mesa/src/freedreno/vulkan/tu_pass.cc

1291 lines
50 KiB
C++

/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
* SPDX-License-Identifier: MIT
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*/
#include "tu_pass.h"
#include "vk_util.h"
#include "vk_render_pass.h"
#include "tu_cmd_buffer.h"
#include "tu_device.h"
#include "tu_image.h"
static void
tu_render_pass_add_subpass_dep(struct tu_render_pass *pass,
const VkSubpassDependency2 *dep)
{
uint32_t src = dep->srcSubpass;
uint32_t dst = dep->dstSubpass;
/* Ignore subpass self-dependencies as they allow the app to call
* vkCmdPipelineBarrier() inside the render pass and the driver should only
* do the barrier when called, not when starting the render pass.
*
* We cannot decide whether to allow gmem rendering before a barrier
* is actually emitted, so we delay the decision until then.
*/
if (src == dst)
return;
/* From the Vulkan 1.2.195 spec:
*
* "If an instance of VkMemoryBarrier2 is included in the pNext chain, srcStageMask,
* dstStageMask, srcAccessMask, and dstAccessMask parameters are ignored. The synchronization
* and access scopes instead are defined by the parameters of VkMemoryBarrier2."
*/
const VkMemoryBarrier2 *barrier =
vk_find_struct_const(dep->pNext, MEMORY_BARRIER_2);
VkPipelineStageFlags2 src_stage_mask = barrier ? barrier->srcStageMask : dep->srcStageMask;
VkAccessFlags2 src_access_mask = barrier ? barrier->srcAccessMask : dep->srcAccessMask;
VkPipelineStageFlags2 dst_stage_mask = barrier ? barrier->dstStageMask : dep->dstStageMask;
VkAccessFlags2 dst_access_mask = barrier ? barrier->dstAccessMask : dep->dstAccessMask;
/* We can conceptually break down the process of rewriting a sysmem
* renderpass into a gmem one into two parts:
*
* 1. Split each draw and multisample resolve into N copies, one for each
* bin. (If hardware binning, add one more copy where the FS is disabled
* for the binning pass). This is always allowed because the vertex stage
* is allowed to run an arbitrary number of times and there are no extra
* ordering constraints within a draw.
* 2. Take the last copy of the second-to-last draw and slide it down to
* before the last copy of the last draw. Repeat for each earlier draw
* until the draw pass for the last bin is complete, then repeat for each
* earlier bin until we finish with the first bin.
*
* During this rearranging process, we can't slide draws past each other in
* a way that breaks the subpass dependencies. For each draw, we must slide
* it past (copies of) the rest of the draws in the renderpass. We can
* slide a draw past another if there isn't a dependency between them, or
* if the dependenc(ies) are dependencies between framebuffer-space stages
* only with the BY_REGION bit set. Note that this includes
* self-dependencies, since these may result in pipeline barriers that also
* break the rearranging process.
*/
if (!vk_subpass_dependency_is_fb_local(dep, src_stage_mask, dst_stage_mask)) {
perf_debug((struct tu_device *)pass->base.device, "Disabling gmem rendering due to invalid subpass dependency");
for (int i = 0; i < ARRAY_SIZE(pass->gmem_pixels); i++)
pass->gmem_pixels[i] = 0;
}
struct tu_subpass_barrier *dst_barrier;
if (dst == VK_SUBPASS_EXTERNAL) {
dst_barrier = &pass->end_barrier;
} else {
dst_barrier = &pass->subpasses[dst].start_barrier;
}
dst_barrier->src_stage_mask |= src_stage_mask;
dst_barrier->dst_stage_mask |= dst_stage_mask;
dst_barrier->src_access_mask |= src_access_mask;
dst_barrier->dst_access_mask |= dst_access_mask;
}
/* We currently only care about undefined layouts, because we have to
* flush/invalidate CCU for those. PREINITIALIZED is the same thing as
* UNDEFINED for anything not linear tiled, but we don't know yet whether the
* images used are tiled, so just assume they are.
*/
static bool
layout_undefined(VkImageLayout layout)
{
return layout == VK_IMAGE_LAYOUT_UNDEFINED ||
layout == VK_IMAGE_LAYOUT_PREINITIALIZED;
}
/* This implements the following bit of spec text:
*
* If there is no subpass dependency from VK_SUBPASS_EXTERNAL to the
* first subpass that uses an attachment, then an implicit subpass
* dependency exists from VK_SUBPASS_EXTERNAL to the first subpass it is
* used in. The implicit subpass dependency only exists if there
* exists an automatic layout transition away from initialLayout.
* The subpass dependency operates as if defined with the
* following parameters:
*
* VkSubpassDependency implicitDependency = {
* .srcSubpass = VK_SUBPASS_EXTERNAL;
* .dstSubpass = firstSubpass; // First subpass attachment is used in
* .srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
* .dstStageMask = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
* .srcAccessMask = 0;
* .dstAccessMask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT |
* VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
* VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
* VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
* VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
* .dependencyFlags = 0;
* };
*
* Similarly, if there is no subpass dependency from the last subpass
* that uses an attachment to VK_SUBPASS_EXTERNAL, then an implicit
* subpass dependency exists from the last subpass it is used in to
* VK_SUBPASS_EXTERNAL. The implicit subpass dependency only exists
* if there exists an automatic layout transition into finalLayout.
* The subpass dependency operates as if defined with the following
* parameters:
*
* VkSubpassDependency implicitDependency = {
* .srcSubpass = lastSubpass; // Last subpass attachment is used in
* .dstSubpass = VK_SUBPASS_EXTERNAL;
* .srcStageMask = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
* .dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
* .srcAccessMask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT |
* VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
* VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
* VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
* VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
* .dstAccessMask = 0;
* .dependencyFlags = 0;
* };
*
* Note: currently this is the only use we have for layout transitions,
* besides needing to invalidate CCU at the beginning, so we also flag
* transitions from UNDEFINED here.
