mesa/src/amd/vulkan/radv_shader.c

3042 lines
111 KiB
C

/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* SPDX-License-Identifier: MIT
*/
#include "radv_shader.h"
#include "meta/radv_meta.h"
#include "nir/nir.h"
#include "nir/nir_builder.h"
#include "nir/nir_xfb_info.h"
#include "nir/radv_nir.h"
#include "spirv/nir_spirv.h"
#include "util/memstream.h"
#include "util/mesa-sha1.h"
#include "util/streaming-load-memcpy.h"
#include "util/u_atomic.h"
#include "radv_cs.h"
#include "radv_debug.h"
#include "radv_entrypoints.h"
#include "radv_nir_to_llvm.h"
#include "radv_printf.h"
#include "radv_sdma.h"
#include "radv_shader_args.h"
#include "util/u_debug.h"
#include "ac_binary.h"
#include "ac_nir.h"
#if defined(USE_LIBELF)
#include "ac_rtld.h"
#endif
#include "aco_interface.h"
#include "sid.h"
#include "vk_debug_report.h"
#include "vk_format.h"
#include "vk_nir.h"
#include "vk_semaphore.h"
#include "vk_sync.h"
#include "aco_shader_info.h"
#include "radv_aco_shader_info.h"
#if LLVM_AVAILABLE
#include "ac_llvm_util.h"
#endif
static void
get_nir_options_for_stage(struct radv_physical_device *pdev, gl_shader_stage stage)
{
const struct radv_instance *instance = radv_physical_device_instance(pdev);
nir_shader_compiler_options *options = &pdev->nir_options[stage];
bool split_fma =
(stage <= MESA_SHADER_GEOMETRY || stage == MESA_SHADER_MESH) && instance->debug_flags & RADV_DEBUG_SPLIT_FMA;
ac_set_nir_options(&pdev->info, pdev->use_llvm, options);
options->lower_ffma16 = split_fma || pdev->info.gfx_level < GFX9;
options->lower_ffma32 = split_fma || pdev->info.gfx_level < GFX10_3;
options->lower_ffma64 = split_fma;
options->max_unroll_iterations = 32;
options->max_unroll_iterations_aggressive = 128;
options->lower_doubles_options = nir_lower_drcp | nir_lower_dsqrt | nir_lower_drsq | nir_lower_ddiv;
}
void
radv_get_nir_options(struct radv_physical_device *pdev)
{
for (gl_shader_stage stage = MESA_SHADER_VERTEX; stage < MESA_VULKAN_SHADER_STAGES; stage++)
get_nir_options_for_stage(pdev, stage);
}
static uint8_t
vectorize_vec2_16bit(const nir_instr *instr, const void *_)
{
if (instr->type != nir_instr_type_alu)
return 0;
const nir_alu_instr *alu = nir_instr_as_alu(instr);
const unsigned bit_size = alu->def.bit_size;
if (bit_size == 16)
return 2;
else
return 1;
}
static bool
is_meta_shader(nir_shader *nir)
{
return nir && nir->info.internal;
}
bool
radv_can_dump_shader(struct radv_device *device, nir_shader *nir, bool meta_shader)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
const struct radv_instance *instance = radv_physical_device_instance(pdev);
if (!(instance->debug_flags & RADV_DEBUG_DUMP_SHADERS))
return false;
if ((is_meta_shader(nir) || meta_shader) && !(instance->debug_flags & RADV_DEBUG_DUMP_META_SHADERS))
return false;
return true;
}
bool
radv_can_dump_shader_stats(struct radv_device *device, nir_shader *nir)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
const struct radv_instance *instance = radv_physical_device_instance(pdev);
/* Only dump non-meta shader stats. */
return instance->debug_flags & RADV_DEBUG_DUMP_SHADER_STATS && !is_meta_shader(nir);
}
void
radv_optimize_nir(struct nir_shader *shader, bool optimize_conservatively)
{
bool progress;
struct set *skip = _mesa_pointer_set_create(NULL);
do {
progress = false;
NIR_LOOP_PASS(progress, skip, shader, nir_split_array_vars, nir_var_function_temp);
NIR_LOOP_PASS(progress, skip, shader, nir_shrink_vec_array_vars, nir_var_function_temp);
if (!shader->info.var_copies_lowered) {
/* Only run this pass if nir_lower_var_copies was not called
* yet. That would lower away any copy_deref instructions and we
* don't want to introduce any more.
*/
NIR_LOOP_PASS(progress, skip, shader, nir_opt_find_array_copies);
}
NIR_LOOP_PASS(progress, skip, shader, nir_opt_copy_prop_vars);
NIR_LOOP_PASS(progress, skip, shader, nir_opt_dead_write_vars);
NIR_LOOP_PASS(_, skip, shader, nir_lower_vars_to_ssa);
NIR_LOOP_PASS(_, skip, shader, nir_lower_alu_width, vectorize_vec2_16bit, NULL);
NIR_LOOP_PASS(_, skip, shader, nir_lower_phis_to_scalar, true);
NIR_LOOP_PASS(progress, skip, shader, nir_copy_prop);
NIR_LOOP_PASS(progress, skip, shader, nir_opt_remove_phis);
NIR_LOOP_PASS(progress, skip, shader, nir_opt_dce);
bool opt_loop_progress = false;
NIR_LOOP_PASS(opt_loop_progress, skip, shader, nir_opt_loop);
if (opt_loop_progress) {
progress = true;
NIR_LOOP_PASS(progress, skip, shader, nir_copy_prop);
NIR_LOOP_PASS(progress, skip, shader, nir_opt_remove_phis);
NIR_LOOP_PASS(progress, skip, shader, nir_opt_dce);
}
NIR_LOOP_PASS_NOT_IDEMPOTENT(progress, skip, shader, nir_opt_if, nir_opt_if_optimize_phi_true_false);
NIR_LOOP_PASS(progress, skip, shader, nir_opt_dead_cf);
NIR_LOOP_PASS(progress, skip, shader, nir_opt_cse);
NIR_LOOP_PASS(progress, skip, shader, nir_opt_peephole_select, 8, true, true);
NIR_LOOP_PASS(progress, skip, shader, nir_opt_constant_folding);
NIR_LOOP_PASS(progress, skip, shader, nir_opt_intrinsics);
NIR_LOOP_PASS_NOT_IDEMPOTENT(progress, skip, shader, nir_opt_algebraic);
NIR_LOOP_PASS(progress, skip, shader, nir_opt_undef);
if (shader->options->max_unroll_iterations) {
NIR_LOOP_PASS_NOT_IDEMPOTENT(progress, skip, shader, nir_opt_loop_unroll);
}
} while (progress && !optimize_conservatively);
_mesa_set_destroy(skip, NULL);
NIR_PASS(progress, shader, nir_opt_shrink_vectors, true);
NIR_PASS(progress, shader, nir_remove_dead_variables,
nir_var_function_temp | nir_var_shader_in | nir_var_shader_out | nir_var_mem_shared, NULL);
if (shader->info.stage == MESA_SHADER_FRAGMENT && (shader->info.fs.uses_discard || shader->info.fs.uses_demote)) {
NIR_PASS(progress, shader, nir_opt_conditional_discard);
NIR_PASS(progress, shader, nir_opt_move_discards_to_top);
}
NIR_PASS(progress, shader, nir_opt_move, nir_move_load_ubo);
}
void
radv_optimize_nir_algebraic(nir_shader *nir, bool opt_offsets, bool opt_mqsad)
{
bool more_algebraic = true;
while (more_algebraic) {
more_algebraic = false;
NIR_PASS(_, nir, nir_copy_prop);
NIR_PASS(_, nir, nir_opt_dce);
NIR_PASS(_, nir, nir_opt_constant_folding);
NIR_PASS(_, nir, nir_opt_cse);
NIR_PASS(more_algebraic, nir, nir_opt_algebraic);
NIR_PASS(_, nir, nir_opt_dead_cf);
}
if (opt_offsets) {
static const nir_opt_offsets_options offset_options = {
.uniform_max = 0,
.buffer_max = ~0,
.shared_max = ~0,
};
NIR_PASS(_, nir, nir_opt_offsets, &offset_options);
}
if (opt_mqsad)
NIR_PASS(_, nir, nir_opt_mqsad);
/* Do late algebraic optimization to turn add(a,
* neg(b)) back into subs, then the mandatory cleanup
* after algebraic. Note that it may produce fnegs,
* and if so then we need to keep running to squash
* fneg(fneg(a)).
*/
bool more_late_algebraic = true;
struct set *skip = _mesa_pointer_set_create(NULL);
while (more_late_algebraic) {
more_late_algebraic = false;
NIR_LOOP_PASS_NOT_IDEMPOTENT(more_late_algebraic, skip, nir, nir_opt_algebraic_late);
NIR_LOOP_PASS(_, skip, nir, nir_opt_constant_folding);
NIR_LOOP_PASS(_, skip, nir, nir_copy_prop);
NIR_LOOP_PASS(_, skip, nir, nir_opt_dce);
NIR_LOOP_PASS(_, skip, nir, nir_opt_cse);
}
_mesa_set_destroy(skip, NULL);
}
static void
shared_var_info(const struct glsl_type *type, unsigned *size, unsigned *align)
{
assert(glsl_type_is_vector_or_scalar(type));
uint32_t comp_size = glsl_type_is_boolean(type) ? 4 : glsl_get_bit_size(type) / 8;
unsigned length = glsl_get_vector_elements(type);
*size = comp_size * length, *align = comp_size;
}
struct radv_shader_debug_data {
struct radv_device *device;
const struct vk_object_base *object;
};
static void
radv_spirv_nir_debug(void *private_data, enum nir_spirv_debug_level level, size_t spirv_offset, const char *message)
{
struct radv_shader_debug_data *debug_data = private_data;
const struct radv_physical_device *pdev = radv_device_physical(debug_data->device);
struct radv_instance *instance = radv_physical_device_instance(pdev);
static const VkDebugReportFlagsEXT vk_flags[] = {
[NIR_SPIRV_DEBUG_LEVEL_INFO] = VK_DEBUG_REPORT_INFORMATION_BIT_EXT,
[NIR_SPIRV_DEBUG_LEVEL_WARNING] = VK_DEBUG_REPORT_WARNING_BIT_EXT,
[NIR_SPIRV_DEBUG_LEVEL_ERROR] = VK_DEBUG_REPORT_ERROR_BIT_EXT,
};
char buffer[256];
snprintf(buffer, sizeof(buffer), "SPIR-V offset %lu: %s", (unsigned long)spirv_offset, message);
vk_debug_report(&instance->vk, vk_flags[level], debug_data->object, 0, 0, "radv", buffer);
}
static void
radv_compiler_debug(void *private_data, enum aco_compiler_debug_level level, const char *message)
{
struct radv_shader_debug_data *debug_data = private_data;
const struct radv_physical_device *pdev = radv_device_physical(debug_data->device);
struct radv_instance *instance = radv_physical_device_instance(pdev);
static const VkDebugReportFlagsEXT vk_flags[] = {
[ACO_COMPILER_DEBUG_LEVEL_PERFWARN] = VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
[ACO_COMPILER_DEBUG_LEVEL_ERROR] = VK_DEBUG_REPORT_ERROR_BIT_EXT,
};
/* VK_DEBUG_REPORT_DEBUG_BIT_EXT specifies diagnostic information
* from the implementation and layers.
*/
vk_debug_report(&instance->vk, vk_flags[level] | VK_DEBUG_REPORT_DEBUG_BIT_EXT, NULL, 0, 0, "radv", message);
}
/* If the shader doesn't have an index=1 output, then assume that it meant for a location=1 to be used. This works on
* some older hardware because the MRT1 target is used for both location=1 and index=1, but GFX11 works differently.
*/
static void
fix_dual_src_mrt1_export(nir_shader *nir)
{
nir_foreach_shader_out_variable (var, nir) {
if (var->data.location == FRAG_RESULT_DATA0 && var->data.index == 1)
return;
}
nir_variable *loc1_var = nir_find_variable_with_location(nir, nir_var_shader_out, FRAG_RESULT_DATA1);
if (loc1_var) {
loc1_var->data.location = FRAG_RESULT_DATA0;
loc1_var->data.index = 1;
}
}
nir_shader *
radv_shader_spirv_to_nir(struct radv_device *device, const struct radv_shader_stage *stage,
const struct radv_spirv_to_nir_options *options, bool is_internal)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
const struct radv_instance *instance = radv_physical_device_instance(pdev);
unsigned subgroup_size = 64, ballot_bit_size = 64;
const unsigned required_subgroup_size = stage->key.subgroup_required_size * 32;
if (required_subgroup_size) {
/* Only compute/mesh/task shaders currently support requiring a
* specific subgroup size.
