mesa/src/broadcom/vulkan/v3dvx_pipeline.c

752 lines
28 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright © 2021 Raspberry Pi Ltd
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "v3dv_private.h"
#include "broadcom/common/v3d_macros.h"
#include "broadcom/cle/v3dx_pack.h"
#include "broadcom/compiler/v3d_compiler.h"
static uint8_t
blend_factor(VkBlendFactor factor, bool dst_alpha_one, bool *needs_constants)
{
switch (factor) {
case VK_BLEND_FACTOR_ZERO:
case VK_BLEND_FACTOR_ONE:
case VK_BLEND_FACTOR_SRC_COLOR:
case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
case VK_BLEND_FACTOR_DST_COLOR:
case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR:
case VK_BLEND_FACTOR_SRC_ALPHA:
case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
return factor;
case VK_BLEND_FACTOR_CONSTANT_COLOR:
case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR:
case VK_BLEND_FACTOR_CONSTANT_ALPHA:
case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA:
*needs_constants = true;
return factor;
case VK_BLEND_FACTOR_DST_ALPHA:
return dst_alpha_one ? V3D_BLEND_FACTOR_ONE :
V3D_BLEND_FACTOR_DST_ALPHA;
case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
return dst_alpha_one ? V3D_BLEND_FACTOR_ZERO :
V3D_BLEND_FACTOR_INV_DST_ALPHA;
case VK_BLEND_FACTOR_SRC1_COLOR:
case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
case VK_BLEND_FACTOR_SRC1_ALPHA:
case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
unreachable("Invalid blend factor: dual source blending not supported.");
default:
unreachable("Unknown blend factor.");
}
}
static void
pack_blend(struct v3dv_pipeline *pipeline,
const VkPipelineColorBlendStateCreateInfo *cb_info)
{
/* By default, we are not enabling blending and all color channel writes are
* enabled. Color write enables are independent of whether blending is
* enabled or not.
*
* Vulkan specifies color write masks so that bits set correspond to
* enabled channels. Our hardware does it the other way around.
*/
pipeline->blend.enables = 0;
pipeline->blend.color_write_masks = 0; /* All channels enabled */
if (!cb_info)
return;
const struct vk_render_pass_state *ri = &pipeline->rendering_info;
if (ri->color_attachment_count == 0)
return;
assert(ri->color_attachment_count == cb_info->attachmentCount);
pipeline->blend.needs_color_constants = false;
uint32_t color_write_masks = 0;
for (uint32_t i = 0; i < ri->color_attachment_count; i++) {
const VkPipelineColorBlendAttachmentState *b_state =
&cb_info->pAttachments[i];
const VkFormat vk_format = ri->color_attachment_formats[i];
if (vk_format == VK_FORMAT_UNDEFINED)
continue;
color_write_masks |= (~b_state->colorWriteMask & 0xf) << (4 * i);
if (!b_state->blendEnable)
continue;
const struct v3dv_format *format = v3dX(get_format)(vk_format);
/* We only do blending with render pass attachments, so we should not have
* multiplanar images here
*/
assert(format->plane_count == 1);
bool dst_alpha_one = (format->planes[0].swizzle[3] == PIPE_SWIZZLE_1);
uint8_t rt_mask = 1 << i;
pipeline->blend.enables |= rt_mask;
v3dvx_pack(pipeline->blend.cfg[i], BLEND_CFG, config) {
config.render_target_mask = rt_mask;
config.color_blend_mode = b_state->colorBlendOp;
config.color_blend_dst_factor =
blend_factor(b_state->dstColorBlendFactor, dst_alpha_one,
&pipeline->blend.needs_color_constants);
config.color_blend_src_factor =
blend_factor(b_state->srcColorBlendFactor, dst_alpha_one,
&pipeline->blend.needs_color_constants);
config.alpha_blend_mode = b_state->alphaBlendOp;
config.alpha_blend_dst_factor =
blend_factor(b_state->dstAlphaBlendFactor, dst_alpha_one,
&pipeline->blend.needs_color_constants);
config.alpha_blend_src_factor =
blend_factor(b_state->srcAlphaBlendFactor, dst_alpha_one,
&pipeline->blend.needs_color_constants);
}
}
pipeline->blend.color_write_masks = color_write_masks;
}
/* This requires that pack_blend() had been called before so we can set
* the overall blend enable bit in the CFG_BITS packet.