*/
static void
tu_render_pass_add_implicit_deps(struct tu_render_pass *pass,
const VkRenderPassCreateInfo2 *info)
{
const VkAttachmentDescription2* att = info->pAttachments;
bool has_external_src[info->subpassCount];
bool has_external_dst[info->subpassCount];
bool att_used[pass->attachment_count];
memset(has_external_src, 0, sizeof(has_external_src));
memset(has_external_dst, 0, sizeof(has_external_dst));
for (uint32_t i = 0; i < info->dependencyCount; i++) {
uint32_t src = info->pDependencies[i].srcSubpass;
uint32_t dst = info->pDependencies[i].dstSubpass;
if (src == dst)
continue;
if (src == VK_SUBPASS_EXTERNAL)
has_external_src[dst] = true;
if (dst == VK_SUBPASS_EXTERNAL)
has_external_dst[src] = true;
}
memset(att_used, 0, sizeof(att_used));
for (unsigned i = 0; i < info->subpassCount; i++) {
const VkSubpassDescription2 *subpass = &info->pSubpasses[i];
bool src_implicit_dep = false;
for (unsigned j = 0; j < subpass->inputAttachmentCount; j++) {
uint32_t a = subpass->pInputAttachments[j].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
uint32_t stencil_layout = vk_format_has_stencil(att[a].format) ?
vk_att_ref_stencil_layout(&subpass->pInputAttachments[j], att) :
VK_IMAGE_LAYOUT_UNDEFINED;
uint32_t stencil_initial_layout = vk_att_desc_stencil_layout(&att[a], false);
if ((att[a].initialLayout != subpass->pInputAttachments[j].layout ||
stencil_initial_layout != stencil_layout) &&
!att_used[a] && !has_external_src[i])
src_implicit_dep = true;
att_used[a] = true;
}
for (unsigned j = 0; j < subpass->colorAttachmentCount; j++) {
uint32_t a = subpass->pColorAttachments[j].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
if (att[a].initialLayout != subpass->pColorAttachments[j].layout &&
!att_used[a] && !has_external_src[i])
src_implicit_dep = true;
att_used[a] = true;
}
if (subpass->pDepthStencilAttachment &&
subpass->pDepthStencilAttachment->attachment != VK_ATTACHMENT_UNUSED) {
uint32_t a = subpass->pDepthStencilAttachment->attachment;
uint32_t stencil_layout = vk_att_ref_stencil_layout(subpass->pDepthStencilAttachment, att);
uint32_t stencil_initial_layout = vk_att_desc_stencil_layout(&att[a], false);
if ((att[a].initialLayout != subpass->pDepthStencilAttachment->layout ||
stencil_initial_layout != stencil_layout) &&
!att_used[a] && !has_external_src[i]) {
src_implicit_dep = true;
}
att_used[a] = true;
}
if (subpass->pResolveAttachments) {
for (unsigned j = 0; j < subpass->colorAttachmentCount; j++) {
uint32_t a = subpass->pResolveAttachments[j].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
if (att[a].initialLayout != subpass->pResolveAttachments[j].layout &&
!att_used[a] && !has_external_src[i])
src_implicit_dep = true;
att_used[a] = true;
}
}
const VkSubpassDescriptionDepthStencilResolve *ds_resolve =
vk_find_struct_const(subpass->pNext, SUBPASS_DESCRIPTION_DEPTH_STENCIL_RESOLVE);
if (ds_resolve && ds_resolve->pDepthStencilResolveAttachment &&
ds_resolve->pDepthStencilResolveAttachment->attachment != VK_ATTACHMENT_UNUSED) {
uint32_t a = ds_resolve->pDepthStencilResolveAttachment->attachment;
uint32_t stencil_layout = vk_att_ref_stencil_layout(ds_resolve->pDepthStencilResolveAttachment, att);
uint32_t stencil_initial_layout = vk_att_desc_stencil_layout(&att[a], false);
if ((att[a].initialLayout != subpass->pDepthStencilAttachment->layout ||
stencil_initial_layout != stencil_layout) &&
!att_used[a] && !has_external_src[i])
src_implicit_dep = true;
att_used[a] = true;
}
if (src_implicit_dep) {
const VkSubpassDependency2 dep = {
.srcSubpass = VK_SUBPASS_EXTERNAL,
.dstSubpass = i,
.srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
.dstStageMask = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
.srcAccessMask = 0,
.dstAccessMask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,
.dependencyFlags = 0,
};
tu_render_pass_add_subpass_dep(pass, &dep);
}
}
memset(att_used, 0, sizeof(att_used));
for (int i = info->subpassCount - 1; i >= 0; i--) {
const VkSubpassDescription2 *subpass = &info->pSubpasses[i];
bool dst_implicit_dep = false;
for (unsigned j = 0; j < subpass->inputAttachmentCount; j++) {
uint32_t a = subpass->pInputAttachments[j].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
uint32_t stencil_layout = vk_format_has_stencil(att[a].format) ?
