
#if 0
static void
merge_set_dump(merge_set *set, FILE *fp)
{
NIR_VLA(nir_def *, dom, set->size);
int dom_idx = -1;
foreach_list_typed(merge_node, node, node, &set->nodes) {
while (dom_idx >= 0 && !ssa_def_dominates(dom[dom_idx], node->def))
dom_idx--;
for (int i = 0; i <= dom_idx; i++)
fprintf(fp, " ");
fprintf(fp, "ssa_%d\n", node->def->index);
dom[++dom_idx] = node->def;
}
}
#endif
static merge_node *
get_merge_node(nir_def *def, struct from_ssa_state *state)
{
struct hash_entry *entry =
_mesa_hash_table_search(state->merge_node_table, def);
if (entry)
return entry->data;
merge_set *set = rzalloc(state->dead_ctx, merge_set);
exec_list_make_empty(&set->nodes);
set->size = 1;
set->divergent = def->divergent;
merge_node *node = ralloc(state->dead_ctx, merge_node);
node->set = set;
node->def = def;
exec_list_push_head(&set->nodes, &node->node);
_mesa_hash_table_insert(state->merge_node_table, def, node);
return node;
}
static bool
merge_nodes_interfere(merge_node *a, merge_node *b)
{
/* There's no need to check for interference within the same set,
* because we assume, that sets themselves are already
* interference-free.
*/
if (a->set == b->set)
return false;
return nir_defs_interfere(a->def, b->def);
}
/* Merges b into a
*
* This algorithm uses def_after to ensure that the sets always stay in the
* same order as the pre-order DFS done by the liveness algorithm.
*/
static merge_set *
merge_merge_sets(merge_set *a, merge_set *b)
{
struct exec_node *an = exec_list_get_head(&a->nodes);
struct exec_node *bn = exec_list_get_head(&b->nodes);
while (!exec_node_is_tail_sentinel(bn)) {
merge_node *a_node = exec_node_data(merge_node, an, node);
merge_node *b_node = exec_node_data(merge_node, bn, node);
if (exec_node_is_tail_sentinel(an) ||
def_after(a_node->def, b_node->def)) {
struct exec_node *next = bn->next;
exec_node_remove(bn);
exec_node_insert_node_before(an, bn);
exec_node_data(merge_node, bn, node)->set = a;
bn = next;
} else {
an = an->next;
}
}
a->size += b->size;
b->size = 0;
a->divergent |= b->divergent;
return a;
}
/* Checks for any interference between two merge sets
*
* This is an implementation of Algorithm 2 in "Revisiting Out-of-SSA
* Translation for Correctness, Code Quality, and Efficiency" by
* Boissinot et al.
*/
static bool
merge_sets_interfere(merge_set *a, merge_set *b)
{
/* List of all the nodes which dominate the current node, in dominance
* order.
*/
NIR_VLA(merge_node *, dom, a->size + b->size);
int dom_idx = -1;
struct exec_node *an = exec_list_get_head(&a->nodes);
struct exec_node *bn = exec_list_get_head(&b->nodes);
while (!exec_node_is_tail_sentinel(an) ||
!exec_node_is_tail_sentinel(bn)) {
/* We walk the union of the two sets in the same order as the pre-order
* DFS done by liveness analysis.
*/
merge_node *current;
if (exec_node_is_tail_sentinel(an)) {
current = exec_node_data(merge_node, bn, node);
bn = bn->next;
} else if (exec_node_is_tail_sentinel(bn)) {
current = exec_node_data(merge_node, an, node);
an = an->next;
} else {
merge_node *a_node = exec_node_data(merge_node, an, node);
merge_node *b_node = exec_node_data(merge_node, bn, node);
if (def_after(b_node->def, a_node->def)) {
current = a_node;
an = an->next;
} else {
current = b_node;
bn = bn->next;
}
}
/* Because our walk is a pre-order DFS, we can maintain the list of
* dominating nodes as a simple stack, pushing every node onto the list
* after we visit it and popping any non-dominating nodes off before we
* visit the current node.
*/
while (dom_idx >= 0 &&
!ssa_def_dominates(dom[dom_idx]->def, current->def))
dom_idx--;
/* There are three invariants of this algorithm that are important here:
*
* 1. There is no interference within either set a or set b.
* 2. None of the nodes processed up until this point interfere.