*/
static void
pack_cfg_bits(struct v3dv_pipeline *pipeline,
const VkPipelineDepthStencilStateCreateInfo *ds_info,
const VkPipelineRasterizationStateCreateInfo *rs_info,
const VkPipelineRasterizationProvokingVertexStateCreateInfoEXT *pv_info,
const VkPipelineRasterizationLineStateCreateInfoEXT *ls_info,
const VkPipelineMultisampleStateCreateInfo *ms_info)
{
assert(sizeof(pipeline->cfg_bits) == cl_packet_length(CFG_BITS));
pipeline->msaa =
ms_info && ms_info->rasterizationSamples > VK_SAMPLE_COUNT_1_BIT;
v3dvx_pack(pipeline->cfg_bits, CFG_BITS, config) {
/* Even if rs_info->depthBiasEnabled is true, we can decide to not
* enable it, like if there isn't a depth/stencil attachment with the
* pipeline.
*/
config.enable_depth_offset = pipeline->depth_bias.enabled;
/* This is required to pass line rasterization tests in CTS while
* exposing, at least, a minimum of 4-bits of subpixel precision
* (the minimum requirement).
*/
if (ls_info &&
ls_info->lineRasterizationMode == VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT)
config.line_rasterization = V3D_LINE_RASTERIZATION_DIAMOND_EXIT;
else
config.line_rasterization = V3D_LINE_RASTERIZATION_PERP_END_CAPS;
if (rs_info && rs_info->polygonMode != VK_POLYGON_MODE_FILL) {
config.direct3d_wireframe_triangles_mode = true;
config.direct3d_point_fill_mode =
rs_info->polygonMode == VK_POLYGON_MODE_POINT;
}
/* diamond-exit rasterization does not support oversample */
config.rasterizer_oversample_mode =
(config.line_rasterization == V3D_LINE_RASTERIZATION_PERP_END_CAPS &&
pipeline->msaa) ? 1 : 0;
/* From the Vulkan spec:
*
* "Provoking Vertex:
*
* The vertex in a primitive from which flat shaded attribute
* values are taken. This is generally the “first” vertex in the
* primitive, and depends on the primitive topology."
*
* First vertex is the Direct3D style for provoking vertex. OpenGL uses
* the last vertex by default.
*/
if (pv_info) {
config.direct3d_provoking_vertex =
pv_info->provokingVertexMode ==
VK_PROVOKING_VERTEX_MODE_FIRST_VERTEX_EXT;
} else {
config.direct3d_provoking_vertex = true;
}
config.blend_enable = pipeline->blend.enables != 0;
#if V3D_VERSION >= 71
/* From the Vulkan spec:
*
* "depthClampEnable controls whether to clamp the fragments depth
* values as described in Depth Test. If the pipeline is not created
* with VkPipelineRasterizationDepthClipStateCreateInfoEXT present
* then enabling depth clamp will also disable clipping primitives to
* the z planes of the frustrum as described in Primitive Clipping.
* Otherwise depth clipping is controlled by the state set in
* VkPipelineRasterizationDepthClipStateCreateInfoEXT."
*/
bool z_clamp_enable = rs_info && rs_info->depthClampEnable;
bool z_clip_enable = false;
const VkPipelineRasterizationDepthClipStateCreateInfoEXT *clip_info =
rs_info ? vk_find_struct_const(rs_info->pNext,
PIPELINE_RASTERIZATION_DEPTH_CLIP_STATE_CREATE_INFO_EXT) :
NULL;
if (clip_info)
z_clip_enable = clip_info->depthClipEnable;
else if (!z_clamp_enable)
z_clip_enable = true;
if (z_clip_enable) {
config.z_clipping_mode = pipeline->negative_one_to_one ?
