mesa/src/compiler/nir/nir.h

6861 lines
222 KiB
C

/*
* Copyright © 2014 Connor Abbott
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Connor Abbott (cwabbott0@gmail.com)
*
*/
#ifndef NIR_H
#define NIR_H
#include <stdint.h>
#include "compiler/glsl_types.h"
#include "compiler/glsl/list.h"
#include "compiler/shader_enums.h"
#include "compiler/shader_info.h"
#include "util/bitscan.h"
#include "util/bitset.h"
#include "util/compiler.h"
#include "util/enum_operators.h"
#include "util/format/u_format.h"
#include "util/hash_table.h"
#include "util/list.h"
#include "util/log.h"
#include "util/macros.h"
#include "util/ralloc.h"
#include "util/set.h"
#include "util/u_printf.h"
#define XXH_INLINE_ALL
#include <stdio.h>
#include "util/xxhash.h"
#ifndef NDEBUG
#include "util/u_debug.h"
#endif /* NDEBUG */
#include "nir_opcodes.h"
#ifdef __cplusplus
extern "C" {
#endif
extern uint32_t nir_debug;
extern bool nir_debug_print_shader[MESA_SHADER_KERNEL + 1];
#ifndef NDEBUG
#define NIR_DEBUG(flag) unlikely(nir_debug &(NIR_DEBUG_##flag))
#else
#define NIR_DEBUG(flag) false
#endif
#define NIR_DEBUG_CLONE (1u << 0)
#define NIR_DEBUG_SERIALIZE (1u << 1)
#define NIR_DEBUG_NOVALIDATE (1u << 2)
#define NIR_DEBUG_VALIDATE_SSA_DOMINANCE (1u << 3)
#define NIR_DEBUG_TGSI (1u << 4)
#define NIR_DEBUG_PRINT_VS (1u << 5)
#define NIR_DEBUG_PRINT_TCS (1u << 6)
#define NIR_DEBUG_PRINT_TES (1u << 7)
#define NIR_DEBUG_PRINT_GS (1u << 8)
#define NIR_DEBUG_PRINT_FS (1u << 9)
#define NIR_DEBUG_PRINT_CS (1u << 10)
#define NIR_DEBUG_PRINT_TS (1u << 11)
#define NIR_DEBUG_PRINT_MS (1u << 12)
#define NIR_DEBUG_PRINT_RGS (1u << 13)
#define NIR_DEBUG_PRINT_AHS (1u << 14)
#define NIR_DEBUG_PRINT_CHS (1u << 15)
#define NIR_DEBUG_PRINT_MHS (1u << 16)
#define NIR_DEBUG_PRINT_IS (1u << 17)
#define NIR_DEBUG_PRINT_CBS (1u << 18)
#define NIR_DEBUG_PRINT_KS (1u << 19)
#define NIR_DEBUG_PRINT_NO_INLINE_CONSTS (1u << 20)
#define NIR_DEBUG_PRINT_INTERNAL (1u << 21)
#define NIR_DEBUG_PRINT_PASS_FLAGS (1u << 22)
#define NIR_DEBUG_PRINT (NIR_DEBUG_PRINT_VS | \
NIR_DEBUG_PRINT_TCS | \
NIR_DEBUG_PRINT_TES | \
NIR_DEBUG_PRINT_GS | \
NIR_DEBUG_PRINT_FS | \
NIR_DEBUG_PRINT_CS | \
NIR_DEBUG_PRINT_TS | \
NIR_DEBUG_PRINT_MS | \
NIR_DEBUG_PRINT_RGS | \
NIR_DEBUG_PRINT_AHS | \
NIR_DEBUG_PRINT_CHS | \
NIR_DEBUG_PRINT_MHS | \
NIR_DEBUG_PRINT_IS | \
NIR_DEBUG_PRINT_CBS | \
NIR_DEBUG_PRINT_KS)
#define NIR_FALSE 0u
#define NIR_TRUE (~0u)
#define NIR_MAX_VEC_COMPONENTS 16
#define NIR_MAX_MATRIX_COLUMNS 4
#define NIR_STREAM_PACKED (1 << 8)
typedef uint16_t nir_component_mask_t;
static inline bool
nir_num_components_valid(unsigned num_components)
{
return (num_components >= 1 &&
num_components <= 5) ||
num_components == 8 ||
num_components == 16;
}
static inline nir_component_mask_t
nir_component_mask(unsigned num_components)
{
assert(nir_num_components_valid(num_components));
return (1u << num_components) - 1;
}
void
nir_process_debug_variable(void);
bool nir_component_mask_can_reinterpret(nir_component_mask_t mask,
unsigned old_bit_size,
unsigned new_bit_size);
nir_component_mask_t
nir_component_mask_reinterpret(nir_component_mask_t mask,
unsigned old_bit_size,
unsigned new_bit_size);
/** Defines a cast function
*
* This macro defines a cast function from in_type to out_type where
* out_type is some structure type that contains a field of type out_type.
*
* Note that you have to be a bit careful as the generated cast function
* destroys constness.
*/
#define NIR_DEFINE_CAST(name, in_type, out_type, field, \
type_field, type_value) \
static inline out_type * \
name(const in_type *parent) \
{ \
assert(parent && parent->type_field == type_value); \
return exec_node_data(out_type, parent, field); \
}
struct nir_function;
struct nir_shader;
struct nir_instr;
struct nir_builder;
struct nir_xfb_info;
/**
* Description of built-in state associated with a uniform
*
* :c:member:`nir_variable.state_slots`
*/
typedef struct {
gl_state_index16 tokens[STATE_LENGTH];
} nir_state_slot;
/* clang-format off */
typedef enum {
nir_var_system_value = (1 << 0),
nir_var_uniform = (1 << 1),
nir_var_shader_in = (1 << 2),
nir_var_shader_out = (1 << 3),
nir_var_image = (1 << 4),
/** Incoming call or ray payload data for ray-tracing shaders */
nir_var_shader_call_data = (1 << 5),
/** Ray hit attributes */
nir_var_ray_hit_attrib = (1 << 6),
/* Modes named nir_var_mem_* have explicit data layout */
nir_var_mem_ubo = (1 << 7),
nir_var_mem_push_const = (1 << 8),
nir_var_mem_ssbo = (1 << 9),
nir_var_mem_constant = (1 << 10),
nir_var_mem_task_payload = (1 << 11),
nir_var_mem_node_payload = (1 << 12),
nir_var_mem_node_payload_in = (1 << 13),
/* Generic modes intentionally come last. See encode_dref_modes() in
* nir_serialize.c for more details.
*/
nir_var_shader_temp = (1 << 14),
nir_var_function_temp = (1 << 15),
nir_var_mem_shared = (1 << 16),
nir_var_mem_global = (1 << 17),
nir_var_mem_generic = (nir_var_shader_temp |
nir_var_function_temp |
nir_var_mem_shared |
nir_var_mem_global),
nir_var_read_only_modes = nir_var_shader_in | nir_var_uniform |
nir_var_system_value | nir_var_mem_constant |
nir_var_mem_ubo,
/* Modes where vector derefs can be indexed as arrays. nir_var_shader_out
* is only for mesh stages. nir_var_system_value is only for kernel stages.
*/
nir_var_vec_indexable_modes = nir_var_shader_temp | nir_var_function_temp |
nir_var_mem_ubo | nir_var_mem_ssbo |
nir_var_mem_shared | nir_var_mem_global |
nir_var_mem_push_const | nir_var_mem_task_payload |
nir_var_shader_out | nir_var_system_value,
nir_num_variable_modes = 18,
nir_var_all = (1 << nir_num_variable_modes) - 1,
} nir_variable_mode;
MESA_DEFINE_CPP_ENUM_BITFIELD_OPERATORS(nir_variable_mode)
/* clang-format on */
/**
* Rounding modes.
*/
typedef enum {
nir_rounding_mode_undef = 0,
nir_rounding_mode_rtne = 1, /* round to nearest even */
nir_rounding_mode_ru = 2, /* round up */
nir_rounding_mode_rd = 3, /* round down */
nir_rounding_mode_rtz = 4, /* round towards zero */
} nir_rounding_mode;
/**
* Ray query values that can read from a RayQueryKHR object.
*/
typedef enum {
nir_ray_query_value_intersection_type,
nir_ray_query_value_intersection_t,
nir_ray_query_value_intersection_instance_custom_index,
nir_ray_query_value_intersection_instance_id,
nir_ray_query_value_intersection_instance_sbt_index,
nir_ray_query_value_intersection_geometry_index,
nir_ray_query_value_intersection_primitive_index,
nir_ray_query_value_intersection_barycentrics,
nir_ray_query_value_intersection_front_face,
nir_ray_query_value_intersection_object_ray_direction,
nir_ray_query_value_intersection_object_ray_origin,
nir_ray_query_value_intersection_object_to_world,
nir_ray_query_value_intersection_world_to_object,
nir_ray_query_value_intersection_candidate_aabb_opaque,
nir_ray_query_value_tmin,
nir_ray_query_value_flags,
nir_ray_query_value_world_ray_direction,
nir_ray_query_value_world_ray_origin,
nir_ray_query_value_intersection_triangle_vertex_positions
} nir_ray_query_value;
/**
* Intel resource flags
*/
typedef enum {
nir_resource_intel_bindless = 1u << 0,
nir_resource_intel_pushable = 1u << 1,
nir_resource_intel_sampler = 1u << 2,
nir_resource_intel_non_uniform = 1u << 3,
nir_resource_intel_sampler_embedded = 1u << 4,
} nir_resource_data_intel;
/**
* Which components to interpret as signed in cmat_muladd.
* See 'Cooperative Matrix Operands' in SPV_KHR_cooperative_matrix.
*/
typedef enum {
NIR_CMAT_A_SIGNED = 1u << 0,
NIR_CMAT_B_SIGNED = 1u << 1,
NIR_CMAT_C_SIGNED = 1u << 2,
NIR_CMAT_RESULT_SIGNED = 1u << 3,
} nir_cmat_signed;
typedef union {
bool b;
float f32;
double f64;
int8_t i8;
uint8_t u8;
int16_t i16;
uint16_t u16;
int32_t i32;
uint32_t u32;
int64_t i64;
uint64_t u64;
} nir_const_value;
#define nir_const_value_to_array(arr, c, components, m) \
do { \
for (unsigned i = 0; i < components; ++i) \
arr[i] = c[i].m; \
} while (false)
static inline nir_const_value
nir_const_value_for_raw_uint(uint64_t x, unsigned bit_size)
{
nir_const_value v;
memset(&v, 0, sizeof(v));
/* clang-format off */
switch (bit_size) {
case 1: v.b = x; break;
case 8: v.u8 = x; break;
case 16: v.u16 = x; break;
case 32: v.u32 = x; break;
case 64: v.u64 = x; break;
default:
unreachable("Invalid bit size");
}
/* clang-format on */
return v;
}
static inline nir_const_value
nir_const_value_for_int(int64_t i, unsigned bit_size)
{
assert(bit_size <= 64);
if (bit_size < 64) {
assert(i >= (-(1ll << (bit_size - 1))));
assert(i < (1ll << (bit_size - 1)));
}
return nir_const_value_for_raw_uint(i, bit_size);
}
static inline nir_const_value
nir_const_value_for_uint(uint64_t u, unsigned bit_size)
{
assert(bit_size <= 64);
if (bit_size < 64)
assert(u < (1ull << bit_size));
return nir_const_value_for_raw_uint(u, bit_size);
}
static inline nir_const_value
nir_const_value_for_bool(bool b, unsigned bit_size)
{
/* Booleans use a 0/-1 convention */
return nir_const_value_for_int(-(int)b, bit_size);
}
/* This one isn't inline because it requires half-float conversion */
nir_const_value nir_const_value_for_float(double b, unsigned bit_size);
static inline int64_t
nir_const_value_as_int(nir_const_value value, unsigned bit_size)
{
/* clang-format off */
switch (bit_size) {
/* int1_t uses 0/-1 convention */
case 1: return -(int)value.b;
case 8: return value.i8;
case 16: return value.i16;
case 32: return value.i32;
case 64: return value.i64;
default:
unreachable("Invalid bit size");
}
/* clang-format on */
}
static inline uint64_t
nir_const_value_as_uint(nir_const_value value, unsigned bit_size)
{
/* clang-format off */
switch (bit_size) {
case 1: return value.b;
case 8: return value.u8;
case 16: return value.u16;
case 32: return value.u32;
case 64: return value.u64;
default:
unreachable("Invalid bit size");
}
/* clang-format on */
}
static inline bool
nir_const_value_as_bool(nir_const_value value, unsigned bit_size)
{
int64_t i = nir_const_value_as_int(value, bit_size);
/* Booleans of any size use 0/-1 convention */
assert(i == 0 || i == -1);
return i;
}
/* This one isn't inline because it requires half-float conversion */
double nir_const_value_as_float(nir_const_value value, unsigned bit_size);
typedef struct nir_constant {
/**
* Value of the constant.
*
* The field used to back the values supplied by the constant is determined
* by the type associated with the ``nir_variable``. Constants may be
* scalars, vectors, or matrices.
*/
nir_const_value values[NIR_MAX_VEC_COMPONENTS];
/* Indicates all the values are 0s which can enable some optimizations */
bool is_null_constant;
/* we could get this from the var->type but makes clone *much* easier to
* not have to care about the type.
*/
unsigned num_elements;
/* Array elements / Structure Fields */
struct nir_constant **elements;
} nir_constant;
/**
* Layout qualifiers for gl_FragDepth.
*
* The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
* with a layout qualifier.
*/
typedef enum {
/** No depth layout is specified. */
nir_depth_layout_none,
nir_depth_layout_any,
nir_depth_layout_greater,
nir_depth_layout_less,
nir_depth_layout_unchanged
} nir_depth_layout;
/**
* Enum keeping track of how a variable was declared.
*/
typedef enum {
/**
* Normal declaration.
*/
nir_var_declared_normally = 0,
/**
* Variable is an implicitly declared built-in that has not been explicitly
* re-declared by the shader.
*/
nir_var_declared_implicitly,
/**
* Variable is implicitly generated by the compiler and should not be
* visible via the API.
*/
nir_var_hidden,
} nir_var_declaration_type;
/**
* Either a uniform, global variable, shader input, or shader output. Based on
* ir_variable - it should be easy to translate between the two.
*/
typedef struct nir_variable {
struct exec_node node;
/**
* Declared type of the variable
*/
const struct glsl_type *type;
/**
* Declared name of the variable
*/
char *name;
struct nir_variable_data {
/**
* Storage class of the variable.
*
* :c:struct:`nir_variable_mode`
*/
unsigned mode : 18;
/**
* Is the variable read-only?
*
* This is set for variables declared as ``const``, shader inputs,
* and uniforms.
*/
unsigned read_only : 1;
unsigned centroid : 1;
unsigned sample : 1;
unsigned patch : 1;
unsigned invariant : 1;
/**
* Was an 'invariant' qualifier explicitly set in the shader?
*
* This is used to cross validate glsl qualifiers.
*/
unsigned explicit_invariant:1;
/**
* Is the variable a ray query?
*/
unsigned ray_query : 1;
/**
* Precision qualifier.
*
* In desktop GLSL we do not care about precision qualifiers at all, in
* fact, the spec says that precision qualifiers are ignored.
*
* To make things easy, we make it so that this field is always
* GLSL_PRECISION_NONE on desktop shaders. This way all the variables
* have the same precision value and the checks we add in the compiler
* for this field will never break a desktop shader compile.
*/
unsigned precision : 2;
/**
* Has this variable been statically assigned?
*
* This answers whether the variable was assigned in any path of
* the shader during ast_to_hir. This doesn't answer whether it is
* still written after dead code removal, nor is it maintained in
* non-ast_to_hir.cpp (GLSL parsing) paths.
*/
unsigned assigned : 1;
/**
* Can this variable be coalesced with another?
*
* This is set by nir_lower_io_to_temporaries to say that any
* copies involving this variable should stay put. Propagating it can
* duplicate the resulting load/store, which is not wanted, and may
* result in a load/store of the variable with an indirect offset which
* the backend may not be able to handle.
*/
unsigned cannot_coalesce : 1;
/**
* When separate shader programs are enabled, only input/outputs between
* the stages of a multi-stage separate program can be safely removed
* from the shader interface. Other input/outputs must remains active.
*
* This is also used to make sure xfb varyings that are unused by the
* fragment shader are not removed.
*/
unsigned always_active_io : 1;
/**
* Interpolation mode for shader inputs / outputs
*
* :c:enum:`glsl_interp_mode`
*/
unsigned interpolation : 3;
/**
* If non-zero, then this variable may be packed along with other variables
* into a single varying slot, so this offset should be applied when
* accessing components. For example, an offset of 1 means that the x
* component of this variable is actually stored in component y of the
* location specified by ``location``.
*/
unsigned location_frac : 2;
/**
* If true, this variable represents an array of scalars that should
* be tightly packed. In other words, consecutive array elements
* should be stored one component apart, rather than one slot apart.
*/
unsigned compact : 1;
/**
* Whether this is a fragment shader output implicitly initialized with
* the previous contents of the specified render target at the
* framebuffer location corresponding to this shader invocation.
*/
unsigned fb_fetch_output : 1;
/**
* Non-zero if this variable is considered bindless as defined by
* ARB_bindless_texture.
*/
unsigned bindless : 1;
/**
* Was an explicit binding set in the shader?
*/
unsigned explicit_binding : 1;
/**
* Was the location explicitly set in the shader?
*
* If the location is explicitly set in the shader, it **cannot** be changed
* by the linker or by the API (e.g., calls to ``glBindAttribLocation`` have
* no effect).
*/
unsigned explicit_location : 1;
/* Was the array implicitly sized during linking */
unsigned implicit_sized_array : 1;
/**
* Highest element accessed with a constant array index
*
* Not used for non-array variables. -1 is never accessed.
*/
int max_array_access;
/**
* Does this variable have an initializer?
*
* This is used by the linker to cross-validiate initializers of global
* variables.
*/
unsigned has_initializer:1;
/**
* Is the initializer created by the compiler (glsl_zero_init)
*/
unsigned is_implicit_initializer:1;
/**
* Is this varying used by transform feedback?
*
* This is used by the linker to decide if it's safe to pack the varying.
*/
unsigned is_xfb : 1;
/**
* Is this varying used only by transform feedback?
*
* This is used by the linker to decide if its safe to pack the varying.
*/
unsigned is_xfb_only : 1;
/**
* Was a transfer feedback buffer set in the shader?
*/
unsigned explicit_xfb_buffer : 1;
/**
* Was a transfer feedback stride set in the shader?
*/
unsigned explicit_xfb_stride : 1;
/**
* Was an explicit offset set in the shader?
*/
unsigned explicit_offset : 1;
/**
* Layout of the matrix. Uses glsl_matrix_layout values.
*/
unsigned matrix_layout : 2;
/**
* Non-zero if this variable was created by lowering a named interface
* block.
*/
unsigned from_named_ifc_block : 1;
/**
* Unsized array buffer variable.
*/
unsigned from_ssbo_unsized_array : 1;
/**
* Non-zero if the variable must be a shader input. This is useful for
* constraints on function parameters.
*/
unsigned must_be_shader_input : 1;
/**
* Has this variable been used for reading or writing?
*
* Several GLSL semantic checks require knowledge of whether or not a
* variable has been used. For example, it is an error to redeclare a
* variable as invariant after it has been used.
*/
unsigned used:1;
/**
* How the variable was declared. See nir_var_declaration_type.
*
* This is used to detect variables generated by the compiler, so should
* not be visible via the API.
*/
unsigned how_declared : 2;
/**
* Is this variable per-view? If so, we know it must be an array with
* size corresponding to the number of views.
*/
unsigned per_view : 1;
/**
* Whether the variable is per-primitive.
* Can be use by Mesh Shader outputs and corresponding Fragment Shader inputs.
*/
unsigned per_primitive : 1;
/**
* Whether the variable is declared to indicate that a fragment shader
* input will not have interpolated values.
*/
unsigned per_vertex : 1;
/**
* Layout qualifier for gl_FragDepth. See nir_depth_layout.
*
* This is not equal to ``ir_depth_layout_none`` if and only if this
* variable is ``gl_FragDepth`` and a layout qualifier is specified.
*/
unsigned depth_layout : 3;
/**
* Vertex stream output identifier.
*
* For packed outputs, NIR_STREAM_PACKED is set and bits [2*i+1,2*i]
* indicate the stream of the i-th component.
*/
unsigned stream : 9;
/**
* See gl_access_qualifier.
*
* Access flags for memory variables (SSBO/global), image uniforms, and
* bindless images in uniforms/inputs/outputs.
*/
unsigned access : 9;
/**
* Descriptor set binding for sampler or UBO.
*/
unsigned descriptor_set : 5;
/**
* output index for dual source blending.
*/
unsigned index;
/**
* Initial binding point for a sampler or UBO.
*
* For array types, this represents the binding point for the first element.
*/
unsigned binding;
/**
* Storage location of the base of this variable
*
* The precise meaning of this field depends on the nature of the variable.
*
* - Vertex shader input: one of the values from ``gl_vert_attrib``.
* - Vertex shader output: one of the values from ``gl_varying_slot``.
* - Geometry shader input: one of the values from ``gl_varying_slot``.
* - Geometry shader output: one of the values from ``gl_varying_slot``.
* - Fragment shader input: one of the values from ``gl_varying_slot``.
* - Fragment shader output: one of the values from ``gl_frag_result``.
* - Task shader output: one of the values from ``gl_varying_slot``.
* - Mesh shader input: one of the values from ``gl_varying_slot``.
* - Mesh shader output: one of the values from ``gl_varying_slot``.
* - Uniforms: Per-stage uniform slot number for default uniform block.
* - Uniforms: Index within the uniform block definition for UBO members.
* - Non-UBO Uniforms: uniform slot number.
* - Other: This field is not currently used.
*
* If the variable is a uniform, shader input, or shader output, and the
* slot has not been assigned, the value will be -1.
*/
int location;
/** Required alignment of this variable */
unsigned alignment;
/**
* The actual location of the variable in the IR. Only valid for inputs,
* outputs, uniforms (including samplers and images), and for UBO and SSBO
* variables in GLSL.
*/
unsigned driver_location;
/**
* Location an atomic counter or transform feedback is stored at.
*/
unsigned offset;
union {
struct {
/** Image internal format if specified explicitly, otherwise PIPE_FORMAT_NONE. */
enum pipe_format format;
} image;
struct {
/**
* For OpenCL inline samplers. See cl_sampler_addressing_mode and cl_sampler_filter_mode
*/
unsigned is_inline_sampler : 1;
unsigned addressing_mode : 3;
unsigned normalized_coordinates : 1;
unsigned filter_mode : 1;
} sampler;
struct {
/**
* Transform feedback buffer.
*/
uint16_t buffer : 2;
/**
* Transform feedback stride.
*/
uint16_t stride;
} xfb;
};
/** Name of the node this payload will be enqueued to. */
const char *node_name;
} data;
/**
* Identifier for this variable generated by nir_index_vars() that is unique
* among other variables in the same exec_list.
*/
unsigned index;
/* Number of nir_variable_data members */
uint16_t num_members;
/**
* Built-in state that backs this uniform
*
* Once set at variable creation, ``state_slots`` must remain invariant.
* This is because, ideally, this array would be shared by all clones of
* this variable in the IR tree. In other words, we'd really like for it
* to be a fly-weight.
*
* If the variable is not a uniform, ``num_state_slots`` will be zero and
* ``state_slots`` will be ``NULL``.
*
* Number of state slots used.
*/
uint16_t num_state_slots;
/** State descriptors. */
nir_state_slot *state_slots;
/**
* Constant expression assigned in the initializer of the variable
*
* This field should only be used temporarily by creators of NIR shaders
* and then nir_lower_variable_initializers can be used to get rid of them.
* Most of the rest of NIR ignores this field or asserts that it's NULL.
*/
nir_constant *constant_initializer;
/**
* Global variable assigned in the initializer of the variable
* This field should only be used temporarily by creators of NIR shaders
* and then nir_lower_variable_initializers can be used to get rid of them.
* Most of the rest of NIR ignores this field or asserts that it's NULL.
*/
struct nir_variable *pointer_initializer;
/**
* For variables that are in an interface block or are an instance of an
* interface block, this is the ``GLSL_TYPE_INTERFACE`` type for that block.
*
* ``ir_variable.location``
*/
const struct glsl_type *interface_type;
/**
* Description of per-member data for per-member struct variables
*
* This is used for variables which are actually an amalgamation of
* multiple entities such as a struct of built-in values or a struct of
* inputs each with their own layout specifier. This is only allowed on
* variables with a struct or array of array of struct type.