* 3. All the dominators of `current` have been processed
*
* Because of these invariants, we only need to check the current node
* against its minimal dominator. If any other node N in the union
* interferes with current, then N must dominate current because we are
* in SSA form. If N dominates current then it must also dominate our
* minimal dominator dom[dom_idx]. Since N is live at current it must
* also be live at the minimal dominator which means N interferes with
* the minimal dominator dom[dom_idx] and, by invariants 2 and 3 above,
* the algorithm would have already terminated. Therefore, if we got
* here, the only node that can possibly interfere with current is the
* minimal dominator dom[dom_idx].
*
* This is what allows us to do a interference check of the union of the
* two sets with a single linear-time walk.
*/
if (dom_idx >= 0 && merge_nodes_interfere(current, dom[dom_idx]))
return true;
dom[++dom_idx] = current;
}
return false;
}
static bool
add_parallel_copy_to_end_of_block(nir_shader *shader, nir_block *block, void *dead_ctx)
{
bool need_end_copy = false;
if (block->successors[0]) {
nir_instr *instr = nir_block_first_instr(block->successors[0]);
if (instr && instr->type == nir_instr_type_phi)
need_end_copy = true;
}
if (block->successors[1]) {
nir_instr *instr = nir_block_first_instr(block->successors[1]);
if (instr && instr->type == nir_instr_type_phi)
need_end_copy = true;
}
if (need_end_copy) {
/* If one of our successors has at least one phi node, we need to
* create a parallel copy at the end of the block but before the jump
* (if there is one).
*/
nir_parallel_copy_instr *pcopy =
nir_parallel_copy_instr_create(shader);
nir_instr_insert(nir_after_block_before_jump(block), &pcopy->instr);
}
return true;
}
static nir_parallel_copy_instr *
get_parallel_copy_at_end_of_block(nir_block *block)
{
nir_instr *last_instr = nir_block_last_instr(block);
if (last_instr == NULL)
return NULL;
/* The last instruction may be a jump in which case the parallel copy is
* right before it.
*/
if (last_instr->type == nir_instr_type_jump)
last_instr = nir_instr_prev(last_instr);
if (last_instr && last_instr->type == nir_instr_type_parallel_copy)
return nir_instr_as_parallel_copy(last_instr);
else
return NULL;
}
/** Isolate phi nodes with parallel copies
*
* In order to solve the dependency problems with the sources and
* destinations of phi nodes, we first isolate them by adding parallel
* copies to the beginnings and ends of basic blocks. For every block with
* phi nodes, we add a parallel copy immediately following the last phi
* node that copies the destinations of all of the phi nodes to new SSA
* values. We also add a parallel copy to the end of every block that has
* a successor with phi nodes that, for each phi node in each successor,
* copies the corresponding sorce of the phi node and adjust the phi to
* used the destination of the parallel copy.
*
* In SSA form, each value has exactly one definition. What this does is
* ensure that each value used in a phi also has exactly one use. The
* destinations of phis are only used by the parallel copy immediately
* following the phi nodes and. Thanks to the parallel copy at the end of
* the predecessor block, the sources of phi nodes are are the only use of
* that value. This allows us to immediately assign all the sources and
* destinations of any given phi node to the same register without worrying
* about interference at all. We do coalescing to get rid of the parallel
* copies where possible.
*
* Before this pass can be run, we have to iterate over the blocks with
* add_parallel_copy_to_end_of_block to ensure that the parallel copies at
* the ends of blocks exist. We can create the ones at the beginnings as
* we go, but the ones at the ends of blocks need to be created ahead of
* time because of potential back-edges in the CFG.
*/
static bool
isolate_phi_nodes_block(nir_shader *shader, nir_block *block, void *dead_ctx)
{
/* If we don't have any phis, then there's nothing for us to do. */
nir_phi_instr *last_phi = nir_block_last_phi_instr(block);
if (last_phi == NULL)
return true;
/* If we have phi nodes, we need to create a parallel copy at the
* start of this block but after the phi nodes.
*/
nir_parallel_copy_instr *block_pcopy =
nir_parallel_copy_instr_create(shader);
nir_instr_insert_after(&last_phi->instr, &block_pcopy->instr);
nir_foreach_phi(phi, block) {
nir_foreach_phi_src(src, phi) {
if (nir_src_is_undef(src->src))
continue;
nir_parallel_copy_instr *pcopy =
get_parallel_copy_at_end_of_block(src->pred);
assert(pcopy);
nir_parallel_copy_entry *entry = rzalloc(dead_ctx,
nir_parallel_copy_entry);
entry->dest_is_reg = false;
nir_def_init(&pcopy->instr, &entry->dest.def,
phi->def.num_components, phi->def.bit_size);
entry->dest.def.divergent = nir_src_is_divergent(src->src);
/* We're adding a source to a live instruction so we need to use
* nir_instr_init_src()
*/
entry->src_is_reg = false;
nir_instr_init_src(&pcopy->instr, &entry->src, src->src.ssa);
exec_list_push_tail(&pcopy->entries, &entry->node);
nir_src_rewrite(&src->src, &entry->dest.def);
}
nir_parallel_copy_entry *entry = rzalloc(dead_ctx,
nir_parallel_copy_entry);
entry->dest_is_reg = false;
nir_def_init(&block_pcopy->instr, &entry->dest.def,
phi->def.num_components, phi->def.bit_size);
entry->dest.def.divergent = phi->def.divergent;
nir_def_rewrite_uses(&phi->def, &entry->dest.def);
/* We're adding a source to a live instruction so we need to use
* nir_instr_init_src().