vk_att_ref_stencil_layout(&subpass->pInputAttachments[j], att) :
VK_IMAGE_LAYOUT_UNDEFINED;
uint32_t stencil_final_layout = vk_att_desc_stencil_layout(&att[a], true);
if ((att[a].finalLayout != subpass->pInputAttachments[j].layout ||
stencil_final_layout != stencil_layout) &&
!att_used[a] && !has_external_dst[i])
dst_implicit_dep = true;
att_used[a] = true;
}
for (unsigned j = 0; j < subpass->colorAttachmentCount; j++) {
uint32_t a = subpass->pColorAttachments[j].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
if (att[a].finalLayout != subpass->pColorAttachments[j].layout &&
!att_used[a] && !has_external_dst[i])
dst_implicit_dep = true;
att_used[a] = true;
}
if (subpass->pDepthStencilAttachment &&
subpass->pDepthStencilAttachment->attachment != VK_ATTACHMENT_UNUSED) {
uint32_t a = subpass->pDepthStencilAttachment->attachment;
uint32_t stencil_layout = vk_att_ref_stencil_layout(subpass->pDepthStencilAttachment, att);
uint32_t stencil_final_layout = vk_att_desc_stencil_layout(&att[a], true);
if ((att[a].finalLayout != subpass->pDepthStencilAttachment->layout ||
stencil_final_layout != stencil_layout) &&
!att_used[a] && !has_external_dst[i]) {
dst_implicit_dep = true;
}
att_used[a] = true;
}
if (subpass->pResolveAttachments) {
for (unsigned j = 0; j < subpass->colorAttachmentCount; j++) {
uint32_t a = subpass->pResolveAttachments[j].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
if (att[a].finalLayout != subpass->pResolveAttachments[j].layout &&
!att_used[a] && !has_external_dst[i])
dst_implicit_dep = true;
att_used[a] = true;
}
}
const VkSubpassDescriptionDepthStencilResolve *ds_resolve =
vk_find_struct_const(subpass->pNext, SUBPASS_DESCRIPTION_DEPTH_STENCIL_RESOLVE);
if (ds_resolve && ds_resolve->pDepthStencilResolveAttachment &&
ds_resolve->pDepthStencilResolveAttachment->attachment != VK_ATTACHMENT_UNUSED) {
uint32_t a = ds_resolve->pDepthStencilResolveAttachment->attachment;
uint32_t stencil_layout = vk_att_ref_stencil_layout(ds_resolve->pDepthStencilResolveAttachment, att);
uint32_t stencil_final_layout = vk_att_desc_stencil_layout(&att[a], true);
if ((att[a].finalLayout != subpass->pDepthStencilAttachment->layout ||
stencil_final_layout != stencil_layout) &&
!att_used[a] && !has_external_src[i])
dst_implicit_dep = true;
att_used[a] = true;
}
if (dst_implicit_dep) {
VkSubpassDependency2 dep = {
.srcSubpass = i,
.dstSubpass = VK_SUBPASS_EXTERNAL,
.srcStageMask = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
.dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
.srcAccessMask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,
.dstAccessMask = 0,
.dependencyFlags = 0,
};
tu_render_pass_add_subpass_dep(pass, &dep);
}
}
/* Handle UNDEFINED transitions, similar to the handling in tu_barrier().
* Assume that if an attachment has an initial layout of UNDEFINED, it gets
* transitioned eventually.
*/
for (unsigned i = 0; i < info->attachmentCount; i++) {
if (layout_undefined(att[i].initialLayout)) {
if (vk_format_is_depth_or_stencil(att[i].format)) {
pass->subpasses[0].start_barrier.incoherent_ccu_depth = true;
} else {
pass->subpasses[0].start_barrier.incoherent_ccu_color = true;
}
}
}
}
/* If an input attachment is used without an intervening write to the same
* attachment, then we can just use the original image, even in GMEM mode.
* This is an optimization, but it's also important because it allows us to
* avoid having to invalidate UCHE at the beginning of each tile due to it
* becoming invalid. The only reads of GMEM via UCHE should be after an
* earlier subpass modified it, which only works if there's already an
* appropriate dependency that will add the CACHE_INVALIDATE anyway. We
* don't consider this in the dependency code, so this is also required for
* correctness.
*/
static void
tu_render_pass_patch_input_gmem(struct tu_render_pass *pass)
{
bool written[pass->attachment_count];
memset(written, 0, sizeof(written));
for (unsigned i = 0; i < pass->subpass_count; i++) {
struct tu_subpass *subpass = &pass->subpasses[i];
for (unsigned j = 0; j < subpass->input_count; j++) {
uint32_t a = subpass->input_attachments[j].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
subpass->input_attachments[j].patch_input_gmem = written[a];
}
for (unsigned j = 0; j < subpass->color_count; j++) {
uint32_t a = subpass->color_attachments[j].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
written[a] = true;
for (unsigned k = 0; k < subpass->input_count; k++) {
if (subpass->input_attachments[k].attachment == a &&
!subpass->input_attachments[k].patch_input_gmem) {
/* For render feedback loops, we have no idea whether the use
* as a color attachment or input attachment will come first,
* so we have to always use GMEM in case the color attachment
* comes first and defensively invalidate UCHE in case the
* input attachment comes first.
*/
subpass->feedback_invalidate = true;
subpass->input_attachments[k].patch_input_gmem = true;
}
}
}
for (unsigned j = 0; j < subpass->resolve_count; j++) {
uint32_t a = subpass->resolve_attachments[j].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
written[a] = true;
}
if (subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED) {
written[subpass->depth_stencil_attachment.attachment] = true;
for (unsigned k = 0; k < subpass->input_count; k++) {
if (subpass->input_attachments[k].attachment ==
subpass->depth_stencil_attachment.attachment &&
!subpass->input_attachments[k].patch_input_gmem) {
subpass->feedback_invalidate = true;
subpass->input_attachments[k].patch_input_gmem = true;
}
}
}
}
}
static void
tu_render_pass_check_feedback_loop(struct tu_render_pass *pass)
{
for (unsigned i = 0; i < pass->subpass_count; i++) {
struct tu_subpass *subpass = &pass->subpasses[i];
for (unsigned j = 0; j < subpass->color_count; j++) {
uint32_t a = subpass->color_attachments[j].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
for (unsigned k = 0; k < subpass->input_count; k++) {
if (subpass->input_attachments[k].attachment == a) {
subpass->feedback_loop_color = true;
break;
}
}
}
if (subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED) {
for (unsigned k = 0; k < subpass->input_count; k++) {
if (subpass->input_attachments[k].attachment ==
subpass->depth_stencil_attachment.attachment) {
subpass->feedback_loop_ds = true;
break;
}
}
}
}
}
static void update_samples(struct tu_subpass *subpass,
VkSampleCountFlagBits samples)
{
assert(subpass->samples == 0 || subpass->samples == samples);
subpass->samples = samples;
}
static void
tu_render_pass_calc_views(struct tu_render_pass *pass)
{
uint32_t view_mask = 0;
for (unsigned i = 0; i < pass->subpass_count; i++)
view_mask |= pass->subpasses[i].multiview_mask;
pass->num_views = util_last_bit(view_mask);
}
/* If there are any multisample attachments with a load op other than
* clear/don't-care/none and store op other than don't-care/none, then we'd
* have to load/store a scaled multisample image which doesn't make much
* sense. Just disable fragment_density_map in this case.