*/
struct nir_variable_data *members;
} nir_variable;
static inline bool
_nir_shader_variable_has_mode(nir_variable *var, unsigned modes)
{
/* This isn't a shader variable */
assert(!(modes & nir_var_function_temp));
return var->data.mode & modes;
}
#define nir_foreach_variable_in_list(var, var_list) \
foreach_list_typed(nir_variable, var, node, var_list)
#define nir_foreach_variable_in_list_safe(var, var_list) \
foreach_list_typed_safe(nir_variable, var, node, var_list)
#define nir_foreach_variable_in_shader(var, shader) \
nir_foreach_variable_in_list(var, &(shader)->variables)
#define nir_foreach_variable_in_shader_safe(var, shader) \
nir_foreach_variable_in_list_safe(var, &(shader)->variables)
#define nir_foreach_variable_with_modes(var, shader, modes) \
nir_foreach_variable_in_shader(var, shader) \
if (_nir_shader_variable_has_mode(var, modes))
#define nir_foreach_variable_with_modes_safe(var, shader, modes) \
nir_foreach_variable_in_shader_safe(var, shader) \
if (_nir_shader_variable_has_mode(var, modes))
#define nir_foreach_shader_in_variable(var, shader) \
nir_foreach_variable_with_modes(var, shader, nir_var_shader_in)
#define nir_foreach_shader_in_variable_safe(var, shader) \
nir_foreach_variable_with_modes_safe(var, shader, nir_var_shader_in)
#define nir_foreach_shader_out_variable(var, shader) \
nir_foreach_variable_with_modes(var, shader, nir_var_shader_out)
#define nir_foreach_shader_out_variable_safe(var, shader) \
nir_foreach_variable_with_modes_safe(var, shader, nir_var_shader_out)
#define nir_foreach_uniform_variable(var, shader) \
nir_foreach_variable_with_modes(var, shader, nir_var_uniform)
#define nir_foreach_uniform_variable_safe(var, shader) \
nir_foreach_variable_with_modes_safe(var, shader, nir_var_uniform)
#define nir_foreach_image_variable(var, shader) \
nir_foreach_variable_with_modes(var, shader, nir_var_image)
#define nir_foreach_image_variable_safe(var, shader) \
nir_foreach_variable_with_modes_safe(var, shader, nir_var_image)
static inline bool
nir_variable_is_global(const nir_variable *var)
{
return var->data.mode != nir_var_function_temp;
}
typedef enum ENUM_PACKED {
nir_instr_type_alu,
nir_instr_type_deref,
nir_instr_type_call,
nir_instr_type_tex,
nir_instr_type_intrinsic,
nir_instr_type_load_const,
nir_instr_type_jump,
nir_instr_type_undef,
nir_instr_type_phi,
nir_instr_type_parallel_copy,
} nir_instr_type;
typedef struct nir_instr {
struct exec_node node;
struct nir_block *block;
nir_instr_type type;
/* A temporary for optimization and analysis passes to use for storing
* flags. For instance, DCE uses this to store the "dead/live" info.
*/
uint8_t pass_flags;
/** generic instruction index. */
uint32_t index;
} nir_instr;
static inline nir_instr *
nir_instr_next(nir_instr *instr)
{
struct exec_node *next = exec_node_get_next(&instr->node);
if (exec_node_is_tail_sentinel(next))
return NULL;
else
return exec_node_data(nir_instr, next, node);
}
static inline nir_instr *
nir_instr_prev(nir_instr *instr)
{
struct exec_node *prev = exec_node_get_prev(&instr->node);
if (exec_node_is_head_sentinel(prev))
return NULL;
else
return exec_node_data(nir_instr, prev, node);
}
static inline bool
nir_instr_is_first(const nir_instr *instr)
{
return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
}
static inline bool
nir_instr_is_last(const nir_instr *instr)
{
return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
}
typedef struct nir_def {
/** Instruction which produces this SSA value. */
nir_instr *parent_instr;
/** set of nir_instrs where this register is used (read from) */
struct list_head uses;
/** generic SSA definition index. */
unsigned index;
uint8_t num_components;
/* The bit-size of each channel; must be one of 1, 8, 16, 32, or 64 */
uint8_t bit_size;
/**
* True if this SSA value may have different values in different SIMD
* invocations of the shader. This is set by nir_divergence_analysis.
*/
bool divergent;
} nir_def;
struct nir_src;
struct nir_if;
typedef struct nir_src {
/* Instruction or if-statement that consumes this value as a source. This
* should only be accessed through nir_src_* helpers.
*
* Internally, it is a tagged pointer to a nir_instr or nir_if.
*/
uintptr_t _parent;
struct list_head use_link;
nir_def *ssa;
} nir_src;
/* Layout of the _parent pointer. Bottom bit is set for nir_if parents (clear
* for nir_instr parents). Remaining bits are the pointer.
*/
#define NIR_SRC_PARENT_IS_IF (0x1)
#define NIR_SRC_PARENT_MASK (~((uintptr_t) NIR_SRC_PARENT_IS_IF))
static inline bool
nir_src_is_if(const nir_src *src)
{
return src->_parent & NIR_SRC_PARENT_IS_IF;
}
static inline nir_instr *
nir_src_parent_instr(const nir_src *src)
{
assert(!nir_src_is_if(src));
/* Because it is not an if, the tag is 0, therefore we do not need to mask */
return (nir_instr *)(src->_parent);
}
static inline struct nir_if *
nir_src_parent_if(const nir_src *src)
{
assert(nir_src_is_if(src));
/* Because it is an if, the tag is 1, so we need to mask */
return (struct nir_if *)(src->_parent & NIR_SRC_PARENT_MASK);
}
static inline void
_nir_src_set_parent(nir_src *src, void *parent, bool is_if)
{
uintptr_t ptr = (uintptr_t) parent;
assert((ptr & ~NIR_SRC_PARENT_MASK) == 0 && "pointer must be aligned");
if (is_if)
ptr |= NIR_SRC_PARENT_IS_IF;
src->_parent = ptr;
}
static inline void
nir_src_set_parent_instr(nir_src *src, nir_instr *parent_instr)
{
_nir_src_set_parent(src, parent_instr, false);
}
static inline void
nir_src_set_parent_if(nir_src *src, struct nir_if *parent_if)
{
_nir_src_set_parent(src, parent_if, true);
}
static inline nir_src
nir_src_init(void)
{
nir_src src = { 0 };
return src;
}
#define NIR_SRC_INIT nir_src_init()
#define nir_foreach_use_including_if(src, reg_or_ssa_def) \
list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
#define nir_foreach_use_including_if_safe(src, reg_or_ssa_def) \
list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
#define nir_foreach_use(src, reg_or_ssa_def) \
nir_foreach_use_including_if(src, reg_or_ssa_def) \
if (!nir_src_is_if(src))
#define nir_foreach_use_safe(src, reg_or_ssa_def) \
nir_foreach_use_including_if_safe(src, reg_or_ssa_def) \
if (!nir_src_is_if(src))
#define nir_foreach_if_use(src, reg_or_ssa_def) \
nir_foreach_use_including_if(src, reg_or_ssa_def) \
if (nir_src_is_if(src))
#define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
nir_foreach_use_including_if_safe(src, reg_or_ssa_def) \
if (nir_src_is_if(src))
static inline bool
nir_def_used_by_if(const nir_def *def)
{
nir_foreach_if_use(_, def)
return true;
return false;
}
static inline bool
nir_def_only_used_by_if(const nir_def *def)
{
nir_foreach_use(_, def)
return false;
return true;
}
static inline nir_src
nir_src_for_ssa(nir_def *def)
{
nir_src src = NIR_SRC_INIT;
src.ssa = def;
return src;
}
static inline unsigned
nir_src_bit_size(nir_src src)
{
return src.ssa->bit_size;
}
static inline unsigned
nir_src_num_components(nir_src src)
{
return src.ssa->num_components;
}
static inline bool
nir_src_is_const(nir_src src)
{
return src.ssa->parent_instr->type == nir_instr_type_load_const;
}
static inline bool
nir_src_is_undef(nir_src src)
{
return src.ssa->parent_instr->type == nir_instr_type_undef;
}
static inline bool
nir_src_is_divergent(nir_src src)
{
return src.ssa->divergent;
}
/* Are all components the same, ie. .xxxx */
static inline bool
nir_is_same_comp_swizzle(uint8_t *swiz, unsigned nr_comp)
{
for (unsigned i = 1; i < nr_comp; i++)
if (swiz[i] != swiz[0])
return false;
return true;
}
/* Are all components sequential, ie. .yzw */
static inline bool
nir_is_sequential_comp_swizzle(uint8_t *swiz, unsigned nr_comp)
{
for (unsigned i = 1; i < nr_comp; i++)
if (swiz[i] != (swiz[0] + i))
return false;
return true;
}
/***/
typedef struct nir_alu_src {
/** Base source */
nir_src src;
/**
* For each input component, says which component of the register it is
* chosen from.
*
* Note that which elements of the swizzle are used and which are ignored
* are based on the write mask for most opcodes - for example, a statement
* like "foo.xzw = bar.zyx" would have a writemask of 1101b and a swizzle
* of {2, 1, x, 0} where x means "don't care."
*/
uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
} nir_alu_src;
/** NIR sized and unsized types
*
* The values in this enum are carefully chosen so that the sized type is
* just the unsized type OR the number of bits.
*/
/* clang-format off */
typedef enum ENUM_PACKED {
nir_type_invalid = 0, /* Not a valid type */
nir_type_int = 2,
nir_type_uint = 4,
nir_type_bool = 6,
nir_type_float = 128,
nir_type_bool1 = 1 | nir_type_bool,
nir_type_bool8 = 8 | nir_type_bool,
nir_type_bool16 = 16 | nir_type_bool,
nir_type_bool32 = 32 | nir_type_bool,
nir_type_int1 = 1 | nir_type_int,
nir_type_int8 = 8 | nir_type_int,
nir_type_int16 = 16 | nir_type_int,
nir_type_int32 = 32 | nir_type_int,
nir_type_int64 = 64 | nir_type_int,
nir_type_uint1 = 1 | nir_type_uint,
nir_type_uint8 = 8 | nir_type_uint,
nir_type_uint16 = 16 | nir_type_uint,
nir_type_uint32 = 32 | nir_type_uint,
nir_type_uint64 = 64 | nir_type_uint,
nir_type_float16 = 16 | nir_type_float,
nir_type_float32 = 32 | nir_type_float,
nir_type_float64 = 64 | nir_type_float,
} nir_alu_type;
/* clang-format on */
#define NIR_ALU_TYPE_SIZE_MASK 0x79
#define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
static inline unsigned
nir_alu_type_get_type_size(nir_alu_type type)
{
return type & NIR_ALU_TYPE_SIZE_MASK;
}
static inline nir_alu_type
nir_alu_type_get_base_type(nir_alu_type type)
{
return (nir_alu_type)(type & NIR_ALU_TYPE_BASE_TYPE_MASK);
}
nir_alu_type
nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type);
static inline nir_alu_type
nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
{
return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
}
enum glsl_base_type
nir_get_glsl_base_type_for_nir_type(nir_alu_type base_type);
nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
nir_rounding_mode rnd);
/**
* Atomic intrinsics perform different operations depending on the value of
* their atomic_op constant index. nir_atomic_op defines the operations.
*/
typedef enum {
nir_atomic_op_iadd,
nir_atomic_op_imin,
nir_atomic_op_umin,
nir_atomic_op_imax,
nir_atomic_op_umax,
nir_atomic_op_iand,
nir_atomic_op_ior,
nir_atomic_op_ixor,
nir_atomic_op_xchg,
nir_atomic_op_fadd,
nir_atomic_op_fmin,
nir_atomic_op_fmax,
nir_atomic_op_cmpxchg,
nir_atomic_op_fcmpxchg,
nir_atomic_op_inc_wrap,
nir_atomic_op_dec_wrap,
} nir_atomic_op;
static inline nir_alu_type
nir_atomic_op_type(nir_atomic_op op)
{
switch (op) {
case nir_atomic_op_imin:
case nir_atomic_op_imax:
return nir_type_int;
case nir_atomic_op_fadd:
case nir_atomic_op_fmin:
case nir_atomic_op_fmax:
case nir_atomic_op_fcmpxchg:
return nir_type_float;
case nir_atomic_op_iadd:
case nir_atomic_op_iand:
case nir_atomic_op_ior:
case nir_atomic_op_ixor:
case nir_atomic_op_xchg:
case nir_atomic_op_cmpxchg:
case nir_atomic_op_umin:
case nir_atomic_op_umax:
case nir_atomic_op_inc_wrap:
case nir_atomic_op_dec_wrap:
return nir_type_uint;
}
unreachable("Invalid nir_atomic_op");
}
/** Returns nir_op_vec<num_components> or nir_op_mov if num_components == 1
*
* This is subtly different from nir_op_is_vec() which returns false for
* nir_op_mov. Returning nir_op_mov from nir_op_vec() when num_components == 1
* makes sense under the assumption that the num_components of the resulting
* nir_def will same as what is passed in here because a single-component mov
* is effectively a vec1. However, if alu->def.num_components > 1, nir_op_mov
* has different semantics from nir_op_vec* so so code which detects "is this
* a vec?" typically needs to handle nir_op_mov separate from nir_op_vecN.
*
* In the unlikely case where you can handle nir_op_vecN and nir_op_mov
* together, use nir_op_is_vec_or_mov().
*/
nir_op
nir_op_vec(unsigned num_components);
/** Returns true if this op is one of nir_op_vec*
*
* Returns false for nir_op_mov. See nir_op_vec() for more details.
*/
bool
nir_op_is_vec(nir_op op);
static inline bool
nir_op_is_vec_or_mov(nir_op op)
{
return op == nir_op_mov || nir_op_is_vec(op);
}
static inline bool
nir_is_float_control_signed_zero_preserve(unsigned execution_mode, unsigned bit_size)
{
return (16 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_PRESERVE_FP16) ||
(32 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_PRESERVE_FP32) ||
(64 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_PRESERVE_FP64);
}
static inline bool
nir_is_float_control_inf_preserve(unsigned execution_mode, unsigned bit_size)
{
return (16 == bit_size && execution_mode & FLOAT_CONTROLS_INF_PRESERVE_FP16) ||
(32 == bit_size && execution_mode & FLOAT_CONTROLS_INF_PRESERVE_FP32) ||
(64 == bit_size && execution_mode & FLOAT_CONTROLS_INF_PRESERVE_FP64);
}
static inline bool
nir_is_float_control_nan_preserve(unsigned execution_mode, unsigned bit_size)
{
return (16 == bit_size && execution_mode & FLOAT_CONTROLS_NAN_PRESERVE_FP16) ||
(32 == bit_size && execution_mode & FLOAT_CONTROLS_NAN_PRESERVE_FP32) ||
(64 == bit_size && execution_mode & FLOAT_CONTROLS_NAN_PRESERVE_FP64);
}
static inline bool
nir_is_float_control_signed_zero_inf_nan_preserve(unsigned execution_mode, unsigned bit_size)
{
return (16 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16) ||
(32 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32) ||
(64 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
}
static inline bool
nir_is_denorm_flush_to_zero(unsigned execution_mode, unsigned bit_size)
{
return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16) ||
(32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32) ||
(64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
}
static inline bool
nir_is_denorm_preserve(unsigned execution_mode, unsigned bit_size)
{
return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP16) ||
(32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP32) ||
(64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP64);
}
static inline bool
nir_is_rounding_mode_rtne(unsigned execution_mode, unsigned bit_size)
{
return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
(32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
(64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
}
static inline bool
nir_is_rounding_mode_rtz(unsigned execution_mode, unsigned bit_size)
{
return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
(32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
(64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
}
static inline bool
nir_has_any_rounding_mode_rtz(unsigned execution_mode)
{
return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
(execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
(execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
}
static inline bool
nir_has_any_rounding_mode_rtne(unsigned execution_mode)
{
return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
(execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
(execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
}
static inline nir_rounding_mode
nir_get_rounding_mode_from_float_controls(unsigned execution_mode,
nir_alu_type type)
{
if (nir_alu_type_get_base_type(type) != nir_type_float)
return nir_rounding_mode_undef;
unsigned bit_size = nir_alu_type_get_type_size(type);
if (nir_is_rounding_mode_rtz(execution_mode, bit_size))
return nir_rounding_mode_rtz;
if (nir_is_rounding_mode_rtne(execution_mode, bit_size))
return nir_rounding_mode_rtne;
return nir_rounding_mode_undef;
}
static inline bool
nir_has_any_rounding_mode_enabled(unsigned execution_mode)
{
bool result =
nir_has_any_rounding_mode_rtne(execution_mode) ||
nir_has_any_rounding_mode_rtz(execution_mode);
return result;
}
typedef enum {
/**
* Operation where the first two sources are commutative.
*
* For 2-source operations, this just mathematical commutativity. Some
* 3-source operations, like ffma, are only commutative in the first two
* sources.
*/
NIR_OP_IS_2SRC_COMMUTATIVE = (1 << 0),
/**
* Operation is associative
*/
NIR_OP_IS_ASSOCIATIVE = (1 << 1),
/**
* Operation where src[0] is used to select src[1] on true or src[2] false.
* src[0] may be Boolean, or it may be another type used in an implicit
* comparison.
*/
NIR_OP_IS_SELECTION = (1 << 2),
/**
* Operation where a screen-space derivative is taken of src[0]. Must not be
* moved into non-uniform control flow.
*/
NIR_OP_IS_DERIVATIVE = (1 << 3),
} nir_op_algebraic_property;
/* vec16 is the widest ALU op in NIR, making the max number of input of ALU
* instructions to be the same as NIR_MAX_VEC_COMPONENTS.
*/
#define NIR_ALU_MAX_INPUTS NIR_MAX_VEC_COMPONENTS
/***/
typedef struct nir_op_info {
/** Name of the NIR ALU opcode */
const char *name;
/** Number of inputs (sources) */
uint8_t num_inputs;
/**
* The number of components in the output
*
* If non-zero, this is the size of the output and input sizes are
* explicitly given; swizzle and writemask are still in effect, but if
* the output component is masked out, then the input component may
* still be in use.
*
* If zero, the opcode acts in the standard, per-component manner; the
* operation is performed on each component (except the ones that are
* masked out) with the input being taken from the input swizzle for
* that component.
*
* The size of some of the inputs may be given (i.e. non-zero) even
* though output_size is zero; in that case, the inputs with a zero
* size act per-component, while the inputs with non-zero size don't.
*/
uint8_t output_size;
/**
* The type of vector that the instruction outputs. Note that the
* staurate modifier is only allowed on outputs with the float type.
*/
nir_alu_type output_type;
/**
* The number of components in each input
*
* See nir_op_infos::output_size for more detail about the relationship
* between input and output sizes.
*/
uint8_t input_sizes[NIR_ALU_MAX_INPUTS];
/**
* The type of vector that each input takes.
*/
nir_alu_type input_types[NIR_ALU_MAX_INPUTS];
/** Algebraic properties of this opcode */
nir_op_algebraic_property algebraic_properties;
/** Whether this represents a numeric conversion opcode */
bool is_conversion;
} nir_op_info;
/** Metadata for each nir_op, indexed by opcode */
extern const nir_op_info nir_op_infos[nir_num_opcodes];
static inline bool
nir_op_is_selection(nir_op op)
{
return (nir_op_infos[op].algebraic_properties & NIR_OP_IS_SELECTION) != 0;
}
static inline bool
nir_op_is_derivative(nir_op op)
{
return (nir_op_infos[op].algebraic_properties & NIR_OP_IS_DERIVATIVE) != 0;
}
/***/
typedef struct nir_alu_instr {
/** Base instruction */
nir_instr instr;
/** Opcode */
nir_op op;
/** Indicates that this ALU instruction generates an exact value
*
* This is kind of a mixture of GLSL "precise" and "invariant" and not
* really equivalent to either. This indicates that the value generated by
* this operation is high-precision and any code transformations that touch
* it must ensure that the resulting value is bit-for-bit identical to the
* original.
*/
bool exact : 1;
/**
* Indicates that this instruction doese not cause signed integer wrapping
* to occur, in the form of overflow or underflow.
*/
bool no_signed_wrap : 1;
/**
* Indicates that this instruction does not cause unsigned integer wrapping
* to occur, in the form of overflow or underflow.
*/
bool no_unsigned_wrap : 1;
/** Destination */
nir_def def;
/** Sources
*
* The size of the array is given by :c:member:`nir_op_info.num_inputs`.
*/
nir_alu_src src[];
} nir_alu_instr;
void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src);
nir_component_mask_t
nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src);
/**
* Get the number of channels used for a source
*/
unsigned
nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src);
/* is this source channel used? */
static inline bool
nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
unsigned channel)
{
return channel < nir_ssa_alu_instr_src_components(instr, src);
}
bool
nir_alu_instr_is_comparison(const nir_alu_instr *instr);
bool nir_const_value_negative_equal(nir_const_value c1, nir_const_value c2,
nir_alu_type full_type);
bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
unsigned src1, unsigned src2);
bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
const nir_alu_instr *alu2,
unsigned src1, unsigned src2);
bool nir_alu_src_is_trivial_ssa(const nir_alu_instr *alu, unsigned srcn);
typedef enum {
nir_deref_type_var,
nir_deref_type_array,
nir_deref_type_array_wildcard,
nir_deref_type_ptr_as_array,
nir_deref_type_struct,
nir_deref_type_cast,
} nir_deref_type;
typedef struct {
nir_instr instr;
/** The type of this deref instruction */
nir_deref_type deref_type;
/** Bitmask what modes the underlying variable might be
*
* For OpenCL-style generic pointers, we may not know exactly what mode it
* is at any given point in time in the compile process. This bitfield
* contains the set of modes which it MAY be.
*
* Generally, this field should not be accessed directly. Use one of the
* nir_deref_mode_ helpers instead.
*/
nir_variable_mode modes;
/** The dereferenced type of the resulting pointer value */
const struct glsl_type *type;
union {
/** Variable being dereferenced if deref_type is a deref_var */
nir_variable *var;
/** Parent deref if deref_type is not deref_var */
nir_src parent;
};
/** Additional deref parameters */
union {
struct {
nir_src index;
bool in_bounds;
} arr;
struct {
unsigned index;
} strct;
struct {
unsigned ptr_stride;
unsigned align_mul;
unsigned align_offset;
} cast;
};
/** Destination to store the resulting "pointer" */
nir_def def;
} nir_deref_instr;
/**
* Returns true if the cast is trivial, i.e. the source and destination type is
* the same.
*/
bool nir_deref_cast_is_trivial(nir_deref_instr *cast);
/** Returns true if deref might have one of the given modes
*
* For multi-mode derefs, this returns true if any of the possible modes for
* the deref to have any of the specified modes. This function returning true
* does NOT mean that the deref definitely has one of those modes. It simply
* means that, with the best information we have at the time, it might.
*/
static inline bool
nir_deref_mode_may_be(const nir_deref_instr *deref, nir_variable_mode modes)
{
assert(!(modes & ~nir_var_all));
assert(deref->modes != 0);
return deref->modes & modes;
}
/** Returns true if deref must have one of the given modes
*
* For multi-mode derefs, this returns true if NIR can prove that the given
* deref has one of the specified modes. This function returning false does
* NOT mean that deref doesn't have one of the given mode. It very well may
* have one of those modes, we just don't have enough information to prove
* that it does for sure.
*/
static inline bool
nir_deref_mode_must_be(const nir_deref_instr *deref, nir_variable_mode modes)
{
assert(!(modes & ~nir_var_all));
assert(deref->modes != 0);
return !(deref->modes & ~modes);
}
/** Returns true if deref has the given mode
*
* This returns true if the deref has exactly the mode specified. If the
* deref may have that mode but may also have a different mode (i.e. modes has
* multiple bits set), this will assert-fail.
*
* If you're confused about which nir_deref_mode_ helper to use, use this one
* or nir_deref_mode_is_one_of below.
*/
static inline bool
nir_deref_mode_is(const nir_deref_instr *deref, nir_variable_mode mode)
{
assert(util_bitcount(mode) == 1 && (mode & nir_var_all));
assert(deref->modes != 0);
/* This is only for "simple" cases so, if modes might interact with this
* deref then the deref has to have a single mode.
*/
if (nir_deref_mode_may_be(deref, mode)) {
assert(util_bitcount(deref->modes) == 1);
assert(deref->modes == mode);
}
return deref->modes == mode;
}
/** Returns true if deref has one of the given modes
*
* This returns true if the deref has exactly one possible mode and that mode
* is one of the modes specified. If the deref may have one of those modes
* but may also have a different mode (i.e. modes has multiple bits set), this
* will assert-fail.
*/
static inline bool
nir_deref_mode_is_one_of(const nir_deref_instr *deref, nir_variable_mode modes)
{
/* This is only for "simple" cases so, if modes might interact with this
* deref then the deref has to have a single mode.
*/
if (nir_deref_mode_may_be(deref, modes)) {
assert(util_bitcount(deref->modes) == 1);
assert(nir_deref_mode_must_be(deref, modes));
}
return nir_deref_mode_may_be(deref, modes);
}
/** Returns true if deref's possible modes lie in the given set of modes
*
* This returns true if the deref's modes lie in the given set of modes. If
* the deref's modes overlap with the specified modes but aren't entirely
* contained in the specified set of modes, this will assert-fail. In
* particular, if this is used in a generic pointers scenario, the specified
* modes has to contain all or none of the possible generic pointer modes.
*
* This is intended mostly for mass-lowering of derefs which might have
* generic pointers.
*/
static inline bool
nir_deref_mode_is_in_set(const nir_deref_instr *deref, nir_variable_mode modes)
{
if (nir_deref_mode_may_be(deref, modes))
assert(nir_deref_mode_must_be(deref, modes));
return nir_deref_mode_may_be(deref, modes);
}
static inline nir_deref_instr *nir_src_as_deref(nir_src src);
static inline nir_deref_instr *
nir_deref_instr_parent(const nir_deref_instr *instr)
{
if (instr->deref_type == nir_deref_type_var)
return NULL;
else
return nir_src_as_deref(instr->parent);
}
static inline nir_variable *
nir_deref_instr_get_variable(const nir_deref_instr *instr)
{
while (instr->deref_type != nir_deref_type_var) {
if (instr->deref_type == nir_deref_type_cast)
return NULL;
instr = nir_deref_instr_parent(instr);
}
return instr->var;
}
bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
bool nir_deref_instr_is_known_out_of_bounds(nir_deref_instr *instr);
typedef enum {
nir_deref_instr_has_complex_use_allow_memcpy_src = (1 << 0),
nir_deref_instr_has_complex_use_allow_memcpy_dst = (1 << 1),
nir_deref_instr_has_complex_use_allow_atomics = (1 << 2),
} nir_deref_instr_has_complex_use_options;
bool nir_deref_instr_has_complex_use(nir_deref_instr *instr,
nir_deref_instr_has_complex_use_options opts);
bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
unsigned nir_deref_instr_array_stride(nir_deref_instr *instr);
typedef struct {
nir_instr instr;
struct nir_function *callee;
unsigned num_params;
nir_src params[];
} nir_call_instr;
#include "nir_intrinsics.h"
#define NIR_INTRINSIC_MAX_CONST_INDEX 8
/** Represents an intrinsic
*
* An intrinsic is an instruction type for handling things that are
* more-or-less regular operations but don't just consume and produce SSA
* values like ALU operations do. Intrinsics are not for things that have
* special semantic meaning such as phi nodes and parallel copies.