*
* Note that we do this after we've rewritten all uses of the phi to
* entry->def, ensuring that entry->src will be the only remaining use
* of the phi.
*/
entry->src_is_reg = false;
nir_instr_init_src(&block_pcopy->instr, &entry->src, &phi->def);
exec_list_push_tail(&block_pcopy->entries, &entry->node);
}
return true;
}
static bool
coalesce_phi_nodes_block(nir_block *block, struct from_ssa_state *state)
{
nir_foreach_phi(phi, block) {
merge_node *dest_node = get_merge_node(&phi->def, state);
nir_foreach_phi_src(src, phi) {
if (nir_src_is_undef(src->src))
continue;
merge_node *src_node = get_merge_node(src->src.ssa, state);
if (src_node->set != dest_node->set)
merge_merge_sets(dest_node->set, src_node->set);
}
}
return true;
}
static void
aggressive_coalesce_parallel_copy(nir_parallel_copy_instr *pcopy,
struct from_ssa_state *state)
{
nir_foreach_parallel_copy_entry(entry, pcopy) {
assert(!entry->src_is_reg);
assert(!entry->dest_is_reg);
assert(entry->dest.def.num_components ==
entry->src.ssa->num_components);
/* Since load_const instructions are SSA only, we can't replace their
* destinations with registers and, therefore, can't coalesce them.
*/
if (entry->src.ssa->parent_instr->type == nir_instr_type_load_const)
continue;
merge_node *src_node = get_merge_node(entry->src.ssa, state);
merge_node *dest_node = get_merge_node(&entry->dest.def, state);
if (src_node->set == dest_node->set)
continue;
/* TODO: We can probably do better here but for now we should be safe if
* we just don't coalesce things with different divergence.
*/
if (dest_node->set->divergent != src_node->set->divergent)
continue;
if (!merge_sets_interfere(src_node->set, dest_node->set))
merge_merge_sets(src_node->set, dest_node->set);
}
}
static bool
aggressive_coalesce_block(nir_block *block, struct from_ssa_state *state)
{
nir_parallel_copy_instr *start_pcopy = NULL;
nir_foreach_instr(instr, block) {
/* Phi nodes only ever come at the start of a block */
if (instr->type != nir_instr_type_phi) {
if (instr->type != nir_instr_type_parallel_copy)
break; /* The parallel copy must be right after the phis */
start_pcopy = nir_instr_as_parallel_copy(instr);
aggressive_coalesce_parallel_copy(start_pcopy, state);
break;
}
}
nir_parallel_copy_instr *end_pcopy =
get_parallel_copy_at_end_of_block(block);
if (end_pcopy && end_pcopy != start_pcopy)
aggressive_coalesce_parallel_copy(end_pcopy, state);
return true;
}
static nir_def *
decl_reg_for_ssa_def(nir_builder *b, nir_def *def)
{
return nir_decl_reg(b, def->num_components, def->bit_size, 0);
}
static void
set_reg_divergent(nir_def *reg, bool divergent)
{
nir_intrinsic_instr *decl = nir_reg_get_decl(reg);
nir_intrinsic_set_divergent(decl, divergent);
}
void
nir_rewrite_uses_to_load_reg(nir_builder *b, nir_def *old,
nir_def *reg)
{
nir_foreach_use_including_if_safe(use, old) {
b->cursor = nir_before_src(use);
/* If this is a parallel copy, it can just take the register directly */
if (!nir_src_is_if(use) &&
nir_src_parent_instr(use)->type == nir_instr_type_parallel_copy) {
nir_parallel_copy_entry *copy_entry =
list_entry(use, nir_parallel_copy_entry, src);
assert(!copy_entry->src_is_reg);
copy_entry->src_is_reg = true;
nir_src_rewrite(&copy_entry->src, reg);
continue;
}
/* If the immediate preceding instruction is a load_reg from the same
* register, use it instead of creating a new load_reg. This helps when
* a register is referenced in multiple sources in the same instruction,
* which otherwise would turn into piles of unnecessary moves.