*/
assert(stage->stage >= MESA_SHADER_COMPUTE);
subgroup_size = required_subgroup_size;
ballot_bit_size = required_subgroup_size;
}
nir_shader *nir;
if (stage->internal_nir) {
/* Some things such as our meta clear/blit code will give us a NIR
* shader directly. In that case, we just ignore the SPIR-V entirely
* and just use the NIR shader. We don't want to alter meta and RT
* shaders IR directly, so clone it first. */
nir = nir_shader_clone(NULL, stage->internal_nir);
nir_validate_shader(nir, "in internal shader");
assert(exec_list_length(&nir->functions) == 1);
} else {
uint32_t *spirv = (uint32_t *)stage->spirv.data;
assert(stage->spirv.size % 4 == 0);
bool dump_meta = instance->debug_flags & RADV_DEBUG_DUMP_META_SHADERS;
if ((instance->debug_flags & RADV_DEBUG_DUMP_SPIRV) && (!is_internal || dump_meta))
radv_print_spirv(stage->spirv.data, stage->spirv.size, stderr);
uint32_t num_spec_entries = 0;
struct nir_spirv_specialization *spec_entries = vk_spec_info_to_nir_spirv(stage->spec_info, &num_spec_entries);
struct radv_shader_debug_data spirv_debug_data = {
.device = device,
.object = stage->spirv.object,
};
const bool has_fragment_shader_interlock = radv_has_pops(pdev);
const struct spirv_to_nir_options spirv_options = {
.caps =
{
.amd_fragment_mask = true,
.amd_gcn_shader = true,
.amd_image_gather_bias_lod = true,
.amd_image_read_write_lod = true,
.amd_shader_ballot = true,
.amd_shader_explicit_vertex_parameter = true,
.amd_trinary_minmax = true,
.demote_to_helper_invocation = true,
.derivative_group = true,
.descriptor_array_dynamic_indexing = true,
.descriptor_array_non_uniform_indexing = true,
.descriptor_indexing = true,
.device_group = true,
.draw_parameters = true,
.float_controls = true,
.float16 = pdev->info.has_packed_math_16bit,
.float32_atomic_add = true,
.float32_atomic_min_max = true,
.float64 = true,
.float64_atomic_min_max = true,
.fragment_barycentric = true,
.fragment_fully_covered = true,
.fragment_shader_pixel_interlock = has_fragment_shader_interlock,
.fragment_shader_sample_interlock = has_fragment_shader_interlock,
.geometry_streams = true,
.groups = true,
.image_atomic_int64 = true,
.image_ms_array = true,
.image_read_without_format = true,
.image_write_without_format = true,
.int8 = true,
.int16 = true,
.int64 = true,
.int64_atomics = true,
.integer_functions2 = true,
.mesh_shading = true,
.min_lod = true,
.multiview = true,
.physical_storage_buffer_address = true,
.post_depth_coverage = true,
.quad_control = true,
.ray_cull_mask = true,
.ray_query = true,
.ray_tracing = true,
.ray_tracing_position_fetch = true,
.ray_traversal_primitive_culling = true,
.runtime_descriptor_array = true,
.shader_clock = true,
.shader_viewport_index_layer = true,
.sparse_residency = true,
.stencil_export = true,
.storage_8bit = true,
.storage_16bit = true,
.storage_image_ms = true,
.subgroup_arithmetic = true,
.subgroup_ballot = true,
.subgroup_basic = true,
.subgroup_quad = true,
.subgroup_rotate = true,
.subgroup_shuffle = true,
.subgroup_uniform_control_flow = true,
.subgroup_vote = true,
.tessellation = true,
.transform_feedback = true,
.variable_pointers = true,
.vk_memory_model = true,
.vk_memory_model_device_scope = true,
.fragment_shading_rate = pdev->info.gfx_level >= GFX10_3,
.workgroup_memory_explicit_layout = true,
.cooperative_matrix = true,
},
.ubo_addr_format = nir_address_format_vec2_index_32bit_offset,
.ssbo_addr_format = nir_address_format_vec2_index_32bit_offset,
.phys_ssbo_addr_format = nir_address_format_64bit_global,
.push_const_addr_format = nir_address_format_logical,
.shared_addr_format = nir_address_format_32bit_offset,
.constant_addr_format = nir_address_format_64bit_global,
.debug =
{
.func = radv_spirv_nir_debug,
.private_data = &spirv_debug_data,
},
.force_tex_non_uniform = pdev->cache_key.tex_non_uniform,
.force_ssbo_non_uniform = pdev->cache_key.ssbo_non_uniform,
};
nir = spirv_to_nir(spirv, stage->spirv.size / 4, spec_entries, num_spec_entries, stage->stage, stage->entrypoint,
&spirv_options, &pdev->nir_options[stage->stage]);
nir->info.internal |= is_internal;
assert(nir->info.stage == stage->stage);
nir_validate_shader(nir, "after spirv_to_nir");
free(spec_entries);
radv_device_associate_nir(device, nir);
/* TODO: This can be removed once GCM (which is more general) is used. */
NIR_PASS(_, nir, nir_opt_reuse_constants);
const struct nir_lower_sysvals_to_varyings_options sysvals_to_varyings = {
.point_coord = true,
};
NIR_PASS_V(nir, nir_lower_sysvals_to_varyings, &sysvals_to_varyings);
/* We have to lower away local constant initializers right before we
* inline functions. That way they get properly initialized at the top
* of the function and not at the top of its caller.
*/
NIR_PASS(_, nir, nir_lower_variable_initializers, nir_var_function_temp);
NIR_PASS(_, nir, nir_lower_returns);
bool progress = false;
NIR_PASS(progress, nir, nir_inline_functions);
if (progress) {
NIR_PASS(_, nir, nir_opt_copy_prop_vars);
NIR_PASS(_, nir, nir_copy_prop);
}
NIR_PASS(_, nir, nir_opt_deref);
/* Pick off the single entrypoint that we want */
nir_remove_non_entrypoints(nir);
/* Make sure we lower constant initializers on output variables so that
* nir_remove_dead_variables below sees the corresponding stores
*/
NIR_PASS(_, nir, nir_lower_variable_initializers, nir_var_shader_out);
/* Now that we've deleted all but the main function, we can go ahead and
* lower the rest of the constant initializers.
*/
NIR_PASS(_, nir, nir_lower_variable_initializers, ~0);
NIR_PASS(_, nir, radv_nir_lower_cooperative_matrix, subgroup_size);
/* Split member structs. We do this before lower_io_to_temporaries so that
* it doesn't lower system values to temporaries by accident.
*/
NIR_PASS(_, nir, nir_split_var_copies);
NIR_PASS(_, nir, nir_split_per_member_structs);
if (nir->info.stage == MESA_SHADER_FRAGMENT)
NIR_PASS(_, nir, nir_lower_io_to_vector, nir_var_shader_out);
if (nir->info.stage == MESA_SHADER_FRAGMENT)
NIR_PASS(_, nir, nir_lower_input_attachments,
&(nir_input_attachment_options){
.use_fragcoord_sysval = true,
.use_layer_id_sysval = false,
});
nir_remove_dead_variables_options dead_vars_opts = {
.can_remove_var = nir_vk_is_not_xfb_output,
};
NIR_PASS(_, nir, nir_remove_dead_variables,
nir_var_shader_in | nir_var_shader_out | nir_var_system_value | nir_var_mem_shared, &dead_vars_opts);
if (nir->info.stage == MESA_SHADER_FRAGMENT && options->fix_dual_src_mrt1_export)
fix_dual_src_mrt1_export(nir);
/* Variables can make nir_propagate_invariant more conservative
* than it needs to be.
*/
NIR_PASS(_, nir, nir_lower_global_vars_to_local);
NIR_PASS(_, nir, nir_lower_vars_to_ssa);
NIR_PASS(_, nir, nir_propagate_invariant, pdev->cache_key.invariant_geom);
NIR_PASS(_, nir, nir_lower_clip_cull_distance_arrays);
if (nir->info.stage == MESA_SHADER_VERTEX || nir->info.stage == MESA_SHADER_TESS_EVAL ||
nir->info.stage == MESA_SHADER_GEOMETRY)
NIR_PASS_V(nir, nir_shader_gather_xfb_info);
NIR_PASS(_, nir, nir_lower_discard_or_demote, pdev->cache_key.lower_discard_to_demote);
nir_lower_doubles_options lower_doubles = nir->options->lower_doubles_options;
if (pdev->info.gfx_level == GFX6) {
/* GFX6 doesn't support v_floor_f64 and the precision
* of v_fract_f64 which is used to implement 64-bit
* floor is less than what Vulkan requires.
*/
lower_doubles |= nir_lower_dfloor;
}
NIR_PASS(_, nir, nir_lower_doubles, NULL, lower_doubles);
NIR_PASS(_, nir, ac_nir_lower_sin_cos);
}
NIR_PASS(_, nir, nir_lower_system_values);
nir_lower_compute_system_values_options csv_options = {
/* Mesh shaders run as NGG which can implement local_invocation_index from
* the wave ID in merged_wave_info, but they don't have local_invocation_ids on GFX10.3.
*/
.lower_cs_local_id_to_index = nir->info.stage == MESA_SHADER_MESH && !pdev->mesh_fast_launch_2,
.lower_local_invocation_index = nir->info.stage == MESA_SHADER_COMPUTE &&
((nir->info.workgroup_size[0] == 1) + (nir->info.workgroup_size[1] == 1) +
(nir->info.workgroup_size[2] == 1)) == 2,
};
NIR_PASS(_, nir, nir_lower_compute_system_values, &csv_options);
/* Vulkan uses the separate-shader linking model */
nir->info.separate_shader = true;
nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
if (nir->info.ray_queries > 0) {
/* Lower shared variables early to prevent the over allocation of shared memory in
* radv_nir_lower_ray_queries. */
if (nir->info.stage == MESA_SHADER_COMPUTE) {
if (!nir->info.shared_memory_explicit_layout)
NIR_PASS(_, nir, nir_lower_vars_to_explicit_types, nir_var_mem_shared, shared_var_info);
NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_shared, nir_address_format_32bit_offset);
}
NIR_PASS(_, nir, nir_opt_ray_queries);
NIR_PASS(_, nir, nir_opt_ray_query_ranges);
NIR_PASS(_, nir, radv_nir_lower_ray_queries, device);
}
nir_lower_tex_options tex_options = {
.lower_txp = ~0,
.lower_txf_offset = true,
.lower_tg4_offsets = true,
.lower_txs_cube_array = true,
.lower_to_fragment_fetch_amd = pdev->use_fmask,
.lower_lod_zero_width = true,
.lower_invalid_implicit_lod = true,
.lower_1d = pdev->info.gfx_level == GFX9,
};
NIR_PASS(_, nir, nir_lower_tex, &tex_options);
static const nir_lower_image_options image_options = {
.lower_cube_size = true,
};
NIR_PASS(_, nir, nir_lower_image, &image_options);
NIR_PASS(_, nir, nir_lower_vars_to_ssa);
if (nir->info.stage == MESA_SHADER_VERTEX || nir->info.stage == MESA_SHADER_GEOMETRY ||
nir->info.stage == MESA_SHADER_FRAGMENT) {
NIR_PASS_V(nir, nir_lower_io_to_temporaries, nir_shader_get_entrypoint(nir), true, true);
} else if (nir->info.stage == MESA_SHADER_TESS_EVAL) {
NIR_PASS_V(nir, nir_lower_io_to_temporaries, nir_shader_get_entrypoint(nir), true, false);
}
NIR_PASS(_, nir, nir_split_var_copies);
NIR_PASS(_, nir, nir_lower_global_vars_to_local);
NIR_PASS(_, nir, nir_remove_dead_variables, nir_var_function_temp, NULL);
bool gfx7minus = pdev->info.gfx_level <= GFX7;
bool has_inverse_ballot = true;
#if LLVM_AVAILABLE
has_inverse_ballot = !radv_use_llvm_for_stage(pdev, nir->info.stage) || LLVM_VERSION_MAJOR >= 17;
#endif
NIR_PASS(_, nir, nir_lower_subgroups,
&(struct nir_lower_subgroups_options){
.subgroup_size = subgroup_size,
.ballot_bit_size = ballot_bit_size,
.ballot_components = 1,
.lower_to_scalar = 1,
.lower_subgroup_masks = 1,
.lower_relative_shuffle = 1,
.lower_rotate_to_shuffle = radv_use_llvm_for_stage(pdev, nir->info.stage),
.lower_shuffle_to_32bit = 1,
.lower_vote_eq = 1,
.lower_vote_bool_eq = 1,
.lower_quad_broadcast_dynamic = 1,
.lower_quad_broadcast_dynamic_to_const = gfx7minus,
.lower_shuffle_to_swizzle_amd = 1,
.lower_ballot_bit_count_to_mbcnt_amd = 1,
.lower_inverse_ballot = !has_inverse_ballot,
.lower_boolean_reduce = 1,
.lower_boolean_shuffle = true,
});
NIR_PASS(_, nir, nir_lower_load_const_to_scalar);
NIR_PASS(_, nir, nir_opt_shrink_stores, !instance->drirc.disable_shrink_image_store);
if (!stage->key.optimisations_disabled)
radv_optimize_nir(nir, false);
/* We call nir_lower_var_copies() after the first radv_optimize_nir()
* to remove any copies introduced by nir_opt_find_array_copies().
*/
NIR_PASS(_, nir, nir_lower_var_copies);
unsigned lower_flrp = (nir->options->lower_flrp16 ? 16 : 0) | (nir->options->lower_flrp32 ? 32 : 0) |
(nir->options->lower_flrp64 ? 64 : 0);
if (lower_flrp != 0) {
bool progress = false;
NIR_PASS(progress, nir, nir_lower_flrp, lower_flrp, false /* always precise */);
if (progress)
NIR_PASS(_, nir, nir_opt_constant_folding);
}
const nir_opt_access_options opt_access_options = {
.is_vulkan = true,
};
NIR_PASS(_, nir, nir_opt_access, &opt_access_options);
NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_push_const, nir_address_format_32bit_offset);
NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_ubo | nir_var_mem_ssbo,
nir_address_format_vec2_index_32bit_offset);
NIR_PASS(_, nir, radv_nir_lower_intrinsics_early, options && options->lower_view_index_to_zero);
/* Lower deref operations for compute shared memory. */
if (nir->info.stage == MESA_SHADER_COMPUTE || nir->info.stage == MESA_SHADER_TASK ||
nir->info.stage == MESA_SHADER_MESH) {
nir_variable_mode var_modes = nir_var_mem_shared;
if (nir->info.stage == MESA_SHADER_TASK || nir->info.stage == MESA_SHADER_MESH)
var_modes |= nir_var_mem_task_payload;
if (!nir->info.shared_memory_explicit_layout)
NIR_PASS(_, nir, nir_lower_vars_to_explicit_types, var_modes, shared_var_info);
else if (var_modes & ~nir_var_mem_shared)
NIR_PASS(_, nir, nir_lower_vars_to_explicit_types, var_modes & ~nir_var_mem_shared, shared_var_info);
NIR_PASS(_, nir, nir_lower_explicit_io, var_modes, nir_address_format_32bit_offset);
if (nir->info.zero_initialize_shared_memory && nir->info.shared_size > 0) {
const unsigned chunk_size = 16; /* max single store size */
const unsigned shared_size = ALIGN(nir->info.shared_size, chunk_size);
NIR_PASS(_, nir, nir_zero_initialize_shared_memory, shared_size, chunk_size);
}
}
NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_global | nir_var_mem_constant, nir_address_format_64bit_global);
/* Lower large variables that are always constant with load_constant
* intrinsics, which get turned into PC-relative loads from a data
* section next to the shader.
*/
NIR_PASS(_, nir, nir_opt_large_constants, glsl_get_natural_size_align_bytes, 16);
/* Lower primitive shading rate to match HW requirements. */
if ((nir->info.stage == MESA_SHADER_VERTEX || nir->info.stage == MESA_SHADER_GEOMETRY ||
nir->info.stage == MESA_SHADER_MESH) &&
nir->info.outputs_written & BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_SHADING_RATE)) {
/* Lower primitive shading rate to match HW requirements. */
NIR_PASS(_, nir, radv_nir_lower_primitive_shading_rate, pdev->info.gfx_level);
}
/* Indirect lowering must be called after the radv_optimize_nir() loop
* has been called at least once. Otherwise indirect lowering can
* bloat the instruction count of the loop and cause it to be
* considered too large for unrolling.