* Examples of intrinsics include variable load/store operations, system
* value loads, and the like. Even though texturing more-or-less falls
* under this category, texturing is its own instruction type because
* trying to represent texturing with intrinsics would lead to a
* combinatorial explosion of intrinsic opcodes.
*
* By having a single instruction type for handling a lot of different
* cases, optimization passes can look for intrinsics and, for the most
* part, completely ignore them. Each intrinsic type also has a few
* possible flags that govern whether or not they can be reordered or
* eliminated. That way passes like dead code elimination can still work
* on intrisics without understanding the meaning of each.
*
* Each intrinsic has some number of constant indices, some number of
* variables, and some number of sources. What these sources, variables,
* and indices mean depends on the intrinsic and is documented with the
* intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
* instructions are the only types of instruction that can operate on
* variables.
*/
typedef struct {
nir_instr instr;
nir_intrinsic_op intrinsic;
nir_def def;
/** number of components if this is a vectorized intrinsic
*
* Similarly to ALU operations, some intrinsics are vectorized.
* An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
* For vectorized intrinsics, the num_components field specifies the
* number of destination components and the number of source components
* for all sources with nir_intrinsic_infos.src_components[i] == 0.
*/
uint8_t num_components;
int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
nir_src src[];
} nir_intrinsic_instr;
static inline nir_variable *
nir_intrinsic_get_var(const nir_intrinsic_instr *intrin, unsigned i)
{
return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
}
typedef enum {
/* Memory ordering. */
NIR_MEMORY_ACQUIRE = 1 << 0,
NIR_MEMORY_RELEASE = 1 << 1,
NIR_MEMORY_ACQ_REL = NIR_MEMORY_ACQUIRE | NIR_MEMORY_RELEASE,
/* Memory visibility operations. */
NIR_MEMORY_MAKE_AVAILABLE = 1 << 2,
NIR_MEMORY_MAKE_VISIBLE = 1 << 3,
} nir_memory_semantics;
/**
* NIR intrinsics semantic flags
*
* information about what the compiler can do with the intrinsics.
*
* :c:member:`nir_intrinsic_info.flags`
*/
typedef enum {
/**
* whether the intrinsic can be safely eliminated if none of its output
* value is not being used.
*/
NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
/**
* Whether the intrinsic can be reordered with respect to any other
* intrinsic, i.e. whether the only reordering dependencies of the
* intrinsic are due to the register reads/writes.
*/
NIR_INTRINSIC_CAN_REORDER = (1 << 1),
} nir_intrinsic_semantic_flag;
/**
* Maximum valid value for a nir align_mul value (in intrinsics or derefs).
*
* Offsets can be signed, so this is the largest power of two in int32_t.
*/
#define NIR_ALIGN_MUL_MAX 0x40000000
typedef struct nir_io_semantics {
unsigned location : 7; /* gl_vert_attrib, gl_varying_slot, or gl_frag_result */
unsigned num_slots : 6; /* max 32, may be pessimistic with const indexing */
unsigned dual_source_blend_index : 1;
unsigned fb_fetch_output : 1; /* for GL_KHR_blend_equation_advanced */
unsigned gs_streams : 8; /* xxyyzzww: 2-bit stream index for each component */
unsigned medium_precision : 1; /* GLSL mediump qualifier */
unsigned per_view : 1;
unsigned high_16bits : 1; /* whether accessing low or high half of the slot */
unsigned invariant : 1; /* The variable has the invariant flag set */
unsigned high_dvec2 : 1; /* whether accessing the high half of dvec3/dvec4 */
/* CLIP_DISTn, LAYER, VIEWPORT, and TESS_LEVEL_* have up to 3 uses:
* - an output consumed by the next stage
* - a system value output affecting fixed-func hardware, e.g. the clipper
* - a transform feedback output written to memory
* The following fields disable the first two. Transform feedback is disabled
* by transform feedback info.
*/
unsigned no_varying : 1; /* whether this output isn't consumed by the next stage */
unsigned no_sysval_output : 1; /* whether this system value output has no
effect due to current pipeline states */
unsigned interp_explicit_strict : 1; /* preserve original vertex order */
unsigned per_primitive : 1; /* Per-primitive FS input (when FS is used with a mesh shader).
Note that per-primitive MS outputs are implied by
using a dedicated intrinsic, store_per_primitive_output. */
} nir_io_semantics;
/* Transform feedback info for 2 outputs. nir_intrinsic_store_output contains
* this structure twice to support up to 4 outputs. The structure is limited
* to 32 bits because it's stored in nir_intrinsic_instr::const_index[].
*/
typedef struct nir_io_xfb {
struct {
/* start_component is equal to the index of out[]; add 2 for io_xfb2 */
/* start_component is not relative to nir_intrinsic_component */
/* get the stream index from nir_io_semantics */
uint8_t num_components : 4; /* max 4; if this is 0, xfb is disabled */
uint8_t buffer : 4; /* buffer index, max 3 */
uint8_t offset; /* transform feedback buffer offset in dwords,
max (1K - 4) bytes */
} out[2];
} nir_io_xfb;
unsigned
nir_instr_xfb_write_mask(nir_intrinsic_instr *instr);
#define NIR_INTRINSIC_MAX_INPUTS 11
typedef struct {
const char *name;
/** number of register/SSA inputs */
uint8_t num_srcs;
/** number of components of each input register
*
* If this value is 0, the number of components is given by the
* num_components field of nir_intrinsic_instr. If this value is -1, the
* intrinsic consumes however many components are provided and it is not
* validated at all.
*/
int8_t src_components[NIR_INTRINSIC_MAX_INPUTS];
bool has_dest;
/** number of components of the output register
*
* If this value is 0, the number of components is given by the
* num_components field of nir_intrinsic_instr.
*/
uint8_t dest_components;
/** bitfield of legal bit sizes */
uint8_t dest_bit_sizes;
/** source which the destination bit size must match
*
* Some intrinsics, such as subgroup intrinsics, are data manipulation
* intrinsics and they have similar bit-size rules to ALU ops. This enables
* validation to validate a bit more and enables auto-generated builder code
* to properly determine destination bit sizes automatically.
*/
int8_t bit_size_src;
/** the number of constant indices used by the intrinsic */
uint8_t num_indices;
/** list of indices */
uint8_t indices[NIR_INTRINSIC_MAX_CONST_INDEX];
/** indicates the usage of intr->const_index[n] */
uint8_t index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
/** semantic flags for calls to this intrinsic */
nir_intrinsic_semantic_flag flags;
} nir_intrinsic_info;
extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
unsigned
nir_intrinsic_src_components(const nir_intrinsic_instr *intr, unsigned srcn);
unsigned
nir_intrinsic_dest_components(nir_intrinsic_instr *intr);
nir_alu_type
nir_intrinsic_instr_src_type(const nir_intrinsic_instr *intrin, unsigned src);
nir_alu_type
nir_intrinsic_instr_dest_type(const nir_intrinsic_instr *intrin);
/**
* Helper to copy const_index[] from src to dst, without assuming they
* match in order.
*/
void nir_intrinsic_copy_const_indices(nir_intrinsic_instr *dst, nir_intrinsic_instr *src);
#include "nir_intrinsics_indices.h"
static inline void
nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
unsigned align_mul, unsigned align_offset)
{
assert(util_is_power_of_two_nonzero(align_mul));
assert(align_offset < align_mul);
nir_intrinsic_set_align_mul(intrin, align_mul);
nir_intrinsic_set_align_offset(intrin, align_offset);
}
/** Returns a simple alignment for an align_mul/offset pair
*
* This helper converts from the full mul+offset alignment scheme used by
* most NIR intrinsics to a simple alignment. The returned value is the
* largest power of two which divides both align_mul and align_offset.
* For any offset X which satisfies the complex alignment described by
* align_mul/offset, X % align == 0.
*/
static inline uint32_t
nir_combined_align(uint32_t align_mul, uint32_t align_offset)
{
assert(util_is_power_of_two_nonzero(align_mul));
assert(align_offset < align_mul);
return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
}
/** Returns a simple alignment for a load/store intrinsic offset
*
* Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
* and ALIGN_OFFSET parameters, this helper takes both into account and
* provides a single simple alignment parameter. The offset X is guaranteed
* to satisfy X % align == 0.
*/
static inline unsigned
nir_intrinsic_align(const nir_intrinsic_instr *intrin)
{
return nir_combined_align(nir_intrinsic_align_mul(intrin),
nir_intrinsic_align_offset(intrin));
}
static inline bool
nir_intrinsic_has_align(const nir_intrinsic_instr *intrin)
{
return nir_intrinsic_has_align_mul(intrin) &&
nir_intrinsic_has_align_offset(intrin);
}
unsigned
nir_image_intrinsic_coord_components(const nir_intrinsic_instr *instr);
/* Converts a image_deref_* intrinsic into a image_* one */
void nir_rewrite_image_intrinsic(nir_intrinsic_instr *instr,
nir_def *handle, bool bindless);
/* Determine if an intrinsic can be arbitrarily reordered and eliminated. */
static inline bool
nir_intrinsic_can_reorder(nir_intrinsic_instr *instr)
{
if (nir_intrinsic_has_access(instr) &&
nir_intrinsic_access(instr) & ACCESS_VOLATILE)
return false;
if (instr->intrinsic == nir_intrinsic_load_deref) {
nir_deref_instr *deref = nir_src_as_deref(instr->src[0]);
return nir_deref_mode_is_in_set(deref, nir_var_read_only_modes) ||
(nir_intrinsic_access(instr) & ACCESS_CAN_REORDER);
} else if (instr->intrinsic == nir_intrinsic_load_ssbo ||
instr->intrinsic == nir_intrinsic_bindless_image_load ||
instr->intrinsic == nir_intrinsic_image_deref_load ||
instr->intrinsic == nir_intrinsic_image_load ||
instr->intrinsic == nir_intrinsic_ald_nv ||
instr->intrinsic == nir_intrinsic_load_sysval_nv) {
return nir_intrinsic_access(instr) & ACCESS_CAN_REORDER;
} else {
const nir_intrinsic_info *info =
&nir_intrinsic_infos[instr->intrinsic];
return (info->flags & NIR_INTRINSIC_CAN_ELIMINATE) &&
(info->flags & NIR_INTRINSIC_CAN_REORDER);
}
}
bool nir_intrinsic_writes_external_memory(const nir_intrinsic_instr *instr);
static inline bool
nir_intrinsic_is_ray_query(nir_intrinsic_op intrinsic)
{
switch (intrinsic) {
case nir_intrinsic_rq_confirm_intersection:
case nir_intrinsic_rq_generate_intersection:
case nir_intrinsic_rq_initialize:
case nir_intrinsic_rq_load:
case nir_intrinsic_rq_proceed:
case nir_intrinsic_rq_terminate:
return true;
default:
return false;
}
}
/** Texture instruction source type */
typedef enum nir_tex_src_type {
/** Texture coordinate
*
* Must have :c:member:`nir_tex_instr.coord_components` components.
*/
nir_tex_src_coord,
/** Projector
*
* The texture coordinate (except for the array component, if any) is
* divided by this value before LOD computation and sampling.
*
* Must be a float scalar.
*/
nir_tex_src_projector,
/** Shadow comparator
*
* For shadow sampling, the fetched texel values are compared against the
* shadow comparator using the compare op specified by the sampler object
* and converted to 1.0 if the comparison succeeds and 0.0 if it fails.
* Interpolation happens after this conversion so the actual result may be
* anywhere in the range [0.0, 1.0].
*
* Only valid if :c:member:`nir_tex_instr.is_shadow` and must be a float
* scalar.
*/
nir_tex_src_comparator,
/** Coordinate offset
*
* An integer value that is added to the texel address before sampling.
* This is only allowed with operations that take an explicit LOD as it is
* applied in integer texel space after LOD selection and not normalized
* coordinate space.
*/
nir_tex_src_offset,
/** LOD bias
*
* This value is added to the computed LOD before mip-mapping.
*/
nir_tex_src_bias,
/** Explicit LOD */
nir_tex_src_lod,
/** Min LOD
*
* The computed LOD is clamped to be at least as large as min_lod before
* mip-mapping.
*/
nir_tex_src_min_lod,
/** MSAA sample index */
nir_tex_src_ms_index,
/** Intel-specific MSAA compression data */
nir_tex_src_ms_mcs_intel,
/** Explicit horizontal (X-major) coordinate derivative */
nir_tex_src_ddx,
/** Explicit vertical (Y-major) coordinate derivative */
nir_tex_src_ddy,
/** Texture variable dereference */
nir_tex_src_texture_deref,
/** Sampler variable dereference */
nir_tex_src_sampler_deref,
/** Texture index offset
*
* This is added to :c:member:`nir_tex_instr.texture_index`. Unless
* :c:member:`nir_tex_instr.texture_non_uniform` is set, this is guaranteed
* to be dynamically uniform.
*/
nir_tex_src_texture_offset,
/** Dynamically uniform sampler index offset
*
* This is added to :c:member:`nir_tex_instr.sampler_index`. Unless
* :c:member:`nir_tex_instr.sampler_non_uniform` is set, this is guaranteed to be
* dynamically uniform. This should not be present until GLSL ES 3.20, GLSL
* 4.00, or ARB_gpu_shader5, because in ES 3.10 and GL 3.30 samplers said
* "When aggregated into arrays within a shader, samplers can only be indexed
* with a constant integral expression."
*/
nir_tex_src_sampler_offset,
/** Bindless texture handle
*
* This is, unfortunately, a bit overloaded at the moment. There are
* generally two types of bindless handles:
*
* 1. For GL_ARB_bindless bindless handles. These are part of the
* GL/Gallium-level API and are always a 64-bit integer.
*
* 2. HW-specific handles. GL_ARB_bindless handles may be lowered to
* these. Also, these are used by many Vulkan drivers to implement
* descriptor sets, especially for UPDATE_AFTER_BIND descriptors.
* The details of hardware handles (bit size, format, etc.) is
* HW-specific.
*
* Because of this overloading and the resulting ambiguity, we currently
* don't validate anything for these.
*/
nir_tex_src_texture_handle,
/** Bindless sampler handle
*
* See nir_tex_src_texture_handle,
*/
nir_tex_src_sampler_handle,
/** Plane index for multi-plane YCbCr textures */
nir_tex_src_plane,
/**
* Backend-specific vec4 tex src argument.
*
* Can be used to have NIR optimization (copy propagation, lower_vec_to_regs)
* apply to the packing of the tex srcs. This lowering must only happen
* after nir_lower_tex().
*
* The nir_tex_instr_src_type() of this argument is float, so no lowering
* will happen if nir_lower_int_to_float is used.
*/
nir_tex_src_backend1,
/** Second backend-specific vec4 tex src argument, see nir_tex_src_backend1. */
nir_tex_src_backend2,
nir_num_tex_src_types
} nir_tex_src_type;
/** A texture instruction source */
typedef struct nir_tex_src {
/** Base source */
nir_src src;
/** Type of this source */
nir_tex_src_type src_type;
} nir_tex_src;
/** Texture instruction opcode */
typedef enum nir_texop {
/** Regular texture look-up */
nir_texop_tex,
/** Texture look-up with LOD bias */
nir_texop_txb,
/** Texture look-up with explicit LOD */
nir_texop_txl,
/** Texture look-up with partial derivatives */
nir_texop_txd,
/** Texel fetch with explicit LOD */
nir_texop_txf,
/** Multisample texture fetch */
nir_texop_txf_ms,
/** Multisample texture fetch from framebuffer */
nir_texop_txf_ms_fb,
/** Multisample compression value fetch */
nir_texop_txf_ms_mcs_intel,
/** Texture size */
nir_texop_txs,
/** Texture lod query */
nir_texop_lod,
/** Texture gather */
nir_texop_tg4,
/** Texture levels query */
nir_texop_query_levels,
/** Texture samples query */
nir_texop_texture_samples,
/** Query whether all samples are definitely identical. */
nir_texop_samples_identical,
/** Regular texture look-up, eligible for pre-dispatch */
nir_texop_tex_prefetch,
/** Multisample fragment color texture fetch */
nir_texop_fragment_fetch_amd,
/** Multisample fragment mask texture fetch */
nir_texop_fragment_mask_fetch_amd,
/** Returns a buffer or image descriptor. */
nir_texop_descriptor_amd,
/** Returns a sampler descriptor. */
nir_texop_sampler_descriptor_amd,
/** Returns the sampler's LOD bias */
nir_texop_lod_bias_agx,
/** Maps to TXQ.DIMENSION */
nir_texop_hdr_dim_nv,
/** Maps to TXQ.TEXTURE_TYPE */
nir_texop_tex_type_nv,
} nir_texop;
/** Represents a texture instruction */
typedef struct nir_tex_instr {
/** Base instruction */
nir_instr instr;
/** Dimensionality of the texture operation
*
* This will typically match the dimensionality of the texture deref type
* if a nir_tex_src_texture_deref is present. However, it may not if
* texture lowering has occurred.
*/
enum glsl_sampler_dim sampler_dim;
/** ALU type of the destination
*
* This is the canonical sampled type for this texture operation and may
* not exactly match the sampled type of the deref type when a
* nir_tex_src_texture_deref is present. For OpenCL, the sampled type of
* the texture deref will be GLSL_TYPE_VOID and this is allowed to be
* anything. With SPIR-V, the signedness of integer types is allowed to
* differ. For all APIs, the bit size may differ if the driver has done
* any sort of mediump or similar lowering since texture types always have
* 32-bit sampled types.
*/
nir_alu_type dest_type;
/** Texture opcode */
nir_texop op;
/** Destination */
nir_def def;
/** Array of sources
*
* This array has :c:member:`nir_tex_instr.num_srcs` elements
*/
nir_tex_src *src;
/** Number of sources */
unsigned num_srcs;
/** Number of components in the coordinate, if any */
unsigned coord_components;
/** True if the texture instruction acts on an array texture */
bool is_array;
/** True if the texture instruction performs a shadow comparison
*
* If this is true, the texture instruction must have a
* nir_tex_src_comparator.
*/
bool is_shadow;
/**
* If is_shadow is true, whether this is the old-style shadow that outputs
* 4 components or the new-style shadow that outputs 1 component.
*/
bool is_new_style_shadow;
/**
* True if this texture instruction should return a sparse residency code.
* The code is in the last component of the result.
*/
bool is_sparse;
/** nir_texop_tg4 component selector
*
* This determines which RGBA component is gathered.
*/
unsigned component : 2;
/** Validation needs to know this for gradient component count */
unsigned array_is_lowered_cube : 1;
/** True if this tg4 instruction has an implicit LOD or LOD bias, instead of using level 0 */
unsigned is_gather_implicit_lod : 1;
/** Gather offsets */
int8_t tg4_offsets[4][2];
/** True if the texture index or handle is not dynamically uniform */
bool texture_non_uniform;
/** True if the sampler index or handle is not dynamically uniform.
*
* This may be set when VK_EXT_descriptor_indexing is supported and the
* appropriate capability is enabled.
*
* This should always be false in GLSL (GLSL ES 3.20 says "When aggregated
* into arrays within a shader, opaque types can only be indexed with a
* dynamically uniform integral expression", and GLSL 4.60 says "When
* aggregated into arrays within a shader, [texture, sampler, and
* samplerShadow] types can only be indexed with a dynamically uniform
* expression, or texture lookup will result in undefined values.").
*/
bool sampler_non_uniform;
/** The texture index
*
* If this texture instruction has a nir_tex_src_texture_offset source,
* then the texture index is given by texture_index + texture_offset.
*/
unsigned texture_index;
/** The sampler index
*
* The following operations do not require a sampler and, as such, this
* field should be ignored:
*
* - nir_texop_txf
* - nir_texop_txf_ms
* - nir_texop_txs
* - nir_texop_query_levels
* - nir_texop_texture_samples
* - nir_texop_samples_identical
*
* If this texture instruction has a nir_tex_src_sampler_offset source,
* then the sampler index is given by sampler_index + sampler_offset.
*/
unsigned sampler_index;
/* Back-end specific flags, intended to be used in combination with
* nir_tex_src_backend1/2 to provide additional hw-specific information
* to the back-end compiler.
*/
uint32_t backend_flags;
} nir_tex_instr;
/**
* Returns true if the texture operation requires a sampler as a general rule
*
* Note that the specific hw/driver backend could require to a sampler
* object/configuration packet in any case, for some other reason.
*
* See also :c:member:`nir_tex_instr.sampler_index`.
*/
bool nir_tex_instr_need_sampler(const nir_tex_instr *instr);
/** Returns the number of components returned by this nir_tex_instr
*
* Useful for code building texture instructions when you don't want to think
* about how many components a particular texture op returns. This does not
* include the sparse residency code.
*/
unsigned
nir_tex_instr_result_size(const nir_tex_instr *instr);
/**
* Returns the destination size of this nir_tex_instr including the sparse
* residency code, if any.
*/
static inline unsigned
nir_tex_instr_dest_size(const nir_tex_instr *instr)
{
/* One more component is needed for the residency code. */
return nir_tex_instr_result_size(instr) + instr->is_sparse;
}
/**
* Returns true if this texture operation queries something about the texture
* rather than actually sampling it.
*/
bool
nir_tex_instr_is_query(const nir_tex_instr *instr);
/** Returns true if this texture instruction does implicit derivatives
*
* This is important as there are extra control-flow rules around derivatives
* and texture instructions which perform them implicitly.
*/
bool
nir_tex_instr_has_implicit_derivative(const nir_tex_instr *instr);
/** Returns the ALU type of the given texture instruction source */
nir_alu_type
nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src);
/**
* Returns the number of components required by the given texture instruction
* source
*/
unsigned
nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src);
/**
* Returns the index of the texture instruction source with the given
* nir_tex_src_type or -1 if no such source exists.
*/
static inline int
nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
{
for (unsigned i = 0; i < instr->num_srcs; i++)
if (instr->src[i].src_type == type)
return (int)i;
return -1;
}
/** Adds a source to a texture instruction */
void nir_tex_instr_add_src(nir_tex_instr *tex,
nir_tex_src_type src_type,
nir_def *src);
/** Removes a source from a texture instruction */
void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
typedef struct {
nir_instr instr;
nir_def def;
nir_const_value value[];
} nir_load_const_instr;
typedef enum {
/** Return from a function
*
* This instruction is a classic function return. It jumps to
* nir_function_impl::end_block. No return value is provided in this
* instruction. Instead, the function is expected to write any return
* data to a deref passed in from the caller.
*/
nir_jump_return,
/** Immediately exit the current shader
*
* This instruction is roughly the equivalent of C's "exit()" in that it
* immediately terminates the current shader invocation. From a CFG
* perspective, it looks like a jump to nir_function_impl::end_block but
* it actually jumps to the end block of the shader entrypoint. A halt
* instruction in the shader entrypoint itself is semantically identical
* to a return.
*
* For shaders with built-in I/O, any outputs written prior to a halt
* instruction remain written and any outputs not written prior to the
* halt have undefined values. It does NOT cause an implicit discard of
* written results. If one wants discard results in a fragment shader,
* for instance, a discard or demote intrinsic is required.
*/
nir_jump_halt,
/** Break out of the inner-most loop
*
* This has the same semantics as C's "break" statement.
*/
nir_jump_break,
/** Jump back to the top of the inner-most loop
*
* This has the same semantics as C's "continue" statement assuming that a
* NIR loop is implemented as "while (1) { body }".
*/
nir_jump_continue,
/** Jumps for unstructured CFG.
*
* As within an unstructured CFG we can't rely on block ordering we need to
* place explicit jumps at the end of every block.
*/
nir_jump_goto,
nir_jump_goto_if,
} nir_jump_type;
typedef struct {
nir_instr instr;
nir_jump_type type;
nir_src condition;
struct nir_block *target;
struct nir_block *else_target;
} nir_jump_instr;
/* creates a new SSA variable in an undefined state */
typedef struct {
nir_instr instr;
nir_def def;
} nir_undef_instr;
typedef struct {
struct exec_node node;
/* The predecessor block corresponding to this source */
struct nir_block *pred;
nir_src src;
} nir_phi_src;
#define nir_foreach_phi_src(phi_src, phi) \
foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
#define nir_foreach_phi_src_safe(phi_src, phi) \
foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
typedef struct {
nir_instr instr;
/** list of nir_phi_src */
struct exec_list srcs;
nir_def def;
} nir_phi_instr;
static inline nir_phi_src *
nir_phi_get_src_from_block(nir_phi_instr *phi, struct nir_block *block)
{
nir_foreach_phi_src(src, phi) {
if (src->pred == block)
return src;
}
assert(!"Block is not a predecessor of phi.");
return NULL;
}
typedef struct {
struct exec_node node;
bool src_is_reg;
bool dest_is_reg;
nir_src src;
union {
nir_def def;
nir_src reg;
} dest;
} nir_parallel_copy_entry;
#define nir_foreach_parallel_copy_entry(entry, pcopy) \
foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
typedef struct {
nir_instr instr;
/* A list of nir_parallel_copy_entrys. The sources of all of the
* entries are copied to the corresponding destinations "in parallel".