*/
nir_def *load = NULL;
if (b->cursor.option == nir_cursor_before_instr) {
nir_instr *prev = nir_instr_prev(b->cursor.instr);
if (prev != NULL && prev->type == nir_instr_type_intrinsic) {
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(prev);
if (intr->intrinsic == nir_intrinsic_load_reg &&
intr->src[0].ssa == reg &&
nir_intrinsic_base(intr) == 0)
load = &intr->def;
}
}
if (load == NULL)
load = nir_load_reg(b, reg);
nir_src_rewrite(use, load);
}
}
static bool
def_replace_with_reg(nir_def *def, nir_function_impl *impl)
{
/* These are handled elsewhere */
assert(def->parent_instr->type != nir_instr_type_undef &&
def->parent_instr->type != nir_instr_type_load_const);
nir_builder b = nir_builder_create(impl);
nir_def *reg = decl_reg_for_ssa_def(&b, def);
nir_rewrite_uses_to_load_reg(&b, def, reg);
if (def->parent_instr->type == nir_instr_type_phi)
b.cursor = nir_before_block_after_phis(def->parent_instr->block);
else
b.cursor = nir_after_instr(def->parent_instr);
nir_store_reg(&b, def, reg);
return true;
}
static nir_def *
reg_for_ssa_def(nir_def *def, struct from_ssa_state *state)
{
struct hash_entry *entry =
_mesa_hash_table_search(state->merge_node_table, def);
if (entry) {
/* In this case, we're part of a phi web. Use the web's register. */
merge_node *node = (merge_node *)entry->data;
/* If it doesn't have a register yet, create one. Note that all of
* the things in the merge set should be the same so it doesn't
* matter which node's definition we use.
*/
if (node->set->reg_decl == NULL) {
node->set->reg_decl = decl_reg_for_ssa_def(&state->builder, def);
set_reg_divergent(node->set->reg_decl, node->set->divergent);
}
return node->set->reg_decl;
} else {
assert(state->phi_webs_only);
return NULL;
}
}
static void
remove_no_op_phi(nir_instr *instr, struct from_ssa_state *state)
{
#ifndef NDEBUG
nir_phi_instr *phi = nir_instr_as_phi(instr);
struct hash_entry *entry =
_mesa_hash_table_search(state->merge_node_table, &phi->def);
assert(entry != NULL);
merge_node *node = (merge_node *)entry->data;
nir_foreach_phi_src(src, phi) {
if (nir_src_is_undef(src->src))
continue;
entry = _mesa_hash_table_search(state->merge_node_table, src->src.ssa);
assert(entry != NULL);
merge_node *src_node = (merge_node *)entry->data;
assert(src_node->set == node->set);
}
#endif
nir_instr_remove(instr);
}
static bool
rewrite_ssa_def(nir_def *def, void *void_state)
{
struct from_ssa_state *state = void_state;
nir_def *reg = reg_for_ssa_def(def, state);
if (reg == NULL)
return true;
assert(nir_def_is_unused(def));
/* At this point we know a priori that this SSA def is part of a
* nir_dest. We can use exec_node_data to get the dest pointer.
*/
assert(def->parent_instr->type != nir_instr_type_load_const);
nir_store_reg(&state->builder, def, reg);
state->progress = true;
return true;
}
static bool
rewrite_src(nir_src *src, void *void_state)
{
struct from_ssa_state *state = void_state;
nir_def *reg = reg_for_ssa_def(src->ssa, state);
if (reg == NULL)
return true;
nir_src_rewrite(src, nir_load_reg(&state->builder, reg));
state->progress = true;
return true;
}
/* Resolves ssa definitions to registers. While we're at it, we also
* remove phi nodes.
*/
static void
resolve_registers_impl(nir_function_impl *impl, struct from_ssa_state *state)
{
nir_foreach_block_reverse(block, impl) {
/* Remove successor phis in case there's a back edge. */
for (unsigned i = 0; i < 2; i++) {
nir_block *succ = block->successors[i];
if (succ == NULL)
continue;
nir_foreach_instr_safe(instr, succ) {
if (instr->type != nir_instr_type_phi)
break;
remove_no_op_phi(instr, state);
}
}
/* The following if is right after the block, handle its condition as the
* last source "in" the block.