V3D_Z_CLIP_MODE_MIN_ONE_TO_ONE : V3D_Z_CLIP_MODE_ZERO_TO_ONE;
} else {
config.z_clipping_mode = V3D_Z_CLIP_MODE_NONE;
}
config.z_clamp_mode = z_clamp_enable;
#endif
};
}
uint32_t
v3dX(translate_stencil_op)(VkStencilOp op)
{
switch (op) {
case VK_STENCIL_OP_KEEP:
return V3D_STENCIL_OP_KEEP;
case VK_STENCIL_OP_ZERO:
return V3D_STENCIL_OP_ZERO;
case VK_STENCIL_OP_REPLACE:
return V3D_STENCIL_OP_REPLACE;
case VK_STENCIL_OP_INCREMENT_AND_CLAMP:
return V3D_STENCIL_OP_INCR;
case VK_STENCIL_OP_DECREMENT_AND_CLAMP:
return V3D_STENCIL_OP_DECR;
case VK_STENCIL_OP_INVERT:
return V3D_STENCIL_OP_INVERT;
case VK_STENCIL_OP_INCREMENT_AND_WRAP:
return V3D_STENCIL_OP_INCWRAP;
case VK_STENCIL_OP_DECREMENT_AND_WRAP:
return V3D_STENCIL_OP_DECWRAP;
default:
unreachable("bad stencil op");
}
}
static void
pack_single_stencil_cfg(struct v3dv_pipeline *pipeline,
uint8_t *stencil_cfg,
bool is_front,
bool is_back,
const VkStencilOpState *stencil_state,
const struct vk_graphics_pipeline_state *state)
{
/* From the Vulkan spec:
*
* "Reference is an integer reference value that is used in the unsigned
* stencil comparison. The reference value used by stencil comparison
* must be within the range [0,2^s-1] , where s is the number of bits in
* the stencil framebuffer attachment, otherwise the reference value is
* considered undefined."
*
* In our case, 's' is always 8, so we clamp to that to prevent our packing
* functions to assert in debug mode if they see larger values.
*/
v3dvx_pack(stencil_cfg, STENCIL_CFG, config) {
config.front_config = is_front;
config.back_config = is_back;
config.stencil_write_mask = stencil_state->writeMask & 0xff;
config.stencil_test_mask = stencil_state->compareMask & 0xff;
config.stencil_test_function = stencil_state->compareOp;
config.stencil_pass_op =
v3dX(translate_stencil_op)(stencil_state->passOp);
config.depth_test_fail_op =
v3dX(translate_stencil_op)(stencil_state->depthFailOp);
config.stencil_test_fail_op =
v3dX(translate_stencil_op)(stencil_state->failOp);
config.stencil_ref_value = stencil_state->reference & 0xff;
}
}
static void
pack_stencil_cfg(struct v3dv_pipeline *pipeline,
const VkPipelineDepthStencilStateCreateInfo *ds_info,
const struct vk_graphics_pipeline_state *state)
{
assert(sizeof(pipeline->stencil_cfg) == 2 * cl_packet_length(STENCIL_CFG));
if ((!ds_info || !ds_info->stencilTestEnable) &&
(!BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_DS_STENCIL_TEST_ENABLE))) {
return;
}
const struct vk_render_pass_state *ri = &pipeline->rendering_info;
if (ri->stencil_attachment_format == VK_FORMAT_UNDEFINED)
return;
const bool any_dynamic_stencil_states =
BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_DS_STENCIL_WRITE_MASK) ||
BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_DS_STENCIL_COMPARE_MASK) ||
BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_DS_STENCIL_REFERENCE) ||
BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_DS_STENCIL_TEST_ENABLE) ||
BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_DS_STENCIL_OP);
/* If front != back or we have dynamic stencil state we can't emit a single
* packet for both faces.