*/
static bool
tu_render_pass_disable_fdm(struct tu_render_pass *pass)
{
for (uint32_t i = 0; i < pass->attachment_count; i++) {
struct tu_render_pass_attachment *att = &pass->attachments[i];
if (att->samples > 1 &&
(att->load || att->load_stencil ||
att->store || att->store_stencil)) {
return true;
}
}
return false;
}
static void
tu_render_pass_calc_hash(struct tu_render_pass *pass)
{
#define HASH(hash, data) XXH64(&(data), sizeof(data), hash)
uint64_t hash = HASH(0, pass->attachment_count);
hash = XXH64(pass->attachments,
pass->attachment_count * sizeof(pass->attachments[0]), hash);
hash = HASH(hash, pass->subpass_count);
for (unsigned i = 0; i < pass->subpass_count; i++) {
hash = HASH(hash, pass->subpasses[i].samples);
hash = HASH(hash, pass->subpasses[i].input_count);
hash = HASH(hash, pass->subpasses[i].color_count);
hash = HASH(hash, pass->subpasses[i].resolve_count);
}
pass->autotune_hash = hash;
#undef HASH
}
static void
tu_render_pass_cond_config(struct tu_render_pass *pass)
{
for (uint32_t i = 0; i < pass->attachment_count; i++) {
struct tu_render_pass_attachment *att = &pass->attachments[i];
/* When there is no geometry in a tile, and there is no other operations to
* read/write the tile, we can skip load/store.
*
* The only other operations are clear and resolve, which disable
* conditional load/store.
*/
att->cond_load_allowed =
(att->load || att->load_stencil) && !att->clear_mask && !att->will_be_resolved;
att->cond_store_allowed =
(att->store || att->store_stencil) && !att->clear_mask;
pass->has_cond_load_store |=
att->cond_load_allowed | att->cond_store_allowed;
}
}
static void
tu_render_pass_gmem_config(struct tu_render_pass *pass,
const struct tu_physical_device *phys_dev)
{
for (enum tu_gmem_layout layout = (enum tu_gmem_layout) 0;
layout < TU_GMEM_LAYOUT_COUNT;
layout = (enum tu_gmem_layout)(layout + 1)) {
/* log2(gmem_align/(tile_align_w*tile_align_h)) */
uint32_t block_align_shift = 3;
uint32_t tile_align_w = phys_dev->info->tile_align_w;
uint32_t gmem_align = (1 << block_align_shift) * tile_align_w *
phys_dev->info->tile_align_h;
/* calculate total bytes per pixel */
uint32_t cpp_total = 0;
uint32_t min_cpp = UINT32_MAX;
for (uint32_t i = 0; i < pass->attachment_count; i++) {
struct tu_render_pass_attachment *att = &pass->attachments[i];
bool cpp1 = (att->cpp == 1);
if (att->gmem) {
cpp_total += att->cpp;
min_cpp = MIN2(min_cpp, att->cpp);
/* take into account the separate stencil: */
if (att->format == VK_FORMAT_D32_SFLOAT_S8_UINT) {
min_cpp = MIN2(min_cpp, att->samples);
cpp1 = (att->samples == 1);
cpp_total += att->samples;
}
/* texture pitch must be aligned to 64, use a tile_align_w that is
* a multiple of 64 for cpp==1 attachment to work as input
* attachment
*/
if (cpp1 && tile_align_w % 64 != 0) {
tile_align_w *= 2;
block_align_shift -= 1;
}
}
}
pass->tile_align_w = tile_align_w;
pass->min_cpp = min_cpp;
/* no gmem attachments */
if (cpp_total == 0) {
/* any value non-zero value so tiling config works with no
* attachments
*/
pass->gmem_pixels[layout] = 1024 * 1024;
continue;
}
/* TODO: this algorithm isn't optimal
* for example, two attachments with cpp = {1, 4}
* result: nblocks = {12, 52}, pixels = 196608
* optimal: nblocks = {13, 51}, pixels = 208896
*/
uint32_t gmem_size = layout == TU_GMEM_LAYOUT_FULL
? phys_dev->usable_gmem_size_gmem
: phys_dev->ccu_offset_gmem;
uint32_t gmem_blocks = gmem_size / gmem_align;
uint32_t offset = 0, pixels = ~0u, i;
for (i = 0; i < pass->attachment_count; i++) {
struct tu_render_pass_attachment *att = &pass->attachments[i];
if (!att->gmem)
continue;
att->gmem_offset[layout] = offset;
uint32_t align = MAX2(1, att->cpp >> block_align_shift);
uint32_t nblocks =
MAX2((gmem_blocks * att->cpp / cpp_total) & ~(align - 1), align);
if (nblocks > gmem_blocks)
break;
gmem_blocks -= nblocks;
cpp_total -= att->cpp;
offset += nblocks * gmem_align;
pixels = MIN2(pixels, nblocks * gmem_align / att->cpp);
/* repeat the same for separate stencil */
if (att->format == VK_FORMAT_D32_SFLOAT_S8_UINT) {
att->gmem_offset_stencil[layout] = offset;
/* note: for s8_uint, block align is always 1 */
uint32_t nblocks = gmem_blocks * att->samples / cpp_total;
if (nblocks > gmem_blocks)
break;
gmem_blocks -= nblocks;
cpp_total -= att->samples;
offset += nblocks * gmem_align;
pixels = MIN2(pixels, nblocks * gmem_align / att->samples);
}
}
/* if the loop didn't complete then the gmem config is impossible */
if (i == pass->attachment_count)
pass->gmem_pixels[layout] = pixels;
}
}
static void
tu_render_pass_bandwidth_config(struct tu_render_pass *pass)
{
pass->gmem_bandwidth_per_pixel = 0;
pass->sysmem_bandwidth_per_pixel = 0;
for (uint32_t i = 0; i < pass->attachment_count; i++) {
const struct tu_render_pass_attachment *att = &pass->attachments[i];
/* approximate tu_load_gmem_attachment */
if (att->load)
pass->gmem_bandwidth_per_pixel += att->cpp;
/* approximate tu_store_gmem_attachment */
if (att->store)
pass->gmem_bandwidth_per_pixel += att->cpp;
/* approximate tu_clear_sysmem_attachment */
