mesa/src/amd/vulkan/radv_cp_dma.c

356 lines
12 KiB
C

/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based on si_state.c
* Copyright © 2015 Advanced Micro Devices, Inc.
*
* SPDX-License-Identifier: MIT
*/
#include "radv_cp_dma.h"
#include "radv_buffer.h"
#include "radv_cs.h"
#include "radv_debug.h"
#include "radv_shader.h"
#include "radv_sqtt.h"
#include "sid.h"
/* Set this if you want the 3D engine to wait until CP DMA is done.
* It should be set on the last CP DMA packet. */
#define CP_DMA_SYNC (1 << 0)
/* Set this if the source data was used as a destination in a previous CP DMA
* packet. It's for preventing a read-after-write (RAW) hazard between two
* CP DMA packets. */
#define CP_DMA_RAW_WAIT (1 << 1)
#define CP_DMA_USE_L2 (1 << 2)
#define CP_DMA_CLEAR (1 << 3)
/* Alignment for optimal performance. */
#define SI_CPDMA_ALIGNMENT 32
/* The max number of bytes that can be copied per packet. */
static inline unsigned
cp_dma_max_byte_count(enum amd_gfx_level gfx_level)
{
unsigned max = gfx_level >= GFX11 ? 32767
: gfx_level >= GFX9 ? S_415_BYTE_COUNT_GFX9(~0u)
: S_415_BYTE_COUNT_GFX6(~0u);
/* make it aligned for optimal performance */
return max & ~(SI_CPDMA_ALIGNMENT - 1);
}
/* Emit a CP DMA packet to do a copy from one buffer to another, or to clear
* a buffer. The size must fit in bits [20:0]. If CP_DMA_CLEAR is set, src_va is a 32-bit
* clear value.
*/
static void
radv_cs_emit_cp_dma(struct radv_device *device, struct radeon_cmdbuf *cs, bool predicating, uint64_t dst_va,
uint64_t src_va, unsigned size, unsigned flags)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
uint32_t header = 0, command = 0;
assert(size <= cp_dma_max_byte_count(pdev->info.gfx_level));
radeon_check_space(device->ws, cs, 9);
if (pdev->info.gfx_level >= GFX9)
command |= S_415_BYTE_COUNT_GFX9(size);
else
command |= S_415_BYTE_COUNT_GFX6(size);
/* Sync flags. */
if (flags & CP_DMA_SYNC)
header |= S_411_CP_SYNC(1);
if (flags & CP_DMA_RAW_WAIT)
command |= S_415_RAW_WAIT(1);
/* Src and dst flags. */
if (pdev->info.gfx_level >= GFX9 && !(flags & CP_DMA_CLEAR) && src_va == dst_va)
header |= S_411_DST_SEL(V_411_NOWHERE); /* prefetch only */
else if (flags & CP_DMA_USE_L2)
header |= S_411_DST_SEL(V_411_DST_ADDR_TC_L2);
if (flags & CP_DMA_CLEAR)
header |= S_411_SRC_SEL(V_411_DATA);
else if (flags & CP_DMA_USE_L2)
header |= S_411_SRC_SEL(V_411_SRC_ADDR_TC_L2);
if (pdev->info.gfx_level >= GFX7) {
radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, predicating));
radeon_emit(cs, header);
radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
radeon_emit(cs, src_va >> 32); /* SRC_ADDR_HI [31:0] */
radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
radeon_emit(cs, dst_va >> 32); /* DST_ADDR_HI [31:0] */
radeon_emit(cs, command);
} else {
assert(!(flags & CP_DMA_USE_L2));
header |= S_411_SRC_ADDR_HI(src_va >> 32);
radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, predicating));
radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
radeon_emit(cs, header); /* SRC_ADDR_HI [15:0] + flags. */
radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
radeon_emit(cs, (dst_va >> 32) & 0xffff); /* DST_ADDR_HI [15:0] */
radeon_emit(cs, command);
}
}
static void
radv_emit_cp_dma(struct radv_cmd_buffer *cmd_buffer, uint64_t dst_va, uint64_t src_va, unsigned size, unsigned flags)
{
struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
struct radeon_cmdbuf *cs = cmd_buffer->cs;
bool predicating = cmd_buffer->state.predicating;
radv_cs_emit_cp_dma(device, cs, predicating, dst_va, src_va, size, flags);
/* CP DMA is executed in ME, but index buffers are read by PFP.
* This ensures that ME (CP DMA) is idle before PFP starts fetching
* indices. If we wanted to execute CP DMA in PFP, this packet
* should precede it.