*/
if (ac_nir_lower_indirect_derefs(nir, pdev->info.gfx_level) && !stage->key.optimisations_disabled &&
nir->info.stage != MESA_SHADER_COMPUTE) {
/* Optimize the lowered code before the linking optimizations. */
radv_optimize_nir(nir, false);
}
return nir;
}
bool
radv_consider_culling(const struct radv_physical_device *pdev, struct nir_shader *nir, uint64_t ps_inputs_read,
unsigned num_vertices_per_primitive, const struct radv_shader_info *info)
{
/* Culling doesn't make sense for meta shaders. */
if (is_meta_shader(nir))
return false;
/* We don't support culling with multiple viewports yet. */
if (nir->info.outputs_written & (VARYING_BIT_VIEWPORT | VARYING_BIT_VIEWPORT_MASK))
return false;
/* We don't support culling with vertex shader prologs. */
if (info->vs.has_prolog)
return false;
if (!pdev->use_ngg_culling)
return false;
/* Shader based culling efficiency can depend on PS throughput.
* Estimate an upper limit for PS input param count based on GPU info.
*/
unsigned max_ps_params = 8;
if (pdev->info.gfx_level >= GFX10_3 && pdev->info.has_dedicated_vram)
max_ps_params = 12; /* GFX10.3 and newer discrete GPUs. */
/* TODO: consider other heuristics here, such as PS execution time */
if (util_bitcount64(ps_inputs_read & ~VARYING_BIT_POS) > max_ps_params)
return false;
/* Only triangle culling is supported. */
if (num_vertices_per_primitive != 3)
return false;
/* When the shader writes memory, it is difficult to guarantee correctness.
* Future work:
* - if only write-only SSBOs are used
* - if we can prove that non-position outputs don't rely on memory stores
* then may be okay to keep the memory stores in the 1st shader part, and delete them from the 2nd.
*/
if (nir->info.writes_memory)
return false;
/* When the shader relies on the subgroup invocation ID, we'd break it, because the ID changes after the culling.
* Future work: try to save this to LDS and reload, but it can still be broken in subtle ways.
*/
if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_SUBGROUP_INVOCATION))
return false;
/* When re-using values that depend on subgroup operations, we'd break convergence guarantees.
* Since we only re-use uniform values, the only subgroup operations we really care about are
* ballot, reductions and vote intrinsics.
*/
if (nir->info.maximally_reconverges && nir->info.uses_wide_subgroup_intrinsics)
return false;
return true;
}
void
radv_lower_ngg(struct radv_device *device, struct radv_shader_stage *ngg_stage,
const struct radv_graphics_state_key *gfx_state)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
const struct radv_shader_info *info = &ngg_stage->info;
nir_shader *nir = ngg_stage->nir;
assert(nir->info.stage == MESA_SHADER_VERTEX || nir->info.stage == MESA_SHADER_TESS_EVAL ||
nir->info.stage == MESA_SHADER_GEOMETRY || nir->info.stage == MESA_SHADER_MESH);
unsigned num_vertices_per_prim = 3;
/* Get the number of vertices per input primitive */
if (nir->info.stage == MESA_SHADER_TESS_EVAL) {
if (nir->info.tess.point_mode)
num_vertices_per_prim = 1;
else if (nir->info.tess._primitive_mode == TESS_PRIMITIVE_ISOLINES)
num_vertices_per_prim = 2;
/* Manually mark the primitive ID used, so the shader can repack it. */
if (info->outinfo.export_prim_id)
BITSET_SET(nir->info.system_values_read, SYSTEM_VALUE_PRIMITIVE_ID);
} else if (nir->info.stage == MESA_SHADER_VERTEX) {
num_vertices_per_prim = radv_get_num_vertices_per_prim(gfx_state);
/* Manually mark the instance ID used, so the shader can repack it. */
if (gfx_state->vi.instance_rate_inputs)
BITSET_SET(nir->info.system_values_read, SYSTEM_VALUE_INSTANCE_ID);
} else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
num_vertices_per_prim = nir->info.gs.vertices_in;
} else if (nir->info.stage == MESA_SHADER_MESH) {
if (nir->info.mesh.primitive_type == MESA_PRIM_POINTS)
num_vertices_per_prim = 1;
else if (nir->info.mesh.primitive_type == MESA_PRIM_LINES)
num_vertices_per_prim = 2;
else
assert(nir->info.mesh.primitive_type == MESA_PRIM_TRIANGLES);
} else {
unreachable("NGG needs to be VS, TES or GS.");
}
if (nir->info.stage != MESA_SHADER_MESH)
nir->info.shared_size = info->ngg_info.lds_size;
ac_nir_lower_ngg_options options = {0};
options.family = pdev->info.family;
options.gfx_level = pdev->info.gfx_level;
options.max_workgroup_size = info->workgroup_size;
options.wave_size = info->wave_size;
options.clip_cull_dist_mask = info->outinfo.clip_dist_mask | info->outinfo.cull_dist_mask;
options.vs_output_param_offset = info->outinfo.vs_output_param_offset;
options.has_param_exports = info->outinfo.param_exports || info->outinfo.prim_param_exports;
options.can_cull = nir->info.stage != MESA_SHADER_GEOMETRY && info->has_ngg_culling;
options.disable_streamout = !pdev->use_ngg_streamout;
options.has_gen_prim_query = info->has_prim_query;
options.has_xfb_prim_query = info->has_xfb_query;
options.has_gs_invocations_query = pdev->info.gfx_level < GFX11;
options.has_gs_primitives_query = pdev->info.gfx_level < GFX11;
options.force_vrs = info->force_vrs_per_vertex;
if (nir->info.stage == MESA_SHADER_VERTEX || nir->info.stage == MESA_SHADER_TESS_EVAL) {
assert(info->is_ngg);
if (info->has_ngg_culling)
radv_optimize_nir_algebraic(nir, false, false);
options.num_vertices_per_primitive = num_vertices_per_prim;
options.early_prim_export = info->has_ngg_early_prim_export;
options.passthrough = info->is_ngg_passthrough;
options.export_primitive_id = info->outinfo.export_prim_id;
options.instance_rate_inputs = gfx_state->vi.instance_rate_inputs << VERT_ATTRIB_GENERIC0;
NIR_PASS_V(nir, ac_nir_lower_ngg_nogs, &options);
/* Increase ESGS ring size so the LLVM binary contains the correct LDS size. */
ngg_stage->info.ngg_info.esgs_ring_size = nir->info.shared_size;
} else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
assert(info->is_ngg);
options.gs_out_vtx_bytes = info->gs.gsvs_vertex_size;
NIR_PASS_V(nir, ac_nir_lower_ngg_gs, &options);
} else if (nir->info.stage == MESA_SHADER_MESH) {
/* ACO aligns the workgroup size to the wave size. */
unsigned hw_workgroup_size = ALIGN(info->workgroup_size, info->wave_size);
bool scratch_ring = false;
NIR_PASS_V(nir, ac_nir_lower_ngg_ms, options.gfx_level, options.clip_cull_dist_mask,
options.vs_output_param_offset, options.has_param_exports, &scratch_ring, info->wave_size,
hw_workgroup_size, gfx_state->has_multiview_view_index, info->ms.has_query, pdev->mesh_fast_launch_2);
ngg_stage->info.ms.needs_ms_scratch_ring = scratch_ring;
} else {
unreachable("invalid SW stage passed to radv_lower_ngg");
}
}
static unsigned
get_size_class(unsigned size, bool round_up)
{
size = round_up ? util_logbase2_ceil(size) : util_logbase2(size);
unsigned size_class = MAX2(size, RADV_SHADER_ALLOC_MIN_SIZE_CLASS) - RADV_SHADER_ALLOC_MIN_SIZE_CLASS;
return MIN2(size_class, RADV_SHADER_ALLOC_NUM_FREE_LISTS - 1);
}
static void
remove_hole(struct radv_shader_free_list *free_list, union radv_shader_arena_block *hole)
{
unsigned size_class = get_size_class(hole->size, false);
list_del(&hole->freelist);
if (list_is_empty(&free_list->free_lists[size_class]))
free_list->size_mask &= ~(1u << size_class);
}
static void
add_hole(struct radv_shader_free_list *free_list, union radv_shader_arena_block *hole)
{
unsigned size_class = get_size_class(hole->size, false);
list_addtail(&hole->freelist, &free_list->free_lists[size_class]);
free_list->size_mask |= 1u << size_class;
}
static union radv_shader_arena_block *
alloc_block_obj(struct radv_device *device)
{
if (!list_is_empty(&device->shader_block_obj_pool)) {
union radv_shader_arena_block *block =
list_first_entry(&device->shader_block_obj_pool, union radv_shader_arena_block, pool);
list_del(&block->pool);
return block;
}
return malloc(sizeof(union radv_shader_arena_block));
}
static void
free_block_obj(struct radv_device *device, union radv_shader_arena_block *block)
{
list_add(&block->pool, &device->shader_block_obj_pool);
}
VkResult
radv_shader_wait_for_upload(struct radv_device *device, uint64_t seq)
{
if (!seq)
return VK_SUCCESS;
const VkSemaphoreWaitInfo wait_info = {
.sType = VK_STRUCTURE_TYPE_SEMAPHORE_WAIT_INFO,
.pSemaphores = &device->shader_upload_sem,
.semaphoreCount = 1,
.pValues = &seq,
};
return device->vk.dispatch_table.WaitSemaphores(radv_device_to_handle(device), &wait_info, UINT64_MAX);
}
static struct radv_shader_arena *
radv_create_shader_arena(struct radv_device *device, struct radv_shader_free_list *free_list, unsigned min_size,
unsigned arena_size, bool replayable, uint64_t replay_va)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
union radv_shader_arena_block *alloc = NULL;
struct radv_shader_arena *arena = calloc(1, sizeof(struct radv_shader_arena));
if (!arena)
goto fail;
if (!arena_size)
arena_size = MAX2(
RADV_SHADER_ALLOC_MIN_ARENA_SIZE << MIN2(RADV_SHADER_ALLOC_MAX_ARENA_SIZE_SHIFT, device->shader_arena_shift),
min_size);
arena->size = arena_size;
enum radeon_bo_flag flags = RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_32BIT;
if (device->shader_use_invisible_vram)
flags |= RADEON_FLAG_NO_CPU_ACCESS;
else
flags |= (pdev->info.cpdma_prefetch_writes_memory ? 0 : RADEON_FLAG_READ_ONLY);
if (replayable)
flags |= RADEON_FLAG_REPLAYABLE;
/* vkCmdUpdatePipelineIndirectBufferNV() can be called on any queue supporting transfer
* operations and it's not required to call it on the same queue as DGC execute. To make sure the
* compute shader BO is part of the DGC execute submission, force all shaders to be local BOs.
*/
if (device->vk.enabled_features.deviceGeneratedComputePipelines)
flags |= RADEON_FLAG_PREFER_LOCAL_BO;
VkResult result;
result = radv_bo_create(device, NULL, arena_size, RADV_SHADER_ALLOC_ALIGNMENT, RADEON_DOMAIN_VRAM, flags,
RADV_BO_PRIORITY_SHADER, replay_va, true, &arena->bo);
if (result != VK_SUCCESS)
goto fail;
list_inithead(&arena->entries);
alloc = alloc_block_obj(device);
if (!alloc)
goto fail;
list_inithead(&alloc->freelist);
alloc->arena = arena;
alloc->offset = 0;
alloc->size = arena_size;
list_addtail(&alloc->list, &arena->entries);
if (free_list)
add_hole(free_list, alloc);
if (!(flags & RADEON_FLAG_NO_CPU_ACCESS)) {
arena->ptr = (char *)radv_buffer_map(device->ws, arena->bo);
if (!arena->ptr)
goto fail;
}
if (replay_va)
arena->type = RADV_SHADER_ARENA_REPLAYED;
else if (replayable)
arena->type = RADV_SHADER_ARENA_REPLAYABLE;
else
arena->type = RADV_SHADER_ARENA_DEFAULT;
return arena;
fail:
if (alloc)
free_block_obj(device, alloc);
if (arena && arena->bo)
radv_bo_destroy(device, NULL, arena->bo);
free(arena);
return NULL;
}
/* Inserts a block at an arbitrary place into a hole, splitting the hole as needed */
static union radv_shader_arena_block *
insert_block(struct radv_device *device, union radv_shader_arena_block *hole, uint32_t offset_in_hole, uint32_t size,
struct radv_shader_free_list *free_list)
{
uint32_t hole_begin = hole->offset;
uint32_t hole_end = hole->offset + hole->size;
/* The block might not lie exactly at the beginning or end
* of the hole. Resize the hole to fit the block exactly,
* and insert new holes before (left_hole) or after (right_hole) as needed.
* left_hole or right_hole are skipped if the allocation lies exactly at the
* beginning or end of the hole to avoid 0-sized holes. */
union radv_shader_arena_block *left_hole = NULL;
union radv_shader_arena_block *right_hole = NULL;
if (offset_in_hole) {
left_hole = alloc_block_obj(device);
if (!left_hole)
return NULL;
list_inithead(&left_hole->freelist);
left_hole->arena = hole->arena;
left_hole->offset = hole->offset;
left_hole->size = offset_in_hole;
if (free_list)
add_hole(free_list, left_hole);
}
if (hole->size > offset_in_hole + size) {
right_hole = alloc_block_obj(device);
if (!right_hole) {
free(left_hole);
return NULL;
}
list_inithead(&right_hole->freelist);
right_hole->arena = hole->arena;
right_hole->offset = hole_begin + offset_in_hole + size;
right_hole->size = hole_end - right_hole->offset;
if (free_list)
add_hole(free_list, right_hole);
}
if (left_hole) {
hole->offset += left_hole->size;
hole->size -= left_hole->size;
list_addtail(&left_hole->list, &hole->list);
}
if (right_hole) {
hole->size -= right_hole->size;
list_add(&right_hole->list, &hole->list);
}
if (free_list)
remove_hole(free_list, hole);
return hole;
}
/* Segregated fit allocator, implementing a good-fit allocation policy.
*
* This is an variation of sequential fit allocation with several lists of free blocks ("holes")
* instead of one. Each list of holes only contains holes of a certain range of sizes, so holes that
* are too small can easily be ignored while allocating. Because this also ignores holes that are
* larger than necessary (approximating best-fit allocation), this could be described as a
* "good-fit" allocator.
*
* Typically, shaders are allocated and only free'd when the device is destroyed. For this pattern,
* this should allocate blocks for shaders fast and with no fragmentation, while still allowing
* free'd memory to be re-used.
*/
union radv_shader_arena_block *
radv_alloc_shader_memory(struct radv_device *device, uint32_t size, bool replayable, void *ptr)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
size = ac_align_shader_binary_for_prefetch(&pdev->info, size);
size = align(size, RADV_SHADER_ALLOC_ALIGNMENT);
mtx_lock(&device->shader_arena_mutex);
struct radv_shader_free_list *free_list = replayable ? &device->capture_replay_free_list : &device->shader_free_list;
/* Try to use an existing hole. Unless the shader is very large, this should only have to look
* at the first one available.