if (att->clear_mask)
pass->sysmem_bandwidth_per_pixel += att->cpp;
/* approximate tu6_emit_sysmem_resolves */
if (att->will_be_resolved) {
pass->sysmem_bandwidth_per_pixel +=
att->cpp + att->cpp / att->samples;
}
}
}
static void
attachment_set_ops(struct tu_device *device,
struct tu_render_pass_attachment *att,
VkAttachmentLoadOp load_op,
VkAttachmentLoadOp stencil_load_op,
VkAttachmentStoreOp store_op,
VkAttachmentStoreOp stencil_store_op)
{
if (unlikely(device->instance->dont_care_as_load)) {
if (load_op == VK_ATTACHMENT_LOAD_OP_DONT_CARE)
load_op = VK_ATTACHMENT_LOAD_OP_LOAD;
if (stencil_load_op == VK_ATTACHMENT_LOAD_OP_DONT_CARE)
stencil_load_op = VK_ATTACHMENT_LOAD_OP_LOAD;
}
/* load/store ops */
att->clear_mask =
(load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) ? VK_IMAGE_ASPECT_COLOR_BIT : 0;
att->load = (load_op == VK_ATTACHMENT_LOAD_OP_LOAD);
att->store = (store_op == VK_ATTACHMENT_STORE_OP_STORE);
bool stencil_clear = (stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR);
bool stencil_load = (stencil_load_op == VK_ATTACHMENT_LOAD_OP_LOAD);
bool stencil_store = (stencil_store_op == VK_ATTACHMENT_STORE_OP_STORE);
switch (att->format) {
case VK_FORMAT_D24_UNORM_S8_UINT: /* || stencil load/store */
if (att->clear_mask)
att->clear_mask = VK_IMAGE_ASPECT_DEPTH_BIT;
if (stencil_clear)
att->clear_mask |= VK_IMAGE_ASPECT_STENCIL_BIT;
if (stencil_load)
att->load = true;
if (stencil_store)
att->store = true;
break;
case VK_FORMAT_S8_UINT: /* replace load/store with stencil load/store */
att->clear_mask = stencil_clear ? VK_IMAGE_ASPECT_COLOR_BIT : 0;
att->load = stencil_load;
att->store = stencil_store;
break;
case VK_FORMAT_D32_SFLOAT_S8_UINT: /* separate stencil */
if (att->clear_mask)
att->clear_mask = VK_IMAGE_ASPECT_DEPTH_BIT;
if (stencil_clear)
att->clear_mask |= VK_IMAGE_ASPECT_STENCIL_BIT;
if (stencil_load)
att->load_stencil = true;
if (stencil_store)
att->store_stencil = true;
break;
default:
break;
}
}
static bool
is_depth_stencil_resolve_enabled(const VkSubpassDescriptionDepthStencilResolve *depth_stencil_resolve)
{
if (depth_stencil_resolve &&
depth_stencil_resolve->pDepthStencilResolveAttachment &&
depth_stencil_resolve->pDepthStencilResolveAttachment->attachment != VK_ATTACHMENT_UNUSED) {
return true;
}
return false;
}
static void
tu_subpass_use_attachment(struct tu_render_pass *pass, int i, uint32_t a, const VkRenderPassCreateInfo2 *pCreateInfo)
{
struct tu_subpass *subpass = &pass->subpasses[i];
struct tu_render_pass_attachment *att = &pass->attachments[a];
att->gmem = true;
update_samples(subpass, pCreateInfo->pAttachments[a].samples);
att->clear_views |= subpass->multiview_mask;
/* Loads and clears are emitted at the start of the subpass that needs them. */
att->first_subpass_idx = MIN2(i, att->first_subpass_idx);
/* Stores are emitted at vkEndRenderPass() time. */
if (att->store || att->store_stencil)
att->last_subpass_idx = pass->subpass_count - 1;
else
att->last_subpass_idx = MAX2(i, att->last_subpass_idx);
}
static void
tu_subpass_resolve_attachment(struct tu_render_pass *pass, int i, uint32_t dst_a, uint32_t src_a)
{
if (src_a != VK_ATTACHMENT_UNUSED && dst_a != VK_ATTACHMENT_UNUSED) {
struct tu_render_pass_attachment *src_att = &pass->attachments[src_a];
struct tu_render_pass_attachment *dst_att = &pass->attachments[dst_a];
src_att->will_be_resolved = true;
src_att->first_subpass_idx = MIN2(i, src_att->first_subpass_idx);
src_att->last_subpass_idx = MAX2(i, src_att->last_subpass_idx);
dst_att->first_subpass_idx = MIN2(i, dst_att->first_subpass_idx);
dst_att->last_subpass_idx = MAX2(i, dst_att->last_subpass_idx);
}
}
VKAPI_ATTR VkResult VKAPI_CALL
tu_CreateRenderPass2(VkDevice _device,
const VkRenderPassCreateInfo2 *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkRenderPass *pRenderPass)
{
VK_FROM_HANDLE(tu_device, device, _device);
if (TU_DEBUG(DYNAMIC))
return vk_common_CreateRenderPass2(_device, pCreateInfo, pAllocator,
pRenderPass);
struct tu_render_pass *pass;
size_t size;
size_t attachments_offset;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO_2);
size = sizeof(*pass);
size += pCreateInfo->subpassCount * sizeof(pass->subpasses[0]);
attachments_offset = size;
size += pCreateInfo->attachmentCount * sizeof(pass->attachments[0]);
pass = (struct tu_render_pass *) vk_object_zalloc(
&device->vk, pAllocator, size, VK_OBJECT_TYPE_RENDER_PASS);
if (pass == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
pass->attachment_count = pCreateInfo->attachmentCount;
pass->subpass_count = pCreateInfo->subpassCount;
pass->attachments =
(struct tu_render_pass_attachment *) ((char *) pass +
attachments_offset);
for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
struct tu_render_pass_attachment *att = &pass->attachments[i];
att->format = pCreateInfo->pAttachments[i].format;
att->samples = pCreateInfo->pAttachments[i].samples;
/* for d32s8, cpp is for the depth image, and
* att->samples will be used as the cpp for the stencil image
*/
if (att->format == VK_FORMAT_D32_SFLOAT_S8_UINT)