*/
if (flags & CP_DMA_SYNC) {
if (cmd_buffer->qf == RADV_QUEUE_GENERAL) {
radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, cmd_buffer->state.predicating));
radeon_emit(cs, 0);
}
/* CP will see the sync flag and wait for all DMAs to complete. */
cmd_buffer->state.dma_is_busy = false;
}
if (radv_device_fault_detection_enabled(device))
radv_cmd_buffer_trace_emit(cmd_buffer);
}
void
radv_cs_cp_dma_prefetch(const struct radv_device *device, struct radeon_cmdbuf *cs, uint64_t va, unsigned size,
bool predicating)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
struct radeon_winsys *ws = device->ws;
enum amd_gfx_level gfx_level = pdev->info.gfx_level;
uint32_t header = 0, command = 0;
if (gfx_level >= GFX11)
size = MIN2(size, 32768 - SI_CPDMA_ALIGNMENT);
assert(size <= cp_dma_max_byte_count(gfx_level));
radeon_check_space(ws, cs, 9);
uint64_t aligned_va = va & ~(SI_CPDMA_ALIGNMENT - 1);
uint64_t aligned_size = ((va + size + SI_CPDMA_ALIGNMENT - 1) & ~(SI_CPDMA_ALIGNMENT - 1)) - aligned_va;
if (gfx_level >= GFX9) {
command |= S_415_BYTE_COUNT_GFX9(aligned_size) | S_415_DISABLE_WR_CONFIRM_GFX9(1);
header |= S_411_DST_SEL(V_411_NOWHERE);
} else {
command |= S_415_BYTE_COUNT_GFX6(aligned_size) | S_415_DISABLE_WR_CONFIRM_GFX6(1);
header |= S_411_DST_SEL(V_411_DST_ADDR_TC_L2);
}
header |= S_411_SRC_SEL(V_411_SRC_ADDR_TC_L2);
radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, predicating));
radeon_emit(cs, header);
radeon_emit(cs, aligned_va); /* SRC_ADDR_LO [31:0] */
radeon_emit(cs, aligned_va >> 32); /* SRC_ADDR_HI [31:0] */
radeon_emit(cs, aligned_va); /* DST_ADDR_LO [31:0] */
radeon_emit(cs, aligned_va >> 32); /* DST_ADDR_HI [31:0] */
radeon_emit(cs, command);
}
void
radv_cp_dma_prefetch(struct radv_cmd_buffer *cmd_buffer, uint64_t va, unsigned size)
{
struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
radv_cs_cp_dma_prefetch(device, cmd_buffer->cs, va, size, cmd_buffer->state.predicating);
if (radv_device_fault_detection_enabled(device))
radv_cmd_buffer_trace_emit(cmd_buffer);
}
static void
radv_cp_dma_prepare(struct radv_cmd_buffer *cmd_buffer, uint64_t byte_count, uint64_t remaining_size, unsigned *flags)
{
/* Flush the caches for the first copy only.
* Also wait for the previous CP DMA operations.
*/
if (cmd_buffer->state.flush_bits) {
radv_emit_cache_flush(cmd_buffer);
*flags |= CP_DMA_RAW_WAIT;
}
/* Do the synchronization after the last dma, so that all data
* is written to memory.
*/
if (byte_count == remaining_size)
*flags |= CP_DMA_SYNC;
}
static void
radv_cp_dma_realign_engine(struct radv_cmd_buffer *cmd_buffer, unsigned size)
{
uint64_t va;
uint32_t offset;
unsigned dma_flags = 0;
unsigned buf_size = SI_CPDMA_ALIGNMENT * 2;
void *ptr;
assert(size < SI_CPDMA_ALIGNMENT);
radv_cmd_buffer_upload_alloc(cmd_buffer, buf_size, &offset, &ptr);
va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
va += offset;
radv_cp_dma_prepare(cmd_buffer, size, size, &dma_flags);
radv_emit_cp_dma(cmd_buffer, va, va + SI_CPDMA_ALIGNMENT, size, dma_flags);
}
void
radv_cp_dma_buffer_copy(struct radv_cmd_buffer *cmd_buffer, uint64_t src_va, uint64_t dest_va, uint64_t size)
{
struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
const struct radv_physical_device *pdev = radv_device_physical(device);
enum amd_gfx_level gfx_level = pdev->info.gfx_level;
uint64_t main_src_va, main_dest_va;
uint64_t skipped_size = 0, realign_size = 0;
/* Assume that we are not going to sync after the last DMA operation. */
cmd_buffer->state.dma_is_busy = true;
if (pdev->info.family <= CHIP_CARRIZO || pdev->info.family == CHIP_STONEY) {
/* If the size is not aligned, we must add a dummy copy at the end
* just to align the internal counter. Otherwise, the DMA engine
* would slow down by an order of magnitude for following copies.