* In other words, if we have two entries: a -> b and b -> a, the values
* get swapped.
*/
struct exec_list entries;
} nir_parallel_copy_instr;
NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
type, nir_instr_type_alu)
NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
type, nir_instr_type_deref)
NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
type, nir_instr_type_call)
NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
type, nir_instr_type_jump)
NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
type, nir_instr_type_tex)
NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
type, nir_instr_type_intrinsic)
NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
type, nir_instr_type_load_const)
NIR_DEFINE_CAST(nir_instr_as_undef, nir_instr, nir_undef_instr, instr,
type, nir_instr_type_undef)
NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
type, nir_instr_type_phi)
NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
nir_parallel_copy_instr, instr,
type, nir_instr_type_parallel_copy)
#define NIR_DEFINE_SRC_AS_CONST(type, suffix) \
static inline type \
nir_src_comp_as_##suffix(nir_src src, unsigned comp) \
{ \
assert(nir_src_is_const(src)); \
nir_load_const_instr *load = \
nir_instr_as_load_const(src.ssa->parent_instr); \
assert(comp < load->def.num_components); \
return nir_const_value_as_##suffix(load->value[comp], \
load->def.bit_size); \
} \
\
static inline type \
nir_src_as_##suffix(nir_src src) \
{ \
assert(nir_src_num_components(src) == 1); \
return nir_src_comp_as_##suffix(src, 0); \
}
NIR_DEFINE_SRC_AS_CONST(int64_t, int)
NIR_DEFINE_SRC_AS_CONST(uint64_t, uint)
NIR_DEFINE_SRC_AS_CONST(bool, bool)
NIR_DEFINE_SRC_AS_CONST(double, float)
#undef NIR_DEFINE_SRC_AS_CONST
typedef struct {
nir_def *def;
unsigned comp;
} nir_scalar;
static inline bool
nir_scalar_is_const(nir_scalar s)
{
return s.def->parent_instr->type == nir_instr_type_load_const;
}
static inline bool
nir_scalar_is_undef(nir_scalar s)
{
return s.def->parent_instr->type == nir_instr_type_undef;
}
static inline nir_const_value
nir_scalar_as_const_value(nir_scalar s)
{
assert(s.comp < s.def->num_components);
nir_load_const_instr *load = nir_instr_as_load_const(s.def->parent_instr);
return load->value[s.comp];
}
#define NIR_DEFINE_SCALAR_AS_CONST(type, suffix) \
static inline type \
nir_scalar_as_##suffix(nir_scalar s) \
{ \
return nir_const_value_as_##suffix( \
nir_scalar_as_const_value(s), s.def->bit_size); \
}
NIR_DEFINE_SCALAR_AS_CONST(int64_t, int)
NIR_DEFINE_SCALAR_AS_CONST(uint64_t, uint)
NIR_DEFINE_SCALAR_AS_CONST(bool, bool)
NIR_DEFINE_SCALAR_AS_CONST(double, float)
#undef NIR_DEFINE_SCALAR_AS_CONST
static inline bool
nir_scalar_is_alu(nir_scalar s)
{
return s.def->parent_instr->type == nir_instr_type_alu;
}
static inline nir_op
nir_scalar_alu_op(nir_scalar s)
{
return nir_instr_as_alu(s.def->parent_instr)->op;
}
static inline bool
nir_scalar_is_intrinsic(nir_scalar s)
{
return s.def->parent_instr->type == nir_instr_type_intrinsic;
}
static inline nir_intrinsic_op
nir_scalar_intrinsic_op(nir_scalar s)
{
return nir_instr_as_intrinsic(s.def->parent_instr)->intrinsic;
}
static inline nir_scalar
nir_scalar_chase_alu_src(nir_scalar s, unsigned alu_src_idx)
{
nir_scalar out = { NULL, 0 };
nir_alu_instr *alu = nir_instr_as_alu(s.def->parent_instr);
assert(alu_src_idx < nir_op_infos[alu->op].num_inputs);
/* Our component must be written */
assert(s.comp < s.def->num_components);
out.def = alu->src[alu_src_idx].src.ssa;
if (nir_op_infos[alu->op].input_sizes[alu_src_idx] == 0) {
/* The ALU src is unsized so the source component follows the
* destination component.
*/
out.comp = alu->src[alu_src_idx].swizzle[s.comp];
} else {
/* This is a sized source so all source components work together to
* produce all the destination components. Since we need to return a
* scalar, this only works if the source is a scalar.
*/
assert(nir_op_infos[alu->op].input_sizes[alu_src_idx] == 1);
out.comp = alu->src[alu_src_idx].swizzle[0];
}
assert(out.comp < out.def->num_components);
return out;
}
nir_scalar nir_scalar_chase_movs(nir_scalar s);
static inline nir_scalar
nir_get_scalar(nir_def *def, unsigned channel)
{
nir_scalar s = { def, channel };
return s;
}
/** Returns a nir_scalar where we've followed the bit-exact mov/vec use chain to the original definition */
static inline nir_scalar
nir_scalar_resolved(nir_def *def, unsigned channel)
{
return nir_scalar_chase_movs(nir_get_scalar(def, channel));
}
static inline bool
nir_scalar_equal(nir_scalar s1, nir_scalar s2)
{
return s1.def == s2.def && s1.comp == s2.comp;
}
static inline uint64_t
nir_alu_src_as_uint(nir_alu_src src)
{
nir_scalar scalar = nir_get_scalar(src.src.ssa, src.swizzle[0]);
return nir_scalar_as_uint(scalar);
}
typedef struct {
bool success;
nir_variable *var;
unsigned desc_set;
unsigned binding;
unsigned num_indices;
nir_src indices[4];
bool read_first_invocation;
} nir_binding;
nir_binding nir_chase_binding(nir_src rsrc);
nir_variable *nir_get_binding_variable(struct nir_shader *shader, nir_binding binding);
/*
* Control flow
*
* Control flow consists of a tree of control flow nodes, which include
* if-statements and loops. The leaves of the tree are basic blocks, lists of
* instructions that always run start-to-finish. Each basic block also keeps
* track of its successors (blocks which may run immediately after the current
* block) and predecessors (blocks which could have run immediately before the
* current block). Each function also has a start block and an end block which
* all return statements point to (which is always empty). Together, all the
* blocks with their predecessors and successors make up the control flow
* graph (CFG) of the function. There are helpers that modify the tree of
* control flow nodes while modifying the CFG appropriately; these should be
* used instead of modifying the tree directly.
*/
typedef enum {
nir_cf_node_block,
nir_cf_node_if,
nir_cf_node_loop,
nir_cf_node_function
} nir_cf_node_type;
typedef struct nir_cf_node {
struct exec_node node;
nir_cf_node_type type;
struct nir_cf_node *parent;
} nir_cf_node;
typedef struct nir_block {
nir_cf_node cf_node;
/** list of nir_instr */
struct exec_list instr_list;
/** generic block index; generated by nir_index_blocks */
unsigned index;
/* This indicates whether the block or any parent block is executed
* conditionally and whether the condition uses a divergent value.
*/
bool divergent;
/*
* Each block can only have up to 2 successors, so we put them in a simple
* array - no need for anything more complicated.
*/
struct nir_block *successors[2];
/* Set of nir_block predecessors in the CFG */
struct set *predecessors;
/*
* this node's immediate dominator in the dominance tree - set to NULL for
* the start block and any unreachable blocks.
*/
struct nir_block *imm_dom;
/* This node's children in the dominance tree */
unsigned num_dom_children;
struct nir_block **dom_children;
/* Set of nir_blocks on the dominance frontier of this block */
struct set *dom_frontier;
/*
* These two indices have the property that dom_{pre,post}_index for each
* child of this block in the dominance tree will always be between
* dom_pre_index and dom_post_index for this block, which makes testing if
* a given block is dominated by another block an O(1) operation.
*/
uint32_t dom_pre_index, dom_post_index;
/**
* Value just before the first nir_instr->index in the block, but after
* end_ip that of any predecessor block.
*/
uint32_t start_ip;
/**
* Value just after the last nir_instr->index in the block, but before the
* start_ip of any successor block.
*/
uint32_t end_ip;
/* SSA def live in and out for this block; used for liveness analysis.
* Indexed by ssa_def->index
*/
BITSET_WORD *live_in;
BITSET_WORD *live_out;
} nir_block;
static inline bool
nir_block_is_reachable(nir_block *b)
{
/* See also nir_block_dominates */
return b->dom_post_index != 0;
}
static inline nir_instr *
nir_block_first_instr(nir_block *block)
{
struct exec_node *head = exec_list_get_head(&block->instr_list);
return exec_node_data(nir_instr, head, node);
}
static inline nir_instr *
nir_block_last_instr(nir_block *block)
{
struct exec_node *tail = exec_list_get_tail(&block->instr_list);
return exec_node_data(nir_instr, tail, node);
}
static inline bool
nir_block_ends_in_jump(nir_block *block)
{
return !exec_list_is_empty(&block->instr_list) &&
nir_block_last_instr(block)->type == nir_instr_type_jump;
}
static inline bool
nir_block_ends_in_return_or_halt(nir_block *block)
{
if (exec_list_is_empty(&block->instr_list))
return false;
nir_instr *instr = nir_block_last_instr(block);
if (instr->type != nir_instr_type_jump)
return false;
nir_jump_instr *jump_instr = nir_instr_as_jump(instr);
return jump_instr->type == nir_jump_return ||
jump_instr->type == nir_jump_halt;
}
static inline bool
nir_block_ends_in_break(nir_block *block)
{
if (exec_list_is_empty(&block->instr_list))
return false;
nir_instr *instr = nir_block_last_instr(block);
return instr->type == nir_instr_type_jump &&
nir_instr_as_jump(instr)->type == nir_jump_break;
}
#define nir_foreach_instr(instr, block) \
foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
#define nir_foreach_instr_reverse(instr, block) \
foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
#define nir_foreach_instr_safe(instr, block) \
foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
#define nir_foreach_instr_reverse_safe(instr, block) \
foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
/* Phis come first in the block */
static inline nir_phi_instr *
nir_first_phi_in_block(nir_block *block)
{
nir_foreach_instr(instr, block) {
if (instr->type == nir_instr_type_phi)
return nir_instr_as_phi(instr);
else
return NULL;
}
return NULL;
}
static inline nir_phi_instr *
nir_next_phi(nir_phi_instr *phi)
{
nir_instr *next = nir_instr_next(&phi->instr);
if (next && next->type == nir_instr_type_phi)
return nir_instr_as_phi(next);
else
return NULL;
}
#define nir_foreach_phi(instr, block) \
for (nir_phi_instr *instr = nir_first_phi_in_block(block); instr != NULL; \
instr = nir_next_phi(instr))
#define nir_foreach_phi_safe(instr, block) \
for (nir_phi_instr *instr = nir_first_phi_in_block(block), \
*__next = instr ? nir_next_phi(instr) : NULL; \
instr != NULL; \
instr = __next, __next = instr ? nir_next_phi(instr) : NULL)
static inline nir_phi_instr *
nir_block_last_phi_instr(nir_block *block)
{
nir_phi_instr *last_phi = NULL;
nir_foreach_phi(instr, block)
last_phi = instr;
return last_phi;
}
typedef enum {
nir_selection_control_none = 0x0,
/**
* Defined by SPIR-V spec 3.22 "Selection Control".
* The application prefers to remove control flow.
*/
nir_selection_control_flatten = 0x1,
/**
* Defined by SPIR-V spec 3.22 "Selection Control".
* The application prefers to keep control flow.
*/
nir_selection_control_dont_flatten = 0x2,
/**
* May be applied by the compiler stack when it knows
* that a branch is divergent, and:
* - either both the if and else are always taken
* - the if or else is empty and the other is always taken
*/
nir_selection_control_divergent_always_taken = 0x3,
} nir_selection_control;
typedef struct nir_if {
nir_cf_node cf_node;
nir_src condition;
nir_selection_control control;
/** list of nir_cf_node */
struct exec_list then_list;
/** list of nir_cf_node */
struct exec_list else_list;
} nir_if;
typedef struct {
nir_if *nif;
/** Instruction that generates nif::condition. */
nir_instr *conditional_instr;
/** Block within ::nif that has the break instruction. */
nir_block *break_block;
/** Last block for the then- or else-path that does not contain the break. */
nir_block *continue_from_block;
/** True when ::break_block is in the else-path of ::nif. */
bool continue_from_then;
bool induction_rhs;
/* This is true if the terminators exact trip count is unknown. For
* example:
*
* for (int i = 0; i < imin(x, 4); i++)
* ...
*
* Here loop analysis would have set a max_trip_count of 4 however we dont
* know for sure that this is the exact trip count.
*/
bool exact_trip_count_unknown;
struct list_head loop_terminator_link;
} nir_loop_terminator;
typedef struct {
/* Induction variable. */
nir_def *def;
/* Init statement with only uniform. */
nir_src *init_src;
/* Update statement with only uniform. */
nir_alu_src *update_src;
} nir_loop_induction_variable;
typedef struct {
/* Estimated cost (in number of instructions) of the loop */
unsigned instr_cost;
/* Contains fp64 ops that will be lowered */
bool has_soft_fp64;
/* Guessed trip count based on array indexing */
unsigned guessed_trip_count;
/* Maximum number of times the loop is run (if known) */
unsigned max_trip_count;
/* Do we know the exact number of times the loop will be run */
bool exact_trip_count_known;
/* Unroll the loop regardless of its size */
bool force_unroll;
/* Does the loop contain complex loop terminators, continues or other
* complex behaviours? If this is true we can't rely on
* loop_terminator_list to be complete or accurate.
*/
bool complex_loop;
nir_loop_terminator *limiting_terminator;
/* A list of loop_terminators terminating this loop. */
struct list_head loop_terminator_list;
/* array of induction variables for this loop */
nir_loop_induction_variable *induction_vars;
unsigned num_induction_vars;
} nir_loop_info;
typedef enum {
nir_loop_control_none = 0x0,
nir_loop_control_unroll = 0x1,
nir_loop_control_dont_unroll = 0x2,
} nir_loop_control;
typedef struct {
nir_cf_node cf_node;
/** list of nir_cf_node */
struct exec_list body;
/** (optional) list of nir_cf_node */
struct exec_list continue_list;
nir_loop_info *info;
nir_loop_control control;
bool partially_unrolled;
bool divergent;
} nir_loop;
/**
* Various bits of metadata that can may be created or required by
* optimization and analysis passes
*/
typedef enum {
nir_metadata_none = 0x0,
/** Indicates that nir_block::index values are valid.
*
* The start block has index 0 and they increase through a natural walk of
* the CFG. nir_function_impl::num_blocks is the number of blocks and
* every block index is in the range [0, nir_function_impl::num_blocks].
*
* A pass can preserve this metadata type if it doesn't touch the CFG.
*/
nir_metadata_block_index = 0x1,
/** Indicates that block dominance information is valid
*
* This includes:
*
* - nir_block::num_dom_children
* - nir_block::dom_children
* - nir_block::dom_frontier
* - nir_block::dom_pre_index
* - nir_block::dom_post_index
*
* A pass can preserve this metadata type if it doesn't touch the CFG.
*/
nir_metadata_dominance = 0x2,
/** Indicates that SSA def data-flow liveness information is valid
*
* This includes:
*
* - nir_block::live_in
* - nir_block::live_out
*
* A pass can preserve this metadata type if it never adds or removes any
* SSA defs or uses of SSA defs (most passes shouldn't preserve this
* metadata type).
*/
nir_metadata_live_defs = 0x4,
/** A dummy metadata value to track when a pass forgot to call
* nir_metadata_preserve.
*
* A pass should always clear this value even if it doesn't make any
* progress to indicate that it thought about preserving metadata.
*/
nir_metadata_not_properly_reset = 0x8,
/** Indicates that loop analysis information is valid.
*
* This includes everything pointed to by nir_loop::info.
*
* A pass can preserve this metadata type if it is guaranteed to not affect
* any loop metadata. However, since loop metadata includes things like
* loop counts which depend on arithmetic in the loop, this is very hard to
* determine. Most passes shouldn't preserve this metadata type.
*/
nir_metadata_loop_analysis = 0x10,
/** Indicates that nir_instr::index values are valid.
*
* The start instruction has index 0 and they increase through a natural
* walk of instructions in blocks in the CFG. The indices my have holes
* after passes such as DCE.
*
* A pass can preserve this metadata type if it never adds or moves any
* instructions (most passes shouldn't preserve this metadata type), but
* can preserve it if it only removes instructions.
*/
nir_metadata_instr_index = 0x20,
/** All metadata
*
* This includes all nir_metadata flags except not_properly_reset. Passes
* which do not change the shader in any way should call
*
* nir_metadata_preserve(impl, nir_metadata_all);
*/
nir_metadata_all = ~nir_metadata_not_properly_reset,
} nir_metadata;
MESA_DEFINE_CPP_ENUM_BITFIELD_OPERATORS(nir_metadata)
typedef struct {
nir_cf_node cf_node;
/** pointer to the function of which this is an implementation */
struct nir_function *function;
/**
* For entrypoints, a pointer to a nir_function_impl which runs before
* it, once per draw or dispatch, communicating via store_preamble and
* load_preamble intrinsics. If NULL then there is no preamble.
*/
struct nir_function *preamble;
/** list of nir_cf_node */
struct exec_list body;
nir_block *end_block;
/** list for all local variables in the function */
struct exec_list locals;
/** next available SSA value index */
unsigned ssa_alloc;
/* total number of basic blocks, only valid when block_index_dirty = false */
unsigned num_blocks;
/** True if this nir_function_impl uses structured control-flow
*
* Structured nir_function_impls have different validation rules.
*/
bool structured;
nir_metadata valid_metadata;
} nir_function_impl;
#define nir_foreach_function_temp_variable(var, impl) \
foreach_list_typed(nir_variable, var, node, &(impl)->locals)
#define nir_foreach_function_temp_variable_safe(var, impl) \
foreach_list_typed_safe(nir_variable, var, node, &(impl)->locals)
ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
nir_start_block(nir_function_impl *impl)
{
return (nir_block *)impl->body.head_sentinel.next;
}
ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
nir_impl_last_block(nir_function_impl *impl)
{
return (nir_block *)impl->body.tail_sentinel.prev;
}
static inline nir_cf_node *
nir_cf_node_next(nir_cf_node *node)
{
struct exec_node *next = exec_node_get_next(&node->node);
if (exec_node_is_tail_sentinel(next))
return NULL;
else
return exec_node_data(nir_cf_node, next, node);
}
static inline nir_cf_node *
nir_cf_node_prev(nir_cf_node *node)
{
struct exec_node *prev = exec_node_get_prev(&node->node);
if (exec_node_is_head_sentinel(prev))
return NULL;
else
return exec_node_data(nir_cf_node, prev, node);
}
static inline bool
nir_cf_node_is_first(const nir_cf_node *node)
{
return exec_node_is_head_sentinel(node->node.prev);
}
static inline bool
nir_cf_node_is_last(const nir_cf_node *node)
{
return exec_node_is_tail_sentinel(node->node.next);
}
NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
type, nir_cf_node_block)
NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
type, nir_cf_node_if)
NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
type, nir_cf_node_loop)
NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
nir_function_impl, cf_node, type, nir_cf_node_function)
static inline nir_block *
nir_if_first_then_block(nir_if *if_stmt)
{
struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
}
static inline nir_block *
nir_if_last_then_block(nir_if *if_stmt)
{
struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
}
static inline nir_block *
nir_if_first_else_block(nir_if *if_stmt)
{
struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
}
static inline nir_block *
nir_if_last_else_block(nir_if *if_stmt)
{
struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
}
static inline nir_block *
nir_loop_first_block(nir_loop *loop)
{
struct exec_node *head = exec_list_get_head(&loop->body);
return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
}
static inline nir_block *
nir_loop_last_block(nir_loop *loop)
{
struct exec_node *tail = exec_list_get_tail(&loop->body);
return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
}
static inline bool
nir_loop_has_continue_construct(const nir_loop *loop)
{
return !exec_list_is_empty(&loop->continue_list);
}
static inline nir_block *
nir_loop_first_continue_block(nir_loop *loop)
{
assert(nir_loop_has_continue_construct(loop));
struct exec_node *head = exec_list_get_head(&loop->continue_list);
return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
}
static inline nir_block *
nir_loop_last_continue_block(nir_loop *loop)
{
assert(nir_loop_has_continue_construct(loop));
struct exec_node *tail = exec_list_get_tail(&loop->continue_list);
return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
}
/**
* Return the target block of a nir_jump_continue statement
*/
static inline nir_block *
nir_loop_continue_target(nir_loop *loop)
{
if (nir_loop_has_continue_construct(loop))
return nir_loop_first_continue_block(loop);
else
return nir_loop_first_block(loop);
}
/**
* Return true if this list of cf_nodes contains a single empty block.
*/
static inline bool
nir_cf_list_is_empty_block(struct exec_list *cf_list)
{
if (exec_list_is_singular(cf_list)) {
struct exec_node *head = exec_list_get_head(cf_list);
nir_block *block =
nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
return exec_list_is_empty(&block->instr_list);
}
return false;
}
typedef struct {
uint8_t num_components;
uint8_t bit_size;
/* True if this paramater is actually the function return variable */
bool is_return;
/* The type of the function param */
const struct glsl_type *type;
} nir_parameter;
typedef struct nir_function {
struct exec_node node;
const char *name;
struct nir_shader *shader;
unsigned num_params;
nir_parameter *params;
/** The implementation of this function.
*
* If the function is only declared and not implemented, this is NULL.
*
* Unless setting to NULL or NIR_SERIALIZE_FUNC_HAS_IMPL, set with
* nir_function_set_impl to maintain IR invariants.
*/
nir_function_impl *impl;
bool is_entrypoint;
/* from SPIR-V linkage, only for libraries */
bool is_exported;
bool is_preamble;
/* from SPIR-V function control */
bool should_inline;
bool dont_inline; /* from SPIR-V */
/**
* Is this function a subroutine type declaration
* e.g. subroutine void type1(float arg1);
*/
bool is_subroutine;
/**
* Is this function associated to a subroutine type
* e.g. subroutine (type1, type2) function_name { function_body };
* would have num_subroutine_types 2,
* and pointers to the type1 and type2 types.
*/
int num_subroutine_types;
const struct glsl_type **subroutine_types;
int subroutine_index;
} nir_function;
typedef enum {
nir_lower_imul64 = (1 << 0),
nir_lower_isign64 = (1 << 1),
/** Lower all int64 modulus and division opcodes */
nir_lower_divmod64 = (1 << 2),
/** Lower all 64-bit umul_high and imul_high opcodes */
nir_lower_imul_high64 = (1 << 3),
nir_lower_bcsel64 = (1 << 4),
nir_lower_icmp64 = (1 << 5),
nir_lower_iadd64 = (1 << 6),
nir_lower_iabs64 = (1 << 7),
nir_lower_ineg64 = (1 << 8),
nir_lower_logic64 = (1 << 9),
nir_lower_minmax64 = (1 << 10),
nir_lower_shift64 = (1 << 11),
nir_lower_imul_2x32_64 = (1 << 12),
nir_lower_extract64 = (1 << 13),
nir_lower_ufind_msb64 = (1 << 14),
nir_lower_bit_count64 = (1 << 15),
nir_lower_subgroup_shuffle64 = (1 << 16),
nir_lower_scan_reduce_bitwise64 = (1 << 17),
nir_lower_scan_reduce_iadd64 = (1 << 18),
nir_lower_vote_ieq64 = (1 << 19),
nir_lower_usub_sat64 = (1 << 20),
nir_lower_iadd_sat64 = (1 << 21),
nir_lower_find_lsb64 = (1 << 22),
nir_lower_conv64 = (1 << 23),
} nir_lower_int64_options;
typedef enum {
nir_lower_drcp = (1 << 0),
nir_lower_dsqrt = (1 << 1),
nir_lower_drsq = (1 << 2),
nir_lower_dtrunc = (1 << 3),
nir_lower_dfloor = (1 << 4),
nir_lower_dceil = (1 << 5),
nir_lower_dfract = (1 << 6),
nir_lower_dround_even = (1 << 7),
nir_lower_dmod = (1 << 8),
nir_lower_dsub = (1 << 9),
nir_lower_ddiv = (1 << 10),
nir_lower_dsign = (1 << 11),
nir_lower_dminmax = (1 << 12),
nir_lower_dsat = (1 << 13),
nir_lower_fp64_full_software = (1 << 14),
} nir_lower_doubles_options;
typedef enum {
nir_divergence_single_prim_per_subgroup = (1 << 0),
nir_divergence_single_patch_per_tcs_subgroup = (1 << 1),
nir_divergence_single_patch_per_tes_subgroup = (1 << 2),
nir_divergence_view_index_uniform = (1 << 3),
nir_divergence_single_frag_shading_rate_per_subgroup = (1 << 4),
nir_divergence_multiple_workgroup_per_compute_subgroup = (1 << 5),
nir_divergence_shader_record_ptr_uniform = (1 << 6),
nir_divergence_uniform_load_tears = (1 << 7),
} nir_divergence_options;
typedef enum {
/**
* Whether a fragment shader can interpolate the same input multiple times
* with different modes (smooth, noperspective) and locations (pixel,
* centroid, sample, at_offset, at_sample), excluding the flat mode.