*/
unsigned free_list_mask = BITFIELD_MASK(RADV_SHADER_ALLOC_NUM_FREE_LISTS);
unsigned size_class = ffs(free_list->size_mask & (free_list_mask << get_size_class(size, true)));
if (size_class) {
size_class--;
list_for_each_entry (union radv_shader_arena_block, hole, &free_list->free_lists[size_class], freelist) {
if (hole->size < size)
continue;
assert(hole->offset % RADV_SHADER_ALLOC_ALIGNMENT == 0);
if (size == hole->size) {
remove_hole(free_list, hole);
hole->freelist.next = ptr;
mtx_unlock(&device->shader_arena_mutex);
return hole;
} else {
union radv_shader_arena_block *alloc = alloc_block_obj(device);
if (!alloc) {
mtx_unlock(&device->shader_arena_mutex);
return NULL;
}
list_addtail(&alloc->list, &hole->list);
alloc->freelist.prev = NULL;
alloc->freelist.next = ptr;
alloc->arena = hole->arena;
alloc->offset = hole->offset;
alloc->size = size;
remove_hole(free_list, hole);
hole->offset += size;
hole->size -= size;
add_hole(free_list, hole);
mtx_unlock(&device->shader_arena_mutex);
return alloc;
}
}
}
struct radv_shader_arena *arena = radv_create_shader_arena(device, free_list, size, 0, replayable, 0);
union radv_shader_arena_block *alloc = NULL;
if (!arena)
goto fail;
alloc =
insert_block(device, list_entry(arena->entries.next, union radv_shader_arena_block, list), 0, size, free_list);
alloc->freelist.prev = NULL;
alloc->freelist.next = ptr;
++device->shader_arena_shift;
list_addtail(&arena->list, &device->shader_arenas);
mtx_unlock(&device->shader_arena_mutex);
return alloc;
fail:
mtx_unlock(&device->shader_arena_mutex);
free(alloc);
if (arena) {
free(arena->list.next);
radv_bo_destroy(device, NULL, arena->bo);
}
free(arena);
return NULL;
}
static union radv_shader_arena_block *
get_hole(struct radv_shader_arena *arena, struct list_head *head)
{
if (head == &arena->entries)
return NULL;
union radv_shader_arena_block *hole = list_entry(head, union radv_shader_arena_block, list);
return hole->freelist.prev ? hole : NULL;
}
void
radv_free_shader_memory(struct radv_device *device, union radv_shader_arena_block *alloc)
{
mtx_lock(&device->shader_arena_mutex);
union radv_shader_arena_block *hole_prev = get_hole(alloc->arena, alloc->list.prev);
union radv_shader_arena_block *hole_next = get_hole(alloc->arena, alloc->list.next);
union radv_shader_arena_block *hole = alloc;
struct radv_shader_free_list *free_list;
switch (alloc->arena->type) {
case RADV_SHADER_ARENA_DEFAULT:
free_list = &device->shader_free_list;
break;
case RADV_SHADER_ARENA_REPLAYABLE:
free_list = &device->capture_replay_free_list;
break;
case RADV_SHADER_ARENA_REPLAYED:
free_list = NULL;
break;
default:
unreachable("invalid shader arena type");
}
/* merge with previous hole */
if (hole_prev) {
if (free_list)
remove_hole(free_list, hole_prev);
hole_prev->size += hole->size;
list_del(&hole->list);
free_block_obj(device, hole);
hole = hole_prev;
}
/* merge with next hole */
if (hole_next) {
if (free_list)
remove_hole(free_list, hole_next);
hole_next->offset -= hole->size;
hole_next->size += hole->size;
list_del(&hole->list);
free_block_obj(device, hole);
hole = hole_next;
}
if (list_is_singular(&hole->list)) {
struct radv_shader_arena *arena = hole->arena;
free_block_obj(device, hole);
radv_bo_destroy(device, NULL, arena->bo);
list_del(&arena->list);
free(arena);
} else if (free_list) {
add_hole(free_list, hole);
}
mtx_unlock(&device->shader_arena_mutex);
}
struct radv_serialized_shader_arena_block
radv_serialize_shader_arena_block(union radv_shader_arena_block *block)
{
struct radv_serialized_shader_arena_block serialized_block = {
.offset = block->offset,
.size = block->size,
.arena_va = block->arena->bo->va,
.arena_size = block->arena->size,
};
return serialized_block;
}
union radv_shader_arena_block *
radv_replay_shader_arena_block(struct radv_device *device, const struct radv_serialized_shader_arena_block *src,
void *ptr)
{
mtx_lock(&device->shader_arena_mutex);
uint64_t va = src->arena_va;
void *data = _mesa_hash_table_u64_search(device->capture_replay_arena_vas, va);
if (!data) {
struct radv_shader_arena *arena = radv_create_shader_arena(device, NULL, 0, src->arena_size, true, src->arena_va);
if (!arena) {
mtx_unlock(&device->shader_arena_mutex);
return NULL;
}
_mesa_hash_table_u64_insert(device->capture_replay_arena_vas, src->arena_va, arena);
list_addtail(&arena->list, &device->shader_arenas);
data = arena;
}
mtx_unlock(&device->shader_arena_mutex);
uint32_t block_begin = src->offset;
uint32_t block_end = src->offset + src->size;
struct radv_shader_arena *arena = data;
list_for_each_entry (union radv_shader_arena_block, hole, &arena->entries, list) {
/* Only consider holes, not allocated shaders */
if (!hole->freelist.prev)
continue;
uint32_t hole_begin = hole->offset;
uint32_t hole_end = hole->offset + hole->size;
if (hole_end < block_end)
continue;
/* If another allocated block overlaps the current replay block, allocation is impossible */
if (hole_begin > block_begin)
return NULL;
union radv_shader_arena_block *block = insert_block(device, hole, block_begin - hole_begin, src->size, NULL);
if (!block)
return NULL;
block->freelist.prev = NULL;
block->freelist.next = ptr;
return hole;
}
return NULL;
}
void
radv_init_shader_arenas(struct radv_device *device)
{
mtx_init(&device->shader_arena_mutex, mtx_plain);
device->shader_free_list.size_mask = 0;
device->capture_replay_free_list.size_mask = 0;
list_inithead(&device->shader_arenas);
list_inithead(&device->shader_block_obj_pool);
for (unsigned i = 0; i < RADV_SHADER_ALLOC_NUM_FREE_LISTS; i++) {
list_inithead(&device->shader_free_list.free_lists[i]);
list_inithead(&device->capture_replay_free_list.free_lists[i]);
}
}
void
radv_destroy_shader_arenas(struct radv_device *device)
{
list_for_each_entry_safe (union radv_shader_arena_block, block, &device->shader_block_obj_pool, pool)
free(block);
list_for_each_entry_safe (struct radv_shader_arena, arena, &device->shader_arenas, list) {
radv_bo_destroy(device, NULL, arena->bo);
free(arena);
}
mtx_destroy(&device->shader_arena_mutex);
}
VkResult
radv_init_shader_upload_queue(struct radv_device *device)
{
if (!device->shader_use_invisible_vram)
return VK_SUCCESS;
VkDevice vk_device = radv_device_to_handle(device);
struct radeon_winsys *ws = device->ws;
const struct vk_device_dispatch_table *disp = &device->vk.dispatch_table;
VkResult result = VK_SUCCESS;
result = ws->ctx_create(ws, RADEON_CTX_PRIORITY_MEDIUM, &device->shader_upload_hw_ctx);
if (result != VK_SUCCESS)
return result;
mtx_init(&device->shader_upload_hw_ctx_mutex, mtx_plain);
mtx_init(&device->shader_dma_submission_list_mutex, mtx_plain);
cnd_init(&device->shader_dma_submission_list_cond);
list_inithead(&device->shader_dma_submissions);
for (unsigned i = 0; i < RADV_SHADER_UPLOAD_CS_COUNT; i++) {
struct radv_shader_dma_submission *submission = calloc(1, sizeof(struct radv_shader_dma_submission));
submission->cs = ws->cs_create(ws, AMD_IP_SDMA, false);
if (!submission->cs)
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
list_addtail(&submission->list, &device->shader_dma_submissions);
}
const VkSemaphoreTypeCreateInfo sem_type = {
.sType = VK_STRUCTURE_TYPE_SEMAPHORE_TYPE_CREATE_INFO,
.semaphoreType = VK_SEMAPHORE_TYPE_TIMELINE,
.initialValue = 0,
};
const VkSemaphoreCreateInfo sem_create = {
.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO,
.pNext = &sem_type,
};
result = disp->CreateSemaphore(vk_device, &sem_create, NULL, &device->shader_upload_sem);
if (result != VK_SUCCESS)
return result;
return VK_SUCCESS;
}
void
radv_destroy_shader_upload_queue(struct radv_device *device)
{
if (!device->shader_use_invisible_vram)
return;
struct vk_device_dispatch_table *disp = &device->vk.dispatch_table;
struct radeon_winsys *ws = device->ws;
/* Upload queue should be idle assuming that pipelines are not leaked */
if (device->shader_upload_sem)
disp->DestroySemaphore(radv_device_to_handle(device), device->shader_upload_sem, NULL);
list_for_each_entry_safe (struct radv_shader_dma_submission, submission, &device->shader_dma_submissions, list) {
if (submission->cs)
ws->cs_destroy(submission->cs);
if (submission->bo)
radv_bo_destroy(device, NULL, submission->bo);
list_del(&submission->list);
free(submission);
}
cnd_destroy(&device->shader_dma_submission_list_cond);
mtx_destroy(&device->shader_dma_submission_list_mutex);
if (device->shader_upload_hw_ctx) {
mtx_destroy(&device->shader_upload_hw_ctx_mutex);
ws->ctx_destroy(device->shader_upload_hw_ctx);
}
}
static bool
radv_should_use_wgp_mode(const struct radv_device *device, gl_shader_stage stage, const struct radv_shader_info *info)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
enum amd_gfx_level chip = pdev->info.gfx_level;
switch (stage) {
case MESA_SHADER_COMPUTE:
case MESA_SHADER_TESS_CTRL:
return chip >= GFX10;
case MESA_SHADER_GEOMETRY:
return chip == GFX10 || (chip >= GFX10_3 && !info->is_ngg);
case MESA_SHADER_VERTEX:
case MESA_SHADER_TESS_EVAL:
return chip == GFX10 && info->is_ngg;
default:
return false;
}
}
#if defined(USE_LIBELF)
static bool
radv_open_rtld_binary(struct radv_device *device, const struct radv_shader_binary *binary,
struct ac_rtld_binary *rtld_binary)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
const char *elf_data = (const char *)((struct radv_shader_binary_rtld *)binary)->data;
size_t elf_size = ((struct radv_shader_binary_rtld *)binary)->elf_size;
struct ac_rtld_symbol lds_symbols[3];
unsigned num_lds_symbols = 0;
if (pdev->info.gfx_level >= GFX9 && (binary->info.stage == MESA_SHADER_GEOMETRY || binary->info.is_ngg)) {
struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++];
sym->name = "esgs_ring";
sym->size = binary->info.ngg_info.esgs_ring_size;
sym->align = 64 * 1024;
}
if (binary->info.is_ngg && binary->info.stage == MESA_SHADER_GEOMETRY) {
struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++];
sym->name = "ngg_emit";
sym->size = binary->info.ngg_info.ngg_emit_size * 4;
sym->align = 4;
sym = &lds_symbols[num_lds_symbols++];
sym->name = "ngg_scratch";
sym->size = 8;
sym->align = 4;
}
struct ac_rtld_open_info open_info = {
.info = &pdev->info,
.shader_type = binary->info.stage,
.wave_size = binary->info.wave_size,
.num_parts = 1,
.elf_ptrs = &elf_data,
.elf_sizes = &elf_size,
.num_shared_lds_symbols = num_lds_symbols,
.shared_lds_symbols = lds_symbols,
};
return ac_rtld_open(rtld_binary, open_info);
}
#endif
static bool
radv_postprocess_binary_config(struct radv_device *device, struct radv_shader_binary *binary,
const struct radv_shader_args *args)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
struct ac_shader_config *config = &binary->config;
if (binary->type == RADV_BINARY_TYPE_RTLD) {
#if !defined(USE_LIBELF)
return false;
#else
struct ac_rtld_binary rtld_binary = {0};
if (!radv_open_rtld_binary(device, binary, &rtld_binary)) {
return false;
}
if (!ac_rtld_read_config(&pdev->info, &rtld_binary, config)) {
ac_rtld_close(&rtld_binary);
return false;
}
if (rtld_binary.lds_size > 0) {
unsigned encode_granularity = pdev->info.lds_encode_granularity;
config->lds_size = DIV_ROUND_UP(rtld_binary.lds_size, encode_granularity);
}
if (!config->lds_size && binary->info.stage == MESA_SHADER_TESS_CTRL) {
/* This is used for reporting LDS statistics */
config->lds_size = binary->info.tcs.num_lds_blocks;
}
assert(!binary->info.has_ngg_culling || config->lds_size);
ac_rtld_close(&rtld_binary);
#endif
}
const struct radv_shader_info *info = &binary->info;
gl_shader_stage stage = binary->info.stage;
bool scratch_enabled = config->scratch_bytes_per_wave > 0;
bool trap_enabled = !!device->trap_handler_shader;
unsigned vgpr_comp_cnt = 0;
unsigned num_input_vgprs = args->ac.num_vgprs_used;
if (stage == MESA_SHADER_FRAGMENT) {
num_input_vgprs = ac_get_fs_input_vgpr_cnt(config, NULL);
}
unsigned num_vgprs = MAX2(config->num_vgprs, num_input_vgprs);
/* +2 for the ring offsets, +3 for scratch wave offset and VCC */
unsigned num_sgprs = MAX2(config->num_sgprs, args->ac.num_sgprs_used + 2 + 3);
unsigned num_shared_vgprs = config->num_shared_vgprs;
/* shared VGPRs are introduced in Navi and are allocated in blocks of 8 (RDNA ref 3.6.5) */
assert((pdev->info.gfx_level >= GFX10 && num_shared_vgprs % 8 == 0) ||
(pdev->info.gfx_level < GFX10 && num_shared_vgprs == 0));
unsigned num_shared_vgpr_blocks = num_shared_vgprs / 8;
unsigned excp_en = 0;
config->num_vgprs = num_vgprs;
config->num_sgprs = num_sgprs;
config->num_shared_vgprs = num_shared_vgprs;
config->rsrc2 = S_00B12C_USER_SGPR(args->num_user_sgprs) | S_00B12C_SCRATCH_EN(scratch_enabled) |
S_00B12C_TRAP_PRESENT(trap_enabled);
if (trap_enabled) {
/* Configure the shader exceptions like memory violation, etc.
* TODO: Enable (and validate) more exceptions.
