mesa/src/freedreno/ir3/ir3_a6xx.c

495 lines
18 KiB
C

/*
* Copyright (C) 2017-2018 Rob Clark <robclark@freedesktop.org>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Rob Clark <robclark@freedesktop.org>
*/
#define GPU 600
#include "ir3_context.h"
#include "ir3_image.h"
/*
* Handlers for instructions changed/added in a6xx:
*
* Starting with a6xx, isam and stbi is used for SSBOs as well; stbi and the
* atomic instructions (used for both SSBO and image) use a new instruction
* encoding compared to a4xx/a5xx.
*/
/* src[] = { buffer_index, offset }. No const_index */
static void
emit_intrinsic_load_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr,
struct ir3_instruction **dst)
{
struct ir3_block *b = ctx->block;
struct ir3_instruction *offset;
struct ir3_instruction *ldib;
offset = ir3_get_src(ctx, &intr->src[2])[0];
ldib = ir3_LDIB(b, ir3_ssbo_to_ibo(ctx, intr->src[0]), 0, offset, 0);
ldib->dsts[0]->wrmask = MASK(intr->num_components);
ldib->cat6.iim_val = intr->num_components;
ldib->cat6.d = 1;
ldib->cat6.type = intr->def.bit_size == 16 ? TYPE_U16 : TYPE_U32;
ldib->barrier_class = IR3_BARRIER_BUFFER_R;
ldib->barrier_conflict = IR3_BARRIER_BUFFER_W;
ir3_handle_bindless_cat6(ldib, intr->src[0]);
ir3_handle_nonuniform(ldib, intr);
ir3_split_dest(b, dst, ldib, 0, intr->num_components);
}
/* src[] = { value, block_index, offset }. const_index[] = { write_mask } */
static void
emit_intrinsic_store_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr)
{
struct ir3_block *b = ctx->block;
struct ir3_instruction *stib, *val, *offset;
unsigned wrmask = nir_intrinsic_write_mask(intr);
unsigned ncomp = ffs(~wrmask) - 1;
assert(wrmask == BITFIELD_MASK(intr->num_components));
/* src0 is offset, src1 is value:
*/
val = ir3_create_collect(b, ir3_get_src(ctx, &intr->src[0]), ncomp);
offset = ir3_get_src(ctx, &intr->src[3])[0];
stib = ir3_STIB(b, ir3_ssbo_to_ibo(ctx, intr->src[1]), 0, offset, 0, val, 0);
stib->cat6.iim_val = ncomp;
stib->cat6.d = 1;
stib->cat6.type = intr->src[0].ssa->bit_size == 16 ? TYPE_U16 : TYPE_U32;
stib->barrier_class = IR3_BARRIER_BUFFER_W;
stib->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
ir3_handle_bindless_cat6(stib, intr->src[1]);
ir3_handle_nonuniform(stib, intr);
array_insert(b, b->keeps, stib);
}
static struct ir3_instruction *
emit_atomic(struct ir3_block *b,
nir_atomic_op op,
struct ir3_instruction *ibo,
struct ir3_instruction *src0,
struct ir3_instruction *src1)
{
switch (op) {
case nir_atomic_op_iadd:
return ir3_ATOMIC_B_ADD(b, ibo, 0, src0, 0, src1, 0);
case nir_atomic_op_imin:
return ir3_ATOMIC_B_MIN(b, ibo, 0, src0, 0, src1, 0);
case nir_atomic_op_umin:
return ir3_ATOMIC_B_MIN(b, ibo, 0, src0, 0, src1, 0);
case nir_atomic_op_imax:
return ir3_ATOMIC_B_MAX(b, ibo, 0, src0, 0, src1, 0);
case nir_atomic_op_umax:
return ir3_ATOMIC_B_MAX(b, ibo, 0, src0, 0, src1, 0);
case nir_atomic_op_iand:
return ir3_ATOMIC_B_AND(b, ibo, 0, src0, 0, src1, 0);
case nir_atomic_op_ior:
return ir3_ATOMIC_B_OR(b, ibo, 0, src0, 0, src1, 0);
case nir_atomic_op_ixor:
return ir3_ATOMIC_B_XOR(b, ibo, 0, src0, 0, src1, 0);
case nir_atomic_op_xchg:
return ir3_ATOMIC_B_XCHG(b, ibo, 0, src0, 0, src1, 0);
case nir_atomic_op_cmpxchg:
return ir3_ATOMIC_B_CMPXCHG(b, ibo, 0, src0, 0, src1, 0);
default:
unreachable("boo");
}
}
/*
* SSBO atomic intrinsics
*
* All of the SSBO atomic memory operations read a value from memory,
* compute a new value using one of the operations below, write the new
* value to memory, and return the original value read.