att->cpp = 4 * att->samples;
else
att->cpp = vk_format_get_blocksize(att->format) * att->samples;
/* Initially not allocated into gmem, tu_subpass_use_attachment() will move it there. */
att->gmem = false;
VkAttachmentLoadOp loadOp = pCreateInfo->pAttachments[i].loadOp;
VkAttachmentLoadOp stencilLoadOp = pCreateInfo->pAttachments[i].stencilLoadOp;
attachment_set_ops(device, att, loadOp, stencilLoadOp,
pCreateInfo->pAttachments[i].storeOp,
pCreateInfo->pAttachments[i].stencilStoreOp);
att->first_subpass_idx = VK_SUBPASS_EXTERNAL;
att->last_subpass_idx = 0;
}
uint32_t subpass_attachment_count = 0;
struct tu_subpass_attachment *p;
for (uint32_t i = 0; i < pCreateInfo->subpassCount; i++) {
const VkSubpassDescription2 *desc = &pCreateInfo->pSubpasses[i];
const VkSubpassDescriptionDepthStencilResolve *ds_resolve =
vk_find_struct_const(desc->pNext, SUBPASS_DESCRIPTION_DEPTH_STENCIL_RESOLVE);
subpass_attachment_count +=
desc->inputAttachmentCount + desc->colorAttachmentCount +
(desc->pResolveAttachments ? desc->colorAttachmentCount : 0) +
(is_depth_stencil_resolve_enabled(ds_resolve) ? 1 : 0);
}
if (subpass_attachment_count) {
pass->subpass_attachments = (struct tu_subpass_attachment *) vk_alloc2(
&device->vk.alloc, pAllocator,
subpass_attachment_count * sizeof(struct tu_subpass_attachment), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (pass->subpass_attachments == NULL) {
vk_object_free(&device->vk, pAllocator, pass);
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
}
} else
pass->subpass_attachments = NULL;
const VkRenderPassFragmentDensityMapCreateInfoEXT *fdm_info =
vk_find_struct_const(pCreateInfo->pNext,
RENDER_PASS_FRAGMENT_DENSITY_MAP_CREATE_INFO_EXT);
if (fdm_info && !tu_render_pass_disable_fdm(pass)) {
pass->fragment_density_map.attachment =
fdm_info->fragmentDensityMapAttachment.attachment;
pass->has_fdm = true;
} else {
pass->fragment_density_map.attachment = VK_ATTACHMENT_UNUSED;
}
if (TU_DEBUG(FDM) && !tu_render_pass_disable_fdm(pass))
pass->has_fdm = true;
p = pass->subpass_attachments;
for (uint32_t i = 0; i < pCreateInfo->subpassCount; i++) {
const VkSubpassDescription2 *desc = &pCreateInfo->pSubpasses[i];
const VkSubpassDescriptionDepthStencilResolve *ds_resolve =
vk_find_struct_const(desc->pNext, SUBPASS_DESCRIPTION_DEPTH_STENCIL_RESOLVE);
struct tu_subpass *subpass = &pass->subpasses[i];
subpass->input_count = desc->inputAttachmentCount;
subpass->color_count = desc->colorAttachmentCount;
subpass->resolve_count = 0;
subpass->resolve_depth_stencil = is_depth_stencil_resolve_enabled(ds_resolve);
subpass->samples = (VkSampleCountFlagBits) 0;
subpass->srgb_cntl = 0;
const BITMASK_ENUM(VkSubpassDescriptionFlagBits) raster_order_access_bits =
VK_SUBPASS_DESCRIPTION_RASTERIZATION_ORDER_ATTACHMENT_COLOR_ACCESS_BIT_EXT |
VK_SUBPASS_DESCRIPTION_RASTERIZATION_ORDER_ATTACHMENT_DEPTH_ACCESS_BIT_EXT |
VK_SUBPASS_DESCRIPTION_RASTERIZATION_ORDER_ATTACHMENT_STENCIL_ACCESS_BIT_EXT;
subpass->raster_order_attachment_access = raster_order_access_bits & desc->flags;
subpass->multiview_mask = desc->viewMask;
if (desc->inputAttachmentCount > 0) {
subpass->input_attachments = p;
p += desc->inputAttachmentCount;
for (uint32_t j = 0; j < desc->inputAttachmentCount; j++) {
uint32_t a = desc->pInputAttachments[j].attachment;
subpass->input_attachments[j].attachment = a;
if (a != VK_ATTACHMENT_UNUSED) {
struct tu_render_pass_attachment *att = &pass->attachments[a];
/* Note: attachments only used as input attachments will be read
* directly instead of through gmem, so we don't mark input
* attachments as needing gmem.
*/
att->first_subpass_idx = MIN2(i, att->first_subpass_idx);
att->last_subpass_idx = MAX2(i, att->last_subpass_idx);
}
}
}
if (desc->colorAttachmentCount > 0) {
subpass->color_attachments = p;
p += desc->colorAttachmentCount;
for (uint32_t j = 0; j < desc->colorAttachmentCount; j++) {
uint32_t a = desc->pColorAttachments[j].attachment;
subpass->color_attachments[j].attachment = a;
if (a != VK_ATTACHMENT_UNUSED) {
tu_subpass_use_attachment(pass, i, a, pCreateInfo);
if (vk_format_is_srgb(pass->attachments[a].format))
subpass->srgb_cntl |= 1 << j;
}
}
}
subpass->resolve_attachments = (desc->pResolveAttachments || subpass->resolve_depth_stencil) ? p : NULL;
if (desc->pResolveAttachments) {
p += desc->colorAttachmentCount;
subpass->resolve_count += desc->colorAttachmentCount;
for (uint32_t j = 0; j < desc->colorAttachmentCount; j++) {
uint32_t a = desc->pResolveAttachments[j].attachment;
uint32_t src_a = desc->pColorAttachments[j].attachment;
subpass->resolve_attachments[j].attachment = a;
tu_subpass_resolve_attachment(pass, i, a, src_a);
}
}
if (subpass->resolve_depth_stencil) {
p++;
subpass->resolve_count++;
uint32_t a = ds_resolve->pDepthStencilResolveAttachment->attachment;
uint32_t src_a = desc->pDepthStencilAttachment->attachment;
subpass->resolve_attachments[subpass->resolve_count - 1].attachment = a;
tu_subpass_resolve_attachment(pass, i, a, src_a);
}
uint32_t a = desc->pDepthStencilAttachment ?