*/
excp_en = 1 << 8; /* mem_viol */
}
if (!pdev->use_ngg_streamout) {
config->rsrc2 |= S_00B12C_SO_BASE0_EN(!!info->so.strides[0]) | S_00B12C_SO_BASE1_EN(!!info->so.strides[1]) |
S_00B12C_SO_BASE2_EN(!!info->so.strides[2]) | S_00B12C_SO_BASE3_EN(!!info->so.strides[3]) |
S_00B12C_SO_EN(!!info->so.num_outputs);
}
config->rsrc1 = S_00B848_VGPRS((num_vgprs - 1) / (info->wave_size == 32 ? 8 : 4)) | S_00B848_DX10_CLAMP(1) |
S_00B848_FLOAT_MODE(config->float_mode);
if (pdev->info.gfx_level >= GFX10) {
config->rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX10(args->num_user_sgprs >> 5);
} else {
config->rsrc1 |= S_00B228_SGPRS((num_sgprs - 1) / 8);
config->rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX9(args->num_user_sgprs >> 5);
}
gl_shader_stage es_stage = MESA_SHADER_NONE;
if (pdev->info.gfx_level >= GFX9) {
es_stage = stage == MESA_SHADER_GEOMETRY ? info->gs.es_type : stage;
}
if (info->merged_shader_compiled_separately) {
/* Update the stage for merged shaders compiled separately with ESO on GFX9+. */
if (stage == MESA_SHADER_VERTEX && info->vs.as_ls) {
stage = MESA_SHADER_TESS_CTRL;
} else if (stage == MESA_SHADER_VERTEX && info->vs.as_es) {
es_stage = MESA_SHADER_VERTEX;
stage = MESA_SHADER_GEOMETRY;
} else if (stage == MESA_SHADER_TESS_EVAL && info->tes.as_es) {
es_stage = MESA_SHADER_TESS_EVAL;
stage = MESA_SHADER_GEOMETRY;
}
}
bool wgp_mode = radv_should_use_wgp_mode(device, stage, info);
switch (stage) {
case MESA_SHADER_TESS_EVAL:
if (info->is_ngg) {
config->rsrc1 |= S_00B228_MEM_ORDERED(pdev->info.gfx_level >= GFX10);
config->rsrc2 |= S_00B22C_OC_LDS_EN(1) | S_00B22C_EXCP_EN(excp_en);
} else if (info->tes.as_es) {
assert(pdev->info.gfx_level <= GFX8);
vgpr_comp_cnt = info->uses_prim_id ? 3 : 2;
config->rsrc2 |= S_00B12C_OC_LDS_EN(1) | S_00B12C_EXCP_EN(excp_en);
} else {
bool enable_prim_id = info->outinfo.export_prim_id || info->uses_prim_id;
vgpr_comp_cnt = enable_prim_id ? 3 : 2;
config->rsrc1 |= S_00B128_MEM_ORDERED(pdev->info.gfx_level >= GFX10);
config->rsrc2 |= S_00B12C_OC_LDS_EN(1) | S_00B12C_EXCP_EN(excp_en);
}
config->rsrc2 |= S_00B22C_SHARED_VGPR_CNT(num_shared_vgpr_blocks);
break;
case MESA_SHADER_TESS_CTRL:
if (pdev->info.gfx_level >= GFX9) {
/* We need at least 2 components for LS.
* VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
* StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
*/
if (pdev->info.gfx_level >= GFX10) {
if (info->vs.needs_instance_id) {
vgpr_comp_cnt = 3;
} else if (pdev->info.gfx_level <= GFX10_3) {
vgpr_comp_cnt = 1;
}
config->rsrc2 |= S_00B42C_EXCP_EN_GFX6(excp_en);
} else {
vgpr_comp_cnt = info->vs.needs_instance_id ? 2 : 1;
config->rsrc2 |= S_00B42C_EXCP_EN_GFX9(excp_en);
}
} else {
config->rsrc2 |= S_00B12C_OC_LDS_EN(1) | S_00B12C_EXCP_EN(excp_en);
}
config->rsrc1 |= S_00B428_MEM_ORDERED(pdev->info.gfx_level >= GFX10) | S_00B428_WGP_MODE(wgp_mode);
config->rsrc2 |= S_00B42C_SHARED_VGPR_CNT(num_shared_vgpr_blocks);
break;
case MESA_SHADER_VERTEX:
if (info->is_ngg) {
config->rsrc1 |= S_00B228_MEM_ORDERED(pdev->info.gfx_level >= GFX10);
} else if (info->vs.as_ls) {
assert(pdev->info.gfx_level <= GFX8);
/* We need at least 2 components for LS.
* VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
* StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
*/
vgpr_comp_cnt = info->vs.needs_instance_id ? 2 : 1;
} else if (info->vs.as_es) {
assert(pdev->info.gfx_level <= GFX8);
/* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
vgpr_comp_cnt = info->vs.needs_instance_id ? 1 : 0;
} else {
/* VGPR0-3: (VertexID, InstanceID / StepRate0, PrimID, InstanceID)
* If PrimID is disabled. InstanceID / StepRate1 is loaded instead.
* StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
*/
if (info->vs.needs_instance_id && pdev->info.gfx_level >= GFX10) {
vgpr_comp_cnt = 3;
} else if (info->outinfo.export_prim_id) {
vgpr_comp_cnt = 2;
} else if (info->vs.needs_instance_id) {
vgpr_comp_cnt = 1;
} else {
vgpr_comp_cnt = 0;
}
config->rsrc1 |= S_00B128_MEM_ORDERED(pdev->info.gfx_level >= GFX10);
}
config->rsrc2 |= S_00B12C_SHARED_VGPR_CNT(num_shared_vgpr_blocks) | S_00B12C_EXCP_EN(excp_en);
break;
case MESA_SHADER_MESH:
config->rsrc1 |= S_00B228_MEM_ORDERED(1);
config->rsrc2 |= S_00B12C_SHARED_VGPR_CNT(num_shared_vgpr_blocks) | S_00B12C_EXCP_EN(excp_en);
break;
case MESA_SHADER_FRAGMENT:
config->rsrc1 |=
S_00B028_MEM_ORDERED(pdev->info.gfx_level >= GFX10) | S_00B028_LOAD_PROVOKING_VTX(info->ps.load_provoking_vtx);
config->rsrc2 |= S_00B02C_SHARED_VGPR_CNT(num_shared_vgpr_blocks) | S_00B02C_EXCP_EN(excp_en) |
S_00B02C_LOAD_COLLISION_WAVEID(info->ps.pops && pdev->info.gfx_level < GFX11);
break;
case MESA_SHADER_GEOMETRY:
config->rsrc1 |= S_00B228_MEM_ORDERED(pdev->info.gfx_level >= GFX10);
config->rsrc2 |= S_00B22C_SHARED_VGPR_CNT(num_shared_vgpr_blocks) | S_00B22C_EXCP_EN(excp_en);
break;
case MESA_SHADER_RAYGEN:
case MESA_SHADER_CLOSEST_HIT:
case MESA_SHADER_MISS:
case MESA_SHADER_CALLABLE:
case MESA_SHADER_INTERSECTION:
case MESA_SHADER_ANY_HIT:
case MESA_SHADER_COMPUTE:
case MESA_SHADER_TASK:
config->rsrc1 |= S_00B848_MEM_ORDERED(pdev->info.gfx_level >= GFX10) | S_00B848_WGP_MODE(wgp_mode);
config->rsrc2 |= S_00B84C_TGID_X_EN(info->cs.uses_block_id[0]) | S_00B84C_TGID_Y_EN(info->cs.uses_block_id[1]) |
S_00B84C_TGID_Z_EN(info->cs.uses_block_id[2]) |
S_00B84C_TIDIG_COMP_CNT(info->cs.uses_thread_id[2] ? 2
: info->cs.uses_thread_id[1] ? 1
: 0) |
S_00B84C_TG_SIZE_EN(info->cs.uses_local_invocation_idx) | S_00B84C_LDS_SIZE(config->lds_size) |
S_00B84C_EXCP_EN(excp_en);
config->rsrc3 |= S_00B8A0_SHARED_VGPR_CNT(num_shared_vgpr_blocks);
break;
default:
unreachable("unsupported shader type");
break;
}
if (pdev->info.gfx_level >= GFX10 && info->is_ngg &&
(stage == MESA_SHADER_VERTEX || stage == MESA_SHADER_TESS_EVAL || stage == MESA_SHADER_GEOMETRY ||
stage == MESA_SHADER_MESH)) {
unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt;
/* VGPR5-8: (VertexID, UserVGPR0, UserVGPR1, UserVGPR2 / InstanceID) */
if (es_stage == MESA_SHADER_VERTEX) {
es_vgpr_comp_cnt = info->vs.needs_instance_id ? 3 : 0;
} else if (es_stage == MESA_SHADER_TESS_EVAL) {
bool enable_prim_id = info->outinfo.export_prim_id || info->uses_prim_id;
es_vgpr_comp_cnt = enable_prim_id ? 3 : 2;
} else if (es_stage == MESA_SHADER_MESH) {
es_vgpr_comp_cnt = 0;
} else {
unreachable("Unexpected ES shader stage");
}
/* GS vertex offsets in NGG:
* - in passthrough mode, they are all packed into VGPR0
* - in the default mode: VGPR0: offsets 0, 1; VGPR1: offsets 2, 3
*
* The vertex offset 2 is always needed when NGG isn't in passthrough mode
* and uses triangle input primitives, including with NGG culling.
*/
bool need_gs_vtx_offset2 = !info->is_ngg_passthrough || info->gs.vertices_in >= 3;
/* TES only needs vertex offset 2 for triangles or quads. */
if (stage == MESA_SHADER_TESS_EVAL)
need_gs_vtx_offset2 &=
info->tes._primitive_mode == TESS_PRIMITIVE_TRIANGLES || info->tes._primitive_mode == TESS_PRIMITIVE_QUADS;
if (info->uses_invocation_id) {
gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
} else if (info->uses_prim_id || (es_stage == MESA_SHADER_VERTEX && info->outinfo.export_prim_id)) {
gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
} else if (need_gs_vtx_offset2) {
gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
} else {
gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 (or passthrough prim) */
}
/* Disable the WGP mode on gfx10.3 because it can hang. (it
* happened on VanGogh) Let's disable it on all chips that
* disable exactly 1 CU per SA for GS.
*/
config->rsrc1 |= S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt) | S_00B228_WGP_MODE(wgp_mode);
config->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) | S_00B22C_LDS_SIZE(config->lds_size) |
S_00B22C_OC_LDS_EN(es_stage == MESA_SHADER_TESS_EVAL);
} else if (pdev->info.gfx_level >= GFX9 && stage == MESA_SHADER_GEOMETRY) {
unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt;
if (es_stage == MESA_SHADER_VERTEX) {
/* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
if (info->vs.needs_instance_id) {
es_vgpr_comp_cnt = pdev->info.gfx_level >= GFX10 ? 3 : 1;
} else {
es_vgpr_comp_cnt = 0;
}
} else if (es_stage == MESA_SHADER_TESS_EVAL) {
es_vgpr_comp_cnt = info->uses_prim_id ? 3 : 2;
} else {
unreachable("invalid shader ES type");
}
/* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
* VGPR[0:4] are always loaded.
*/
if (info->uses_invocation_id) {
gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
} else if (info->uses_prim_id) {
gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
} else if (info->gs.vertices_in >= 3) {
gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
} else {
gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
}
config->rsrc1 |= S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt) | S_00B228_WGP_MODE(wgp_mode);
config->rsrc2 |=
S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) | S_00B22C_OC_LDS_EN(es_stage == MESA_SHADER_TESS_EVAL);
} else if (pdev->info.gfx_level >= GFX9 && stage == MESA_SHADER_TESS_CTRL) {
config->rsrc1 |= S_00B428_LS_VGPR_COMP_CNT(vgpr_comp_cnt);
} else {
config->rsrc1 |= S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt);
}
return true;
}
void
radv_shader_combine_cfg_vs_tcs(const struct radv_shader *vs, const struct radv_shader *tcs, uint32_t *rsrc1_out,
uint32_t *rsrc2_out)
{
if (rsrc1_out) {
uint32_t rsrc1 = vs->config.rsrc1;
if (G_00B848_VGPRS(tcs->config.rsrc1) > G_00B848_VGPRS(rsrc1))
rsrc1 = (rsrc1 & C_00B848_VGPRS) | (tcs->config.rsrc1 & ~C_00B848_VGPRS);
if (G_00B228_SGPRS(tcs->config.rsrc1) > G_00B228_SGPRS(rsrc1))
rsrc1 = (rsrc1 & C_00B228_SGPRS) | (tcs->config.rsrc1 & ~C_00B228_SGPRS);
if (G_00B428_LS_VGPR_COMP_CNT(tcs->config.rsrc1) > G_00B428_LS_VGPR_COMP_CNT(rsrc1))
rsrc1 = (rsrc1 & C_00B428_LS_VGPR_COMP_CNT) | (tcs->config.rsrc1 & ~C_00B428_LS_VGPR_COMP_CNT);
*rsrc1_out = rsrc1;
}
if (rsrc2_out) {
uint32_t rsrc2 = vs->config.rsrc2;
rsrc2 |= tcs->config.rsrc2 & ~C_00B12C_SCRATCH_EN;
*rsrc2_out = rsrc2;
}
}
void
radv_shader_combine_cfg_vs_gs(const struct radv_shader *vs, const struct radv_shader *gs, uint32_t *rsrc1_out,
uint32_t *rsrc2_out)
{
assert(G_00B12C_USER_SGPR(vs->config.rsrc2) == G_00B12C_USER_SGPR(gs->config.rsrc2));
if (rsrc1_out) {
uint32_t rsrc1 = vs->config.rsrc1;
if (G_00B848_VGPRS(gs->config.rsrc1) > G_00B848_VGPRS(rsrc1))
rsrc1 = (rsrc1 & C_00B848_VGPRS) | (gs->config.rsrc1 & ~C_00B848_VGPRS);
if (G_00B228_SGPRS(gs->config.rsrc1) > G_00B228_SGPRS(rsrc1))
rsrc1 = (rsrc1 & C_00B228_SGPRS) | (gs->config.rsrc1 & ~C_00B228_SGPRS);
if (G_00B228_GS_VGPR_COMP_CNT(gs->config.rsrc1) > G_00B228_GS_VGPR_COMP_CNT(rsrc1))
rsrc1 = (rsrc1 & C_00B228_GS_VGPR_COMP_CNT) | (gs->config.rsrc1 & ~C_00B228_GS_VGPR_COMP_CNT);
*rsrc1_out = rsrc1;
}
if (rsrc2_out) {
uint32_t rsrc2 = vs->config.rsrc2;
if (G_00B22C_ES_VGPR_COMP_CNT(gs->config.rsrc2) > G_00B22C_ES_VGPR_COMP_CNT(rsrc2))
rsrc2 = (rsrc2 & C_00B22C_ES_VGPR_COMP_CNT) | (gs->config.rsrc2 & ~C_00B22C_ES_VGPR_COMP_CNT);
rsrc2 |= gs->config.rsrc2 & ~(C_00B12C_SCRATCH_EN & C_00B12C_SO_EN & C_00B12C_SO_BASE0_EN & C_00B12C_SO_BASE1_EN &
C_00B12C_SO_BASE2_EN & C_00B12C_SO_BASE3_EN);
*rsrc2_out = rsrc2;
}
}
void
radv_shader_combine_cfg_tes_gs(const struct radv_shader *tes, const struct radv_shader *gs, uint32_t *rsrc1_out,
uint32_t *rsrc2_out)
{
radv_shader_combine_cfg_vs_gs(tes, gs, rsrc1_out, rsrc2_out);
if (rsrc2_out) {
*rsrc2_out |= S_00B22C_OC_LDS_EN(1);
}
}
static bool
radv_shader_binary_upload(struct radv_device *device, const struct radv_shader_binary *binary,
struct radv_shader *shader, void *dest_ptr)
{
shader->code = calloc(shader->code_size, 1);
if (!shader->code) {
radv_shader_unref(device, shader);
return false;
}
if (binary->type == RADV_BINARY_TYPE_RTLD) {
#if !defined(USE_LIBELF)
return false;
#else
struct ac_rtld_binary rtld_binary = {0};
if (!radv_open_rtld_binary(device, binary, &rtld_binary)) {
free(shader);
return false;
}
struct ac_rtld_upload_info info = {
.binary = &rtld_binary,
.rx_va = radv_shader_get_va(shader),
.rx_ptr = dest_ptr,
};
if (!ac_rtld_upload(&info)) {
radv_shader_unref(device, shader);
ac_rtld_close(&rtld_binary);
return false;
}
ac_rtld_close(&rtld_binary);
if (shader->code) {
/* Instead of running RTLD twice, just copy the relocated binary back from VRAM.