*
* This matches AMD GPU flexibility and limitations and is a superset of
* the GL4 requirement that each input can be interpolated at its specified
* location, and then also as centroid, at_offset, and at_sample.
*/
nir_io_has_flexible_input_interpolation_except_flat = BITFIELD_BIT(0),
/**
* nir_opt_varyings compacts (relocates) components of varyings by
* rewriting their locations completely, effectively moving components of
* varyings between slots. This option forces nir_opt_varyings to make
* VARYING_SLOT_POS unused by moving its contents to VARn if the consumer
* is not FS. If this option is not set and POS is unused, it moves
* components of VARn to POS until it's fully used.
*/
nir_io_dont_use_pos_for_non_fs_varyings = BITFIELD_BIT(1),
nir_io_16bit_input_output_support = BITFIELD_BIT(2),
/* Options affecting the GLSL compiler are below. */
/**
* Lower load_deref/store_deref to load_input/store_output/etc. intrinsics.
* This is only affects GLSL compilation.
*/
nir_io_glsl_lower_derefs = BITFIELD_BIT(16),
/**
* Run nir_opt_varyings in the GLSL linker. If false, optimize varyings
* the old way and lower IO later.
*
* nir_io_lower_to_intrinsics must be set for this to take effect.
*
* TODO: remove this and default to enabled once we are sure that this
* codepath is solid.
*/
nir_io_glsl_opt_varyings = BITFIELD_BIT(17),
} nir_io_options;
/** An instruction filtering callback
*
* Returns true if the instruction should be processed and false otherwise.
*/
typedef bool (*nir_instr_filter_cb)(const nir_instr *, const void *);
/** A vectorization width callback
*
* Returns the maximum vectorization width per instruction.
* 0, if the instruction must not be modified.
*
* The vectorization width must be a power of 2.
*/
typedef uint8_t (*nir_vectorize_cb)(const nir_instr *, const void *);
typedef struct nir_shader_compiler_options {
bool lower_fdiv;
bool lower_ffma16;
bool lower_ffma32;
bool lower_ffma64;
bool fuse_ffma16;
bool fuse_ffma32;
bool fuse_ffma64;
bool lower_flrp16;
bool lower_flrp32;
/** Lowers flrp when it does not support doubles */
bool lower_flrp64;
bool lower_fpow;
bool lower_fsat;
bool lower_fsqrt;
bool lower_sincos;
bool lower_fmod;
/** Lowers ibitfield_extract/ubitfield_extract. */
bool lower_bitfield_extract;
/** Lowers bitfield_insert. */
bool lower_bitfield_insert;
/** Lowers bitfield_reverse to shifts. */
bool lower_bitfield_reverse;
/** Lowers bit_count to shifts. */
bool lower_bit_count;
/** Lowers ifind_msb. */
bool lower_ifind_msb;
/** Lowers ufind_msb. */
bool lower_ufind_msb;
/** Lowers find_lsb to ufind_msb and logic ops */
bool lower_find_lsb;
bool lower_uadd_carry;
bool lower_usub_borrow;
/** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
bool lower_mul_high;
/** lowers fneg to fmul(x, -1.0). Driver must call nir_opt_algebraic_late() */
bool lower_fneg;
/** lowers ineg to isub. Driver must call nir_opt_algebraic_late(). */
bool lower_ineg;
/** lowers fisnormal to alu ops. */
bool lower_fisnormal;
/* lower {slt,sge,seq,sne} to {flt,fge,feq,fneu} + b2f: */
bool lower_scmp;
/* lower b/fall_equalN/b/fany_nequalN (ex:fany_nequal4 to sne+fdot4+fsat) */
bool lower_vector_cmp;
/** enable rules to avoid bit ops */
bool lower_bitops;
/** enables rules to lower isign to imin+imax */
bool lower_isign;
/** enables rules to lower fsign to fsub and flt */
bool lower_fsign;
/** enables rules to lower iabs to ineg+imax */
bool lower_iabs;
/** enable rules that avoid generating umax from signed integer ops */
bool lower_umax;
/** enable rules that avoid generating umin from signed integer ops */
bool lower_umin;
/* lower fdph to fdot4 */
bool lower_fdph;
/** lower fdot to fmul and fsum/fadd. */
bool lower_fdot;
/* Does the native fdot instruction replicate its result for four
* components? If so, then opt_algebraic_late will turn all fdotN
* instructions into fdotN_replicated instructions.
*/
bool fdot_replicates;
/** lowers ffloor to fsub+ffract: */
bool lower_ffloor;
/** lowers ffract to fsub+ffloor: */
bool lower_ffract;
/** lowers fceil to fneg+ffloor+fneg: */
bool lower_fceil;
bool lower_ftrunc;
/** Lowers fround_even to ffract+feq+csel.
*
* Not correct in that it doesn't correctly handle the "_even" part of the
* rounding, but good enough for DX9 array indexing handling on DX9-class
* hardware.
*/
bool lower_fround_even;
bool lower_ldexp;
bool lower_pack_half_2x16;
bool lower_pack_unorm_2x16;
bool lower_pack_snorm_2x16;
bool lower_pack_unorm_4x8;
bool lower_pack_snorm_4x8;
bool lower_pack_64_2x32;
bool lower_pack_64_4x16;
bool lower_pack_32_2x16;
bool lower_pack_64_2x32_split;
bool lower_pack_32_2x16_split;
bool lower_unpack_half_2x16;
bool lower_unpack_unorm_2x16;
bool lower_unpack_snorm_2x16;
bool lower_unpack_unorm_4x8;
bool lower_unpack_snorm_4x8;
bool lower_unpack_64_2x32_split;
bool lower_unpack_32_2x16_split;
bool lower_pack_split;
bool lower_extract_byte;
bool lower_extract_word;
bool lower_insert_byte;
bool lower_insert_word;
bool lower_all_io_to_temps;
bool lower_all_io_to_elements;
/* Indicates that the driver only has zero-based vertex id */
bool vertex_id_zero_based;
/**
* If enabled, gl_BaseVertex will be lowered as:
* is_indexed_draw (~0/0) & firstvertex
*/
bool lower_base_vertex;
/**
* If enabled, gl_HelperInvocation will be lowered as:
*
* !((1 << sample_id) & sample_mask_in))
*
* This depends on some possibly hw implementation details, which may
* not be true for all hw. In particular that the FS is only executed
* for covered samples or for helper invocations. So, do not blindly
* enable this option.
*
* Note: See also issue #22 in ARB_shader_image_load_store
*/
bool lower_helper_invocation;
/**
* Convert gl_SampleMaskIn to gl_HelperInvocation as follows:
*
* gl_SampleMaskIn == 0 ---> gl_HelperInvocation
* gl_SampleMaskIn != 0 ---> !gl_HelperInvocation
*/
bool optimize_sample_mask_in;
/**
* Optimize boolean reductions of quad broadcasts. This should only be enabled if
* nir_intrinsic_reduce supports INCLUDE_HELPERS.
*/
bool optimize_quad_vote_to_reduce;
bool lower_cs_local_index_to_id;
bool lower_cs_local_id_to_index;
/* Prevents lowering global_invocation_id to be in terms of workgroup_id */
bool has_cs_global_id;
bool lower_device_index_to_zero;
/* Set if nir_lower_pntc_ytransform() should invert gl_PointCoord.
* Either when frame buffer is flipped or GL_POINT_SPRITE_COORD_ORIGIN
* is GL_LOWER_LEFT.
*/
bool lower_wpos_pntc;
/**
* Set if nir_op_[iu]hadd and nir_op_[iu]rhadd instructions should be
* lowered to simple arithmetic.
*
* If this flag is set, the lowering will be applied to all bit-sizes of
* these instructions.
*
* :c:member:`lower_hadd64`
*/
bool lower_hadd;
/**
* Set if only 64-bit nir_op_[iu]hadd and nir_op_[iu]rhadd instructions
* should be lowered to simple arithmetic.
*
* If this flag is set, the lowering will be applied to only 64-bit
* versions of these instructions.
*
* :c:member:`lower_hadd`
*/
bool lower_hadd64;
/**
* Set if nir_op_uadd_sat should be lowered to simple arithmetic.
*
* If this flag is set, the lowering will be applied to all bit-sizes of
* these instructions.
*/
bool lower_uadd_sat;
/**
* Set if nir_op_usub_sat should be lowered to simple arithmetic.
*
* If this flag is set, the lowering will be applied to all bit-sizes of
* these instructions.
*/
bool lower_usub_sat;
/**
* Set if nir_op_iadd_sat and nir_op_isub_sat should be lowered to simple
* arithmetic.
*
* If this flag is set, the lowering will be applied to all bit-sizes of
* these instructions.
*/
bool lower_iadd_sat;
/**
* Set if imul_32x16 and umul_32x16 should be lowered to simple
* arithmetic.
*/
bool lower_mul_32x16;
/**
* Should IO be re-vectorized? Some scalar ISAs still operate on vec4's
* for IO purposes and would prefer loads/stores be vectorized.
*/
bool vectorize_io;
bool vectorize_tess_levels;
bool lower_to_scalar;
nir_instr_filter_cb lower_to_scalar_filter;
/**
* Disables potentially harmful algebraic transformations for architectures
* with SIMD-within-a-register semantics.
*
* Note, to actually vectorize 16bit instructions, use nir_opt_vectorize()
* with a suitable callback function.
*/
bool vectorize_vec2_16bit;
/**
* Should the linker unify inputs_read/outputs_written between adjacent
* shader stages which are linked into a single program?
*/
bool unify_interfaces;
/**
* Should nir_lower_io() create load_interpolated_input intrinsics?
*
* If not, it generates regular load_input intrinsics and interpolation
* information must be inferred from the list of input nir_variables.
*/
bool use_interpolated_input_intrinsics;
/**
* Whether nir_lower_io() will lower interpolateAt functions to
* load_interpolated_input intrinsics.
*
* Unlike use_interpolated_input_intrinsics this will only lower these
* functions and leave input load intrinsics untouched.
*/
bool lower_interpolate_at;
/* Lowers when 32x32->64 bit multiplication is not supported */
bool lower_mul_2x32_64;
/* Indicates that urol and uror are supported */
bool has_rotate8;
bool has_rotate16;
bool has_rotate32;
/** Backend supports shfr */
bool has_shfr32;
/** Backend supports ternary addition */
bool has_iadd3;
/**
* Backend supports imul24, and would like to use it (when possible)
* for address/offset calculation. If true, driver should call
* nir_lower_amul(). (If not set, amul will automatically be lowered
* to imul.)
*/
bool has_imul24;
/** Backend supports umul24, if not set umul24 will automatically be lowered
* to imul with masked inputs */
bool has_umul24;
/** Backend supports 32-bit imad */
bool has_imad32;
/** Backend supports umad24, if not set umad24 will automatically be lowered
* to imul with masked inputs and iadd */
bool has_umad24;
/* Backend supports fused comapre against zero and csel */
bool has_fused_comp_and_csel;
/** Backend supports fsub, if not set fsub will automatically be lowered to
* fadd(x, fneg(y)). If true, driver should call nir_opt_algebraic_late(). */
bool has_fsub;
/** Backend supports isub, if not set isub will automatically be lowered to
* iadd(x, ineg(y)). If true, driver should call nir_opt_algebraic_late(). */
bool has_isub;
/** Backend supports pack_32_4x8 or pack_32_4x8_split. */
bool has_pack_32_4x8;
/** Backend supports nir_load_texture_scale and prefers it over txs for nir
* lowerings. */
bool has_texture_scaling;
/** Backend supports sdot_4x8_iadd. */
bool has_sdot_4x8;
/** Backend supports udot_4x8_uadd. */
bool has_udot_4x8;
/** Backend supports sudot_4x8_iadd. */
bool has_sudot_4x8;
/** Backend supports sdot_4x8_iadd_sat. */
bool has_sdot_4x8_sat;
/** Backend supports udot_4x8_uadd_sat. */
bool has_udot_4x8_sat;
/** Backend supports sudot_4x8_iadd_sat. */
bool has_sudot_4x8_sat;
/** Backend supports sdot_2x16 and udot_2x16 opcodes. */
bool has_dot_2x16;
/** Backend supports fmulz (and ffmaz if lower_ffma32=false) */
bool has_fmulz;
/**
* Backend supports fmulz (and ffmaz if lower_ffma32=false) but only if
* FLOAT_CONTROLS_DENORM_PRESERVE_FP32 is not set
*/
bool has_fmulz_no_denorms;
/** Backend supports 32bit ufind_msb_rev and ifind_msb_rev. */
bool has_find_msb_rev;
/** Backend supports pack_half_2x16_rtz_split. */
bool has_pack_half_2x16_rtz;
/** Backend supports bitz/bitnz. */
bool has_bit_test;
/** Backend supports ubfe/ibfe. */
bool has_bfe;
/** Backend supports bfm. */
bool has_bfm;
/** Backend supports bfi. */
bool has_bfi;
/** Backend supports bitfield_select. */
bool has_bitfield_select;
/** Backend supports uclz. */
bool has_uclz;
/** Backend support msad_u4x8. */
bool has_msad;
/**
* Is this the Intel vec4 backend?
*
* Used to inhibit algebraic optimizations that are known to be harmful on
* the Intel vec4 backend. This is generally applicable to any
* optimization that might cause more immediate values to be used in
* 3-source (e.g., ffma and flrp) instructions.
*/
bool intel_vec4;
/**
* For most Intel GPUs, all ternary operations such as FMA and BFE cannot
* have immediates, so two to three instructions may eventually be needed.
*/
bool avoid_ternary_with_two_constants;
/** Whether 8-bit ALU is supported. */
bool support_8bit_alu;
/** Whether 16-bit ALU is supported. */
bool support_16bit_alu;
unsigned max_unroll_iterations;
unsigned max_unroll_iterations_aggressive;
unsigned max_unroll_iterations_fp64;
bool lower_uniforms_to_ubo;
/* If the precision is ignored, backends that don't handle
* different precisions when passing data between stages and use
* vectorized IO can pack more varyings when linking. */
bool linker_ignore_precision;
/* Specifies if indirect sampler array access will trigger forced loop
* unrolling.
*/
bool force_indirect_unrolling_sampler;
/* Some older drivers don't support GLSL versions with the concept of flat
* varyings and also don't support integers. This setting helps us avoid
* marking varyings as flat and potentially having them changed to ints via
* varying packing.
*/
bool no_integers;
/**
* Specifies which type of indirectly accessed variables should force
* loop unrolling.
*/
nir_variable_mode force_indirect_unrolling;
bool driver_functions;
nir_lower_int64_options lower_int64_options;
nir_lower_doubles_options lower_doubles_options;
nir_divergence_options divergence_analysis_options;
/**
* The masks of shader stages that support indirect indexing with
* load_input and store_output intrinsics. It's used by
* nir_lower_io_passes.
*/
uint8_t support_indirect_inputs;
uint8_t support_indirect_outputs;
/**
* Remove varying loaded from uniform, let fragment shader load the
* uniform directly. GPU passing varying by memory can benifit from it
* for sure; but GPU passing varying by on chip resource may not.
* Because it saves on chip resource but may increase memory pressure when
* fragment task is far more than vertex one, so better left it disabled.
*/
bool lower_varying_from_uniform;
/** store the variable offset into the instrinsic range_base instead
* of adding it to the image index.
*/
bool lower_image_offset_to_range_base;
/** store the variable offset into the instrinsic range_base instead
* of adding it to the atomic source
*/
bool lower_atomic_offset_to_range_base;
/** Don't convert medium-precision casts (e.g. f2fmp) into concrete
* type casts (e.g. f2f16).
*/
bool preserve_mediump;
/** lowers fquantize2f16 to alu ops. */
bool lower_fquantize2f16;
/** Lower f2f16 to f2f16_rtz when execution mode is not rtne. */
bool force_f2f16_rtz;
/** Lower VARYING_SLOT_LAYER in FS to SYSTEM_VALUE_LAYER_ID. */
bool lower_layer_fs_input_to_sysval;
/** clip/cull distance and tess level arrays use compact semantics */
bool compact_arrays;
/** Options determining lowering and behavior of inputs and outputs. */
nir_io_options io_options;
/** Driver callback where drivers can define how to lower mediump.
* Used by nir_lower_io_passes.
*/
void (*lower_mediump_io)(struct nir_shader *nir);
/**
* Return the maximum cost of an expression that's written to a shader
* output that can be moved into the next shader to remove that output.
*
* Currently only uniform expressions are moved. A uniform expression is
* any ALU expression sourcing only constants, uniforms, and UBO loads.
*
* Set to NULL or return 0 if you only want to propagate constants from
* outputs to inputs.
*
* Drivers can set the maximum cost based on the types of consecutive
* shaders or shader SHA1s.
*
* Drivers should also set "varying_estimate_instr_cost".
*/
unsigned (*varying_expression_max_cost)(struct nir_shader *consumer,
struct nir_shader *producer);
/**
* Return the cost of an instruction that could be moved into the next
* shader. If the cost of all instructions in an expression is <=
* varying_expression_max_cost(), the instruction is moved.
*/
unsigned (*varying_estimate_instr_cost)(struct nir_instr *instr);
} nir_shader_compiler_options;
typedef struct nir_shader {
gc_ctx *gctx;
/** list of uniforms (nir_variable) */
struct exec_list variables;
/** Set of driver-specific options for the shader.
*
* The memory for the options is expected to be kept in a single static
* copy by the driver.
*/
const struct nir_shader_compiler_options *options;
/** Various bits of compile-time information about a given shader */
struct shader_info info;
/** list of nir_function */
struct exec_list functions;
/**
* The size of the variable space for load_input_*, load_uniform_*, etc.
* intrinsics. This is in back-end specific units which is likely one of
* bytes, dwords, or vec4s depending on context and back-end.
*/
unsigned num_inputs, num_uniforms, num_outputs;
/** Size in bytes of required implicitly bound global memory */
unsigned global_mem_size;
/** Size in bytes of required scratch space */
unsigned scratch_size;
/** Constant data associated with this shader.
*
* Constant data is loaded through load_constant intrinsics (as compared to
* the NIR load_const instructions which have the constant value inlined
* into them). This is usually generated by nir_opt_large_constants (so
* shaders don't have to load_const into a temporary array when they want
* to indirect on a const array).
*/
void *constant_data;
/** Size of the constant data associated with the shader, in bytes */
unsigned constant_data_size;
struct nir_xfb_info *xfb_info;
unsigned printf_info_count;
u_printf_info *printf_info;
} nir_shader;
#define nir_foreach_function(func, shader) \
foreach_list_typed(nir_function, func, node, &(shader)->functions)
#define nir_foreach_function_safe(func, shader) \
foreach_list_typed_safe(nir_function, func, node, &(shader)->functions)
static inline nir_function *
nir_foreach_function_with_impl_first(const nir_shader *shader)
{
foreach_list_typed(nir_function, func, node, &shader->functions) {
if (func->impl != NULL)
return func;
}
return NULL;
}
static inline nir_function_impl *
nir_foreach_function_with_impl_next(nir_function **it)
{
foreach_list_typed_from(nir_function, func, node, _, (*it)->node.next) {
if (func->impl != NULL) {
*it = func;
return func->impl;
}
}
return NULL;
}
#define nir_foreach_function_with_impl(it, impl_it, shader) \
for (nir_function *it = nir_foreach_function_with_impl_first(shader); \
it != NULL; \
it = NULL) \
\
for (nir_function_impl *impl_it = it->impl; \
impl_it != NULL; \
impl_it = nir_foreach_function_with_impl_next(&it))
/* Equivalent to
*
* nir_foreach_function(func, shader) {
* if (func->impl != NULL) {
* ...
* }
* }
*
* Carefully written to ensure break/continue work in the user code.
*/
#define nir_foreach_function_impl(it, shader) \
nir_foreach_function_with_impl(_func_##it, it, shader)
static inline nir_function_impl *
nir_shader_get_entrypoint(const nir_shader *shader)
{
nir_function *func = NULL;
nir_foreach_function(function, shader) {
assert(func == NULL);
if (function->is_entrypoint) {
func = function;
#ifndef NDEBUG
break;
#endif
}
}
if (!func)
return NULL;
assert(func->num_params == 0);
assert(func->impl);
return func->impl;
}
static inline nir_function *
nir_shader_get_function_for_name(const nir_shader *shader, const char *name)
{
nir_foreach_function(func, shader) {
if (strcmp(func->name, name) == 0)
return func;
}
return NULL;
}
/*
* After all functions are forcibly inlined, these passes remove redundant
* functions from a shader and library respectively.
*/
void nir_remove_non_entrypoints(nir_shader *shader);
void nir_remove_non_exported(nir_shader *shader);
nir_shader *nir_shader_create(void *mem_ctx,
gl_shader_stage stage,
const nir_shader_compiler_options *options,
shader_info *si);
/** Adds a variable to the appropriate list in nir_shader */
void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
static inline void
nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
{
assert(var->data.mode == nir_var_function_temp);
exec_list_push_tail(&impl->locals, &var->node);
}
/** creates a variable, sets a few defaults, and adds it to the list */
nir_variable *nir_variable_create(nir_shader *shader,
nir_variable_mode mode,
const struct glsl_type *type,
const char *name);
/** creates a local variable and adds it to the list */
nir_variable *nir_local_variable_create(nir_function_impl *impl,
const struct glsl_type *type,
const char *name);
/** Creates a uniform builtin state variable. */
nir_variable *
nir_state_variable_create(nir_shader *shader,
const struct glsl_type *type,
const char *name,
const gl_state_index16 tokens[STATE_LENGTH]);
/* Gets the variable for the given mode and location, creating it (with the given
* type) if necessary.
*/
nir_variable *
nir_get_variable_with_location(nir_shader *shader, nir_variable_mode mode, int location,
const struct glsl_type *type);
/* Creates a variable for the given mode and location.
*/
nir_variable *
nir_create_variable_with_location(nir_shader *shader, nir_variable_mode mode, int location,
const struct glsl_type *type);
nir_variable *nir_find_variable_with_location(nir_shader *shader,
nir_variable_mode mode,
unsigned location);
nir_variable *nir_find_variable_with_driver_location(nir_shader *shader,
nir_variable_mode mode,
unsigned location);
nir_variable *nir_find_state_variable(nir_shader *s,
gl_state_index16 tokens[STATE_LENGTH]);
nir_variable *nir_find_sampler_variable_with_tex_index(nir_shader *shader,
unsigned texture_index);
void nir_sort_variables_with_modes(nir_shader *shader,
int (*compar)(const nir_variable *,
const nir_variable *),
nir_variable_mode modes);
/** creates a function and adds it to the shader's list of functions */
nir_function *nir_function_create(nir_shader *shader, const char *name);
static inline void
nir_function_set_impl(nir_function *func, nir_function_impl *impl)
{
func->impl = impl;
impl->function = func;
}
nir_function_impl *nir_function_impl_create(nir_function *func);
/** creates a function_impl that isn't tied to any particular function */
nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
nir_block *nir_block_create(nir_shader *shader);
nir_if *nir_if_create(nir_shader *shader);
nir_loop *nir_loop_create(nir_shader *shader);
nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
/** requests that the given pieces of metadata be generated */
void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
/** dirties all but the preserved metadata */
void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
/** Preserves all metadata for the given shader */
void nir_shader_preserve_all_metadata(nir_shader *shader);
/** creates an instruction with default swizzle/writemask/etc. with NULL registers */
nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
nir_deref_type deref_type);
nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
unsigned num_components,
unsigned bit_size);
nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
nir_intrinsic_op op);
nir_call_instr *nir_call_instr_create(nir_shader *shader,
nir_function *callee);
/** Creates a NIR texture instruction */
nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
nir_phi_src *nir_phi_instr_add_src(nir_phi_instr *instr,
nir_block *pred, nir_def *src);
nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
nir_undef_instr *nir_undef_instr_create(nir_shader *shader,
unsigned num_components,
unsigned bit_size);
nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
/**
* NIR Cursors and Instruction Insertion API
* @{
*
* A tiny struct representing a point to insert/extract instructions or
* control flow nodes. Helps reduce the combinatorial explosion of possible
* points to insert/extract.
*
* \sa nir_control_flow.h
*/
typedef enum {
nir_cursor_before_block,
nir_cursor_after_block,
nir_cursor_before_instr,
nir_cursor_after_instr,
} nir_cursor_option;
typedef struct {
nir_cursor_option option;
union {
nir_block *block;
nir_instr *instr;
};
} nir_cursor;
static inline nir_block *
nir_cursor_current_block(nir_cursor cursor)
{
if (cursor.option == nir_cursor_before_instr ||
cursor.option == nir_cursor_after_instr) {
return cursor.instr->block;
} else {
return cursor.block;
}
}
bool nir_cursors_equal(nir_cursor a, nir_cursor b);
static inline nir_cursor
nir_before_block(nir_block *block)
{
nir_cursor cursor;
cursor.option = nir_cursor_before_block;
cursor.block = block;
return cursor;
}
static inline nir_cursor
nir_after_block(nir_block *block)
{
nir_cursor cursor;
cursor.option = nir_cursor_after_block;
cursor.block = block;
return cursor;
}
static inline nir_cursor
nir_before_instr(nir_instr *instr)
{
nir_cursor cursor;
cursor.option = nir_cursor_before_instr;
cursor.instr = instr;
return cursor;
}
static inline nir_cursor
nir_after_instr(nir_instr *instr)
{
nir_cursor cursor;
cursor.option = nir_cursor_after_instr;
cursor.instr = instr;
return cursor;
}
static inline nir_cursor
nir_before_block_after_phis(nir_block *block)
{
nir_phi_instr *last_phi = nir_block_last_phi_instr(block);
if (last_phi)
return nir_after_instr(&last_phi->instr);
else
return nir_before_block(block);
}
static inline nir_cursor
nir_after_block_before_jump(nir_block *block)
{
nir_instr *last_instr = nir_block_last_instr(block);
if (last_instr && last_instr->type == nir_instr_type_jump) {
return nir_before_instr(last_instr);
} else {
return nir_after_block(block);
}
}
static inline nir_cursor
nir_before_src(nir_src *src)
{
if (nir_src_is_if(src)) {
nir_block *prev_block =
nir_cf_node_as_block(nir_cf_node_prev(&nir_src_parent_if(src)->cf_node));
return nir_after_block(prev_block);
} else if (nir_src_parent_instr(src)->type == nir_instr_type_phi) {
#ifndef NDEBUG
nir_phi_instr *cond_phi = nir_instr_as_phi(nir_src_parent_instr(src));
bool found = false;
nir_foreach_phi_src(phi_src, cond_phi) {
if (phi_src->src.ssa == src->ssa) {
found = true;
break;
}
}
assert(found);
#endif
/* The list_entry() macro is a generic container-of macro, it just happens
* to have a more specific name.