*/
nir_if *nif = nir_block_get_following_if(block);
if (nif) {
state->builder.cursor = nir_before_src(&nif->condition);
rewrite_src(&nif->condition, state);
}
nir_foreach_instr_reverse_safe(instr, block) {
switch (instr->type) {
case nir_instr_type_phi:
remove_no_op_phi(instr, state);
break;
case nir_instr_type_parallel_copy: {
nir_parallel_copy_instr *pcopy = nir_instr_as_parallel_copy(instr);
nir_foreach_parallel_copy_entry(entry, pcopy) {
assert(!entry->dest_is_reg);
/* Parallel copy destinations will always be registers */
nir_def *reg = reg_for_ssa_def(&entry->dest.def, state);
assert(reg != NULL);
/* We're switching from the nir_def to the nir_src in the dest
* union so we need to use nir_instr_init_src() here.
*/
assert(nir_def_is_unused(&entry->dest.def));
entry->dest_is_reg = true;
nir_instr_init_src(&pcopy->instr, &entry->dest.reg, reg);
}
nir_foreach_parallel_copy_entry(entry, pcopy) {
assert(!entry->src_is_reg);
nir_def *reg = reg_for_ssa_def(entry->src.ssa, state);
if (reg == NULL)
continue;
entry->src_is_reg = true;
nir_src_rewrite(&entry->src, reg);
}
break;
}
default:
state->builder.cursor = nir_after_instr(instr);
nir_foreach_def(instr, rewrite_ssa_def, state);
state->builder.cursor = nir_before_instr(instr);
nir_foreach_src(instr, rewrite_src, state);
}
}
}
}
/* Resolves a single parallel copy operation into a sequence of movs
*
* This is based on Algorithm 1 from "Revisiting Out-of-SSA Translation for
* Correctness, Code Quality, and Efficiency" by Boissinot et al.
* However, I never got the algorithm to work as written, so this version
* is slightly modified.
*
* The algorithm works by playing this little shell game with the values.
* We start by recording where every source value is and which source value
* each destination value should receive. We then grab any copy whose
* destination is "empty", i.e. not used as a source, and do the following:
* - Find where its source value currently lives
* - Emit the move instruction
* - Set the location of the source value to the destination
* - Mark the location containing the source value
* - Mark the destination as no longer needing to be copied
*
* When we run out of "empty" destinations, we have a cycle and so we
* create a temporary register, copy to that register, and mark the value
* we copied as living in that temporary. Now, the cycle is broken, so we
* can continue with the above steps.
*/
struct copy_value {
bool is_reg;
nir_def *ssa;
};
static bool
copy_values_equal(struct copy_value a, struct copy_value b)
{
return a.is_reg == b.is_reg && a.ssa == b.ssa;
}
static bool
copy_value_is_divergent(struct copy_value v)
{
if (!v.is_reg)
return v.ssa->divergent;
nir_intrinsic_instr *decl = nir_reg_get_decl(v.ssa);
return nir_intrinsic_divergent(decl);
}
static void
copy_values(nir_builder *b, struct copy_value dest, struct copy_value src)
{
nir_def *val = src.is_reg ? nir_load_reg(b, src.ssa) : src.ssa;
assert(!copy_value_is_divergent(src) || copy_value_is_divergent(dest));
assert(dest.is_reg);
nir_store_reg(b, val, dest.ssa);
}
static void
resolve_parallel_copy(nir_parallel_copy_instr *pcopy,
struct from_ssa_state *state)
{
unsigned num_copies = 0;
nir_foreach_parallel_copy_entry(entry, pcopy) {
/* Sources may be SSA but destinations are always registers */
assert(entry->dest_is_reg);
if (entry->src_is_reg && entry->src.ssa == entry->dest.reg.ssa)
continue;
num_copies++;
}
if (num_copies == 0) {
/* Hooray, we don't need any copies! */
nir_instr_remove(&pcopy->instr);
exec_list_push_tail(&state->dead_instrs, &pcopy->instr.node);
return;
}
/* The register/source corresponding to the given index */
NIR_VLA_ZERO(struct copy_value, values, num_copies * 2);
/* The current location of a given piece of data. We will use -1 for "null" */
NIR_VLA_FILL(int, loc, num_copies * 2, -1);
/* The piece of data that the given piece of data is to be copied from. We will use -1 for "null" */
NIR_VLA_FILL(int, pred, num_copies * 2, -1);
/* The destinations we have yet to properly fill */
NIR_VLA(int, to_do, num_copies * 2);
int to_do_idx = -1;
state->builder.cursor = nir_before_instr(&pcopy->instr);
/* Now we set everything up:
* - All values get assigned a temporary index
* - Current locations are set from sources
* - Predecessors are recorded from sources and destinations
*/
int num_vals = 0;
nir_foreach_parallel_copy_entry(entry, pcopy) {
/* Sources may be SSA but destinations are always registers */
if (entry->src_is_reg && entry->src.ssa == entry->dest.reg.ssa)
continue;
struct copy_value src_value = {
.is_reg = entry->src_is_reg,
.ssa = entry->src.ssa,
};
int src_idx = -1;
for (int i = 0; i < num_vals; ++i) {
if (copy_values_equal(values[i], src_value))
src_idx = i;
}
if (src_idx < 0) {
src_idx = num_vals++;
values[src_idx] = src_value;
}
assert(entry->dest_is_reg);
struct copy_value dest_value = {
.is_reg = true,
.ssa = entry->dest.reg.ssa,
};
int dest_idx = -1;
for (int i = 0; i < num_vals; ++i) {
if (copy_values_equal(values[i], dest_value)) {
/* Each destination of a parallel copy instruction should be
* unique. A destination may get used as a source, so we still
* have to walk the list. However, the predecessor should not,
* at this point, be set yet, so we should have -1 here.