* Use streaming memcpy to reduce penalty of copying from uncachable memory.
*/
util_streaming_load_memcpy(shader->code, dest_ptr, shader->code_size);
}
#endif
} else {
struct radv_shader_binary_legacy *bin = (struct radv_shader_binary_legacy *)binary;
memcpy(dest_ptr, bin->data + bin->stats_size, bin->code_size);
if (shader->code) {
memcpy(shader->code, bin->data + bin->stats_size, bin->code_size);
}
}
return true;
}
static VkResult
radv_shader_dma_resize_upload_buf(struct radv_device *device, struct radv_shader_dma_submission *submission,
uint64_t size)
{
if (submission->bo)
radv_bo_destroy(device, NULL, submission->bo);
VkResult result = radv_bo_create(
device, NULL, size, RADV_SHADER_ALLOC_ALIGNMENT, RADEON_DOMAIN_GTT,
RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_32BIT | RADEON_FLAG_GTT_WC,
RADV_BO_PRIORITY_UPLOAD_BUFFER, 0, true, &submission->bo);
if (result != VK_SUCCESS)
return result;
submission->ptr = radv_buffer_map(device->ws, submission->bo);
submission->bo_size = size;
return VK_SUCCESS;
}
struct radv_shader_dma_submission *
radv_shader_dma_pop_submission(struct radv_device *device)
{
struct radv_shader_dma_submission *submission;
mtx_lock(&device->shader_dma_submission_list_mutex);
while (list_is_empty(&device->shader_dma_submissions))
cnd_wait(&device->shader_dma_submission_list_cond, &device->shader_dma_submission_list_mutex);
submission = list_first_entry(&device->shader_dma_submissions, struct radv_shader_dma_submission, list);
list_del(&submission->list);
mtx_unlock(&device->shader_dma_submission_list_mutex);
return submission;
}
void
radv_shader_dma_push_submission(struct radv_device *device, struct radv_shader_dma_submission *submission, uint64_t seq)
{
submission->seq = seq;
mtx_lock(&device->shader_dma_submission_list_mutex);
list_addtail(&submission->list, &device->shader_dma_submissions);
cnd_signal(&device->shader_dma_submission_list_cond);
mtx_unlock(&device->shader_dma_submission_list_mutex);
}
struct radv_shader_dma_submission *
radv_shader_dma_get_submission(struct radv_device *device, struct radeon_winsys_bo *bo, uint64_t va, uint64_t size)
{
struct radv_shader_dma_submission *submission = radv_shader_dma_pop_submission(device);
struct radeon_cmdbuf *cs = submission->cs;
struct radeon_winsys *ws = device->ws;
VkResult result;
/* Wait for potentially in-flight submission to settle */
result = radv_shader_wait_for_upload(device, submission->seq);
if (result != VK_SUCCESS)
goto fail;
ws->cs_reset(cs);
if (submission->bo_size < size) {
result = radv_shader_dma_resize_upload_buf(device, submission, size);
if (result != VK_SUCCESS)
goto fail;
}
radv_sdma_copy_buffer(device, cs, radv_buffer_get_va(submission->bo), va, size);
radv_cs_add_buffer(ws, cs, submission->bo);
radv_cs_add_buffer(ws, cs, bo);
result = ws->cs_finalize(cs);
if (result != VK_SUCCESS)
goto fail;
return submission;
fail:
radv_shader_dma_push_submission(device, submission, 0);
return NULL;
}
/*
* If upload_seq_out is NULL, this function blocks until the DMA is complete. Otherwise, the
* semaphore value to wait on device->shader_upload_sem is stored in *upload_seq_out.
*/
bool
radv_shader_dma_submit(struct radv_device *device, struct radv_shader_dma_submission *submission,
uint64_t *upload_seq_out)
{
struct radeon_cmdbuf *cs = submission->cs;
struct radeon_winsys *ws = device->ws;
VkResult result;
mtx_lock(&device->shader_upload_hw_ctx_mutex);
uint64_t upload_seq = device->shader_upload_seq + 1;
struct vk_semaphore *semaphore = vk_semaphore_from_handle(device->shader_upload_sem);
struct vk_sync *sync = vk_semaphore_get_active_sync(semaphore);
const struct vk_sync_signal signal_info = {
.sync = sync,
.signal_value = upload_seq,
.stage_mask = VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
};
struct radv_winsys_submit_info submit = {
.ip_type = AMD_IP_SDMA,
.queue_index = 0,
.cs_array = &cs,
.cs_count = 1,
};
result = ws->cs_submit(device->shader_upload_hw_ctx, &submit, 0, NULL, 1, &signal_info);
if (result != VK_SUCCESS) {
mtx_unlock(&device->shader_upload_hw_ctx_mutex);
radv_shader_dma_push_submission(device, submission, 0);
return false;
}
device->shader_upload_seq = upload_seq;
mtx_unlock(&device->shader_upload_hw_ctx_mutex);
radv_shader_dma_push_submission(device, submission, upload_seq);
if (upload_seq_out) {
*upload_seq_out = upload_seq;
} else {
result = radv_shader_wait_for_upload(device, upload_seq);
if (result != VK_SUCCESS)
return false;
}
return true;
}
static bool
radv_shader_upload(struct radv_device *device, struct radv_shader *shader, const struct radv_shader_binary *binary)
{
if (device->shader_use_invisible_vram) {
struct radv_shader_dma_submission *submission =
radv_shader_dma_get_submission(device, shader->bo, shader->va, shader->code_size);
if (!submission)
return false;
if (!radv_shader_binary_upload(device, binary, shader, submission->ptr)) {
radv_shader_dma_push_submission(device, submission, 0);
return false;
}
if (!radv_shader_dma_submit(device, submission, &shader->upload_seq))
return false;
} else {
void *dest_ptr = shader->alloc->arena->ptr + shader->alloc->offset;
if (!radv_shader_binary_upload(device, binary, shader, dest_ptr))
return false;
}
return true;
}
unsigned
radv_get_max_waves(const struct radv_device *device, const struct ac_shader_config *conf,
const struct radv_shader_info *info)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
const struct radeon_info *gpu_info = &pdev->info;
const enum amd_gfx_level gfx_level = gpu_info->gfx_level;
const uint8_t wave_size = info->wave_size;
gl_shader_stage stage = info->stage;
unsigned max_simd_waves = gpu_info->max_waves_per_simd;
unsigned lds_per_wave = 0;
if (stage == MESA_SHADER_FRAGMENT) {
lds_per_wave = conf->lds_size * gpu_info->lds_encode_granularity + info->ps.num_interp * 48;
lds_per_wave = align(lds_per_wave, gpu_info->lds_alloc_granularity);
} else if (stage == MESA_SHADER_COMPUTE || stage == MESA_SHADER_TASK) {
unsigned max_workgroup_size = info->workgroup_size;
lds_per_wave = align(conf->lds_size * gpu_info->lds_encode_granularity, gpu_info->lds_alloc_granularity);
lds_per_wave /= DIV_ROUND_UP(max_workgroup_size, wave_size);
}
if (conf->num_sgprs && gfx_level < GFX10) {
unsigned sgprs = align(conf->num_sgprs, gfx_level >= GFX8 ? 16 : 8);
max_simd_waves = MIN2(max_simd_waves, gpu_info->num_physical_sgprs_per_simd / sgprs);
}
if (conf->num_vgprs) {
unsigned physical_vgprs = gpu_info->num_physical_wave64_vgprs_per_simd * (64 / wave_size);
unsigned vgprs = align(conf->num_vgprs, wave_size == 32 ? 8 : 4);
if (gfx_level >= GFX10_3) {
unsigned real_vgpr_gran = gpu_info->num_physical_wave64_vgprs_per_simd / 64;
vgprs = util_align_npot(vgprs, real_vgpr_gran * (wave_size == 32 ? 2 : 1));
}
max_simd_waves = MIN2(max_simd_waves, physical_vgprs / vgprs);
}
unsigned simd_per_workgroup = gpu_info->num_simd_per_compute_unit;
if (gfx_level >= GFX10)
simd_per_workgroup *= 2; /* like lds_size_per_workgroup, assume WGP on GFX10+ */
unsigned max_lds_per_simd = gpu_info->lds_size_per_workgroup / simd_per_workgroup;
if (lds_per_wave)
max_simd_waves = MIN2(max_simd_waves, DIV_ROUND_UP(max_lds_per_simd, lds_per_wave));
return gfx_level >= GFX10 ? max_simd_waves * (wave_size / 32) : max_simd_waves;
}
unsigned
radv_get_max_scratch_waves(const struct radv_device *device, struct radv_shader *shader)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
const unsigned num_cu = pdev->info.num_cu;
return MIN2(device->scratch_waves, 4 * num_cu * shader->max_waves);
}
VkResult
radv_shader_create_uncached(struct radv_device *device, const struct radv_shader_binary *binary, bool replayable,
struct radv_serialized_shader_arena_block *replay_block, struct radv_shader **out_shader)
{
VkResult result = VK_SUCCESS;
struct radv_shader *shader = calloc(1, sizeof(struct radv_shader));
if (!shader) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
simple_mtx_init(&shader->replay_mtx, mtx_plain);
vk_pipeline_cache_object_init(&device->vk, &shader->base, &radv_shader_ops, shader->hash, sizeof(shader->hash));
shader->info = binary->info;
shader->config = binary->config;
shader->max_waves = radv_get_max_waves(device, &shader->config, &shader->info);
if (binary->type == RADV_BINARY_TYPE_RTLD) {
#if !defined(USE_LIBELF)
goto out;
#else
struct ac_rtld_binary rtld_binary = {0};
if (!radv_open_rtld_binary(device, binary, &rtld_binary)) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
shader->code_size = rtld_binary.rx_size;
shader->exec_size = rtld_binary.exec_size;
ac_rtld_close(&rtld_binary);
#endif
} else {
struct radv_shader_binary_legacy *bin = (struct radv_shader_binary_legacy *)binary;
shader->code_size = bin->code_size;
shader->exec_size = bin->exec_size;
if (bin->stats_size) {
shader->statistics = calloc(bin->stats_size, 1);
memcpy(shader->statistics, bin->data, bin->stats_size);
}
}
if (replay_block) {
shader->alloc = radv_replay_shader_arena_block(device, replay_block, shader);
if (!shader->alloc) {
result = VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS;
goto out;
}
shader->has_replay_alloc = true;
} else {
shader->alloc = radv_alloc_shader_memory(device, shader->code_size, replayable, shader);
if (!shader->alloc) {
result = VK_ERROR_OUT_OF_DEVICE_MEMORY;
goto out;
}
}
shader->bo = shader->alloc->arena->bo;
shader->va = radv_buffer_get_va(shader->bo) + shader->alloc->offset;
if (!radv_shader_upload(device, shader, binary)) {
result = VK_ERROR_OUT_OF_DEVICE_MEMORY;
goto out;
}
*out_shader = shader;
out:
if (result != VK_SUCCESS) {
free(shader);
*out_shader = NULL;
}
return result;
}
bool
radv_shader_reupload(struct radv_device *device, struct radv_shader *shader)
{
if (device->shader_use_invisible_vram) {
struct radv_shader_dma_submission *submission =
radv_shader_dma_get_submission(device, shader->bo, shader->va, shader->code_size);
if (!submission)
return false;
memcpy(submission->ptr, shader->code, shader->code_size);
if (!radv_shader_dma_submit(device, submission, &shader->upload_seq))
return false;
} else {
void *dest_ptr = shader->alloc->arena->ptr + shader->alloc->offset;
memcpy(dest_ptr, shader->code, shader->code_size);
}
return true;
}
static bool
radv_shader_part_binary_upload(struct radv_device *device, const struct radv_shader_part_binary *bin,
struct radv_shader_part *shader_part)
{
struct radv_shader_dma_submission *submission = NULL;
void *dest_ptr;
if (device->shader_use_invisible_vram) {
uint64_t va = radv_buffer_get_va(shader_part->alloc->arena->bo) + shader_part->alloc->offset;
submission = radv_shader_dma_get_submission(device, shader_part->alloc->arena->bo, va, bin->code_size);
if (!submission)
return false;
dest_ptr = submission->ptr;
} else {
dest_ptr = shader_part->alloc->arena->ptr + shader_part->alloc->offset;
}
memcpy(dest_ptr, bin->data, bin->code_size);
if (device->shader_use_invisible_vram) {
if (!radv_shader_dma_submit(device, submission, &shader_part->upload_seq))
return false;
}
return true;
}
struct radv_shader_part *
radv_shader_part_create(struct radv_device *device, struct radv_shader_part_binary *binary, unsigned wave_size)
{
struct radv_shader_part *shader_part;
shader_part = calloc(1, sizeof(struct radv_shader_part));
if (!shader_part)
return NULL;
shader_part->ref_count = 1;
shader_part->code_size = binary->code_size;
shader_part->rsrc1 =
S_00B848_VGPRS((binary->num_vgprs - 1) / (wave_size == 32 ? 8 : 4)) | S_00B228_SGPRS((binary->num_sgprs - 1) / 8);
shader_part->disasm_string = binary->disasm_size ? strdup((const char *)(binary->data + binary->code_size)) : NULL;
shader_part->spi_shader_col_format = binary->info.spi_shader_col_format;
shader_part->spi_shader_z_format = binary->info.spi_shader_z_format;
/* Allocate memory and upload. */
shader_part->alloc = radv_alloc_shader_memory(device, shader_part->code_size, false, NULL);
if (!shader_part->alloc)
goto fail;
shader_part->bo = shader_part->alloc->arena->bo;
shader_part->va = radv_buffer_get_va(shader_part->bo) + shader_part->alloc->offset;
if (!radv_shader_part_binary_upload(device, binary, shader_part))
goto fail;
return shader_part;
fail:
radv_shader_part_destroy(device, shader_part);
return NULL;
}
bool
radv_shader_part_cache_init(struct radv_shader_part_cache *cache, struct radv_shader_part_cache_ops *ops)
{
cache->ops = ops;
if (!_mesa_set_init(&cache->entries, NULL, cache->ops->hash, cache->ops->equals))
return false;
simple_mtx_init(&cache->lock, mtx_plain);
return true;
}
void
radv_shader_part_cache_finish(struct radv_device *device, struct radv_shader_part_cache *cache)
{
set_foreach (&cache->entries, entry)
radv_shader_part_unref(device, radv_shader_part_from_cache_entry(entry->key));
simple_mtx_destroy(&cache->lock);
ralloc_free(cache->entries.table);
}
/*
* A cache with atomics-free fast path for prolog / epilog lookups.