*/
nir_phi_src *phi_src = list_entry(src, nir_phi_src, src);
return nir_after_block_before_jump(phi_src->pred);
} else {
return nir_before_instr(nir_src_parent_instr(src));
}
}
static inline nir_cursor
nir_before_cf_node(nir_cf_node *node)
{
if (node->type == nir_cf_node_block)
return nir_before_block(nir_cf_node_as_block(node));
return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
}
static inline nir_cursor
nir_after_cf_node(nir_cf_node *node)
{
if (node->type == nir_cf_node_block)
return nir_after_block(nir_cf_node_as_block(node));
return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
}
static inline nir_cursor
nir_after_phis(nir_block *block)
{
nir_foreach_instr(instr, block) {
if (instr->type != nir_instr_type_phi)
return nir_before_instr(instr);
}
return nir_after_block(block);
}
static inline nir_cursor
nir_after_instr_and_phis(nir_instr *instr)
{
if (instr->type == nir_instr_type_phi)
return nir_after_phis(instr->block);
else
return nir_after_instr(instr);
}
static inline nir_cursor
nir_after_cf_node_and_phis(nir_cf_node *node)
{
if (node->type == nir_cf_node_block)
return nir_after_block(nir_cf_node_as_block(node));
nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
return nir_after_phis(block);
}
static inline nir_cursor
nir_before_cf_list(struct exec_list *cf_list)
{
nir_cf_node *first_node = exec_node_data(nir_cf_node,
exec_list_get_head(cf_list), node);
return nir_before_cf_node(first_node);
}
static inline nir_cursor
nir_after_cf_list(struct exec_list *cf_list)
{
nir_cf_node *last_node = exec_node_data(nir_cf_node,
exec_list_get_tail(cf_list), node);
return nir_after_cf_node(last_node);
}
static inline nir_cursor
nir_before_impl(nir_function_impl *impl)
{
return nir_before_cf_list(&impl->body);
}
static inline nir_cursor
nir_after_impl(nir_function_impl *impl)
{
return nir_after_cf_list(&impl->body);
}
/**
* Insert a NIR instruction at the given cursor.
*
* Note: This does not update the cursor.
*/
void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
bool nir_instr_move(nir_cursor cursor, nir_instr *instr);
static inline void
nir_instr_insert_before(nir_instr *instr, nir_instr *before)
{
nir_instr_insert(nir_before_instr(instr), before);
}
static inline void
nir_instr_insert_after(nir_instr *instr, nir_instr *after)
{
nir_instr_insert(nir_after_instr(instr), after);
}
static inline void
nir_instr_insert_before_block(nir_block *block, nir_instr *before)
{
nir_instr_insert(nir_before_block(block), before);
}
static inline void
nir_instr_insert_after_block(nir_block *block, nir_instr *after)
{
nir_instr_insert(nir_after_block(block), after);
}
static inline void
nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
{
nir_instr_insert(nir_before_cf_node(node), before);
}
static inline void
nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
{
nir_instr_insert(nir_after_cf_node(node), after);
}
static inline void
nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
{
nir_instr_insert(nir_before_cf_list(list), before);
}
static inline void
nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
{
nir_instr_insert(nir_after_cf_list(list), after);
}
void nir_instr_remove_v(nir_instr *instr);
void nir_instr_free(nir_instr *instr);
void nir_instr_free_list(struct exec_list *list);
static inline nir_cursor
nir_instr_remove(nir_instr *instr)
{
nir_cursor cursor;
nir_instr *prev = nir_instr_prev(instr);
if (prev) {
cursor = nir_after_instr(prev);
} else {
cursor = nir_before_block(instr->block);
}
nir_instr_remove_v(instr);
return cursor;
}
nir_cursor nir_instr_free_and_dce(nir_instr *instr);
/** @} */
nir_def *nir_instr_def(nir_instr *instr);
typedef bool (*nir_foreach_def_cb)(nir_def *def, void *state);
typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
static inline bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
bool nir_foreach_phi_src_leaving_block(nir_block *instr,
nir_foreach_src_cb cb,
void *state);
nir_const_value *nir_src_as_const_value(nir_src src);
#define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
static inline c_type * \
nir_src_as_##name(nir_src src) \
{ \
return src.ssa->parent_instr->type == type_enum \
? cast_macro(src.ssa->parent_instr) \
: NULL; \
}
NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
NIR_SRC_AS_(intrinsic, nir_intrinsic_instr,
nir_instr_type_intrinsic, nir_instr_as_intrinsic)
NIR_SRC_AS_(deref, nir_deref_instr, nir_instr_type_deref, nir_instr_as_deref)
bool nir_src_is_always_uniform(nir_src src);
bool nir_srcs_equal(nir_src src1, nir_src src2);
bool nir_instrs_equal(const nir_instr *instr1, const nir_instr *instr2);
static inline void
nir_src_rewrite(nir_src *src, nir_def *new_ssa)
{
assert(src->ssa);
assert(nir_src_is_if(src) ? (nir_src_parent_if(src) != NULL) : (nir_src_parent_instr(src) != NULL));
list_del(&src->use_link);
src->ssa = new_ssa;
list_addtail(&src->use_link, &new_ssa->uses);
}
/** Initialize a nir_src
*
* This is almost never the helper you want to use. This helper assumes that
* the source is uninitialized garbage and blasts over it without doing any
* tear-down the existing source, including removing it from uses lists.
* Using this helper on a source that currently exists in any uses list will
* result in linked list corruption. It also assumes that the instruction is
* currently live in the IR and adds the source to the uses list for the given
* nir_def as part of setup.
*
* This is pretty much only useful for adding sources to extant instructions
* or manipulating parallel copy instructions as part of out-of-SSA.
*
* When in doubt, use nir_src_rewrite() instead.
*/
void nir_instr_init_src(nir_instr *instr, nir_src *src, nir_def *def);
/** Clear a nir_src
*
* This helper clears a nir_src by removing it from any uses lists and
* resetting its contents to NIR_SRC_INIT. This is typically used as a
* precursor to removing the source from the instruction by adjusting a
* num_srcs parameter somewhere or overwriting it with nir_instr_move_src().
*/
void nir_instr_clear_src(nir_instr *instr, nir_src *src);
void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
void nir_def_init(nir_instr *instr, nir_def *def,
unsigned num_components, unsigned bit_size);
static inline void
nir_def_init_for_type(nir_instr *instr, nir_def *def,
const struct glsl_type *type)
{
assert(glsl_type_is_vector_or_scalar(type));
nir_def_init(instr, def, glsl_get_components(type),
glsl_get_bit_size(type));
}
void nir_def_rewrite_uses(nir_def *def, nir_def *new_ssa);
void nir_def_rewrite_uses_src(nir_def *def, nir_src new_src);
void nir_def_rewrite_uses_after(nir_def *def, nir_def *new_ssa,
nir_instr *after_me);
nir_component_mask_t nir_src_components_read(const nir_src *src);
nir_component_mask_t nir_def_components_read(const nir_def *def);
bool nir_def_all_uses_are_fsat(const nir_def *def);
static inline bool
nir_def_is_unused(nir_def *ssa)
{
return list_is_empty(&ssa->uses);
}
/** Sorts unstructured blocks
*
* NIR requires that unstructured blocks be sorted in reverse post
* depth-first-search order. This is the standard ordering used in the
* compiler literature which guarantees dominance. In particular, reverse
* post-DFS order guarantees that dominators occur in the list before the
* blocks they dominate.
*
* NOTE: This function also implicitly deletes any unreachable blocks.
*/
void nir_sort_unstructured_blocks(nir_function_impl *impl);
/** Returns the next block
*
* For structured control-flow, this follows the same order as
* nir_block_cf_tree_next(). For unstructured control-flow the blocks are in
* reverse post-DFS order. (See nir_sort_unstructured_blocks() above.)
*/
nir_block *nir_block_unstructured_next(nir_block *block);
nir_block *nir_unstructured_start_block(nir_function_impl *impl);
#define nir_foreach_block_unstructured(block, impl) \
for (nir_block *block = nir_unstructured_start_block(impl); block != NULL; \
block = nir_block_unstructured_next(block))
#define nir_foreach_block_unstructured_safe(block, impl) \
for (nir_block *block = nir_unstructured_start_block(impl), \
*next = nir_block_unstructured_next(block); \
block != NULL; \
block = next, next = nir_block_unstructured_next(block))
/*
* finds the next basic block in source-code order, returns NULL if there is
* none
*/
nir_block *nir_block_cf_tree_next(nir_block *block);
/* Performs the opposite of nir_block_cf_tree_next() */
nir_block *nir_block_cf_tree_prev(nir_block *block);
/* Gets the first block in a CF node in source-code order */
nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
/* Gets the last block in a CF node in source-code order */
nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
/* Gets the next block after a CF node in source-code order */
nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
/* Gets the block before a CF node in source-code order */
nir_block *nir_cf_node_cf_tree_prev(nir_cf_node *node);
/* Macros for loops that visit blocks in source-code order */
#define nir_foreach_block(block, impl) \
for (nir_block *block = nir_start_block(impl); block != NULL; \
block = nir_block_cf_tree_next(block))
#define nir_foreach_block_safe(block, impl) \
for (nir_block *block = nir_start_block(impl), \
*next = nir_block_cf_tree_next(block); \
block != NULL; \
block = next, next = nir_block_cf_tree_next(block))
#define nir_foreach_block_reverse(block, impl) \
for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
block = nir_block_cf_tree_prev(block))
#define nir_foreach_block_reverse_safe(block, impl) \
for (nir_block *block = nir_impl_last_block(impl), \
*prev = nir_block_cf_tree_prev(block); \
block != NULL; \
block = prev, prev = nir_block_cf_tree_prev(block))
#define nir_foreach_block_in_cf_node(block, node) \
for (nir_block *block = nir_cf_node_cf_tree_first(node); \
block != nir_cf_node_cf_tree_next(node); \
block = nir_block_cf_tree_next(block))
#define nir_foreach_block_in_cf_node_reverse(block, node) \
for (nir_block *block = nir_cf_node_cf_tree_last(node); \
block != nir_cf_node_cf_tree_prev(node); \
block = nir_block_cf_tree_prev(block))
/* If the following CF node is an if, this function returns that if.
* Otherwise, it returns NULL.
*/
nir_if *nir_block_get_following_if(nir_block *block);
nir_loop *nir_block_get_following_loop(nir_block *block);
nir_block **nir_block_get_predecessors_sorted(const nir_block *block, void *mem_ctx);
void nir_index_ssa_defs(nir_function_impl *impl);
unsigned nir_index_instrs(nir_function_impl *impl);
void nir_index_blocks(nir_function_impl *impl);
void nir_shader_clear_pass_flags(nir_shader *shader);
unsigned nir_shader_index_vars(nir_shader *shader, nir_variable_mode modes);
unsigned nir_function_impl_index_vars(nir_function_impl *impl);
void nir_print_shader(nir_shader *shader, FILE *fp);
void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
void nir_print_instr(const nir_instr *instr, FILE *fp);
void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
void nir_log_shader_annotated_tagged(enum mesa_log_level level, const char *tag, nir_shader *shader, struct hash_table *annotations);
#define nir_log_shadere(s) nir_log_shader_annotated_tagged(MESA_LOG_ERROR, (MESA_LOG_TAG), (s), NULL)
#define nir_log_shaderw(s) nir_log_shader_annotated_tagged(MESA_LOG_WARN, (MESA_LOG_TAG), (s), NULL)
#define nir_log_shaderi(s) nir_log_shader_annotated_tagged(MESA_LOG_INFO, (MESA_LOG_TAG), (s), NULL)
#define nir_log_shader_annotated(s, annotations) nir_log_shader_annotated_tagged(MESA_LOG_ERROR, (MESA_LOG_TAG), (s), annotations)
char *nir_shader_as_str(nir_shader *nir, void *mem_ctx);
char *nir_shader_as_str_annotated(nir_shader *nir, struct hash_table *annotations, void *mem_ctx);
char *nir_instr_as_str(const nir_instr *instr, void *mem_ctx);
/** Shallow clone of a single instruction. */
nir_instr *nir_instr_clone(nir_shader *s, const nir_instr *orig);
/** Clone a single instruction, including a remap table to rewrite sources. */
nir_instr *nir_instr_clone_deep(nir_shader *s, const nir_instr *orig,
struct hash_table *remap_table);
/** Shallow clone of a single ALU instruction. */
nir_alu_instr *nir_alu_instr_clone(nir_shader *s, const nir_alu_instr *orig);
nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
nir_function *nir_function_clone(nir_shader *ns, const nir_function *fxn);
nir_function_impl *nir_function_impl_clone(nir_shader *shader,
const nir_function_impl *fi);
nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
void nir_shader_replace(nir_shader *dest, nir_shader *src);
void nir_shader_serialize_deserialize(nir_shader *s);
#ifndef NDEBUG
void nir_validate_shader(nir_shader *shader, const char *when);
void nir_validate_ssa_dominance(nir_shader *shader, const char *when);
void nir_metadata_set_validation_flag(nir_shader *shader);
void nir_metadata_check_validation_flag(nir_shader *shader);
static inline bool
should_skip_nir(const char *name)
{
static const char *list = NULL;
if (!list) {
/* Comma separated list of names to skip. */
list = getenv("NIR_SKIP");
if (!list)
list = "";
}
if (!list[0])
return false;
return comma_separated_list_contains(list, name);
}
static inline bool
should_print_nir(nir_shader *shader)
{
if ((shader->info.internal && !NIR_DEBUG(PRINT_INTERNAL)) ||
shader->info.stage < 0 ||
shader->info.stage > MESA_SHADER_KERNEL)
return false;
return unlikely(nir_debug_print_shader[shader->info.stage]);
}
#else
static inline void
nir_validate_shader(nir_shader *shader, const char *when)
{
(void)shader;
(void)when;
}
static inline void
nir_validate_ssa_dominance(nir_shader *shader, const char *when)
{
(void)shader;
(void)when;
}
static inline void
nir_metadata_set_validation_flag(nir_shader *shader)
{
(void)shader;
}
static inline void
nir_metadata_check_validation_flag(nir_shader *shader)
{
(void)shader;
}
static inline bool
should_skip_nir(UNUSED const char *pass_name)
{
return false;
}
static inline bool
should_print_nir(UNUSED nir_shader *shader)
{
return false;
}
#endif /* NDEBUG */
#define _PASS(pass, nir, do_pass) \
do { \
if (should_skip_nir(#pass)) { \
printf("skipping %s\n", #pass); \
break; \
} \
do_pass if (NIR_DEBUG(CLONE)) \
{ \
nir_shader *_clone = nir_shader_clone(ralloc_parent(nir), nir);\
nir_shader_replace(nir, _clone); \
} \
if (NIR_DEBUG(SERIALIZE)) { \
nir_shader_serialize_deserialize(nir); \
} \
} while (0)
#define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, { \
nir_metadata_set_validation_flag(nir); \
if (should_print_nir(nir)) \
printf("%s\n", #pass); \
if (pass(nir, ##__VA_ARGS__)) { \
nir_validate_shader(nir, "after " #pass " in " __FILE__); \
UNUSED bool _; \
progress = true; \
if (should_print_nir(nir)) \
nir_print_shader(nir, stdout); \
nir_metadata_check_validation_flag(nir); \
} \
})
#define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, { \
if (should_print_nir(nir)) \
printf("%s\n", #pass); \
pass(nir, ##__VA_ARGS__); \
nir_validate_shader(nir, "after " #pass " in " __FILE__); \
if (should_print_nir(nir)) \
nir_print_shader(nir, stdout); \
})
#define _NIR_LOOP_PASS(progress, idempotent, skip, nir, pass, ...) \
do { \
bool nir_loop_pass_progress = false; \
if (!_mesa_set_search(skip, (void (*)())&pass)) \
NIR_PASS(nir_loop_pass_progress, nir, pass, ##__VA_ARGS__); \
if (nir_loop_pass_progress) \
_mesa_set_clear(skip, NULL); \
if (idempotent || !nir_loop_pass_progress) \
_mesa_set_add(skip, (void (*)())&pass); \
UNUSED bool _ = false; \
progress |= nir_loop_pass_progress; \
} while (0)
/* Helper to skip a pass if no different passes have made progress since it was
* previously run. Note that two passes are considered the same if they have
* the same function pointer, even if they used different options.
*
* The usage of this is mostly identical to NIR_PASS. "skip" is a "struct set *"
* (created by _mesa_pointer_set_create) which the macro uses to keep track of
* already run passes.
*
* Example:
* bool progress = true;
* struct set *skip = _mesa_pointer_set_create(NULL);
* while (progress) {
* progress = false;
* NIR_LOOP_PASS(progress, skip, nir, pass1);
* NIR_LOOP_PASS_NOT_IDEMPOTENT(progress, skip, nir, nir_opt_algebraic);
* NIR_LOOP_PASS(progress, skip, nir, pass2);
* ...
* }
* _mesa_set_destroy(skip, NULL);
*
* You shouldn't mix usage of this with the NIR_PASS set of helpers, without
* using a new "skip" in-between.
*/
#define NIR_LOOP_PASS(progress, skip, nir, pass, ...) \
_NIR_LOOP_PASS(progress, true, skip, nir, pass, ##__VA_ARGS__)
/* Like NIR_LOOP_PASS, but use this for passes which may make further progress
* when repeated.
*/
#define NIR_LOOP_PASS_NOT_IDEMPOTENT(progress, skip, nir, pass, ...) \
_NIR_LOOP_PASS(progress, false, skip, nir, pass, ##__VA_ARGS__)
#define NIR_SKIP(name) should_skip_nir(#name)
/** An instruction filtering callback with writemask
*
* Returns true if the instruction should be processed with the associated
* writemask and false otherwise.
*/
typedef bool (*nir_instr_writemask_filter_cb)(const nir_instr *,
unsigned writemask, const void *);
/** A simple instruction lowering callback
*
* Many instruction lowering passes can be written as a simple function which
* takes an instruction as its input and returns a sequence of instructions
* that implement the consumed instruction. This function type represents
* such a lowering function. When called, a function with this prototype
* should either return NULL indicating that no lowering needs to be done or
* emit a sequence of instructions using the provided builder (whose cursor
* will already be placed after the instruction to be lowered) and return the
* resulting nir_def.
*/
typedef nir_def *(*nir_lower_instr_cb)(struct nir_builder *,
nir_instr *, void *);
/**
* Special return value for nir_lower_instr_cb when some progress occurred
* (like changing an input to the instr) that didn't result in a replacement
* SSA def being generated.
*/
#define NIR_LOWER_INSTR_PROGRESS ((nir_def *)(uintptr_t)1)
/**
* Special return value for nir_lower_instr_cb when some progress occurred
* that should remove the current instruction that doesn't create an output
* (like a store)
*/
#define NIR_LOWER_INSTR_PROGRESS_REPLACE ((nir_def *)(uintptr_t)2)
/** Iterate over all the instructions in a nir_function_impl and lower them
* using the provided callbacks
*
* This function implements the guts of a standard lowering pass for you. It
* iterates over all of the instructions in a nir_function_impl and calls the
* filter callback on each one. If the filter callback returns true, it then
* calls the lowering call back on the instruction. (Splitting it this way
* allows us to avoid some save/restore work for instructions we know won't be
* lowered.) If the instruction is dead after the lowering is complete, it
* will be removed. If new instructions are added, the lowering callback will
* also be called on them in case multiple lowerings are required.
*
* If the callback indicates that the original instruction is replaced (either
* through a new SSA def or NIR_LOWER_INSTR_PROGRESS_REPLACE), then the
* instruction is removed along with any now-dead SSA defs it used.
*
* The metadata for the nir_function_impl will also be updated. If any blocks
* are added (they cannot be removed), dominance and block indices will be
* invalidated.
*/
bool nir_function_impl_lower_instructions(nir_function_impl *impl,
nir_instr_filter_cb filter,
nir_lower_instr_cb lower,
void *cb_data);
bool nir_shader_lower_instructions(nir_shader *shader,
nir_instr_filter_cb filter,
nir_lower_instr_cb lower,
void *cb_data);
void nir_calc_dominance_impl(nir_function_impl *impl);
void nir_calc_dominance(nir_shader *shader);
nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
bool nir_block_dominates(nir_block *parent, nir_block *child);
bool nir_block_is_unreachable(nir_block *block);
void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
void nir_dump_cfg(nir_shader *shader, FILE *fp);
void nir_gs_count_vertices_and_primitives(const nir_shader *shader,
int *out_vtxcnt,
int *out_prmcnt,
int *out_decomposed_prmcnt,
unsigned num_streams);
typedef enum {
nir_group_all,
nir_group_same_resource_only,
} nir_load_grouping;
void nir_group_loads(nir_shader *shader, nir_load_grouping grouping,
unsigned max_distance);
bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
bool nir_split_var_copies(nir_shader *shader);
bool nir_split_per_member_structs(nir_shader *shader);
bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
bool nir_lower_returns_impl(nir_function_impl *impl);
bool nir_lower_returns(nir_shader *shader);
void nir_inline_function_impl(struct nir_builder *b,
const nir_function_impl *impl,
nir_def **params,
struct hash_table *shader_var_remap);
bool nir_inline_functions(nir_shader *shader);
void nir_cleanup_functions(nir_shader *shader);
bool nir_link_shader_functions(nir_shader *shader,
const nir_shader *link_shader);
void nir_find_inlinable_uniforms(nir_shader *shader);
void nir_inline_uniforms(nir_shader *shader, unsigned num_uniforms,
const uint32_t *uniform_values,
const uint16_t *uniform_dw_offsets);
bool nir_collect_src_uniforms(const nir_src *src, int component,
uint32_t *uni_offsets, uint8_t *num_offsets,
unsigned max_num_bo, unsigned max_offset);
void nir_add_inlinable_uniforms(const nir_src *cond, nir_loop_info *info,
uint32_t *uni_offsets, uint8_t *num_offsets,
unsigned max_num_bo, unsigned max_offset);
bool nir_propagate_invariant(nir_shader *shader, bool invariant_prim);
void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
void nir_lower_deref_copy_instr(struct nir_builder *b,
nir_intrinsic_instr *copy);
bool nir_lower_var_copies(nir_shader *shader);
bool nir_opt_memcpy(nir_shader *shader);
bool nir_lower_memcpy(nir_shader *shader);
void nir_fixup_deref_modes(nir_shader *shader);
void nir_fixup_deref_types(nir_shader *shader);
bool nir_lower_global_vars_to_local(nir_shader *shader);
typedef enum {
nir_lower_direct_array_deref_of_vec_load = (1 << 0),
nir_lower_indirect_array_deref_of_vec_load = (1 << 1),
nir_lower_direct_array_deref_of_vec_store = (1 << 2),
nir_lower_indirect_array_deref_of_vec_store = (1 << 3),
} nir_lower_array_deref_of_vec_options;
bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
nir_lower_array_deref_of_vec_options options);
bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes,
uint32_t max_lower_array_len);
bool nir_lower_indirect_var_derefs(nir_shader *shader,
const struct set *vars);
bool nir_lower_locals_to_regs(nir_shader *shader, uint8_t bool_bitsize);
bool nir_lower_io_to_temporaries(nir_shader *shader,
nir_function_impl *entrypoint,
bool outputs, bool inputs);
bool nir_lower_vars_to_scratch(nir_shader *shader,
nir_variable_mode modes,
int size_threshold,
glsl_type_size_align_func size_align);
void nir_lower_clip_halfz(nir_shader *shader);
void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
void nir_gather_types(nir_function_impl *impl,
BITSET_WORD *float_types,
BITSET_WORD *int_types);
void nir_assign_var_locations(nir_shader *shader, nir_variable_mode mode,
unsigned *size,
int (*type_size)(const struct glsl_type *, bool));
/* Some helpers to do very simple linking */
bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
bool nir_remove_unused_io_vars(nir_shader *shader, nir_variable_mode mode,
uint64_t *used_by_other_stage,
uint64_t *used_by_other_stage_patches);
void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
bool default_to_smooth_interp);
void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
void nir_link_varying_precision(nir_shader *producer, nir_shader *consumer);
nir_variable *nir_clone_uniform_variable(nir_shader *nir,
nir_variable *uniform, bool spirv);
nir_deref_instr *nir_clone_deref_instr(struct nir_builder *b,
nir_variable *var,
nir_deref_instr *deref);
/* Return status from nir_opt_varyings. */
typedef enum {
/* Whether the IR changed such that NIR optimizations should be run, such
* as due to removal of loads and stores. IO semantic changes such as
* compaction don't count as IR changes because they don't affect NIR
* optimizations.