*
* All operations take 3 sources except CompSwap that takes 4. These
* sources represent:
*
* 0: The SSBO buffer index.
* 1: The offset into the SSBO buffer of the variable that the atomic
* operation will operate on.
* 2: The data parameter to the atomic function (i.e. the value to add
* in, etc).
* 3: For CompSwap only: the second data parameter.
*/
static struct ir3_instruction *
emit_intrinsic_atomic_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr)
{
struct ir3_block *b = ctx->block;
struct ir3_instruction *atomic, *ibo, *src0, *src1, *data, *dummy;
nir_atomic_op op = nir_intrinsic_atomic_op(intr);
type_t type = nir_atomic_op_type(op) == nir_type_int ? TYPE_S32 : TYPE_U32;
ibo = ir3_ssbo_to_ibo(ctx, intr->src[0]);
data = ir3_get_src(ctx, &intr->src[2])[0];
/* So this gets a bit creative:
*
* src0 - vecN offset/coords
* src1.x - is actually destination register
* src1.y - is 'data' except for cmpxchg where src2.y is 'compare'
* src1.z - is 'data' for cmpxchg
*
* The combining src and dest kinda doesn't work out so well with how
* scheduling and RA work. So we create a dummy src2 which is tied to the
* destination in RA (i.e. must be allocated to the same vec2/vec3
* register) and then immediately extract the first component.
*
* Note that nir already multiplies the offset by four
*/
dummy = create_immed(b, 0);
if (op == nir_atomic_op_cmpxchg) {
src0 = ir3_get_src(ctx, &intr->src[4])[0];
struct ir3_instruction *compare = ir3_get_src(ctx, &intr->src[3])[0];
src1 = ir3_collect(b, dummy, compare, data);
} else {
src0 = ir3_get_src(ctx, &intr->src[3])[0];
src1 = ir3_collect(b, dummy, data);
}
atomic = emit_atomic(b, op, ibo, src0, src1);
atomic->cat6.iim_val = 1;
atomic->cat6.d = 1;
atomic->cat6.type = type;
atomic->barrier_class = IR3_BARRIER_BUFFER_W;
atomic->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
ir3_handle_bindless_cat6(atomic, intr->src[0]);
/* even if nothing consume the result, we can't DCE the instruction: */
array_insert(b, b->keeps, atomic);
atomic->dsts[0]->wrmask = src1->dsts[0]->wrmask;
ir3_reg_tie(atomic->dsts[0], atomic->srcs[2]);
ir3_handle_nonuniform(atomic, intr);
struct ir3_instruction *split;
ir3_split_dest(b, &split, atomic, 0, 1);
return split;
}
/* src[] = { deref, coord, sample_index }. const_index[] = {} */
static void
emit_intrinsic_load_image(struct ir3_context *ctx, nir_intrinsic_instr *intr,
struct ir3_instruction **dst)
{
struct ir3_block *b = ctx->block;
struct ir3_instruction *ldib;
struct ir3_instruction *const *coords = ir3_get_src(ctx, &intr->src[1]);
unsigned ncoords = ir3_get_image_coords(intr, NULL);
ldib = ir3_LDIB(b, ir3_image_to_ibo(ctx, intr->src[0]), 0,