*/
if (size % SI_CPDMA_ALIGNMENT)
realign_size = SI_CPDMA_ALIGNMENT - (size % SI_CPDMA_ALIGNMENT);
/* If the copy begins unaligned, we must start copying from the next
* aligned block and the skipped part should be copied after everything
* else has been copied. Only the src alignment matters, not dst.
*/
if (src_va % SI_CPDMA_ALIGNMENT) {
skipped_size = SI_CPDMA_ALIGNMENT - (src_va % SI_CPDMA_ALIGNMENT);
/* The main part will be skipped if the size is too small. */
skipped_size = MIN2(skipped_size, size);
size -= skipped_size;
}
}
main_src_va = src_va + skipped_size;
main_dest_va = dest_va + skipped_size;
while (size) {
unsigned dma_flags = 0;
unsigned byte_count = MIN2(size, cp_dma_max_byte_count(gfx_level));
if (pdev->info.gfx_level >= GFX9) {
/* DMA operations via L2 are coherent and faster.
* TODO: GFX7-GFX8 should also support this but it
* requires tests/benchmarks.
*
* Also enable on GFX9 so we can use L2 at rest on GFX9+. On Raven
* this didn't seem to be worse.
*
* Note that we only use CP DMA for sizes < RADV_BUFFER_OPS_CS_THRESHOLD,
* which is 4k at the moment, so this is really unlikely to cause
* significant thrashing.
*/
dma_flags |= CP_DMA_USE_L2;
}
radv_cp_dma_prepare(cmd_buffer, byte_count, size + skipped_size + realign_size, &dma_flags);
dma_flags &= ~CP_DMA_SYNC;
radv_emit_cp_dma(cmd_buffer, main_dest_va, main_src_va, byte_count, dma_flags);
size -= byte_count;
main_src_va += byte_count;
main_dest_va += byte_count;
}
if (skipped_size) {
unsigned dma_flags = 0;
radv_cp_dma_prepare(cmd_buffer, skipped_size, size + skipped_size + realign_size, &dma_flags);
radv_emit_cp_dma(cmd_buffer, dest_va, src_va, skipped_size, dma_flags);
}
if (realign_size)
radv_cp_dma_realign_engine(cmd_buffer, realign_size);
}
void
radv_cp_dma_clear_buffer(struct radv_cmd_buffer *cmd_buffer, uint64_t va, uint64_t size, unsigned value)
{
struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
const struct radv_physical_device *pdev = radv_device_physical(device);
if (!size)
return;
assert(va % 4 == 0 && size % 4 == 0);
enum amd_gfx_level gfx_level = pdev->info.gfx_level;
/* Assume that we are not going to sync after the last DMA operation. */
cmd_buffer->state.dma_is_busy = true;
while (size) {
unsigned byte_count = MIN2(size, cp_dma_max_byte_count(gfx_level));
unsigned dma_flags = CP_DMA_CLEAR;
if (pdev->info.gfx_level >= GFX9) {
/* DMA operations via L2 are coherent and faster.
* TODO: GFX7-GFX8 should also support this but it
* requires tests/benchmarks.
*
* Also enable on GFX9 so we can use L2 at rest on GFX9+.
*/
dma_flags |= CP_DMA_USE_L2;
}
radv_cp_dma_prepare(cmd_buffer, byte_count, size, &dma_flags);
/* Emit the clear packet. */
radv_emit_cp_dma(cmd_buffer, va, value, byte_count, dma_flags);
size -= byte_count;
va += byte_count;
}
}
void
radv_cp_dma_wait_for_idle(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_device *device = radv_cmd_buffer_device(cmd_buffer);
const struct radv_physical_device *pdev = radv_device_physical(device);
if (pdev->info.gfx_level < GFX7)
return;
if (!cmd_buffer->state.dma_is_busy)
return;
/* Issue a dummy DMA that copies zero bytes.
*
* The DMA engine will see that there's no work to do and skip this
* DMA request, however, the CP will see the sync flag and still wait
* for all DMAs to complete.
*/
radv_emit_cp_dma(cmd_buffer, 0, 0, 0, CP_DMA_SYNC);
cmd_buffer->state.dma_is_busy = false;
}