*/
assert(pred[i] == -1);
dest_idx = i;
}
}
if (dest_idx < 0) {
dest_idx = num_vals++;
values[dest_idx] = dest_value;
}
loc[src_idx] = src_idx;
pred[dest_idx] = src_idx;
to_do[++to_do_idx] = dest_idx;
}
/* Currently empty destinations we can go ahead and fill */
NIR_VLA(int, ready, num_copies * 2);
int ready_idx = -1;
/* Mark the ones that are ready for copying. We know an index is a
* destination if it has a predecessor and it's ready for copying if
* it's not marked as containing data.
*/
for (int i = 0; i < num_vals; i++) {
if (pred[i] != -1 && loc[i] == -1)
ready[++ready_idx] = i;
}
while (1) {
while (ready_idx >= 0) {
int b = ready[ready_idx--];
int a = pred[b];
copy_values(&state->builder, values[b], values[loc[a]]);
/* b has been filled, mark it as not needing to be copied */
pred[b] = -1;
/* The next bit only applies if the source and destination have the
* same divergence. If they differ (it must be convergent ->
* divergent), then we can't guarantee we won't need the convergent
* version of it again.
*/
if (copy_value_is_divergent(values[a]) ==
copy_value_is_divergent(values[b])) {
/* If a needs to be filled... */
if (pred[a] != -1) {
/* If any other copies want a they can find it at b */
loc[a] = b;
/* It's ready for copying now */
ready[++ready_idx] = a;
}
}
}
assert(ready_idx < 0);
if (to_do_idx < 0)
break;
int b = to_do[to_do_idx--];
if (pred[b] == -1)
continue;
/* If we got here, then we don't have any more trivial copies that we
* can do. We have to break a cycle, so we create a new temporary
* register for that purpose. Normally, if going out of SSA after
* register allocation, you would want to avoid creating temporary
* registers. However, we are going out of SSA before register
* allocation, so we would rather not create extra register
* dependencies for the backend to deal with. If it wants, the
* backend can coalesce the (possibly multiple) temporaries.
*
* We can also get here in the case where there is no cycle but our
* source value is convergent, is also used as a destination by another
* element of the parallel copy, and all the destinations of the
* parallel copy which copy from it are divergent. In this case, the
* above loop cannot detect that the value has moved due to all the
* divergent destinations and we'll end up emitting a copy to a
* temporary which never gets used. We can avoid this with additional
* tracking or we can just trust the back-end to dead-code the unused
* temporary (which is trivial).
*/
assert(num_vals < num_copies * 2);
nir_def *reg;
if (values[b].is_reg) {
nir_intrinsic_instr *decl = nir_reg_get_decl(values[b].ssa);
uint8_t num_components = nir_intrinsic_num_components(decl);
uint8_t bit_size = nir_intrinsic_bit_size(decl);
reg = nir_decl_reg(&state->builder, num_components, bit_size, 0);
} else {
reg = decl_reg_for_ssa_def(&state->builder, values[b].ssa);
}
set_reg_divergent(reg, copy_value_is_divergent(values[b]));
values[num_vals] = (struct copy_value){
.is_reg = true,
.ssa = reg,
};
copy_values(&state->builder, values[num_vals], values[b]);
loc[b] = num_vals;
ready[++ready_idx] = b;
num_vals++;
}
nir_instr_remove(&pcopy->instr);
exec_list_push_tail(&state->dead_instrs, &pcopy->instr.node);
}
/* Resolves the parallel copies in a block. Each block can have at most
* two: One at the beginning, right after all the phi noces, and one at
* the end (or right before the final jump if it exists).