*/
bool needs_front_and_back = false;
if ((any_dynamic_stencil_states) ||
memcmp(&ds_info->front, &ds_info->back, sizeof(ds_info->front))) {
needs_front_and_back = true;
}
/* If the front and back configurations are the same we can emit both with
* a single packet.
*/
pipeline->emit_stencil_cfg[0] = true;
if (!needs_front_and_back) {
pack_single_stencil_cfg(pipeline, pipeline->stencil_cfg[0],
true, true, &ds_info->front, state);
} else {
pipeline->emit_stencil_cfg[1] = true;
pack_single_stencil_cfg(pipeline, pipeline->stencil_cfg[0],
true, false, &ds_info->front, state);
pack_single_stencil_cfg(pipeline, pipeline->stencil_cfg[1],
false, true, &ds_info->back, state);
}
}
/* FIXME: Now that we are passing the vk_graphics_pipeline_state we could
* avoid passing all those parameters. But doing that we would need to change
* all the code that uses the VkXXX structures, and use instead the equivalent
* vk_xxx
*/
void
v3dX(pipeline_pack_state)(struct v3dv_pipeline *pipeline,
const VkPipelineColorBlendStateCreateInfo *cb_info,
const VkPipelineDepthStencilStateCreateInfo *ds_info,
const VkPipelineRasterizationStateCreateInfo *rs_info,
const VkPipelineRasterizationProvokingVertexStateCreateInfoEXT *pv_info,
const VkPipelineRasterizationLineStateCreateInfoEXT *ls_info,
const VkPipelineMultisampleStateCreateInfo *ms_info,
const struct vk_graphics_pipeline_state *state)
{
pack_blend(pipeline, cb_info);
pack_cfg_bits(pipeline, ds_info, rs_info, pv_info, ls_info, ms_info);
pack_stencil_cfg(pipeline, ds_info, state);
}
static void
pack_shader_state_record(struct v3dv_pipeline *pipeline)
{
assert(sizeof(pipeline->shader_state_record) >=
cl_packet_length(GL_SHADER_STATE_RECORD));
struct v3d_fs_prog_data *prog_data_fs =
pipeline->shared_data->variants[BROADCOM_SHADER_FRAGMENT]->prog_data.fs;
struct v3d_vs_prog_data *prog_data_vs =
pipeline->shared_data->variants[BROADCOM_SHADER_VERTEX]->prog_data.vs;
struct v3d_vs_prog_data *prog_data_vs_bin =
pipeline->shared_data->variants[BROADCOM_SHADER_VERTEX_BIN]->prog_data.vs;
/* Note: we are not packing addresses, as we need the job (see
* cl_pack_emit_reloc). Additionally uniforms can't be filled up at this
* point as they depend on dynamic info that can be set after create the
* pipeline (like viewport), . Would need to be filled later, so we are
* doing a partial prepacking.
*/
v3dvx_pack(pipeline->shader_state_record, GL_SHADER_STATE_RECORD, shader) {
shader.enable_clipping = true;
if (!pipeline->has_gs) {
shader.point_size_in_shaded_vertex_data =
pipeline->topology == MESA_PRIM_POINTS;
} else {
struct v3d_gs_prog_data *prog_data_gs =
pipeline->shared_data->variants[BROADCOM_SHADER_GEOMETRY]->prog_data.gs;
shader.point_size_in_shaded_vertex_data = prog_data_gs->writes_psiz;
}
/* Must be set if the shader modifies Z, discards, or modifies
* the sample mask. For any of these cases, the fragment
* shader needs to write the Z value (even just discards).
*/
shader.fragment_shader_does_z_writes = prog_data_fs->writes_z;
/* Set if the EZ test must be disabled (due to shader side
* effects and the early_z flag not being present in the
* shader).