ir3_create_collect(b, coords, ncoords), 0);
ldib->dsts[0]->wrmask = MASK(intr->num_components);
ldib->cat6.iim_val = intr->num_components;
ldib->cat6.d = ncoords;
ldib->cat6.type = ir3_get_type_for_image_intrinsic(intr);
ldib->cat6.typed = true;
ldib->barrier_class = IR3_BARRIER_IMAGE_R;
ldib->barrier_conflict = IR3_BARRIER_IMAGE_W;
ir3_handle_bindless_cat6(ldib, intr->src[0]);
ir3_handle_nonuniform(ldib, intr);
ir3_split_dest(b, dst, ldib, 0, intr->num_components);
}
/* src[] = { deref, coord, sample_index, value }. const_index[] = {} */
static void
emit_intrinsic_store_image(struct ir3_context *ctx, nir_intrinsic_instr *intr)
{
struct ir3_block *b = ctx->block;
struct ir3_instruction *stib;
struct ir3_instruction *const *value = ir3_get_src(ctx, &intr->src[3]);
struct ir3_instruction *const *coords = ir3_get_src(ctx, &intr->src[1]);
unsigned ncoords = ir3_get_image_coords(intr, NULL);
enum pipe_format format = nir_intrinsic_format(intr);
unsigned ncomp = ir3_get_num_components_for_image_format(format);
/* src0 is offset, src1 is value:
*/
stib = ir3_STIB(b, ir3_image_to_ibo(ctx, intr->src[0]), 0,
ir3_create_collect(b, coords, ncoords), 0,
ir3_create_collect(b, value, ncomp), 0);
stib->cat6.iim_val = ncomp;
stib->cat6.d = ncoords;
stib->cat6.type = ir3_get_type_for_image_intrinsic(intr);
stib->cat6.typed = true;
stib->barrier_class = IR3_BARRIER_IMAGE_W;
stib->barrier_conflict = IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W;
ir3_handle_bindless_cat6(stib, intr->src[0]);
ir3_handle_nonuniform(stib, intr);
array_insert(b, b->keeps, stib);
}
/* src[] = { deref, coord, sample_index, value, compare }. const_index[] = {} */
static struct ir3_instruction *
emit_intrinsic_atomic_image(struct ir3_context *ctx, nir_intrinsic_instr *intr)
{
struct ir3_block *b = ctx->block;
struct ir3_instruction *atomic, *ibo, *src0, *src1, *dummy;
struct ir3_instruction *const *coords = ir3_get_src(ctx, &intr->src[1]);
struct ir3_instruction *value = ir3_get_src(ctx, &intr->src[3])[0];
unsigned ncoords = ir3_get_image_coords(intr, NULL);
nir_atomic_op op = nir_intrinsic_atomic_op(intr);
ibo = ir3_image_to_ibo(ctx, intr->src[0]);
/* So this gets a bit creative:
*
* src0 - vecN offset/coords
* src1.x - is actually destination register
* src1.y - is 'value' except for cmpxchg where src2.y is 'compare'
* src1.z - is 'value' for cmpxchg
*
* The combining src and dest kinda doesn't work out so well with how
* scheduling and RA work. So we create a dummy src2 which is tied to the
* destination in RA (i.e. must be allocated to the same vec2/vec3
* register) and then immediately extract the first component.