*/
static bool
resolve_parallel_copies_block(nir_block *block, struct from_ssa_state *state)
{
/* At this point, we have removed all of the phi nodes. If a parallel
* copy existed right after the phi nodes in this block, it is now the
* first instruction.
*/
nir_instr *first_instr = nir_block_first_instr(block);
if (first_instr == NULL)
return true; /* Empty, nothing to do. */
/* There can be load_reg in the way of the copies... don't be clever. */
nir_foreach_instr_safe(instr, block) {
if (instr->type == nir_instr_type_parallel_copy) {
nir_parallel_copy_instr *pcopy = nir_instr_as_parallel_copy(instr);
resolve_parallel_copy(pcopy, state);
}
}
return true;
}
static bool
nir_convert_from_ssa_impl(nir_function_impl *impl,
bool phi_webs_only)
{
nir_shader *shader = impl->function->shader;
struct from_ssa_state state;
state.builder = nir_builder_create(impl);
state.dead_ctx = ralloc_context(NULL);
state.phi_webs_only = phi_webs_only;
state.merge_node_table = _mesa_pointer_hash_table_create(NULL);
state.progress = false;
exec_list_make_empty(&state.dead_instrs);
nir_foreach_block(block, impl) {
add_parallel_copy_to_end_of_block(shader, block, state.dead_ctx);
}
nir_foreach_block(block, impl) {
isolate_phi_nodes_block(shader, block, state.dead_ctx);
}
/* Mark metadata as dirty before we ask for liveness analysis */
nir_metadata_preserve(impl, nir_metadata_block_index |
nir_metadata_dominance);
nir_metadata_require(impl, nir_metadata_instr_index |
nir_metadata_live_defs |
nir_metadata_dominance);
nir_foreach_block(block, impl) {
coalesce_phi_nodes_block(block, &state);
}
nir_foreach_block(block, impl) {
aggressive_coalesce_block(block, &state);
}
resolve_registers_impl(impl, &state);
nir_foreach_block(block, impl) {
resolve_parallel_copies_block(block, &state);
}
nir_metadata_preserve(impl, nir_metadata_block_index |
nir_metadata_dominance);
/* Clean up dead instructions and the hash tables */
nir_instr_free_list(&state.dead_instrs);
_mesa_hash_table_destroy(state.merge_node_table, NULL);
ralloc_free(state.dead_ctx);
return state.progress;
}
bool
nir_convert_from_ssa(nir_shader *shader,
bool phi_webs_only)
{
bool progress = false;
nir_foreach_function_impl(impl, shader) {
progress |= nir_convert_from_ssa_impl(impl, phi_webs_only);
}
return progress;
}
static void
place_phi_read(nir_builder *b, nir_def *reg,
nir_def *def, nir_block *block, struct set *visited_blocks)
{
/* Search already visited blocks to avoid back edges in tree */
if (_mesa_set_search(visited_blocks, block) == NULL) {
/* Try to go up the single-successor tree */
bool all_single_successors = true;
set_foreach(block->predecessors, entry) {
nir_block *pred = (nir_block *)entry->key;
if (pred->successors[0] && pred->successors[1]) {
all_single_successors = false;
break;
}
}
if (all_single_successors) {
/* All predecessors of this block have exactly one successor and it
* is this block so they must eventually lead here without
* intersecting each other. Place the reads in the predecessors
* instead of this block.
*/
_mesa_set_add(visited_blocks, block);
set_foreach(block->predecessors, entry) {
place_phi_read(b, reg, def, (nir_block *)entry->key, visited_blocks);
}
return;
}
}
b->cursor = nir_after_block_before_jump(block);
nir_store_reg(b, def, reg);
}
/** Lower all of the phi nodes in a block to movs to and from a register
*
* This provides a very quick-and-dirty out-of-SSA pass that you can run on a
* single block to convert all of its phis to a register and some movs.
* The code that is generated, while not optimal for actual codegen in a
* back-end, is easy to generate, correct, and will turn into the same set of
* phis after you call regs_to_ssa and do some copy propagation. For each phi
* node we do the following:
*
* 1. For each phi instruction in the block, create a new nir_register
*
* 2. Insert movs at the top of the destination block for each phi and
* rewrite all uses of the phi to use the mov.
*
* 3. For each phi source, insert movs in the predecessor block from the phi
* source to the register associated with the phi.
*
* Correctness is guaranteed by the fact that we create a new register for
* each phi and emit movs on both sides of the control-flow edge. Because all
* the phis have SSA destinations (we assert this) and there is a separate
* temporary for each phi, all movs inserted in any particular block have
* unique destinations so the order of operations does not matter.