*/
shader.turn_off_early_z_test = prog_data_fs->disable_ez;
shader.fragment_shader_uses_real_pixel_centre_w_in_addition_to_centroid_w2 =
prog_data_fs->uses_center_w;
/* The description for gl_SampleID states that if a fragment shader reads
* it, then we should automatically activate per-sample shading. However,
* the Vulkan spec also states that if a framebuffer has no attachments:
*
* "The subpass continues to use the width, height, and layers of the
* framebuffer to define the dimensions of the rendering area, and the
* rasterizationSamples from each pipelines
* VkPipelineMultisampleStateCreateInfo to define the number of
* samples used in rasterization multisample rasterization."
*
* So in this scenario, if the pipeline doesn't enable multiple samples
* but the fragment shader accesses gl_SampleID we would be requested
* to do per-sample shading in single sample rasterization mode, which
* is pointless, so just disable it in that case.
*/
shader.enable_sample_rate_shading =
pipeline->sample_rate_shading ||
(pipeline->msaa && prog_data_fs->force_per_sample_msaa);
shader.any_shader_reads_hardware_written_primitive_id = false;
shader.do_scoreboard_wait_on_first_thread_switch =
prog_data_fs->lock_scoreboard_on_first_thrsw;
shader.disable_implicit_point_line_varyings =
!prog_data_fs->uses_implicit_point_line_varyings;
shader.number_of_varyings_in_fragment_shader =
prog_data_fs->num_inputs;
/* Note: see previous note about addresses */
/* shader.coordinate_shader_code_address */
/* shader.vertex_shader_code_address */
/* shader.fragment_shader_code_address */
#if V3D_VERSION == 42
shader.coordinate_shader_propagate_nans = true;
shader.vertex_shader_propagate_nans = true;
shader.fragment_shader_propagate_nans = true;
/* FIXME: Use combined input/output size flag in the common case (also
* on v3d, see v3dx_draw).
*/
shader.coordinate_shader_has_separate_input_and_output_vpm_blocks =
prog_data_vs_bin->separate_segments;
shader.vertex_shader_has_separate_input_and_output_vpm_blocks =
prog_data_vs->separate_segments;
shader.coordinate_shader_input_vpm_segment_size =
prog_data_vs_bin->separate_segments ?
prog_data_vs_bin->vpm_input_size : 1;
shader.vertex_shader_input_vpm_segment_size =
prog_data_vs->separate_segments ?
prog_data_vs->vpm_input_size : 1;
#endif
/* On V3D 7.1 there isn't a specific flag to set if we are using
* shared/separate segments or not. We just set the value of
* vpm_input_size to 0, and set output to the max needed. That should be
* already properly set on prog_data_vs_bin
*/
#if V3D_VERSION == 71
shader.coordinate_shader_input_vpm_segment_size =
prog_data_vs_bin->vpm_input_size;
shader.vertex_shader_input_vpm_segment_size =
prog_data_vs->vpm_input_size;
#endif
shader.coordinate_shader_output_vpm_segment_size =
prog_data_vs_bin->vpm_output_size;
shader.vertex_shader_output_vpm_segment_size =
prog_data_vs->vpm_output_size;
/* Note: see previous note about addresses */
/* shader.coordinate_shader_uniforms_address */
/* shader.vertex_shader_uniforms_address */
/* shader.fragment_shader_uniforms_address */
shader.min_coord_shader_input_segments_required_in_play =
pipeline->vpm_cfg_bin.As;
shader.min_vertex_shader_input_segments_required_in_play =
pipeline->vpm_cfg.As;
shader.min_coord_shader_output_segments_required_in_play_in_addition_to_vcm_cache_size =
pipeline->vpm_cfg_bin.Ve;