*/
dummy = create_immed(b, 0);
src0 = ir3_create_collect(b, coords, ncoords);
if (op == nir_atomic_op_cmpxchg) {
struct ir3_instruction *compare = ir3_get_src(ctx, &intr->src[4])[0];
src1 = ir3_collect(b, dummy, compare, value);
} else {
src1 = ir3_collect(b, dummy, value);
}
atomic = emit_atomic(b, op, ibo, src0, src1);
atomic->cat6.iim_val = 1;
atomic->cat6.d = ncoords;
atomic->cat6.type = ir3_get_type_for_image_intrinsic(intr);
atomic->cat6.typed = true;
atomic->barrier_class = IR3_BARRIER_IMAGE_W;
atomic->barrier_conflict = IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W;
ir3_handle_bindless_cat6(atomic, intr->src[0]);
/* even if nothing consume the result, we can't DCE the instruction: */
array_insert(b, b->keeps, atomic);
atomic->dsts[0]->wrmask = src1->dsts[0]->wrmask;
ir3_reg_tie(atomic->dsts[0], atomic->srcs[2]);
ir3_handle_nonuniform(atomic, intr);
struct ir3_instruction *split;
ir3_split_dest(b, &split, atomic, 0, 1);
return split;
}
static void
emit_intrinsic_image_size(struct ir3_context *ctx, nir_intrinsic_instr *intr,
struct ir3_instruction **dst)
{
struct ir3_block *b = ctx->block;
struct ir3_instruction *ibo = ir3_image_to_ibo(ctx, intr->src[0]);
struct ir3_instruction *resinfo = ir3_RESINFO(b, ibo, 0);
resinfo->cat6.iim_val = 1;
resinfo->cat6.d = intr->num_components;
resinfo->cat6.type = TYPE_U32;
resinfo->cat6.typed = false;
/* resinfo has no writemask and always writes out 3 components: */
compile_assert(ctx, intr->num_components <= 3);
resinfo->dsts[0]->wrmask = MASK(3);
ir3_handle_bindless_cat6(resinfo, intr->src[0]);
ir3_handle_nonuniform(resinfo, intr);
ir3_split_dest(b, dst, resinfo, 0, intr->num_components);
}
static void
emit_intrinsic_load_global_ir3(struct ir3_context *ctx,
nir_intrinsic_instr *intr,
struct ir3_instruction **dst)
{
struct ir3_block *b = ctx->block;
unsigned dest_components = nir_intrinsic_dest_components(intr);
struct ir3_instruction *addr, *offset;
addr = ir3_collect(b, ir3_get_src(ctx, &intr->src[0])[0],
ir3_get_src(ctx, &intr->src[0])[1]);
struct ir3_instruction *load;
unsigned shift = ctx->compiler->gen >= 7 ? 2 : 0;
bool const_offset_in_bounds =
nir_src_is_const(intr->src[1]) &&
nir_src_as_int(intr->src[1]) < ((1 << 10) >> shift) &&
nir_src_as_int(intr->src[1]) > -((1 << 10) >> shift);
if (const_offset_in_bounds) {
load = ir3_LDG(b, addr, 0,
create_immed(b, nir_src_as_int(intr->src[1]) << shift),
0, create_immed(b, dest_components), 0);
} else {
offset = ir3_get_src(ctx, &intr->src[1])[0];
if (shift) {
/* A7XX TODO: Move to NIR for it to be properly optimized? */
offset = ir3_SHL_B(b, offset, 0, create_immed(b, shift), 0);
}
load =
ir3_LDG_A(b, addr, 0, offset, 0, create_immed(b, 0), 0,
create_immed(b, 0), 0, create_immed(b, dest_components), 0);
}
load->cat6.type = type_uint_size(intr->def.bit_size);
load->dsts[0]->wrmask = MASK(dest_components);
load->barrier_class = IR3_BARRIER_BUFFER_R;
load->barrier_conflict = IR3_BARRIER_BUFFER_W;
ir3_split_dest(b, dst, load, 0, dest_components);
}
static void
emit_intrinsic_store_global_ir3(struct ir3_context *ctx,
nir_intrinsic_instr *intr)
{
struct ir3_block *b = ctx->block;
struct ir3_instruction *value, *addr, *offset;
unsigned ncomp = nir_intrinsic_src_components(intr, 0);
addr = ir3_collect(b, ir3_get_src(ctx, &intr->src[1])[0],
ir3_get_src(ctx, &intr->src[1])[1]);
value = ir3_create_collect(b, ir3_get_src(ctx, &intr->src[0]), ncomp);