*
* The one intelligent thing this pass does is that it places the moves from
* the phi sources as high up the predecessor tree as possible instead of in
* the exact predecessor. This means that, in particular, it will crawl into
* the deepest nesting of any if-ladders. In order to ensure that doing so is
* safe, it stops as soon as one of the predecessors has multiple successors.
*/
bool
nir_lower_phis_to_regs_block(nir_block *block)
{
nir_builder b = nir_builder_create(nir_cf_node_get_function(&block->cf_node));
struct set *visited_blocks = _mesa_set_create(NULL, _mesa_hash_pointer,
_mesa_key_pointer_equal);
bool progress = false;
nir_foreach_phi_safe(phi, block) {
nir_def *reg = decl_reg_for_ssa_def(&b, &phi->def);
set_reg_divergent(reg, phi->def.divergent);
b.cursor = nir_after_instr(&phi->instr);
nir_def_rewrite_uses(&phi->def, nir_load_reg(&b, reg));
nir_foreach_phi_src(src, phi) {
_mesa_set_add(visited_blocks, src->src.ssa->parent_instr->block);
place_phi_read(&b, reg, src->src.ssa, src->pred, visited_blocks);
_mesa_set_clear(visited_blocks, NULL);
}
nir_instr_remove(&phi->instr);
progress = true;
}
_mesa_set_destroy(visited_blocks, NULL);
return progress;
}
struct ssa_def_to_reg_state {
nir_function_impl *impl;
bool progress;
};
static bool
def_replace_with_reg_state(nir_def *def, void *void_state)
{
struct ssa_def_to_reg_state *state = void_state;
state->progress |= def_replace_with_reg(def, state->impl);
return true;
}
static bool
ssa_def_is_local_to_block(nir_def *def, UNUSED void *state)
{
nir_block *block = def->parent_instr->block;
nir_foreach_use_including_if(use_src, def) {
if (nir_src_is_if(use_src) ||
nir_src_parent_instr(use_src)->block != block ||
nir_src_parent_instr(use_src)->type == nir_instr_type_phi) {
return false;
}
}
return true;
}
static bool
instr_is_load_new_reg(nir_instr *instr, unsigned old_num_ssa)
{
if (instr->type != nir_instr_type_intrinsic)
return false;
nir_intrinsic_instr *load = nir_instr_as_intrinsic(instr);
if (load->intrinsic != nir_intrinsic_load_reg)
return false;
nir_def *reg = load->src[0].ssa;
return reg->index >= old_num_ssa;
}
/** Lower all of the SSA defs in a block to registers
*
* This performs the very simple operation of blindly replacing all of the SSA
* defs in the given block with registers. If not used carefully, this may
* result in phi nodes with register sources which is technically invalid.
* Fortunately, the register-based into-SSA pass handles them anyway.
*/
bool
nir_lower_ssa_defs_to_regs_block(nir_block *block)
{
nir_function_impl *impl = nir_cf_node_get_function(&block->cf_node);
nir_builder b = nir_builder_create(impl);
struct ssa_def_to_reg_state state = {
.impl = impl,
.progress = false,
};
/* Save off the current number of SSA defs so we can detect which regs
* we've added vs. regs that were already there.
*/
const unsigned num_ssa = impl->ssa_alloc;
nir_foreach_instr_safe(instr, block) {
if (instr->type == nir_instr_type_undef) {
/* Undefs are just a read of something never written. */
nir_undef_instr *undef = nir_instr_as_undef(instr);
nir_def *reg = decl_reg_for_ssa_def(&b, &undef->def);
nir_rewrite_uses_to_load_reg(&b, &undef->def, reg);
} else if (instr->type == nir_instr_type_load_const) {
nir_load_const_instr *load = nir_instr_as_load_const(instr);
nir_def *reg = decl_reg_for_ssa_def(&b, &load->def);
nir_rewrite_uses_to_load_reg(&b, &load->def, reg);
b.cursor = nir_after_instr(instr);
nir_store_reg(&b, &load->def, reg);
} else if (instr_is_load_new_reg(instr, num_ssa)) {
/* Calls to nir_rewrite_uses_to_load_reg() may place new load_reg
* intrinsics in this block with new SSA destinations. To avoid
* infinite recursion, we don't want to lower any newly placed
* load_reg instructions to yet anoter load/store_reg.
*/
} else if (nir_foreach_def(instr, ssa_def_is_local_to_block, NULL)) {
/* If the SSA def produced by this instruction is only in the block
* in which it is defined and is not used by ifs or phis, then we
* don't have a reason to convert it to a register.
*/
} else {
nir_foreach_def(instr, def_replace_with_reg_state, &state);
}
}
return state.progress;
}