shader.min_vertex_shader_output_segments_required_in_play_in_addition_to_vcm_cache_size =
pipeline->vpm_cfg.Ve;
shader.coordinate_shader_4_way_threadable =
prog_data_vs_bin->base.threads == 4;
shader.vertex_shader_4_way_threadable =
prog_data_vs->base.threads == 4;
shader.fragment_shader_4_way_threadable =
prog_data_fs->base.threads == 4;
shader.coordinate_shader_start_in_final_thread_section =
prog_data_vs_bin->base.single_seg;
shader.vertex_shader_start_in_final_thread_section =
prog_data_vs->base.single_seg;
shader.fragment_shader_start_in_final_thread_section =
prog_data_fs->base.single_seg;
shader.vertex_id_read_by_coordinate_shader =
prog_data_vs_bin->uses_vid;
shader.base_instance_id_read_by_coordinate_shader =
prog_data_vs_bin->uses_biid;
shader.instance_id_read_by_coordinate_shader =
prog_data_vs_bin->uses_iid;
shader.vertex_id_read_by_vertex_shader =
prog_data_vs->uses_vid;
shader.base_instance_id_read_by_vertex_shader =
prog_data_vs->uses_biid;
shader.instance_id_read_by_vertex_shader =
prog_data_vs->uses_iid;
/* Note: see previous note about addresses */
/* shader.address_of_default_attribute_values */
}
}
static void
pack_vcm_cache_size(struct v3dv_pipeline *pipeline)
{
assert(sizeof(pipeline->vcm_cache_size) ==
cl_packet_length(VCM_CACHE_SIZE));
v3dvx_pack(pipeline->vcm_cache_size, VCM_CACHE_SIZE, vcm) {
vcm.number_of_16_vertex_batches_for_binning = pipeline->vpm_cfg_bin.Vc;
vcm.number_of_16_vertex_batches_for_rendering = pipeline->vpm_cfg.Vc;
}
}
/* As defined on the GL_SHADER_STATE_ATTRIBUTE_RECORD */
static uint8_t
get_attr_type(const struct util_format_description *desc)
{
uint32_t r_size = desc->channel[0].size;
uint8_t attr_type = ATTRIBUTE_FLOAT;
switch (desc->channel[0].type) {
case UTIL_FORMAT_TYPE_FLOAT:
if (r_size == 32) {
attr_type = ATTRIBUTE_FLOAT;
} else {
assert(r_size == 16);
attr_type = ATTRIBUTE_HALF_FLOAT;
}
break;
case UTIL_FORMAT_TYPE_SIGNED:
case UTIL_FORMAT_TYPE_UNSIGNED:
switch (r_size) {
case 32:
attr_type = ATTRIBUTE_INT;
break;
case 16:
attr_type = ATTRIBUTE_SHORT;
break;
case 10:
attr_type = ATTRIBUTE_INT2_10_10_10;
break;
case 8:
attr_type = ATTRIBUTE_BYTE;
break;
default:
fprintf(stderr,
"format %s unsupported\n",
desc->name);
attr_type = ATTRIBUTE_BYTE;
abort();
}
break;
default:
fprintf(stderr,
"format %s unsupported\n",
desc->name);
abort();
}
return attr_type;
}
static void
pack_shader_state_attribute_record(struct v3dv_pipeline *pipeline,
uint32_t index,
const VkVertexInputAttributeDescription *vi_desc)
{
const uint32_t packet_length =
cl_packet_length(GL_SHADER_STATE_ATTRIBUTE_RECORD);
const struct util_format_description *desc =
vk_format_description(vi_desc->format);
uint32_t binding = vi_desc->binding;
v3dvx_pack(&pipeline->vertex_attrs[index * packet_length],
GL_SHADER_STATE_ATTRIBUTE_RECORD, attr) {
/* vec_size == 0 means 4 */
attr.vec_size = desc->nr_channels & 3;
attr.signed_int_type = (desc->channel[0].type ==
UTIL_FORMAT_TYPE_SIGNED);
attr.normalized_int_type = desc->channel[0].normalized;
attr.read_as_int_uint = desc->channel[0].pure_integer;
attr.instance_divisor = MIN2(pipeline->vb[binding].instance_divisor,
V3D_MAX_VERTEX_ATTRIB_DIVISOR);
attr.type = get_attr_type(desc);
}
}
void
v3dX(pipeline_pack_compile_state)(struct v3dv_pipeline *pipeline,
const VkPipelineVertexInputStateCreateInfo *vi_info,
const VkPipelineVertexInputDivisorStateCreateInfoEXT *vd_info)