*
* VS prologs and PS/TCS epilogs are used to support dynamic states. In
* particular dynamic blend state is heavily used by Zink. These are called
* every frame as a part of command buffer building, so these functions are
* on the hot path.
*
* Originally this was implemented with a rwlock, but this lead to high
* overhead. To avoid locking altogether in the hot path, the cache is done
* at two levels: one at device level, and another at each CS. Access to the
* CS cache is externally synchronized and do not require a lock.
*/
struct radv_shader_part *
radv_shader_part_cache_get(struct radv_device *device, struct radv_shader_part_cache *cache, struct set *local_entries,
const void *key)
{
struct set_entry *local, *global;
bool local_found, global_found;
uint32_t hash = cache->ops->hash(key);
local = _mesa_set_search_or_add_pre_hashed(local_entries, hash, key, &local_found);
if (local_found)
return radv_shader_part_from_cache_entry(local->key);
simple_mtx_lock(&cache->lock);
global = _mesa_set_search_or_add_pre_hashed(&cache->entries, hash, key, &global_found);
if (global_found) {
simple_mtx_unlock(&cache->lock);
local->key = global->key;
return radv_shader_part_from_cache_entry(global->key);
}
struct radv_shader_part *shader_part = cache->ops->create(device, key);
if (!shader_part) {
_mesa_set_remove(&cache->entries, global);
simple_mtx_unlock(&cache->lock);
_mesa_set_remove(local_entries, local);
return NULL;
}
/* Make the set entry a pointer to the key, so that the hash and equals
* functions from radv_shader_part_cache_ops can be directly used.
*/
global->key = &shader_part->key;
simple_mtx_unlock(&cache->lock);
local->key = &shader_part->key;
return shader_part;
}
static char *
radv_dump_nir_shaders(struct nir_shader *const *shaders, int shader_count)
{
char *data = NULL;
char *ret = NULL;
size_t size = 0;
struct u_memstream mem;
if (u_memstream_open(&mem, &data, &size)) {
FILE *const memf = u_memstream_get(&mem);
for (int i = 0; i < shader_count; ++i)
nir_print_shader(shaders[i], memf);
u_memstream_close(&mem);
}
ret = malloc(size + 1);
if (ret) {
memcpy(ret, data, size);
ret[size] = 0;
}
free(data);
return ret;
}
static void
radv_aco_build_shader_binary(void **bin, const struct ac_shader_config *config, const char *llvm_ir_str,
unsigned llvm_ir_size, const char *disasm_str, unsigned disasm_size, uint32_t *statistics,
uint32_t stats_size, uint32_t exec_size, const uint32_t *code, uint32_t code_dw,
const struct aco_symbol *symbols, unsigned num_symbols)
{
struct radv_shader_binary **binary = (struct radv_shader_binary **)bin;
size_t size = llvm_ir_size;
size += disasm_size;
size += stats_size;
size += code_dw * sizeof(uint32_t) + sizeof(struct radv_shader_binary_legacy);
/* We need to calloc to prevent uninitialized data because this will be used
* directly for the disk cache. Uninitialized data can appear because of
* padding in the struct or because legacy_binary->data can be at an offset
* from the start less than sizeof(radv_shader_binary_legacy). */
struct radv_shader_binary_legacy *legacy_binary = (struct radv_shader_binary_legacy *)calloc(size, 1);
legacy_binary->base.type = RADV_BINARY_TYPE_LEGACY;
legacy_binary->base.total_size = size;
legacy_binary->base.config = *config;
if (stats_size)
memcpy(legacy_binary->data, statistics, stats_size);
legacy_binary->stats_size = stats_size;
memcpy(legacy_binary->data + legacy_binary->stats_size, code, code_dw * sizeof(uint32_t));
legacy_binary->exec_size = exec_size;
legacy_binary->code_size = code_dw * sizeof(uint32_t);
legacy_binary->disasm_size = 0;
legacy_binary->ir_size = llvm_ir_size;
if (llvm_ir_size) {
memcpy((char *)legacy_binary->data + legacy_binary->stats_size + legacy_binary->code_size, llvm_ir_str,
llvm_ir_size);
}
legacy_binary->disasm_size = disasm_size;
if (disasm_size) {
memcpy((char *)legacy_binary->data + legacy_binary->stats_size + legacy_binary->code_size + llvm_ir_size,
disasm_str, disasm_size);
}
*binary = (struct radv_shader_binary *)legacy_binary;
}
static void
radv_fill_nir_compiler_options(struct radv_nir_compiler_options *options, struct radv_device *device,
const struct radv_graphics_state_key *gfx_state, bool should_use_wgp,
bool can_dump_shader, bool is_meta_shader, bool keep_shader_info,
bool keep_statistic_info)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
const struct radv_instance *instance = radv_physical_device_instance(pdev);
/* robust_buffer_access_llvm here used by LLVM only, pipeline robustness is not exposed there. */
options->robust_buffer_access_llvm = device->buffer_robustness >= RADV_BUFFER_ROBUSTNESS_1;
options->wgp_mode = should_use_wgp;
options->info = &pdev->info;
options->dump_shader = can_dump_shader;
options->dump_preoptir = options->dump_shader && instance->debug_flags & RADV_DEBUG_PREOPTIR;
options->record_ir = keep_shader_info;
options->record_stats = keep_statistic_info;
options->check_ir = instance->debug_flags & RADV_DEBUG_CHECKIR;
options->enable_mrt_output_nan_fixup = gfx_state ? gfx_state->ps.epilog.enable_mrt_output_nan_fixup : false;
}
static void
radv_capture_shader_executable_info(struct radv_device *device, struct radv_shader *shader,
struct nir_shader *const *shaders, int shader_count,
const struct radv_shader_binary *binary)
{
shader->nir_string = radv_dump_nir_shaders(shaders, shader_count);
if (binary->type == RADV_BINARY_TYPE_RTLD) {
#if !defined(USE_LIBELF)
return;
#else
struct radv_shader_binary_rtld *bin = (struct radv_shader_binary_rtld *)binary;
struct ac_rtld_binary rtld_binary = {0};
if (!radv_open_rtld_binary(device, binary, &rtld_binary)) {
return;
}
const char *disasm_data;
size_t disasm_size;
if (!ac_rtld_get_section_by_name(&rtld_binary, ".AMDGPU.disasm", &disasm_data, &disasm_size)) {
return;
}
shader->ir_string = bin->llvm_ir_size ? strdup((const char *)(bin->data + bin->elf_size)) : NULL;
shader->disasm_string = malloc(disasm_size + 1);
memcpy(shader->disasm_string, disasm_data, disasm_size);
shader->disasm_string[disasm_size] = 0;
ac_rtld_close(&rtld_binary);
#endif
} else {
struct radv_shader_binary_legacy *bin = (struct radv_shader_binary_legacy *)binary;
shader->ir_string = bin->ir_size ? strdup((const char *)(bin->data + bin->stats_size + bin->code_size)) : NULL;
shader->disasm_string =
bin->disasm_size ? strdup((const char *)(bin->data + bin->stats_size + bin->code_size + bin->ir_size)) : NULL;
}
}
static struct radv_shader_binary *
shader_compile(struct radv_device *device, struct nir_shader *const *shaders, int shader_count, gl_shader_stage stage,
const struct radv_shader_info *info, const struct radv_shader_args *args,
const struct radv_shader_stage_key *stage_key, struct radv_nir_compiler_options *options)
{
struct radv_shader_debug_data debug_data = {
.device = device,
.object = NULL,
};
options->debug.func = radv_compiler_debug;
options->debug.private_data = &debug_data;
struct radv_shader_binary *binary = NULL;
#if LLVM_AVAILABLE
const struct radv_physical_device *pdev = radv_device_physical(device);
if (radv_use_llvm_for_stage(pdev, stage) || options->dump_shader || options->record_ir)
ac_init_llvm_once();
if (radv_use_llvm_for_stage(pdev, stage)) {
llvm_compile_shader(options, info, shader_count, shaders, &binary, args);
#else
if (false) {
#endif
} else {
struct aco_shader_info ac_info;
struct aco_compiler_options ac_opts;
radv_aco_convert_opts(&ac_opts, options, args, stage_key);
radv_aco_convert_shader_info(&ac_info, info, args, &device->cache_key, options->info->gfx_level);
aco_compile_shader(&ac_opts, &ac_info, shader_count, shaders, &args->ac, &radv_aco_build_shader_binary,
(void **)&binary);
}
binary->info = *info;
if (!radv_postprocess_binary_config(device, binary, args)) {
free(binary);
return NULL;
}
return binary;
}
struct radv_shader_binary *
radv_shader_nir_to_asm(struct radv_device *device, struct radv_shader_stage *pl_stage,
struct nir_shader *const *shaders, int shader_count,
const struct radv_graphics_state_key *gfx_state, bool keep_shader_info, bool keep_statistic_info)
{
gl_shader_stage stage = shaders[shader_count - 1]->info.stage;
struct radv_shader_info *info = &pl_stage->info;
struct radv_nir_compiler_options options = {0};
radv_fill_nir_compiler_options(&options, device, gfx_state, radv_should_use_wgp_mode(device, stage, info),
radv_can_dump_shader(device, shaders[0], false), is_meta_shader(shaders[0]),
keep_shader_info, keep_statistic_info);
struct radv_shader_binary *binary =
shader_compile(device, shaders, shader_count, stage, info, &pl_stage->args, &pl_stage->key, &options);
return binary;
}
void
radv_shader_generate_debug_info(struct radv_device *device, bool dump_shader, bool keep_shader_info,
struct radv_shader_binary *binary, struct radv_shader *shader,
struct nir_shader *const *shaders, int shader_count, struct radv_shader_info *info)
{
if (dump_shader || keep_shader_info)
radv_capture_shader_executable_info(device, shader, shaders, shader_count, binary);
if (dump_shader) {
fprintf(stderr, "%s", radv_get_shader_name(info, shaders[0]->info.stage));
for (int i = 1; i < shader_count; ++i)
fprintf(stderr, " + %s", radv_get_shader_name(info, shaders[i]->info.stage));
fprintf(stderr, "\ndisasm:\n%s\n", shader->disasm_string);
}
}
struct radv_shader *
radv_create_trap_handler_shader(struct radv_device *device)
{
gl_shader_stage stage = MESA_SHADER_COMPUTE;
struct radv_shader_stage_key stage_key = {0};
struct radv_shader_info info = {0};
struct radv_nir_compiler_options options = {0};
radv_fill_nir_compiler_options(&options, device, NULL, radv_should_use_wgp_mode(device, stage, &info), false, false,
false, false);
nir_builder b = radv_meta_init_shader(device, stage, "meta_trap_handler");
info.wave_size = 64;
info.type = RADV_SHADER_TYPE_TRAP_HANDLER;
struct radv_shader_args args;
radv_declare_shader_args(device, NULL, &info, stage, MESA_SHADER_NONE, &args);
struct radv_shader_binary *binary = shader_compile(device, &b.shader, 1, stage, &info, &args, &stage_key, &options);
struct radv_shader *shader;
radv_shader_create_uncached(device, binary, false, NULL, &shader);
ralloc_free(b.shader);
free(binary);
return shader;
}
static void
radv_aco_build_shader_part(void **bin, uint32_t num_sgprs, uint32_t num_vgprs, const uint32_t *code, uint32_t code_size,
const char *disasm_str, uint32_t disasm_size)
{
struct radv_shader_part_binary **binary = (struct radv_shader_part_binary **)bin;
size_t size = code_size * sizeof(uint32_t) + sizeof(struct radv_shader_part_binary);
size += disasm_size;
struct radv_shader_part_binary *part_binary = (struct radv_shader_part_binary *)calloc(size, 1);
part_binary->num_sgprs = num_sgprs;
part_binary->num_vgprs = num_vgprs;
part_binary->total_size = size;
part_binary->code_size = code_size * sizeof(uint32_t);
memcpy(part_binary->data, code, part_binary->code_size);
if (disasm_size) {
memcpy((char *)part_binary->data + part_binary->code_size, disasm_str, disasm_size);
part_binary->disasm_size = disasm_size;
}
*binary = part_binary;
}
struct radv_shader *
radv_create_rt_prolog(struct radv_device *device)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
const struct radv_instance *instance = radv_physical_device_instance(pdev);
struct radv_shader *prolog;
struct radv_shader_args in_args = {0};
struct radv_shader_args out_args = {0};
struct radv_nir_compiler_options options = {0};
radv_fill_nir_compiler_options(&options, device, NULL, false, instance->debug_flags & RADV_DEBUG_DUMP_PROLOGS, false,
radv_device_fault_detection_enabled(device), false);
struct radv_shader_info info = {0};
info.stage = MESA_SHADER_COMPUTE;
info.loads_push_constants = true;
info.desc_set_used_mask = -1; /* just to force indirection */
info.wave_size = pdev->rt_wave_size;
info.workgroup_size = info.wave_size;
info.user_data_0 = R_00B900_COMPUTE_USER_DATA_0;
info.cs.is_rt_shader = true;
info.cs.uses_dynamic_rt_callable_stack = true;
info.cs.block_size[0] = 8;
info.cs.block_size[1] = pdev->rt_wave_size == 64 ? 8 : 4;
info.cs.block_size[2] = 1;
info.cs.uses_thread_id[0] = true;
info.cs.uses_thread_id[1] = true;
for (unsigned i = 0; i < 3; i++)
info.cs.uses_block_id[i] = true;
radv_declare_shader_args(device, NULL, &info, MESA_SHADER_COMPUTE, MESA_SHADER_NONE, &in_args);