desc->pDepthStencilAttachment->attachment : VK_ATTACHMENT_UNUSED;
subpass->depth_stencil_attachment.attachment = a;
if (a != VK_ATTACHMENT_UNUSED)
tu_subpass_use_attachment(pass, i, a, pCreateInfo);
}
tu_render_pass_patch_input_gmem(pass);
tu_render_pass_check_feedback_loop(pass);
/* disable unused attachments */
for (uint32_t i = 0; i < pass->attachment_count; i++) {
struct tu_render_pass_attachment *att = &pass->attachments[i];
if (!att->gmem) {
att->clear_mask = 0;
att->load = false;
}
}
tu_render_pass_cond_config(pass);
tu_render_pass_gmem_config(pass, device->physical_device);
tu_render_pass_bandwidth_config(pass);
tu_render_pass_calc_views(pass);
tu_render_pass_calc_hash(pass);
for (unsigned i = 0; i < pCreateInfo->dependencyCount; ++i) {
tu_render_pass_add_subpass_dep(pass, &pCreateInfo->pDependencies[i]);
}
tu_render_pass_add_implicit_deps(pass, pCreateInfo);
*pRenderPass = tu_render_pass_to_handle(pass);
return VK_SUCCESS;
}
VKAPI_ATTR void VKAPI_CALL
tu_DestroyRenderPass(VkDevice _device,
VkRenderPass _pass,
const VkAllocationCallbacks *pAllocator)
{
VK_FROM_HANDLE(tu_device, device, _device);
if (TU_DEBUG(DYNAMIC)) {
vk_common_DestroyRenderPass(_device, _pass, pAllocator);
return;
}
VK_FROM_HANDLE(tu_render_pass, pass, _pass);
if (!_pass)
return;
vk_free2(&device->vk.alloc, pAllocator, pass->subpass_attachments);
vk_object_free(&device->vk, pAllocator, pass);
}
static void
tu_setup_dynamic_attachment(struct tu_render_pass_attachment *att,
struct tu_image_view *view)
{
*att = {};
att->format = view->vk.format;
att->samples = (VkSampleCountFlagBits) view->image->layout->nr_samples;
/* for d32s8, cpp is for the depth image, and
* att->samples will be used as the cpp for the stencil image
*/
if (att->format == VK_FORMAT_D32_SFLOAT_S8_UINT)
att->cpp = 4 * att->samples;
else
att->cpp = vk_format_get_blocksize(att->format) * att->samples;
}
void
tu_setup_dynamic_render_pass(struct tu_cmd_buffer *cmd_buffer,
const VkRenderingInfo *info)
{
struct tu_device *device = cmd_buffer->device;
struct tu_render_pass *pass = &cmd_buffer->dynamic_pass;
struct tu_subpass *subpass = &cmd_buffer->dynamic_subpass;
*pass = {};
*subpass = {};
pass->subpass_count = 1;
pass->attachments = cmd_buffer->dynamic_rp_attachments;
subpass->color_count = subpass->resolve_count = info->colorAttachmentCount;
subpass->color_attachments = cmd_buffer->dynamic_color_attachments;
subpass->resolve_attachments = cmd_buffer->dynamic_resolve_attachments;
subpass->multiview_mask = info->viewMask;
uint32_t a = 0;
for (uint32_t i = 0; i < info->colorAttachmentCount; i++) {
struct tu_render_pass_attachment *att = &pass->attachments[a];
const VkRenderingAttachmentInfo *att_info = &info->pColorAttachments[i];
if (att_info->imageView == VK_NULL_HANDLE) {
subpass->color_attachments[i].attachment = VK_ATTACHMENT_UNUSED;
subpass->resolve_attachments[i].attachment = VK_ATTACHMENT_UNUSED;
continue;
}
VK_FROM_HANDLE(tu_image_view, view, att_info->imageView);
tu_setup_dynamic_attachment(att, view);
att->gmem = true;
att->clear_views = info->viewMask;
attachment_set_ops(device, att, att_info->loadOp,
VK_ATTACHMENT_LOAD_OP_DONT_CARE, att_info->storeOp,
VK_ATTACHMENT_STORE_OP_DONT_CARE);
subpass->color_attachments[i].attachment = a++;
subpass->samples = (VkSampleCountFlagBits) view->image->layout->nr_samples;
if (vk_format_is_srgb(view->vk.format))
subpass->srgb_cntl |= 1 << i;
if (att_info->resolveMode != VK_RESOLVE_MODE_NONE) {
struct tu_render_pass_attachment *resolve_att = &pass->attachments[a];
VK_FROM_HANDLE(tu_image_view, resolve_view, att_info->resolveImageView);
tu_setup_dynamic_attachment(resolve_att, resolve_view);
resolve_att->gmem = false;
attachment_set_ops(
device, resolve_att, VK_ATTACHMENT_LOAD_OP_DONT_CARE,
VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_STORE,
VK_ATTACHMENT_STORE_OP_DONT_CARE);
subpass->resolve_attachments[i].attachment = a++;
att->will_be_resolved = true;
} else {
subpass->resolve_attachments[i].attachment = VK_ATTACHMENT_UNUSED;
att->will_be_resolved = false;
}
}
if (info->pDepthAttachment || info->pStencilAttachment) {
const struct VkRenderingAttachmentInfo *common_info =
(info->pDepthAttachment &&
info->pDepthAttachment->imageView != VK_NULL_HANDLE) ?