*/
nir_progress_producer = BITFIELD_BIT(0),
nir_progress_consumer = BITFIELD_BIT(1),
} nir_opt_varyings_progress;
nir_opt_varyings_progress
nir_opt_varyings(nir_shader *producer, nir_shader *consumer, bool spirv,
unsigned max_uniform_components, unsigned max_ubos_per_stage);
bool nir_slot_is_sysval_output(gl_varying_slot slot,
gl_shader_stage next_shader);
bool nir_slot_is_varying(gl_varying_slot slot);
bool nir_slot_is_sysval_output_and_varying(gl_varying_slot slot,
gl_shader_stage next_shader);
bool nir_remove_varying(nir_intrinsic_instr *intr, gl_shader_stage next_shader);
bool nir_remove_sysval_output(nir_intrinsic_instr *intr);
bool nir_lower_amul(nir_shader *shader,
int (*type_size)(const struct glsl_type *, bool));
bool nir_lower_ubo_vec4(nir_shader *shader);
void nir_sort_variables_by_location(nir_shader *shader, nir_variable_mode mode);
void nir_assign_io_var_locations(nir_shader *shader,
nir_variable_mode mode,
unsigned *size,
gl_shader_stage stage);
typedef struct {
uint8_t num_linked_io_vars;
uint8_t num_linked_patch_io_vars;
} nir_linked_io_var_info;
nir_linked_io_var_info
nir_assign_linked_io_var_locations(nir_shader *producer,
nir_shader *consumer);
typedef enum {
/* If set, this causes all 64-bit IO operations to be lowered on-the-fly
* to 32-bit operations. This is only valid for nir_var_shader_in/out
* modes.
*
* Note that this destroys dual-slot information i.e. whether an input
* occupies the low or high half of dvec4. Instead, it adds an offset of 1
* to the load (which is ambiguous) and expects driver locations of inputs
* to be final, which prevents any further optimizations.
*
* TODO: remove this in favor of nir_lower_io_lower_64bit_to_32_new.
*/
nir_lower_io_lower_64bit_to_32 = (1 << 0),
/* If set, this causes the subset of 64-bit IO operations involving floats to be lowered on-the-fly
* to 32-bit operations. This is only valid for nir_var_shader_in/out
* modes.
*/
nir_lower_io_lower_64bit_float_to_32 = (1 << 1),
/* This causes all 64-bit IO operations to be lowered to 32-bit operations.
* This is only valid for nir_var_shader_in/out modes.
*
* Only VS inputs: Dual slot information is preserved as nir_io_semantics::
* high_dvec2 and gathered into shader_info::dual_slot_inputs, so that
* the shader can be arbitrarily optimized and the low or high half of
* dvec4 can be DCE'd independently without affecting the other half.
*/
nir_lower_io_lower_64bit_to_32_new = (1 << 2),
} nir_lower_io_options;
bool nir_lower_io(nir_shader *shader,
nir_variable_mode modes,
int (*type_size)(const struct glsl_type *, bool),
nir_lower_io_options);
bool nir_io_add_const_offset_to_base(nir_shader *nir, nir_variable_mode modes);
bool nir_lower_color_inputs(nir_shader *nir);
void nir_lower_io_passes(nir_shader *nir, bool renumber_vs_inputs);
bool nir_io_add_intrinsic_xfb_info(nir_shader *nir);
bool
nir_lower_vars_to_explicit_types(nir_shader *shader,
nir_variable_mode modes,
glsl_type_size_align_func type_info);
void
nir_gather_explicit_io_initializers(nir_shader *shader,
void *dst, size_t dst_size,
nir_variable_mode mode);
bool nir_lower_vec3_to_vec4(nir_shader *shader, nir_variable_mode modes);
typedef enum {
/**
* An address format which is a simple 32-bit global GPU address.
*/
nir_address_format_32bit_global,
/**
* An address format which is a simple 64-bit global GPU address.
*/
nir_address_format_64bit_global,
/**
* An address format which is a 64-bit global GPU address encoded as a
* 2x32-bit vector.
*/
nir_address_format_2x32bit_global,
/**
* An address format which is a 64-bit global base address and a 32-bit
* offset.
*
* This is identical to 64bit_bounded_global except that bounds checking
* is not applied when lowering to global access. Even though the size is
* never used for an actual bounds check, it needs to be valid so we can
* lower deref_buffer_array_length properly.
*/
nir_address_format_64bit_global_32bit_offset,
/**
* An address format which is a bounds-checked 64-bit global GPU address.
*
* The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
* address stored with the low bits in .x and high bits in .y, .z is a
* size, and .w is an offset. When the final I/O operation is lowered, .w
* is checked against .z and the operation is predicated on the result.
*/
nir_address_format_64bit_bounded_global,
/**
* An address format which is comprised of a vec2 where the first
* component is a buffer index and the second is an offset.
*/
nir_address_format_32bit_index_offset,
/**
* An address format which is a 64-bit value, where the high 32 bits
* are a buffer index, and the low 32 bits are an offset.
*/
nir_address_format_32bit_index_offset_pack64,
/**
* An address format which is comprised of a vec3 where the first two
* components specify the buffer and the third is an offset.
*/
nir_address_format_vec2_index_32bit_offset,
/**
* An address format which represents generic pointers with a 62-bit
* pointer and a 2-bit enum in the top two bits. The top two bits have
* the following meanings:
*
* - 0x0: Global memory
* - 0x1: Shared memory
* - 0x2: Scratch memory
* - 0x3: Global memory
*
* The redundancy between 0x0 and 0x3 is because of Intel sign-extension of
* addresses. Valid global memory addresses may naturally have either 0 or
* ~0 as their high bits.
*
* Shared and scratch pointers are represented as 32-bit offsets with the
* top 32 bits only being used for the enum. This allows us to avoid
* 64-bit address calculations in a bunch of cases.
*/
nir_address_format_62bit_generic,
/**
* An address format which is a simple 32-bit offset.
*/
nir_address_format_32bit_offset,
/**
* An address format which is a simple 32-bit offset cast to 64-bit.
*/
nir_address_format_32bit_offset_as_64bit,
/**
* An address format representing a purely logical addressing model. In
* this model, all deref chains must be complete from the dereference
* operation to the variable. Cast derefs are not allowed. These
* addresses will be 32-bit scalars but the format is immaterial because
* you can always chase the chain.
*/
nir_address_format_logical,
} nir_address_format;
unsigned
nir_address_format_bit_size(nir_address_format addr_format);
unsigned
nir_address_format_num_components(nir_address_format addr_format);
static inline const struct glsl_type *
nir_address_format_to_glsl_type(nir_address_format addr_format)
{
unsigned bit_size = nir_address_format_bit_size(addr_format);
assert(bit_size == 32 || bit_size == 64);
return glsl_vector_type(bit_size == 32 ? GLSL_TYPE_UINT : GLSL_TYPE_UINT64,
nir_address_format_num_components(addr_format));
}
const nir_const_value *nir_address_format_null_value(nir_address_format addr_format);
nir_def *nir_build_addr_iadd(struct nir_builder *b, nir_def *addr,
nir_address_format addr_format,
nir_variable_mode modes,
nir_def *offset);
nir_def *nir_build_addr_iadd_imm(struct nir_builder *b, nir_def *addr,
nir_address_format addr_format,
nir_variable_mode modes,
int64_t offset);
nir_def *nir_build_addr_ieq(struct nir_builder *b, nir_def *addr0, nir_def *addr1,
nir_address_format addr_format);
nir_def *nir_build_addr_isub(struct nir_builder *b, nir_def *addr0, nir_def *addr1,
nir_address_format addr_format);
nir_def *nir_explicit_io_address_from_deref(struct nir_builder *b,
nir_deref_instr *deref,
nir_def *base_addr,
nir_address_format addr_format);
bool nir_get_explicit_deref_align(nir_deref_instr *deref,
bool default_to_type_align,
uint32_t *align_mul,
uint32_t *align_offset);
void nir_lower_explicit_io_instr(struct nir_builder *b,
nir_intrinsic_instr *io_instr,
nir_def *addr,
nir_address_format addr_format);
bool nir_lower_explicit_io(nir_shader *shader,
nir_variable_mode modes,
nir_address_format);
typedef struct {
uint8_t num_components;
uint8_t bit_size;
uint16_t align;
} nir_mem_access_size_align;
/* clang-format off */
typedef nir_mem_access_size_align
(*nir_lower_mem_access_bit_sizes_cb)(nir_intrinsic_op intrin,
uint8_t bytes,
uint8_t bit_size,
uint32_t align_mul,
uint32_t align_offset,
bool offset_is_const,
const void *cb_data);
/* clang-format on */
typedef struct {
nir_lower_mem_access_bit_sizes_cb callback;
nir_variable_mode modes;
bool may_lower_unaligned_stores_to_atomics;
void *cb_data;
} nir_lower_mem_access_bit_sizes_options;
bool nir_lower_mem_access_bit_sizes(nir_shader *shader,
const nir_lower_mem_access_bit_sizes_options *options);
typedef struct {
/* Lower load_ubo to be robust. Out-of-bounds loads will return UNDEFINED
* values (not necessarily zero).
*/
bool lower_ubo;
/* Lower load_ssbo/store_ssbo/ssbo_atomic(_swap) to be robust. Out-of-bounds
* loads and atomics will return UNDEFINED values (not necessarily zero).
* Out-of-bounds stores and atomics CORRUPT the contents of the SSBO.
*
* This suffices for robustBufferAccess but not robustBufferAccess2.
*/
bool lower_ssbo;
/* Lower all image_load/image_store/image_atomic(_swap) instructions to be
* robust. Out-of-bounds loads will return ZERO.
*
* This suffices for robustImageAccess but not robustImageAccess2.
*/
bool lower_image;
/* Lower all buffer image instructions as above. Implied by lower_image. */
bool lower_buffer_image;
/* Lower image_atomic(_swap) for all dimensions. Implied by lower_image. */
bool lower_image_atomic;
/* Vulkan's robustBufferAccess feature is only concerned with buffers that
* are bound through descriptor sets, so shared memory is not included, but
* it may be useful to enable this for debugging.
*/
bool lower_shared;
} nir_lower_robust_access_options;
bool nir_lower_robust_access(nir_shader *s,
const nir_lower_robust_access_options *opts);
/* clang-format off */
typedef bool (*nir_should_vectorize_mem_func)(unsigned align_mul,
unsigned align_offset,
unsigned bit_size,
unsigned num_components,
nir_intrinsic_instr *low,
nir_intrinsic_instr *high,
void *data);
/* clang-format on */
typedef struct {
nir_should_vectorize_mem_func callback;
nir_variable_mode modes;
nir_variable_mode robust_modes;
void *cb_data;
bool has_shared2_amd;
} nir_load_store_vectorize_options;
bool nir_opt_load_store_vectorize(nir_shader *shader, const nir_load_store_vectorize_options *options);
typedef bool (*nir_lower_shader_calls_should_remat_func)(nir_instr *instr, void *data);
typedef struct nir_lower_shader_calls_options {
/* Address format used for load/store operations on the call stack. */
nir_address_format address_format;
/* Stack alignment */
unsigned stack_alignment;
/* Put loads from the stack as close as possible from where they're needed.
* You might want to disable combined_loads for best effects.
*/
bool localized_loads;
/* If this function pointer is not NULL, lower_shader_calls will run
* nir_opt_load_store_vectorize for stack load/store operations. Otherwise
* the optimizaion is not run.
*/
nir_should_vectorize_mem_func vectorizer_callback;
/* Data passed to vectorizer_callback */
void *vectorizer_data;
/* If this function pointer is not NULL, lower_shader_calls will call this
* function on instructions that require spill/fill/rematerialization of
* their value. If this function returns true, lower_shader_calls will
* ensure that the instruction is rematerialized, adding the sources of the
* instruction to be spilled/filled.
*/
nir_lower_shader_calls_should_remat_func should_remat_callback;
/* Data passed to should_remat_callback */
void *should_remat_data;
} nir_lower_shader_calls_options;
bool
nir_lower_shader_calls(nir_shader *shader,
const nir_lower_shader_calls_options *options,
nir_shader ***resume_shaders_out,
uint32_t *num_resume_shaders_out,
void *mem_ctx);
int nir_get_io_offset_src_number(const nir_intrinsic_instr *instr);
int nir_get_io_arrayed_index_src_number(const nir_intrinsic_instr *instr);
nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
nir_src *nir_get_io_arrayed_index_src(nir_intrinsic_instr *instr);
nir_src *nir_get_shader_call_payload_src(nir_intrinsic_instr *call);
bool nir_is_arrayed_io(const nir_variable *var, gl_shader_stage stage);
bool nir_lower_reg_intrinsics_to_ssa_impl(nir_function_impl *impl);
bool nir_lower_reg_intrinsics_to_ssa(nir_shader *shader);
bool nir_lower_vars_to_ssa(nir_shader *shader);
bool nir_remove_dead_derefs(nir_shader *shader);
bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
typedef struct nir_remove_dead_variables_options {
bool (*can_remove_var)(nir_variable *var, void *data);
void *can_remove_var_data;
} nir_remove_dead_variables_options;
bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes,
const nir_remove_dead_variables_options *options);
bool nir_lower_variable_initializers(nir_shader *shader,
nir_variable_mode modes);
bool nir_zero_initialize_shared_memory(nir_shader *shader,
const unsigned shared_size,
const unsigned chunk_size);
bool nir_clear_shared_memory(nir_shader *shader,
const unsigned shared_size,
const unsigned chunk_size);
bool nir_move_vec_src_uses_to_dest(nir_shader *shader, bool skip_const_srcs);
bool nir_lower_vec_to_regs(nir_shader *shader, nir_instr_writemask_filter_cb cb,
const void *_data);
bool nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
bool alpha_to_one,
const gl_state_index16 *alpha_ref_state_tokens);
bool nir_lower_alu(nir_shader *shader);
bool nir_lower_flrp(nir_shader *shader, unsigned lowering_mask,
bool always_precise);
bool nir_scale_fdiv(nir_shader *shader);
bool nir_lower_alu_to_scalar(nir_shader *shader, nir_instr_filter_cb cb, const void *data);
bool nir_lower_alu_width(nir_shader *shader, nir_vectorize_cb cb, const void *data);
bool nir_lower_alu_vec8_16_srcs(nir_shader *shader);
bool nir_lower_bool_to_bitsize(nir_shader *shader);
bool nir_lower_bool_to_float(nir_shader *shader, bool has_fcsel_ne);
bool nir_lower_bool_to_int32(nir_shader *shader);
bool nir_opt_simplify_convert_alu_types(nir_shader *shader);
bool nir_lower_const_arrays_to_uniforms(nir_shader *shader,
unsigned max_uniform_components);
bool nir_lower_convert_alu_types(nir_shader *shader,
bool (*should_lower)(nir_intrinsic_instr *));
bool nir_lower_constant_convert_alu_types(nir_shader *shader);
bool nir_lower_alu_conversion_to_intrinsic(nir_shader *shader);
bool nir_lower_int_to_float(nir_shader *shader);
bool nir_lower_load_const_to_scalar(nir_shader *shader);
bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
bool nir_lower_phis_to_scalar(nir_shader *shader, bool lower_all);
void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
bool nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
bool outputs_only);
bool nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask, nir_instr_filter_cb filter, void *filter_data);
bool nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
bool nir_vectorize_tess_levels(nir_shader *shader);
nir_shader *nir_create_passthrough_tcs_impl(const nir_shader_compiler_options *options,
unsigned *locations, unsigned num_locations,
uint8_t patch_vertices);
nir_shader *nir_create_passthrough_tcs(const nir_shader_compiler_options *options,
const nir_shader *vs, uint8_t patch_vertices);
nir_shader *nir_create_passthrough_gs(const nir_shader_compiler_options *options,
const nir_shader *prev_stage,
enum mesa_prim primitive_type,
enum mesa_prim output_primitive_type,
bool emulate_edgeflags,
bool force_line_strip_out);
bool nir_lower_fragcolor(nir_shader *shader, unsigned max_cbufs);
bool nir_lower_fragcoord_wtrans(nir_shader *shader);
bool nir_lower_frag_coord_to_pixel_coord(nir_shader *shader);
bool nir_lower_viewport_transform(nir_shader *shader);
bool nir_lower_uniforms_to_ubo(nir_shader *shader, bool dword_packed, bool load_vec4);
bool nir_lower_is_helper_invocation(nir_shader *shader);
bool nir_lower_single_sampled(nir_shader *shader);
typedef struct nir_lower_subgroups_options {
uint8_t subgroup_size;
uint8_t ballot_bit_size;
uint8_t ballot_components;
bool lower_to_scalar : 1;
bool lower_vote_trivial : 1;
bool lower_vote_eq : 1;
bool lower_vote_bool_eq : 1;
bool lower_first_invocation_to_ballot : 1;
bool lower_read_first_invocation : 1;
bool lower_subgroup_masks : 1;
bool lower_relative_shuffle : 1;
bool lower_shuffle_to_32bit : 1;
bool lower_shuffle_to_swizzle_amd : 1;
bool lower_shuffle : 1;
bool lower_quad : 1;
bool lower_quad_broadcast_dynamic : 1;
bool lower_quad_broadcast_dynamic_to_const : 1;
bool lower_elect : 1;
bool lower_read_invocation_to_cond : 1;
bool lower_rotate_to_shuffle : 1;
bool lower_ballot_bit_count_to_mbcnt_amd : 1;
bool lower_inverse_ballot : 1;
bool lower_boolean_reduce : 1;
bool lower_boolean_shuffle : 1;
} nir_lower_subgroups_options;
bool nir_lower_subgroups(nir_shader *shader,
const nir_lower_subgroups_options *options);
bool nir_lower_system_values(nir_shader *shader);
nir_def *
nir_build_lowered_load_helper_invocation(struct nir_builder *b);
typedef struct nir_lower_compute_system_values_options {
bool has_base_global_invocation_id : 1;
bool has_base_workgroup_id : 1;
bool shuffle_local_ids_for_quad_derivatives : 1;
bool lower_local_invocation_index : 1;
bool lower_cs_local_id_to_index : 1;
bool lower_workgroup_id_to_index : 1;
/* At shader execution time, check if WorkGroupId should be 1D
* and compute it quickly. Fall back to slow computation if not.
*/
bool shortcut_1d_workgroup_id : 1;
uint32_t num_workgroups[3]; /* Compile-time-known dispatch sizes, or 0 if unknown. */
} nir_lower_compute_system_values_options;
bool nir_lower_compute_system_values(nir_shader *shader,
const nir_lower_compute_system_values_options *options);
struct nir_lower_sysvals_to_varyings_options {
bool frag_coord : 1;
bool front_face : 1;
bool point_coord : 1;
};
bool
nir_lower_sysvals_to_varyings(nir_shader *shader,
const struct nir_lower_sysvals_to_varyings_options *options);
/***/
enum ENUM_PACKED nir_lower_tex_packing {
/** No packing */
nir_lower_tex_packing_none = 0,
/**
* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
* or unsigned ints based on the sampler type
*/
nir_lower_tex_packing_16,
/** The sampler returns 1 32-bit word of 4x8 unorm */
nir_lower_tex_packing_8,
};
/***/
typedef struct nir_lower_tex_options {
/**
* bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
* sampler types a texture projector is lowered.
*/
unsigned lower_txp;
/**
* If true, lower texture projector for any array sampler dims
*/
bool lower_txp_array;
/**
* If true, lower away nir_tex_src_offset for all texelfetch instructions.
*/
bool lower_txf_offset;
/**
* If true, lower away nir_tex_src_offset for all rect textures.
*/
bool lower_rect_offset;
/**
* If not NULL, this filter will return true for tex instructions that
* should lower away nir_tex_src_offset.
*/
nir_instr_filter_cb lower_offset_filter;
/**
* If true, lower rect textures to 2D, using txs to fetch the
* texture dimensions and dividing the texture coords by the
* texture dims to normalize.
*/
bool lower_rect;
/**
* If true, lower 1D textures to 2D. This requires the GL/VK driver to map 1D
* textures to 2D textures with height=1.
*
* lower_1d_shadow does this lowering for shadow textures only.
*/
bool lower_1d;
bool lower_1d_shadow;
/**
* If true, convert yuv to rgb.
*/
unsigned lower_y_uv_external;
unsigned lower_y_vu_external;
unsigned lower_y_u_v_external;
unsigned lower_yx_xuxv_external;
unsigned lower_yx_xvxu_external;
unsigned lower_xy_uxvx_external;
unsigned lower_xy_vxux_external;
unsigned lower_ayuv_external;
unsigned lower_xyuv_external;
unsigned lower_yuv_external;
unsigned lower_yu_yv_external;
unsigned lower_yv_yu_external;
unsigned lower_y41x_external;
unsigned bt709_external;
unsigned bt2020_external;
unsigned yuv_full_range_external;
/**
* To emulate certain texture wrap modes, this can be used
* to saturate the specified tex coord to [0.0, 1.0]. The
* bits are according to sampler #, ie. if, for example:
*
* (conf->saturate_s & (1 << n))
*
* is true, then the s coord for sampler n is saturated.
*
* Note that clamping must happen *after* projector lowering
* so any projected texture sample instruction with a clamped
* coordinate gets automatically lowered, regardless of the
* 'lower_txp' setting.
*/
unsigned saturate_s;
unsigned saturate_t;
unsigned saturate_r;
/* Bitmask of textures that need swizzling.
*
* If (swizzle_result & (1 << texture_index)), then the swizzle in
* swizzles[texture_index] is applied to the result of the texturing
* operation.
*/
unsigned swizzle_result;
/* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
* while 4 and 5 represent 0 and 1 respectively.
*
* Indexed by texture-id.
*/
uint8_t swizzles[32][4];
/* Can be used to scale sampled values in range required by the
* format.
*
* Indexed by texture-id.
*/
float scale_factors[32];
/**
* Bitmap of textures that need srgb to linear conversion. If
* (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
* of the texture are lowered to linear.
*/
unsigned lower_srgb;
/**
* If true, lower nir_texop_txd on cube maps with nir_texop_txl.
*/
bool lower_txd_cube_map;
/**
* If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
*/
bool lower_txd_3d;
/**
* If true, lower nir_texop_txd any array surfaces with nir_texop_txl.
*/
bool lower_txd_array;
/**
* If true, lower nir_texop_txd on shadow samplers (except cube maps)
* with nir_texop_txl. Notice that cube map shadow samplers are lowered
* with lower_txd_cube_map.
*/
bool lower_txd_shadow;
/**
* If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
* Implies lower_txd_cube_map and lower_txd_shadow.
*/
bool lower_txd;
/**
* If true, lower nir_texop_txd when it uses min_lod.
*/
bool lower_txd_clamp;
/**
* If true, lower nir_texop_txb that try to use shadow compare and min_lod
* at the same time to a nir_texop_lod, some math, and nir_texop_tex.
*/
bool lower_txb_shadow_clamp;
/**
* If true, lower nir_texop_txd on shadow samplers when it uses min_lod
* with nir_texop_txl. This includes cube maps.
*/
bool lower_txd_shadow_clamp;
/**
* If true, lower nir_texop_txd on when it uses both offset and min_lod
* with nir_texop_txl. This includes cube maps.
*/
bool lower_txd_offset_clamp;
/**
* If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
* sampler is bindless.
*/
bool lower_txd_clamp_bindless_sampler;
/**
* If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
* sampler index is not statically determinable to be less than 16.
*/
bool lower_txd_clamp_if_sampler_index_not_lt_16;
/**
* If true, lower nir_texop_txs with a non-0-lod into nir_texop_txs with
* 0-lod followed by a nir_ishr.
*/
bool lower_txs_lod;
/**
* If true, lower nir_texop_txs for cube arrays to a nir_texop_txs with a
* 2D array type followed by a nir_idiv by 6.
*/
bool lower_txs_cube_array;
/**
* If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
* mixed-up tg4 locations.
*/
bool lower_tg4_broadcom_swizzle;
/**
* If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
*/
bool lower_tg4_offsets;
/**
* Lower txf_ms to fragment_mask_fetch and fragment_fetch and samples_identical to
* fragment_mask_fetch.
*/
bool lower_to_fragment_fetch_amd;
/**
* To lower packed sampler return formats. This will be called for all
* tex instructions.
*/
enum nir_lower_tex_packing (*lower_tex_packing_cb)(const nir_tex_instr *tex, const void *data);
const void *lower_tex_packing_data;
/**
* If true, lower nir_texop_lod to return -FLT_MAX if the sum of the
* absolute values of derivatives is 0 for all coordinates.
*/
bool lower_lod_zero_width;
/* Turns nir_op_tex and other ops with an implicit derivative, in stages
* without implicit derivatives (like the vertex shader) to have an explicit
* LOD with a value of 0.
*/
bool lower_invalid_implicit_lod;
/* If true, texture_index (sampler_index) will be zero if a texture_offset
* (sampler_offset) source is present. This is convenient for backends that
* support indirect indexing of textures (samplers) but not offsetting it.
*/
bool lower_index_to_offset;
/**
* Payload data to be sent to callback / filter functions.
*/
void *callback_data;
} nir_lower_tex_options;
/** Lowers complex texture instructions to simpler ones */
bool nir_lower_tex(nir_shader *shader,
const nir_lower_tex_options *options);
typedef struct nir_lower_tex_shadow_swizzle {
unsigned swizzle_r : 3;
unsigned swizzle_g : 3;
unsigned swizzle_b : 3;
unsigned swizzle_a : 3;
} nir_lower_tex_shadow_swizzle;
bool
nir_lower_tex_shadow(nir_shader *s,
unsigned n_states,
enum compare_func *compare_func,
nir_lower_tex_shadow_swizzle *tex_swizzles);
typedef struct nir_lower_image_options {
/**
* If true, lower cube size operations.