struct ir3_instruction *stg;
bool const_offset_in_bounds = nir_src_is_const(intr->src[2]) &&
nir_src_as_int(intr->src[2]) < (1 << 10) &&
nir_src_as_int(intr->src[2]) > -(1 << 10);
if (const_offset_in_bounds) {
stg = ir3_STG(b, addr, 0,
create_immed(b, nir_src_as_int(intr->src[2])), 0,
value, 0,
create_immed(b, ncomp), 0);
} else {
offset = ir3_get_src(ctx, &intr->src[2])[0];
if (ctx->compiler->gen >= 7) {
/* A7XX TODO: Move to NIR for it to be properly optimized? */
offset = ir3_SHL_B(b, offset, 0, create_immed(b, 2), 0);
}
stg =
ir3_STG_A(b, addr, 0, offset, 0, create_immed(b, 0), 0,
create_immed(b, 0), 0, value, 0, create_immed(b, ncomp), 0);
}
stg->cat6.type = type_uint_size(intr->src[0].ssa->bit_size);
stg->cat6.iim_val = 1;
array_insert(b, b->keeps, stg);
stg->barrier_class = IR3_BARRIER_BUFFER_W;
stg->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
}
static struct ir3_instruction *
emit_intrinsic_atomic_global(struct ir3_context *ctx, nir_intrinsic_instr *intr)
{
struct ir3_block *b = ctx->block;
struct ir3_instruction *addr, *atomic, *src1;
struct ir3_instruction *value = ir3_get_src(ctx, &intr->src[1])[0];
nir_atomic_op op = nir_intrinsic_atomic_op(intr);
type_t type = nir_atomic_op_type(op) == nir_type_int ? TYPE_S32 : TYPE_U32;
addr = ir3_collect(b, ir3_get_src(ctx, &intr->src[0])[0],
ir3_get_src(ctx, &intr->src[0])[1]);
if (op == nir_atomic_op_cmpxchg) {
struct ir3_instruction *compare = ir3_get_src(ctx, &intr->src[2])[0];
src1 = ir3_collect(b, compare, value);
} else {
src1 = value;
}
switch (op) {
case nir_atomic_op_iadd:
atomic = ir3_ATOMIC_G_ADD(b, addr, 0, src1, 0);
break;
case nir_atomic_op_imin:
atomic = ir3_ATOMIC_G_MIN(b, addr, 0, src1, 0);
type = TYPE_S32;
break;
case nir_atomic_op_umin:
atomic = ir3_ATOMIC_G_MIN(b, addr, 0, src1, 0);
break;
case nir_atomic_op_imax:
atomic = ir3_ATOMIC_G_MAX(b, addr, 0, src1, 0);
type = TYPE_S32;
break;
case nir_atomic_op_umax:
atomic = ir3_ATOMIC_G_MAX(b, addr, 0, src1, 0);
break;
case nir_atomic_op_iand:
atomic = ir3_ATOMIC_G_AND(b, addr, 0, src1, 0);
break;
case nir_atomic_op_ior:
atomic = ir3_ATOMIC_G_OR(b, addr, 0, src1, 0);
break;
case nir_atomic_op_ixor:
atomic = ir3_ATOMIC_G_XOR(b, addr, 0, src1, 0);
break;
case nir_atomic_op_xchg:
atomic = ir3_ATOMIC_G_XCHG(b, addr, 0, src1, 0);
break;
case nir_atomic_op_cmpxchg:
atomic = ir3_ATOMIC_G_CMPXCHG(b, addr, 0, src1, 0);
break;
default:
unreachable("Unknown global atomic op");
}
atomic->cat6.iim_val = 1;
atomic->cat6.d = 1;
atomic->cat6.type = type;
atomic->barrier_class = IR3_BARRIER_BUFFER_W;
atomic->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
/* even if nothing consume the result, we can't DCE the instruction: */
array_insert(b, b->keeps, atomic);
return atomic;
}
const struct ir3_context_funcs ir3_a6xx_funcs = {
.emit_intrinsic_load_ssbo = emit_intrinsic_load_ssbo,
.emit_intrinsic_store_ssbo = emit_intrinsic_store_ssbo,
.emit_intrinsic_atomic_ssbo = emit_intrinsic_atomic_ssbo,
.emit_intrinsic_load_image = emit_intrinsic_load_image,
.emit_intrinsic_store_image = emit_intrinsic_store_image,
.emit_intrinsic_atomic_image = emit_intrinsic_atomic_image,
.emit_intrinsic_image_size = emit_intrinsic_image_size,
.emit_intrinsic_load_global_ir3 = emit_intrinsic_load_global_ir3,
.emit_intrinsic_store_global_ir3 = emit_intrinsic_store_global_ir3,
.emit_intrinsic_atomic_global = emit_intrinsic_atomic_global,
};