info->pDepthAttachment :
info->pStencilAttachment;
if (common_info && common_info->imageView != VK_NULL_HANDLE) {
VK_FROM_HANDLE(tu_image_view, view, common_info->imageView);
struct tu_render_pass_attachment *att = &pass->attachments[a];
tu_setup_dynamic_attachment(att, view);
att->gmem = true;
att->clear_views = info->viewMask;
subpass->depth_stencil_attachment.attachment = a++;
attachment_set_ops(
device, att,
info->pDepthAttachment ? info->pDepthAttachment->loadOp
: VK_ATTACHMENT_LOAD_OP_DONT_CARE,
info->pStencilAttachment ? info->pStencilAttachment->loadOp
: VK_ATTACHMENT_LOAD_OP_DONT_CARE,
info->pDepthAttachment ? info->pDepthAttachment->storeOp
: VK_ATTACHMENT_STORE_OP_DONT_CARE,
info->pStencilAttachment ? info->pStencilAttachment->storeOp
: VK_ATTACHMENT_STORE_OP_DONT_CARE);
subpass->samples = (VkSampleCountFlagBits) view->image->layout->nr_samples;
if (common_info->resolveMode != VK_RESOLVE_MODE_NONE) {
unsigned i = subpass->resolve_count++;
struct tu_render_pass_attachment *resolve_att = &pass->attachments[a];
VK_FROM_HANDLE(tu_image_view, resolve_view,
common_info->resolveImageView);
tu_setup_dynamic_attachment(resolve_att, resolve_view);
resolve_att->gmem = false;
attachment_set_ops(device, resolve_att,
VK_ATTACHMENT_LOAD_OP_DONT_CARE,
VK_ATTACHMENT_LOAD_OP_DONT_CARE,
VK_ATTACHMENT_STORE_OP_STORE,
VK_ATTACHMENT_STORE_OP_STORE);
subpass->resolve_attachments[i].attachment = a++;
att->will_be_resolved = true;
subpass->resolve_depth_stencil = true;
} else {
att->will_be_resolved = false;
}
} else {
subpass->depth_stencil_attachment.attachment = VK_ATTACHMENT_UNUSED;
}
} else {
subpass->depth_stencil_attachment.attachment = VK_ATTACHMENT_UNUSED;
}
pass->attachment_count = a;
const VkRenderingFragmentDensityMapAttachmentInfoEXT *fdm_info =
vk_find_struct_const(info->pNext,
RENDERING_FRAGMENT_DENSITY_MAP_ATTACHMENT_INFO_EXT);
if (fdm_info && fdm_info->imageView != VK_NULL_HANDLE &&
!tu_render_pass_disable_fdm(pass)) {
VK_FROM_HANDLE(tu_image_view, view, fdm_info->imageView);
struct tu_render_pass_attachment *att = &pass->attachments[a];
tu_setup_dynamic_attachment(att, view);
pass->fragment_density_map.attachment = a++;
attachment_set_ops(device, att,
VK_ATTACHMENT_LOAD_OP_DONT_CARE,
VK_ATTACHMENT_LOAD_OP_DONT_CARE,
VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_ATTACHMENT_STORE_OP_DONT_CARE);
pass->has_fdm = true;
} else {
pass->fragment_density_map.attachment = VK_ATTACHMENT_UNUSED;
pass->has_fdm = false;
}
if (TU_DEBUG(FDM) && !tu_render_pass_disable_fdm(pass))
pass->has_fdm = true;
pass->attachment_count = a;
tu_render_pass_cond_config(pass);
tu_render_pass_gmem_config(pass, device->physical_device);
tu_render_pass_bandwidth_config(pass);
tu_render_pass_calc_views(pass);
tu_render_pass_calc_hash(pass);
}
void
tu_setup_dynamic_inheritance(struct tu_cmd_buffer *cmd_buffer,
const VkCommandBufferInheritanceRenderingInfo *info)
{
struct tu_render_pass *pass = &cmd_buffer->dynamic_pass;
struct tu_subpass *subpass = &cmd_buffer->dynamic_subpass;
pass->subpass_count = 1;
pass->attachments = cmd_buffer->dynamic_rp_attachments;
pass->fragment_density_map.attachment = VK_ATTACHMENT_UNUSED;
subpass->color_count = info->colorAttachmentCount;
subpass->resolve_count = 0;
subpass->resolve_depth_stencil = false;
subpass->color_attachments = cmd_buffer->dynamic_color_attachments;
subpass->resolve_attachments = NULL;
subpass->feedback_invalidate = false;
subpass->feedback_loop_ds = subpass->feedback_loop_color = false;
subpass->input_count = 0;
subpass->samples = (VkSampleCountFlagBits) 0;
subpass->srgb_cntl = 0;
subpass->raster_order_attachment_access = false;
subpass->multiview_mask = info->viewMask;
subpass->samples = info->rasterizationSamples;
unsigned a = 0;
for (unsigned i = 0; i < info->colorAttachmentCount; i++) {
struct tu_render_pass_attachment *att = &pass->attachments[a];
VkFormat format = info->pColorAttachmentFormats[i];
if (format == VK_FORMAT_UNDEFINED) {
subpass->color_attachments[i].attachment = VK_ATTACHMENT_UNUSED;
continue;
}
att->format = format;
att->samples = info->rasterizationSamples;
subpass->samples = info->rasterizationSamples;
subpass->color_attachments[i].attachment = a++;
/* conservatively assume that the attachment may be conditionally
* loaded/stored.
*/
att->cond_load_allowed = att->cond_store_allowed = true;
}
if (info->depthAttachmentFormat != VK_FORMAT_UNDEFINED ||
info->stencilAttachmentFormat != VK_FORMAT_UNDEFINED) {
struct tu_render_pass_attachment *att = &pass->attachments[a];
att->format = info->depthAttachmentFormat != VK_FORMAT_UNDEFINED ?
info->depthAttachmentFormat : info->stencilAttachmentFormat;
att->samples = info->rasterizationSamples;
subpass->depth_stencil_attachment.attachment = a++;
att->cond_load_allowed = att->cond_store_allowed = true;
} else {
subpass->depth_stencil_attachment.attachment = VK_ATTACHMENT_UNUSED;
}
tu_render_pass_calc_views(pass);
}
VKAPI_ATTR void VKAPI_CALL
tu_GetRenderAreaGranularity(VkDevice _device,
VkRenderPass renderPass,
VkExtent2D *pGranularity)
{
VK_FROM_HANDLE(tu_device, device, _device);
pGranularity->width = device->physical_device->info->gmem_align_w;
pGranularity->height = device->physical_device->info->gmem_align_h;
}
VKAPI_ATTR void VKAPI_CALL
tu_GetRenderingAreaGranularityKHR(VkDevice _device,
const VkRenderingAreaInfoKHR *pRenderingAreaInfo,
VkExtent2D *pGranularity)
{
VK_FROM_HANDLE(tu_device, device, _device);
pGranularity->width = device->physical_device->info->gmem_align_w;
pGranularity->height = device->physical_device->info->gmem_align_h;
}
uint32_t
tu_subpass_get_attachment_to_resolve(const struct tu_subpass *subpass, uint32_t index)
{
if (subpass->resolve_depth_stencil &&
index == (subpass->resolve_count - 1))
return subpass->depth_stencil_attachment.attachment;
return subpass->color_attachments[index].attachment;
}