{
pack_shader_state_record(pipeline);
pack_vcm_cache_size(pipeline);
pipeline->vb_count = vi_info->vertexBindingDescriptionCount;
for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
const VkVertexInputBindingDescription *desc =
&vi_info->pVertexBindingDescriptions[i];
pipeline->vb[desc->binding].stride = desc->stride;
pipeline->vb[desc->binding].instance_divisor = desc->inputRate;
}
if (vd_info) {
for (uint32_t i = 0; i < vd_info->vertexBindingDivisorCount; i++) {
const VkVertexInputBindingDivisorDescriptionEXT *desc =
&vd_info->pVertexBindingDivisors[i];
pipeline->vb[desc->binding].instance_divisor = desc->divisor;
}
}
pipeline->va_count = 0;
struct v3d_vs_prog_data *prog_data_vs =
pipeline->shared_data->variants[BROADCOM_SHADER_VERTEX]->prog_data.vs;
for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
const VkVertexInputAttributeDescription *desc =
&vi_info->pVertexAttributeDescriptions[i];
uint32_t location = desc->location + VERT_ATTRIB_GENERIC0;
/* We use a custom driver_location_map instead of
* nir_find_variable_with_location because if we were able to get the
* shader variant from the cache, we would not have the nir shader
* available.
*/
uint32_t driver_location =
prog_data_vs->driver_location_map[location];
if (driver_location != -1) {
assert(driver_location < MAX_VERTEX_ATTRIBS);
pipeline->va[driver_location].offset = desc->offset;
pipeline->va[driver_location].binding = desc->binding;
pipeline->va[driver_location].vk_format = desc->format;
pack_shader_state_attribute_record(pipeline, driver_location, desc);
pipeline->va_count++;
}
}
}
#if V3D_VERSION == 42
static bool
pipeline_has_integer_vertex_attrib(struct v3dv_pipeline *pipeline)
{
for (uint8_t i = 0; i < pipeline->va_count; i++) {
if (vk_format_is_int(pipeline->va[i].vk_format))
return true;
}
return false;
}
#endif
bool
v3dX(pipeline_needs_default_attribute_values)(struct v3dv_pipeline *pipeline)
{
#if V3D_VERSION == 42
return pipeline_has_integer_vertex_attrib(pipeline);
#endif
return false;
}
/* @pipeline can be NULL. In that case we assume the most common case. For
* example, for v42 we assume in that case that all the attributes have a
* float format (we only create an all-float BO once and we reuse it with all
* float pipelines), otherwise we look at the actual type of each attribute
* used with the specific pipeline passed in.
*/
struct v3dv_bo *
v3dX(create_default_attribute_values)(struct v3dv_device *device,
struct v3dv_pipeline *pipeline)
{
#if V3D_VERSION >= 71
return NULL;
#endif
uint32_t size = MAX_VERTEX_ATTRIBS * sizeof(float) * 4;
struct v3dv_bo *bo;
bo = v3dv_bo_alloc(device, size, "default_vi_attributes", true);
if (!bo) {
fprintf(stderr, "failed to allocate memory for the default "
"attribute values\n");
return NULL;
}
bool ok = v3dv_bo_map(device, bo, size);
if (!ok) {
fprintf(stderr, "failed to map default attribute values buffer\n");
return NULL;
}
uint32_t *attrs = bo->map;
uint8_t va_count = pipeline != NULL ? pipeline->va_count : 0;
for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++) {
attrs[i * 4 + 0] = 0;
attrs[i * 4 + 1] = 0;
attrs[i * 4 + 2] = 0;
VkFormat attr_format =
pipeline != NULL ? pipeline->va[i].vk_format : VK_FORMAT_UNDEFINED;
if (i < va_count && vk_format_is_int(attr_format)) {
attrs[i * 4 + 3] = 1;
} else {
attrs[i * 4 + 3] = fui(1.0);
}
}
v3dv_bo_unmap(device, bo);
return bo;
}