radv_declare_rt_shader_args(options.info->gfx_level, &out_args);
info.user_sgprs_locs = in_args.user_sgprs_locs;
#if LLVM_AVAILABLE
if (options.dump_shader || options.record_ir)
ac_init_llvm_once();
#endif
struct radv_shader_binary *binary = NULL;
struct radv_shader_stage_key stage_key = {0};
struct aco_shader_info ac_info;
struct aco_compiler_options ac_opts;
radv_aco_convert_shader_info(&ac_info, &info, &in_args, &device->cache_key, options.info->gfx_level);
radv_aco_convert_opts(&ac_opts, &options, &in_args, &stage_key);
aco_compile_rt_prolog(&ac_opts, &ac_info, &in_args.ac, &out_args.ac, &radv_aco_build_shader_binary,
(void **)&binary);
binary->info = info;
radv_postprocess_binary_config(device, binary, &in_args);
radv_shader_create_uncached(device, binary, false, NULL, &prolog);
if (!prolog)
goto done;
if (device->keep_shader_info || options.dump_shader) {
radv_capture_shader_executable_info(device, prolog, NULL, 0, binary);
}
if (options.dump_shader) {
fprintf(stderr, "Raytracing prolog");
fprintf(stderr, "\ndisasm:\n%s\n", prolog->disasm_string);
}
done:
free(binary);
return prolog;
}
struct radv_shader_part *
radv_create_vs_prolog(struct radv_device *device, const struct radv_vs_prolog_key *key)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
const struct radv_instance *instance = radv_physical_device_instance(pdev);
struct radv_shader_part *prolog;
struct radv_shader_args args = {0};
struct radv_nir_compiler_options options = {0};
radv_fill_nir_compiler_options(&options, device, NULL, false, instance->debug_flags & RADV_DEBUG_DUMP_PROLOGS, false,
radv_device_fault_detection_enabled(device), false);
struct radv_shader_info info = {0};
info.stage = MESA_SHADER_VERTEX;
info.wave_size = key->wave32 ? 32 : 64;
info.vs.needs_instance_id = true;
info.vs.needs_base_instance = true;
info.vs.needs_draw_id = true;
info.vs.use_per_attribute_vb_descs = true;
info.vs.vb_desc_usage_mask = BITFIELD_MASK(key->num_attributes);
info.vs.has_prolog = true;
info.vs.as_ls = key->as_ls;
info.is_ngg = key->is_ngg;
struct radv_graphics_state_key gfx_state = {0};
radv_declare_shader_args(device, &gfx_state, &info, key->next_stage,
key->next_stage != MESA_SHADER_VERTEX ? MESA_SHADER_VERTEX : MESA_SHADER_NONE, &args);
info.user_sgprs_locs = args.user_sgprs_locs;
info.inline_push_constant_mask = args.ac.inline_push_const_mask;
#if LLVM_AVAILABLE
if (options.dump_shader || options.record_ir)
ac_init_llvm_once();
#endif
struct radv_shader_part_binary *binary = NULL;
struct radv_shader_stage_key stage_key = {0};
struct aco_shader_info ac_info;
struct aco_vs_prolog_info ac_prolog_info;
struct aco_compiler_options ac_opts;
radv_aco_convert_shader_info(&ac_info, &info, &args, &device->cache_key, options.info->gfx_level);
radv_aco_convert_opts(&ac_opts, &options, &args, &stage_key);
radv_aco_convert_vs_prolog_key(&ac_prolog_info, key, &args);
aco_compile_vs_prolog(&ac_opts, &ac_info, &ac_prolog_info, &args.ac, &radv_aco_build_shader_part, (void **)&binary);
prolog = radv_shader_part_create(device, binary, info.wave_size);
if (!prolog)
goto fail;
prolog->key.vs = *key;
prolog->nontrivial_divisors = key->nontrivial_divisors;
if (options.dump_shader) {
fprintf(stderr, "Vertex prolog");
fprintf(stderr, "\ndisasm:\n%s\n", prolog->disasm_string);
}
free(binary);
return prolog;
fail:
free(binary);
return NULL;
}
struct radv_shader_part *
radv_create_ps_epilog(struct radv_device *device, const struct radv_ps_epilog_key *key,
struct radv_shader_part_binary **binary_out)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
const struct radv_instance *instance = radv_physical_device_instance(pdev);
struct radv_shader_part *epilog;
struct radv_shader_args args = {0};
struct radv_nir_compiler_options options = {0};
radv_fill_nir_compiler_options(&options, device, NULL, false, instance->debug_flags & RADV_DEBUG_DUMP_EPILOGS, false,
radv_device_fault_detection_enabled(device), false);
struct radv_shader_info info = {0};
info.stage = MESA_SHADER_FRAGMENT;
info.wave_size = pdev->ps_wave_size;
info.workgroup_size = 64;
radv_declare_ps_epilog_args(device, key, &args);
#if LLVM_AVAILABLE
if (options.dump_shader || options.record_ir)
ac_init_llvm_once();
#endif
struct radv_shader_part_binary *binary = NULL;
struct radv_shader_stage_key stage_key = {0};
struct aco_shader_info ac_info;
struct aco_ps_epilog_info ac_epilog_info = {0};
struct aco_compiler_options ac_opts;
radv_aco_convert_shader_info(&ac_info, &info, &args, &device->cache_key, options.info->gfx_level);
radv_aco_convert_opts(&ac_opts, &options, &args, &stage_key);
radv_aco_convert_ps_epilog_key(&ac_epilog_info, key, &args);
aco_compile_ps_epilog(&ac_opts, &ac_info, &ac_epilog_info, &args.ac, &radv_aco_build_shader_part, (void **)&binary);
binary->info.spi_shader_col_format = key->spi_shader_col_format;
binary->info.spi_shader_z_format = key->spi_shader_z_format;
epilog = radv_shader_part_create(device, binary, info.wave_size);
if (!epilog)
goto fail;
epilog->key.ps = *key;
if (options.dump_shader) {
fprintf(stderr, "Fragment epilog");
fprintf(stderr, "\ndisasm:\n%s\n", epilog->disasm_string);
}
if (binary_out) {
*binary_out = binary;
} else {
free(binary);
}
return epilog;
fail:
free(binary);
return NULL;
}
void
radv_shader_part_destroy(struct radv_device *device, struct radv_shader_part *shader_part)
{
assert(shader_part->ref_count == 0);
if (device->shader_use_invisible_vram) {
/* Wait for any pending upload to complete, or we'll be writing into freed shader memory. */
radv_shader_wait_for_upload(device, shader_part->upload_seq);
}
if (shader_part->alloc)
radv_free_shader_memory(device, shader_part->alloc);
free(shader_part->disasm_string);
free(shader_part);
}
uint64_t
radv_shader_get_va(const struct radv_shader *shader)
{
return shader->va;
}
struct radv_shader *
radv_find_shader(struct radv_device *device, uint64_t pc)
{
mtx_lock(&device->shader_arena_mutex);
list_for_each_entry (struct radv_shader_arena, arena, &device->shader_arenas, list) {
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wshadow"
#endif
list_for_each_entry (union radv_shader_arena_block, block, &arena->entries, list) {
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
uint64_t start = radv_buffer_get_va(block->arena->bo) + block->offset;
start &= ((1ull << 48) - 1);
if (!block->freelist.prev && pc >= start && pc < start + block->size) {
mtx_unlock(&device->shader_arena_mutex);
return (struct radv_shader *)block->freelist.next;
}
}
}
mtx_unlock(&device->shader_arena_mutex);
return NULL;
}
const char *
radv_get_shader_name(const struct radv_shader_info *info, gl_shader_stage stage)
{
switch (stage) {
case MESA_SHADER_VERTEX:
if (info->vs.as_ls)
return "Vertex Shader as LS";
else if (info->vs.as_es)
return "Vertex Shader as ES";
else if (info->is_ngg)
return "Vertex Shader as ESGS";
else
return "Vertex Shader as VS";
case MESA_SHADER_TESS_CTRL:
return "Tessellation Control Shader";
case MESA_SHADER_TESS_EVAL:
if (info->tes.as_es)
return "Tessellation Evaluation Shader as ES";
else if (info->is_ngg)
return "Tessellation Evaluation Shader as ESGS";
else
return "Tessellation Evaluation Shader as VS";
case MESA_SHADER_GEOMETRY:
return "Geometry Shader";
case MESA_SHADER_FRAGMENT:
return "Pixel Shader";
case MESA_SHADER_COMPUTE:
return "Compute Shader";
case MESA_SHADER_MESH:
return "Mesh Shader as NGG";
case MESA_SHADER_TASK:
return "Task Shader as CS";
case MESA_SHADER_RAYGEN:
return "Ray Generation Shader as CS Function";
case MESA_SHADER_CLOSEST_HIT:
return "Closest Hit Shader as CS Function";
case MESA_SHADER_INTERSECTION:
return "Intersection Shader as CS Function";
case MESA_SHADER_ANY_HIT:
return "Any Hit Shader as CS Function";
case MESA_SHADER_MISS:
return "Miss Shader as CS Function";
case MESA_SHADER_CALLABLE:
return "Callable Shader as CS Function";
default:
return "Unknown shader";
};
}
unsigned
radv_compute_spi_ps_input(const struct radv_graphics_state_key *gfx_state, const struct radv_shader_info *info)
{
unsigned spi_ps_input;
spi_ps_input = S_0286CC_PERSP_CENTER_ENA(info->ps.reads_persp_center) |
S_0286CC_PERSP_CENTROID_ENA(info->ps.reads_persp_centroid) |
S_0286CC_PERSP_SAMPLE_ENA(info->ps.reads_persp_sample) |
S_0286CC_LINEAR_CENTER_ENA(info->ps.reads_linear_center) |
S_0286CC_LINEAR_CENTROID_ENA(info->ps.reads_linear_centroid) |
S_0286CC_LINEAR_SAMPLE_ENA(info->ps.reads_linear_sample) |
S_0286CC_PERSP_PULL_MODEL_ENA(info->ps.reads_barycentric_model) |
S_0286CC_FRONT_FACE_ENA(info->ps.reads_front_face);
if (info->ps.reads_frag_coord_mask || info->ps.reads_sample_pos_mask) {
uint8_t mask = info->ps.reads_frag_coord_mask | info->ps.reads_sample_pos_mask;
for (unsigned i = 0; i < 4; i++) {
if (mask & (1 << i))
spi_ps_input |= S_0286CC_POS_X_FLOAT_ENA(1) << i;
}
if (gfx_state->adjust_frag_coord_z && info->ps.reads_frag_coord_mask & (1 << 2)) {
spi_ps_input |= S_0286CC_ANCILLARY_ENA(1);
}
}
if (info->ps.reads_sample_id || info->ps.reads_frag_shading_rate || info->ps.reads_sample_mask_in) {
spi_ps_input |= S_0286CC_ANCILLARY_ENA(1);
}
if (info->ps.reads_sample_mask_in || info->ps.reads_fully_covered) {
spi_ps_input |= S_0286CC_SAMPLE_COVERAGE_ENA(1);
}
if (G_0286CC_POS_W_FLOAT_ENA(spi_ps_input)) {
/* If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be enabled too */
spi_ps_input |= S_0286CC_PERSP_CENTER_ENA(1);
}
if (!(spi_ps_input & 0x7F)) {
/* At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled */
spi_ps_input |= S_0286CC_PERSP_CENTER_ENA(1);
}
return spi_ps_input;
}
const struct radv_userdata_info *
radv_get_user_sgpr(const struct radv_shader *shader, int idx)
{
return &shader->info.user_sgprs_locs.shader_data[idx];
}
VkResult
radv_dump_shader_stats(struct radv_device *device, struct radv_pipeline *pipeline, struct radv_shader *shader,
gl_shader_stage stage, FILE *output)
{
VkPipelineExecutablePropertiesKHR *props = NULL;
uint32_t prop_count = 0;
VkResult result;
VkPipelineInfoKHR pipeline_info = {0};
pipeline_info.sType = VK_STRUCTURE_TYPE_PIPELINE_INFO_KHR;
pipeline_info.pipeline = radv_pipeline_to_handle(pipeline);
result = radv_GetPipelineExecutablePropertiesKHR(radv_device_to_handle(device), &pipeline_info, &prop_count, NULL);
if (result != VK_SUCCESS)
return result;
props = calloc(prop_count, sizeof(*props));
if (!props)
return VK_ERROR_OUT_OF_HOST_MEMORY;
result = radv_GetPipelineExecutablePropertiesKHR(radv_device_to_handle(device), &pipeline_info, &prop_count, props);
if (result != VK_SUCCESS)
goto fail;
for (unsigned exec_idx = 0; exec_idx < prop_count; exec_idx++) {
if (!(props[exec_idx].stages & mesa_to_vk_shader_stage(stage)))
continue;
VkPipelineExecutableStatisticKHR *stats = NULL;
uint32_t stat_count = 0;
VkPipelineExecutableInfoKHR exec_info = {0};
exec_info.pipeline = radv_pipeline_to_handle(pipeline);
exec_info.executableIndex = exec_idx;
result = radv_GetPipelineExecutableStatisticsKHR(radv_device_to_handle(device), &exec_info, &stat_count, NULL);
if (result != VK_SUCCESS)
goto fail;
stats = calloc(stat_count, sizeof(*stats));
if (!stats) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto fail;
}
result = radv_GetPipelineExecutableStatisticsKHR(radv_device_to_handle(device), &exec_info, &stat_count, stats);
if (result != VK_SUCCESS) {
free(stats);
goto fail;
}
fprintf(output, "\n%s:\n", radv_get_shader_name(&shader->info, stage));
fprintf(output, "*** SHADER STATS ***\n");
for (unsigned i = 0; i < stat_count; i++) {
fprintf(output, "%s: ", stats[i].name);
switch (stats[i].format) {
case VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_BOOL32_KHR:
fprintf(output, "%s", stats[i].value.b32 == VK_TRUE ? "true" : "false");
break;
case VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_INT64_KHR:
fprintf(output, "%" PRIi64, stats[i].value.i64);
break;
case VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR:
fprintf(output, "%" PRIu64, stats[i].value.u64);
break;
case VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_FLOAT64_KHR:
fprintf(output, "%f", stats[i].value.f64);
break;
default:
unreachable("Invalid pipeline statistic format");
}
fprintf(output, "\n");
}
fprintf(output, "********************\n\n\n");
free(stats);
}
fail:
free(props);
return result;
}