*/
bool lower_cube_size;
/**
* Lower multi sample image load and samples_identical to use fragment_mask_load.
*/
bool lower_to_fragment_mask_load_amd;
/**
* Lower image_samples to a constant in case the driver doesn't support multisampled
* images.
*/
bool lower_image_samples_to_one;
} nir_lower_image_options;
bool nir_lower_image(nir_shader *nir,
const nir_lower_image_options *options);
bool
nir_lower_image_atomics_to_global(nir_shader *s);
bool nir_lower_readonly_images_to_tex(nir_shader *shader, bool per_variable);
enum nir_lower_non_uniform_access_type {
nir_lower_non_uniform_ubo_access = (1 << 0),
nir_lower_non_uniform_ssbo_access = (1 << 1),
nir_lower_non_uniform_texture_access = (1 << 2),
nir_lower_non_uniform_image_access = (1 << 3),
nir_lower_non_uniform_get_ssbo_size = (1 << 4),
};
/* Given the nir_src used for the resource, return the channels which might be non-uniform. */
typedef nir_component_mask_t (*nir_lower_non_uniform_access_callback)(const nir_src *, void *);
typedef struct nir_lower_non_uniform_access_options {
enum nir_lower_non_uniform_access_type types;
nir_lower_non_uniform_access_callback callback;
void *callback_data;
} nir_lower_non_uniform_access_options;
bool nir_has_non_uniform_access(nir_shader *shader, enum nir_lower_non_uniform_access_type types);
bool nir_opt_non_uniform_access(nir_shader *shader);
bool nir_lower_non_uniform_access(nir_shader *shader,
const nir_lower_non_uniform_access_options *options);
typedef struct {
/* Whether 16-bit floating point arithmetic should be allowed in 8-bit
* division lowering
*/
bool allow_fp16;
} nir_lower_idiv_options;
bool nir_lower_idiv(nir_shader *shader, const nir_lower_idiv_options *options);
typedef struct nir_input_attachment_options {
bool use_fragcoord_sysval;
bool use_layer_id_sysval;
bool use_view_id_for_layer;
uint32_t unscaled_input_attachment_ir3;
} nir_input_attachment_options;
bool nir_lower_input_attachments(nir_shader *shader,
const nir_input_attachment_options *options);
bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables,
bool use_vars,
bool use_clipdist_array,
const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
bool nir_lower_clip_gs(nir_shader *shader, unsigned ucp_enables,
bool use_clipdist_array,
const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables,
bool use_clipdist_array);
bool nir_lower_clip_cull_distance_to_vec4s(nir_shader *shader);
bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
bool nir_lower_clip_disable(nir_shader *shader, unsigned clip_plane_enable);
bool nir_lower_point_size_mov(nir_shader *shader,
const gl_state_index16 *pointsize_state_tokens);
bool nir_lower_frexp(nir_shader *nir);
bool nir_lower_two_sided_color(nir_shader *shader, bool face_sysval);
bool nir_lower_clamp_color_outputs(nir_shader *shader);
bool nir_lower_flatshade(nir_shader *shader);
bool nir_lower_passthrough_edgeflags(nir_shader *shader);
bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
const gl_state_index16 *uniform_state_tokens);
typedef struct nir_lower_wpos_ytransform_options {
gl_state_index16 state_tokens[STATE_LENGTH];
bool fs_coord_origin_upper_left : 1;
bool fs_coord_origin_lower_left : 1;
bool fs_coord_pixel_center_integer : 1;
bool fs_coord_pixel_center_half_integer : 1;
} nir_lower_wpos_ytransform_options;
bool nir_lower_wpos_ytransform(nir_shader *shader,
const nir_lower_wpos_ytransform_options *options);
bool nir_lower_wpos_center(nir_shader *shader);
bool nir_lower_pntc_ytransform(nir_shader *shader,
const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
bool nir_lower_wrmasks(nir_shader *shader, nir_instr_filter_cb cb, const void *data);
bool nir_lower_fb_read(nir_shader *shader);
typedef struct nir_lower_drawpixels_options {
gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
gl_state_index16 scale_state_tokens[STATE_LENGTH];
gl_state_index16 bias_state_tokens[STATE_LENGTH];
unsigned drawpix_sampler;
unsigned pixelmap_sampler;
bool pixel_maps : 1;
bool scale_and_bias : 1;
} nir_lower_drawpixels_options;
bool nir_lower_drawpixels(nir_shader *shader,
const nir_lower_drawpixels_options *options);
typedef struct nir_lower_bitmap_options {
unsigned sampler;
bool swizzle_xxxx;
} nir_lower_bitmap_options;
bool nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned offset_align_state);
typedef enum {
nir_lower_gs_intrinsics_per_stream = 1 << 0,
nir_lower_gs_intrinsics_count_primitives = 1 << 1,
nir_lower_gs_intrinsics_count_vertices_per_primitive = 1 << 2,
nir_lower_gs_intrinsics_overwrite_incomplete = 1 << 3,
nir_lower_gs_intrinsics_always_end_primitive = 1 << 4,
nir_lower_gs_intrinsics_count_decomposed_primitives = 1 << 5,
} nir_lower_gs_intrinsics_flags;
bool nir_lower_gs_intrinsics(nir_shader *shader, nir_lower_gs_intrinsics_flags options);
bool nir_lower_tess_coord_z(nir_shader *shader, bool triangles);
typedef struct {
bool payload_to_shared_for_atomics : 1;
bool payload_to_shared_for_small_types : 1;
uint32_t payload_offset_in_bytes;
} nir_lower_task_shader_options;
bool nir_lower_task_shader(nir_shader *shader, nir_lower_task_shader_options options);
typedef unsigned (*nir_lower_bit_size_callback)(const nir_instr *, void *);
bool nir_lower_bit_size(nir_shader *shader,
nir_lower_bit_size_callback callback,
void *callback_data);
bool nir_lower_64bit_phis(nir_shader *shader);
bool nir_split_64bit_vec3_and_vec4(nir_shader *shader);
nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
bool nir_lower_int64(nir_shader *shader);
bool nir_lower_int64_float_conversions(nir_shader *shader);
nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
nir_lower_doubles_options options);
bool nir_lower_pack(nir_shader *shader);
bool nir_recompute_io_bases(nir_shader *nir, nir_variable_mode modes);
bool nir_lower_mediump_vars(nir_shader *nir, nir_variable_mode modes);
bool nir_lower_mediump_io(nir_shader *nir, nir_variable_mode modes,
uint64_t varying_mask, bool use_16bit_slots);
bool nir_force_mediump_io(nir_shader *nir, nir_variable_mode modes,
nir_alu_type types);
bool nir_unpack_16bit_varying_slots(nir_shader *nir, nir_variable_mode modes);
struct nir_opt_tex_srcs_options {
unsigned sampler_dims;
unsigned src_types;
};
struct nir_opt_16bit_tex_image_options {
nir_rounding_mode rounding_mode;
nir_alu_type opt_tex_dest_types;
nir_alu_type opt_image_dest_types;
bool opt_image_store_data;
bool opt_image_srcs;
unsigned opt_srcs_options_count;
struct nir_opt_tex_srcs_options *opt_srcs_options;
};
bool nir_opt_16bit_tex_image(nir_shader *nir,
struct nir_opt_16bit_tex_image_options *options);
typedef struct {
bool legalize_type; /* whether this src should be legalized */
uint8_t bit_size; /* bit_size to enforce */
nir_tex_src_type match_src; /* if bit_size is 0, match bit size of this */
} nir_tex_src_type_constraint, nir_tex_src_type_constraints[nir_num_tex_src_types];
bool nir_legalize_16bit_sampler_srcs(nir_shader *nir,
nir_tex_src_type_constraints constraints);
bool nir_lower_point_size(nir_shader *shader, float min, float max);
void nir_lower_texcoord_replace(nir_shader *s, unsigned coord_replace,
bool point_coord_is_sysval, bool yinvert);
void nir_lower_texcoord_replace_late(nir_shader *s, unsigned coord_replace,
bool point_coord_is_sysval);
typedef enum {
nir_lower_interpolation_at_sample = (1 << 1),
nir_lower_interpolation_at_offset = (1 << 2),
nir_lower_interpolation_centroid = (1 << 3),
nir_lower_interpolation_pixel = (1 << 4),
nir_lower_interpolation_sample = (1 << 5),
} nir_lower_interpolation_options;
bool nir_lower_interpolation(nir_shader *shader,
nir_lower_interpolation_options options);
typedef enum {
nir_lower_discard_if_to_cf = (1 << 0),
nir_lower_demote_if_to_cf = (1 << 1),
nir_lower_terminate_if_to_cf = (1 << 2),
} nir_lower_discard_if_options;
bool nir_lower_discard_if(nir_shader *shader, nir_lower_discard_if_options options);
bool nir_lower_discard_or_demote(nir_shader *shader,
bool force_correct_quad_ops_after_discard);
bool nir_lower_terminate_to_demote(nir_shader *nir);
bool nir_lower_memory_model(nir_shader *shader);
bool nir_lower_goto_ifs(nir_shader *shader);
bool nir_lower_continue_constructs(nir_shader *shader);
bool nir_shader_uses_view_index(nir_shader *shader);
bool nir_can_lower_multiview(nir_shader *shader);
bool nir_lower_multiview(nir_shader *shader, uint32_t view_mask);
typedef enum {
nir_lower_fp16_rtz = (1 << 0),
nir_lower_fp16_rtne = (1 << 1),
nir_lower_fp16_ru = (1 << 2),
nir_lower_fp16_rd = (1 << 3),
nir_lower_fp16_all = 0xf,
nir_lower_fp16_split_fp64 = (1 << 4),
} nir_lower_fp16_cast_options;
bool nir_lower_fp16_casts(nir_shader *shader, nir_lower_fp16_cast_options options);
bool nir_normalize_cubemap_coords(nir_shader *shader);
bool nir_shader_supports_implicit_lod(nir_shader *shader);
void nir_live_defs_impl(nir_function_impl *impl);
const BITSET_WORD *nir_get_live_defs(nir_cursor cursor, void *mem_ctx);
void nir_loop_analyze_impl(nir_function_impl *impl,
nir_variable_mode indirect_mask,
bool force_unroll_sampler_indirect);
bool nir_defs_interfere(nir_def *a, nir_def *b);
bool nir_repair_ssa_impl(nir_function_impl *impl);
bool nir_repair_ssa(nir_shader *shader);
void nir_convert_loop_to_lcssa(nir_loop *loop);
bool nir_convert_to_lcssa(nir_shader *shader, bool skip_invariants, bool skip_bool_invariants);
void nir_divergence_analysis(nir_shader *shader);
void nir_vertex_divergence_analysis(nir_shader *shader);
bool nir_update_instr_divergence(nir_shader *shader, nir_instr *instr);
bool nir_has_divergent_loop(nir_shader *shader);
void
nir_rewrite_uses_to_load_reg(struct nir_builder *b, nir_def *old,
nir_def *reg);
/* If phi_webs_only is true, only convert SSA values involved in phi nodes to
* registers. If false, convert all values (even those not involved in a phi
* node) to registers.
*/
bool nir_convert_from_ssa(nir_shader *shader,
bool phi_webs_only);
bool nir_lower_phis_to_regs_block(nir_block *block);
bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
bool nir_rematerialize_deref_in_use_blocks(nir_deref_instr *instr);
bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
bool nir_lower_samplers(nir_shader *shader);
bool nir_lower_cl_images(nir_shader *shader, bool lower_image_derefs, bool lower_sampler_derefs);
bool nir_dedup_inline_samplers(nir_shader *shader);
bool nir_lower_ssbo(nir_shader *shader);
bool nir_lower_helper_writes(nir_shader *shader, bool lower_plain_stores);
typedef struct nir_lower_printf_options {
unsigned max_buffer_size;
} nir_lower_printf_options;
bool nir_lower_printf(nir_shader *nir, const nir_lower_printf_options *options);
/* This is here for unit tests. */
bool nir_opt_comparison_pre_impl(nir_function_impl *impl);
bool nir_opt_comparison_pre(nir_shader *shader);
typedef struct nir_opt_access_options {
bool is_vulkan;
} nir_opt_access_options;
bool nir_opt_access(nir_shader *shader, const nir_opt_access_options *options);
bool nir_opt_algebraic(nir_shader *shader);
bool nir_opt_algebraic_before_ffma(nir_shader *shader);
bool nir_opt_algebraic_late(nir_shader *shader);
bool nir_opt_algebraic_distribute_src_mods(nir_shader *shader);
bool nir_opt_constant_folding(nir_shader *shader);
/* Try to combine a and b into a. Return true if combination was possible,
* which will result in b being removed by the pass. Return false if
* combination wasn't possible.
*/
typedef bool (*nir_combine_barrier_cb)(
nir_intrinsic_instr *a, nir_intrinsic_instr *b, void *data);
bool nir_opt_combine_barriers(nir_shader *shader,
nir_combine_barrier_cb combine_cb,
void *data);
bool nir_opt_barrier_modes(nir_shader *shader);
bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
bool nir_copy_prop_impl(nir_function_impl *impl);
bool nir_copy_prop(nir_shader *shader);
bool nir_opt_copy_prop_vars(nir_shader *shader);
bool nir_opt_cse(nir_shader *shader);
bool nir_opt_dce(nir_shader *shader);
bool nir_opt_dead_cf(nir_shader *shader);
bool nir_opt_dead_write_vars(nir_shader *shader);
bool nir_opt_deref_impl(nir_function_impl *impl);
bool nir_opt_deref(nir_shader *shader);
bool nir_opt_find_array_copies(nir_shader *shader);
bool nir_opt_fragdepth(nir_shader *shader);
bool nir_opt_gcm(nir_shader *shader, bool value_number);
bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
bool nir_opt_mqsad(nir_shader *shader);
typedef enum {
nir_opt_if_optimize_phi_true_false = (1 << 0),
nir_opt_if_avoid_64bit_phis = (1 << 1),
} nir_opt_if_options;
bool nir_opt_if(nir_shader *shader, nir_opt_if_options options);
bool nir_opt_intrinsics(nir_shader *shader);
bool nir_opt_large_constants(nir_shader *shader,
glsl_type_size_align_func size_align,
unsigned threshold);
bool nir_opt_loop(nir_shader *shader);
bool nir_opt_loop_unroll(nir_shader *shader);
typedef enum {
nir_move_const_undef = (1 << 0),
nir_move_load_ubo = (1 << 1),
nir_move_load_input = (1 << 2),
nir_move_comparisons = (1 << 3),
nir_move_copies = (1 << 4),
nir_move_load_ssbo = (1 << 5),
nir_move_load_uniform = (1 << 6),
nir_move_alu = (1 << 7),
} nir_move_options;
bool nir_can_move_instr(nir_instr *instr, nir_move_options options);
bool nir_opt_sink(nir_shader *shader, nir_move_options options);
bool nir_opt_move(nir_shader *shader, nir_move_options options);
typedef struct {
/** nir_load_uniform max base offset */
uint32_t uniform_max;
/** nir_load_ubo_vec4 max base offset */
uint32_t ubo_vec4_max;
/** nir_var_mem_shared max base offset */
uint32_t shared_max;
/** nir_load/store_buffer_amd max base offset */
uint32_t buffer_max;
} nir_opt_offsets_options;
bool nir_opt_offsets(nir_shader *shader, const nir_opt_offsets_options *options);
bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
bool indirect_load_ok, bool expensive_alu_ok);
bool nir_opt_reassociate_bfi(nir_shader *shader);
bool nir_opt_rematerialize_compares(nir_shader *shader);
bool nir_opt_remove_phis(nir_shader *shader);
bool nir_opt_remove_phis_block(nir_block *block);
bool nir_opt_phi_precision(nir_shader *shader);
bool nir_opt_shrink_stores(nir_shader *shader, bool shrink_image_store);
bool nir_opt_shrink_vectors(nir_shader *shader, bool shrink_start);
bool nir_opt_undef(nir_shader *shader);
bool nir_lower_undef_to_zero(nir_shader *shader);
bool nir_opt_uniform_atomics(nir_shader *shader);
bool nir_opt_uniform_subgroup(nir_shader *shader,
const nir_lower_subgroups_options *);
bool nir_opt_vectorize(nir_shader *shader, nir_vectorize_cb filter,
void *data);
bool nir_opt_conditional_discard(nir_shader *shader);
bool nir_opt_move_discards_to_top(nir_shader *shader);
bool nir_opt_ray_queries(nir_shader *shader);
bool nir_opt_ray_query_ranges(nir_shader *shader);
bool nir_opt_reuse_constants(nir_shader *shader);
void nir_sweep(nir_shader *shader);
void nir_remap_dual_slot_attributes(nir_shader *shader,
uint64_t *dual_slot_inputs);
uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
static inline bool
nir_variable_is_in_ubo(const nir_variable *var)
{
return (var->data.mode == nir_var_mem_ubo &&
var->interface_type != NULL);
}
static inline bool
nir_variable_is_in_ssbo(const nir_variable *var)
{
return (var->data.mode == nir_var_mem_ssbo &&
var->interface_type != NULL);
}
static inline bool
nir_variable_is_in_block(const nir_variable *var)
{
return nir_variable_is_in_ubo(var) || nir_variable_is_in_ssbo(var);
}
static inline unsigned
nir_variable_count_slots(const nir_variable *var, const struct glsl_type *type)
{
return var->data.compact ? DIV_ROUND_UP(var->data.location_frac + glsl_get_length(type), 4) : glsl_count_attribute_slots(type, false);
}
static inline unsigned
nir_deref_count_slots(nir_deref_instr *deref, nir_variable *var)
{
if (var->data.compact) {
switch (deref->deref_type) {
case nir_deref_type_array:
return 1;
case nir_deref_type_var:
return nir_variable_count_slots(var, deref->type);
default:
unreachable("illegal deref type");
}
}
return glsl_count_attribute_slots(deref->type, false);
}
/* See default_ub_config in nir_range_analysis.c for documentation. */
typedef struct nir_unsigned_upper_bound_config {
unsigned min_subgroup_size;
unsigned max_subgroup_size;
unsigned max_workgroup_invocations;
unsigned max_workgroup_count[3];
unsigned max_workgroup_size[3];
uint32_t vertex_attrib_max[32];
} nir_unsigned_upper_bound_config;
uint32_t
nir_unsigned_upper_bound(nir_shader *shader, struct hash_table *range_ht,
nir_scalar scalar,
const nir_unsigned_upper_bound_config *config);
bool
nir_addition_might_overflow(nir_shader *shader, struct hash_table *range_ht,
nir_scalar ssa, unsigned const_val,
const nir_unsigned_upper_bound_config *config);
typedef struct {
/* True if gl_DrawID is considered uniform, i.e. if the preamble is run
* at least once per "internal" draw rather than per user-visible draw.
*/
bool drawid_uniform;
/* True if the subgroup size is uniform. */
bool subgroup_size_uniform;
/* True if load_workgroup_size is supported in the preamble. */
bool load_workgroup_size_allowed;
/* size/align for load/store_preamble. */
void (*def_size)(nir_def *def, unsigned *size, unsigned *align);
/* Total available size for load/store_preamble storage, in units
* determined by def_size.
*/
unsigned preamble_storage_size;
/* Give the cost for an instruction. nir_opt_preamble will prioritize
* instructions with higher costs. Instructions with cost 0 may still be
* lifted, but only when required to lift other instructions with non-0
* cost (e.g. a load_const source of an expression).
*/
float (*instr_cost_cb)(nir_instr *instr, const void *data);
/* Give the cost of rewriting the instruction to use load_preamble. This
* may happen from inserting move instructions, etc. If the benefit doesn't
* exceed the cost here then we won't rewrite it.
*/
float (*rewrite_cost_cb)(nir_def *def, const void *data);
/* Instructions whose definitions should not be rewritten. These could
* still be moved to the preamble, but they shouldn't be the root of a
* replacement expression. Instructions with cost 0 and derefs are
* automatically included by the pass.
*/
nir_instr_filter_cb avoid_instr_cb;
const void *cb_data;
} nir_opt_preamble_options;
bool
nir_opt_preamble(nir_shader *shader,
const nir_opt_preamble_options *options,
unsigned *size);
nir_function_impl *nir_shader_get_preamble(nir_shader *shader);
bool nir_lower_point_smooth(nir_shader *shader);
bool nir_lower_poly_line_smooth(nir_shader *shader, unsigned num_smooth_aa_sample);
bool nir_mod_analysis(nir_scalar val, nir_alu_type val_type, unsigned div, unsigned *mod);
bool
nir_remove_tex_shadow(nir_shader *shader, unsigned textures_bitmask);
void
nir_trivialize_registers(nir_shader *s);
unsigned
nir_static_workgroup_size(const nir_shader *s);
static inline nir_intrinsic_instr *
nir_reg_get_decl(nir_def *reg)
{
assert(reg->parent_instr->type == nir_instr_type_intrinsic);
nir_intrinsic_instr *decl = nir_instr_as_intrinsic(reg->parent_instr);
assert(decl->intrinsic == nir_intrinsic_decl_reg);
return decl;
}
static inline nir_intrinsic_instr *
nir_next_decl_reg(nir_intrinsic_instr *prev, nir_function_impl *impl)
{
nir_instr *start;
if (prev != NULL)
start = nir_instr_next(&prev->instr);
else if (impl != NULL)
start = nir_block_first_instr(nir_start_block(impl));
else
return NULL;
for (nir_instr *instr = start; instr; instr = nir_instr_next(instr)) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
if (intrin->intrinsic == nir_intrinsic_decl_reg)
return intrin;
}
return NULL;
}
#define nir_foreach_reg_decl(reg, impl) \
for (nir_intrinsic_instr *reg = nir_next_decl_reg(NULL, impl); \
reg; reg = nir_next_decl_reg(reg, NULL))
#define nir_foreach_reg_decl_safe(reg, impl) \
for (nir_intrinsic_instr *reg = nir_next_decl_reg(NULL, impl), \
*next_ = nir_next_decl_reg(reg, NULL); \
reg; reg = next_, next_ = nir_next_decl_reg(next_, NULL))
static inline nir_cursor
nir_after_reg_decls(nir_function_impl *impl)
{
nir_intrinsic_instr *last_reg_decl = NULL;
nir_foreach_reg_decl(reg_decl, impl)
last_reg_decl = reg_decl;
if (last_reg_decl != NULL)
return nir_after_instr(&last_reg_decl->instr);
return nir_before_impl(impl);
}
static inline bool
nir_is_load_reg(nir_intrinsic_instr *intr)
{
return intr->intrinsic == nir_intrinsic_load_reg ||
intr->intrinsic == nir_intrinsic_load_reg_indirect;
}
static inline bool
nir_is_store_reg(nir_intrinsic_instr *intr)
{
return intr->intrinsic == nir_intrinsic_store_reg ||
intr->intrinsic == nir_intrinsic_store_reg_indirect;
}
#define nir_foreach_reg_load(load, reg) \
assert(reg->intrinsic == nir_intrinsic_decl_reg); \
\
nir_foreach_use(load, &reg->def) \
if (nir_is_load_reg(nir_instr_as_intrinsic(nir_src_parent_instr(load))))
#define nir_foreach_reg_load_safe(load, reg) \
assert(reg->intrinsic == nir_intrinsic_decl_reg); \
\
nir_foreach_use_safe(load, &reg->def) \
if (nir_is_load_reg(nir_instr_as_intrinsic(nir_src_parent_instr(load))))
#define nir_foreach_reg_store(store, reg) \
assert(reg->intrinsic == nir_intrinsic_decl_reg); \
\
nir_foreach_use(store, &reg->def) \
if (nir_is_store_reg(nir_instr_as_intrinsic(nir_src_parent_instr(store))))
#define nir_foreach_reg_store_safe(store, reg) \
assert(reg->intrinsic == nir_intrinsic_decl_reg); \
\
nir_foreach_use_safe(store, &reg->def) \
if (nir_is_store_reg(nir_instr_as_intrinsic(nir_src_parent_instr(store))))
static inline nir_intrinsic_instr *
nir_load_reg_for_def(const nir_def *def)
{
if (def->parent_instr->type != nir_instr_type_intrinsic)
return NULL;
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(def->parent_instr);
if (!nir_is_load_reg(intr))
return NULL;
return intr;
}
static inline nir_intrinsic_instr *
nir_store_reg_for_def(const nir_def *def)
{
/* Look for the trivial store: single use of our destination by a
* store_register intrinsic.
*/
if (!list_is_singular(&def->uses))
return NULL;
nir_src *src = list_first_entry(&def->uses, nir_src, use_link);
if (nir_src_is_if(src))
return NULL;
nir_instr *parent = nir_src_parent_instr(src);
if (parent->type != nir_instr_type_intrinsic)
return NULL;
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(parent);
if (!nir_is_store_reg(intr))
return NULL;
/* The first value is data. Third is indirect index, ignore that one. */
if (&intr->src[0] != src)
return NULL;
return intr;
}
struct nir_use_dominance_state;
struct nir_use_dominance_state *
nir_calc_use_dominance_impl(nir_function_impl *impl, bool post_dominance);
nir_instr *
nir_get_immediate_use_dominator(struct nir_use_dominance_state *state,
nir_instr *instr);
nir_instr *nir_use_dominance_lca(struct nir_use_dominance_state *state,
nir_instr *i1, nir_instr *i2);
bool nir_instr_dominates_use(struct nir_use_dominance_state *state,
nir_instr *parent, nir_instr *child);
void nir_print_use_dominators(struct nir_use_dominance_state *state,
nir_instr **instructions,
unsigned num_instructions);
#include "nir_inline_helpers.h"
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif /* NIR_H */